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A CALCULUS OF LAX FRACTIONS

LURDES SOUSA

Abstract: We present a notion of category of lax fractions, where lax fraction
stands for a formal composition s∗f with s∗s = id and ss∗ ≤ id, and a corresponding
calculus of lax fractions which generalizes the Gabriel-Zisman calculus of frac-
tions.

1.Introduction
Given a class Σ of morphisms of a category X, we can construct a cat-

egory of fractions X[Σ−1] where all morphisms of Σ are invertible. More
precisely, we can define a functor P

Σ
: X → X[Σ−1] which takes the mor-

phisms of Σ to isomorphisms, and, moreover, P
Σ
is universal with respect

to this property. As shown in [13], if Σ admits a calculus of fractions,
then the morphisms of X[Σ−1] can be expressed by equivalence classes of
cospans (f ,g) of morphisms of X with g ∈ Σ, which correspond to the for-
mal compositions g−1f .
We recall that categories of fractions are closely related to reflective sub-

categories and orthogonality. In particular, if A is a full reflective subcat-
egory of X, the class Σ of all morphisms inverted by the corresponding
reflector functor – equivalently, the class of all morphisms with respect
to which A is orthogonal – admits a left calculus of fractions; and A is,
up to equivalence of categories, a category of fractions of X for Σ. In [3]
we presented a Finitary Orthogonality Deduction System inspired by the
left calculus of fractions, which can be looked as a generalization of the
Implicational Logic of [20], see [4].
Assume now that X is an order-enriched category, that is, its hom-sets

X(X,Y ) are endowed with a partial order satisfying the condition f ≤ g ⇒
hf j ≤ hgj for every morphisms f ,g : X→ Y , j : Z → X and h : Y →W . We
call a morphism f : X→ Y ofX a left adjoint section if it is a left adjoint and
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has a left inverse; equivalently, there is a morphism f∗ : Y → X such that
f∗f = idX and f f∗ ≤ idY . We are interested in a category of lax fractions in
the sense that, given a class Σ of morphisms ofX, we want a category X[Σ∗]
and an order-enriched functor P

Σ
: X→ X[Σ∗] which takes morphisms of Σ

to left adjoint sections of X[Σ∗] and, moreover, P
Σ
is universal with respect

to that property. This problem is connected with the study of KZ-monads
and Kan-injectivity as explained next.
In recent papers ([1, 8]) we have studied a lax version of orthogonality

in order-enriched categories: Kan-injectivity. An object A is said to be
(left) Kan-injective with respect to a morphism h : X → Y provided that
for every morphism f : X → A there is a left Kan extension of f along h,
denoted f /h, and, moreover, f = (f /h)h. And a morphism k : A→ B is said
to be Kan-injective with respect to h if A and B are so and k preserves left
Kan extensions along h, i.e., (kf )/h = k(f /h). Let A be a subcategory of an
order-enriched category X. We say that A is KZ-reflective if it is reflective
and the monad induced in X by the reflector functor F : X→ A is a KZ-
monad, i.e., the unit η satisfies the inequalities FηX ≤ ηFX for all objects
X of X ([18, 12]). If, moreover, A is an Eilenberg-Moore category of a KZ-
monad over X, we say that A is a KZ-monadic subcategory of X. Let AKInj

denote the class of all morphisms with respect to which all objects and
morphisms of A are Kan-injective. As shown in [8], if A is KZ-reflective
in X, AKInj consists precisely of all morphisms of X whose images through
the reflector functor are left adjoint sections.
In this paper we present the notion of category of lax fractions P

Σ
: X→

X[Σ∗] and a calculus of lax fractions which generalize the usual non-lax
versions. But now Σ is not just a class of morphisms, as in the ordinary
case; instead, it is a subcategory of the arrow category X

→. And the calcu-
lus of lax fractions is expressed as a calculus of squares (called Σ-squares)
which represent formal equalities of the form f r∗ = s∗g (see Section 4).
This way, we obtain a description of the category of lax fractions of X, for
Σ a subcategory of X→ admitting a left calculus of lax fractions, in terms

of formal fractions s∗f represented by cospans •
f

// • •
soo with s an

object of Σ (Theorem 4.11). The idea of “calculating” with squares of the
base category X instead of just with morphisms of X is also used in the
paper in preparation [2] in order to obtain a Kan-Injectivity Logic gener-
alizing the Orthogonality Logic of [3].
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Given a subcategoryA ofX, letAKInj denote the subcategory ofX→whose
objects are the morphisms of AKInj, and whose morphisms between them
are those of the form (u,v) : (s : X→ Y ) −→ (s′ : Z →W ) such that (f u)/s =
(f /s′)v for all f with domain Z and codomain in A. We show that, for
Σ =AKInj, if A is a KZ-reflective subcategory of X, the category X[Σ∗] is the
Kleisli category for the monad induced by the reflector functor F : X→A,
and F differs from the functor P

Σ
: X→ X[Σ∗] at most by closedness under

left adjoint retractions (Theorem 3.7); moreover, Σ admits a left calculus
of lax fractions (Proposition 4.5).
We finish up with some properties on cocompleteness. We show that

whenever X has weighted colimits, any subcategory of X→ of the form
Σ =AKInj also has weighted colimits (Theorem 5.1) and admits a left calcu-
lus of lax fractions, and the corresponding category of lax fractions X[Σ∗]
has (small) conical coproducts. Moreover, we present conditions on any
subcategory Σ under which X[Σ∗] has finite conical coproducts, provided
X has them.
Several examples of subcategories Σ of X→ admitting a left calculus of

lax fractions are provided in Example 4.4 for X the category Pos of posets
and monotone maps, the category Loc of locales and localic maps, and the
category Top0 of T0 topological spaces and continuous maps.
The study of constructions of categories by freely adding adjoints to the

arrows of a category has been addressed before. Although the present
approach is completely different, it is worth mentioning here the works
[10] and [11] of Dawson, Paré and Pronk.

2.Preliminaries
Along this paper we work in the order-enriched context. More precisely,

we consider categories and functors enriched in the category Pos of posets
and monotone maps. For a category X this means that each one of its
hom-sets X(X,Y ) is equipped with a partial order ≤ which is preserved
by composition on the left and on the right. And a functor between order-
enriched categories is order-enriched if it preserves the partial order of the
morphisms. A subcategory of an order-enriched category X will be con-
sidered order-enriched via the restriction of the order on the morphisms
of X to the morphisms of A.
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In this section, we recall the notions of Kan-injectivity and KZ-reflective
subcategory, and some of their properties, which are presented in [8] and
[?].

2.1. Kan-injectivity. In an order-enriched category X, an object A is said
to be left Kan-injective (or just Kan-injective) with respect to a morphism h :
X→ Y , if, for every morphism f : X→ A, there is a morphism f /h : Y → A
such that

(i) (f /h)h = f , and
(ii) f ≤ gh ⇒ f /h ≤ g , for every morphism g : Y → A.

A morphism k : A→ B is said to be (left) Kan-injective with respect to h
provided that A and B are so, and the equality (kf )/h = k(f /h) holds for all
f : X→ A.

(Left) Kan-injectivity may be equivalently defined as follows: An object
A is left Kan-injective with respect to a morphism h : X → Y , if and only
if the hom-map X(h,A) : X(Y,A) → X(X,A) is a right adjoint retraction
(short for a morphism which is simultaneously a right adjoint and a re-
traction) in the category Pos. In this case, if (X(h,A))∗ : X(X,A)→ X(Y,A)
is the left adjoint of X(h,A), then we have that (X(h,A))∗(f ) = f /h.

Given a class H of morphisms of X, the objects and morphisms of X
which are Kan-injective with respect to all morphisms of H constitute a
subcategory, denoted by

KInj(H)

and said to be a Kan-injective subcategory. And, given a subcategory A of
X, we denote by

A
KInj

the class of all morphismswith respect to which all objects andmorphisms
of A are Kan-injective.

2.2. KZ-reflective subcategories. We recall that a KZ-monad (or lax idem-
potent monad) on X is a monad T : X → X whose unit η satisfies the in-
equalities TηX ≤ ηTX , X ∈ X ([18], [12]). Let A be a subcategory of X. A

is said to be a KZ-reflective subcategory of X if it is reflective in X and the
monad overX induced by the corresponding adjunction is of KZ type; that
is, the left adjoint F : X→A and the unit η satisfy the inequalities

FηX ≤ ηFX , X ∈ X. (1)
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The Eilenberg-Moore categories of KZ-monads over X are, up to isomor-
phism of categories, KZ-reflective subcategories, called then KZ-monadic
subcategories. Thus the concept of KZ-monadic subcategory is a lax ver-
sion of the one of replete full reflective subcategory. In [8] we showed
that KZ-monadic subcategories are precisely the KZ-reflective categories
closed under left adjoint retractions (i.e., the equality gx = yf between
morphisms of X with f in A and x and y both left adjoint retractions im-
plies that g also belongs to A). In [?] we proved that in well-behaved cat-
egories, namely in locally ranked ones, every Kan-injective subcategory
KInj(H) with H a set is indeed a KZ-monadic subcategory.
When A is KZ-reflective in X, with F : X → A the corresponding re-

flector functor, AKInj is precisely the class of all morphisms f of X such
that Ff is a left adjoint section in A, that is, there is a morphism (Fh)∗
in A with (Fh)∗Fh = id and Fh(Fh)∗ ≤ id. We call this kind of morphisms
F-embeddings, following the terminology of M. Escardó [12].

3.Categories of lax fractions
It is well known that if A is a full reflective subcategory of an ordinary

category X with reflector functor F : X→ A, then A is, up to equivalence
of categories, the category of fractions of X for the class of morphisms in-
verted by F. Indeed, this category of fractions is the Kleisli category of the
idempotent monad induced by the corresponding adjunction. Formally
we can think of a “fraction” as a composition of the form h−1f where h−1 is
a formal inverse of h. Here we use the term “lax fraction” evoking a com-
position of the form h∗f where h∗ is a formal left inverse and right adjoint
of h (that is, h∗ is thought as satisfying h∗h = id and id ≤ h∗h). We show that,
in the order-enriched context, a KZ-reflective subcategory A of X, with re-
flector F : X→ A, is also closely related to the category of lax fractions of
X for the F-embeddings of X. And this category of lax fractions coincides
with the Kleisli category of the corresponding KZ-monad too.
Given a full subcategory A of any category X, some of the nice proper-

ties of the class AOrth of all morphisms with respect to which A is orthog-
onal are obtained by looking at AOrth as a full subcategory of the arrow
category X→. This is the case, for instance, of the closedness under col-
imits of AOrth in X→, when X is cocomplete (cf. [21]). Let X be an order-
enriched category, and let X→ be order-enriched with the coordinatewise
order. KZ-reflective subcategories are not full, in general. Thus it is not
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surprising that, in order to generalize orthogonality properties to Kan-
injectivity ones, we need to consider AKInj as a subcategory of X→ which is
not necessarily full. In the same vein, we define categories of lax fractions
for subcategories Σ of X→.

Definition 3.1. Let X be a category and Σ a subcategory of the arrow cate-
gory X→. A category of lax fractions of X for Σ consists of a (quasi)category
X[Σ∗] and a functor P

Σ
: X→ X[Σ∗] such that:

(i) P
Σ
h is a left adjoint section, for every object h of Σ.

(ii) For every morphism (u,v) : h→ h′ in Σ, P
Σ
u · (P

Σ
h)∗ = (P

Σ
h′)∗ ·PΣv.

(iii) If G : X→ C is another functor enjoying the properties (i) and (ii),
then there is a unique functor H : X[Σ∗]→ C such that HP

Σ
= G.

Remark 3.2. If we think of an ordinary category X as an order-enriched
one via the discrete order, i.e., the order =, then (ii) trivially holds, and
Definition 3.1 becomes the usual definition of category of fractions.

Definition 3.3. Given a subcategory A of X, we will denote by

A
KInj

the subcategory of the arrow category X→ consisting of:
(i) Objects: all morphisms h of X such that all objects and morphisms of A
are left-Kan injective with respect to h. That is, the class of objects of AKInj

is AKInj.

(ii) Morphisms: those morphisms (u,v) : (X
h
→ Y ) → (X ′

h′

→ Y ′), with h
and h′ in A

KInj, such that, for every g : X ′ → A, with A ∈ A, we have that
(gu)/h = (g/h′)v:

X
h //

u
��

Y

v
��

X ′
h′ //

g
��

Y ′

g/h′~~||
||

||
||

A

In other words, a morphism (u,v) : (X
h
→ Y )→ (X ′

h′

→ Y ′) of X→ is a mor-
phism ofAKInj iff it satisfies the equality X(h,A)∗·X(u,A) = X(v,A)·X(h′,A)∗

for all objects A ∈A.
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The next lemmas are going to be used in the proof of the main result of
this section, Theorem 3.7.

Lemma 3.4. Let A be a KZ-reflective subcategory of X with reflector functor
F : X → A. Then, for every morphism h : X → Y in X and every morphism
(u,v) : h→ h′ in X→, we have that:
(i) h ∈AKInj iff Fh is a left adjoint section in A; and
(ii) for h and h′ inA

KInj, a morphism (u,v) : h→ h′ lies inA
KInj iff Fu (Fh)∗ =

(Fh′)∗Fv

Proof : (i) was proved in [8] (see the last paragraph of 2.2).
(ii) It is easy to verify, and it was observed in [12], that, under the present

conditions, given a : X→ A with A ∈A, we have that

a/h = εA · Fa · (Fh)∗ · ηY , (2)

where η and ε are the corresponding unit and counit. Let (u,v) : h→ h′ be
a morphism of AKInj:

X
h //

u
��

Y
v
��

X ′
h′

// Y ′

Then, for ηX ′ : X
′ → FX ′, we have (ηX ′ /h

′)v = (ηX ′u)/h, that is, by (2),
εFX ′FηX ′(Fh

′)∗ηY ′v = εFX ′F(ηX ′u)(Fh)∗ηY . Consequently, (Fh
′)∗ηY ′v = Fu(Fh)∗ηY ,

i.e., (Fh′)∗FvηY = Fu(Fh)∗ηY ; thus, (Fh
′)∗Fv = Fu(Fh)∗, since from (i) we

know that (Fh′)∗Fv and Fu(Fh)∗ are both morphisms of A.
Conversely, if the equality (Fh′)∗Fv = Fu(Fh)∗ holds, for d : X ′ → D,

with D ∈ A, we have that (d/h′)v = εDFd(Fh
′)∗ηY ′v = εDFd(Fh

′)∗FvηY =
εDFdFu(Fh)∗ηY = εDF(du)(Fh)∗ηY = (du)/h.

Remark 3.5. ([8]) Let A be a reflective subcategory of X, with reflector
functor F, unit η and counit ε. Then A is KZ-reflective if and only if
FεA ≥ εFA, A ∈ A, if and only if ηAεA ≥ idFA, A ∈ A. Then, when A is
KZ-reflective, εA is a left adjoint retraction, with (εA)∗ = ηA. Moreover,
every FηX is a left adjoint section, with (FηX)∗ = εFX . Thus, εFX is si-
multaneously a right adjoint and a left adjoint satisfying the inequalities
FηXεFX ≤ idF2X ≤ ηFXεFX.

Lemma 3.6. Let A be a KZ-reflective subcategory of X, with reflector F and
unit η. Then, for every f : X → Y , (f ,Ff ) : ηX → ηY is a morphism of the
category AKInj.
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Proof : Indeed, with respect to the commutative square

X

f
��

ηX // FX

Ff
��

Y ηY
// FY

using Remark 3.5, we have that Ff (FηX)∗ = Ff εFX = εFYF
2f = (FηY )∗F

2f ;
hence, by Lemma 3.4, the morphism (f ,Ff ) lies in A

KInj.

Theorem 3.7. Let A be a KZ-reflective subcategory of X with reflector functor
F : X→ A. Then there exists a category X[Σ∗] and a functor P

Σ
: X→ X[Σ∗]

forming a category of lax fractions of X for Σ =AKInj. Moreover, if H : X[Σ∗]→
A is the unique functor with HP

Σ
= F, then for every f : A → B in A there

is some g : X → Y in X[Σ∗] and a commutative diagram HX
r
��

Hg
// HY

r ′
��

A
f

// B

in X

with r and r ′ left adjoint retractions.

Proof : Let η and ε be the corresponding unit and counit of the KZ-reflection
of X into A. Define a category X[Σ∗] and a functor P

Σ
: X→ X[Σ∗] as fol-

lows:

• |X[Σ∗]| = |X|, where |X| denotes the class of objects of X.
• for every X, X ′ ∈ |X|, the poset X[Σ∗](X,X ′) is A(FX,FX ′);
• for every object X of X[Σ∗](X,X ′) the identity idX is just idFX , and
the composition is defined as in A;
• P

Σ
X = X and P

Σ
f = Ff , for every object X and every morphism f of

X.

X[Σ∗] is, up to isomorphism of categories, the Kleisli category of themonad
induced in X by F, and P

Σ
: X→ X[Σ∗] is the corresponding reflection of X

in it (cf. [19]). We show that P
Σ
: X→ X[Σ∗] is a category of lax fractions

for AKInj.
The satisfaction by P

Σ
of conditions (i) and (ii) of Definition 3.1 follows

immediately from the definition of P
Σ
and Lemma 3.4.

Concerning (iii), let G : X→ C be a functor satisfying conditions (i) and
(ii) of Definition 3.1. We want to define a functor H : X[Σ∗]→ C such that
HP

Σ
= G and show that there is a unique such functor H .
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First observe that if this functor H exists, then we have

HX =HP
Σ
X = GX, (3)

for everyX ∈ |X[Σ∗]|; and, for everymorphism f ofX for which (Ff )∗ exists,

H((Ff )∗) = (HFf )∗ = (Gf )∗, (4)

since we are dealing with order-enriched functors, which preserve adjunc-
tions and retractions. In particular (see Remark 3.5),

H(εFX) =H((FηX)∗) = (GηX)∗. (5)

Moreover, given f ∈ X[Σ∗](X,X ′), i.e., f : FX → FX ′ in A, we have that
Hf =H(f εFXFηX) =H(εFX ′ · Ff · FηX); then, by (5),

Hf = (GηX ′)∗ ·Gf ·G(ηX). (6)

The satisfaction of (3) and (6) definesH uniquely, and the equalityHP
Σ
=

G is easily verified.
It remains to show that H is indeed a functor. The preservation of iden-

tities is clear. To prove thatH preserves composition, let f : FX→ FY and
g : FY → FZ be two morphisms of X[Σ∗](X,Y ) and X[Σ∗](Y,Z), respec-
tively. We want to show that H(gf ) =Hg ·Hf .
Due to the equality (FηX)∗ = εFX , given in Remark 3.5, we have that, for

every morphism f : FX→ FY of A, f = (FηY )∗ · Ff · F(ηX). Taking this into
account and the fact that G preserves adjunctions, we have:

GgGf = (GFηZ)∗ ·GFg ·GF(ηY ) · (GFηY )∗ ·GFf ·GF(ηX).

Multiplying by (GηZ)∗ on the left-hand side and by GηX on the right-hand
side, and using (6), we obtain:

H(gf ) = (GηZ)∗ · (GFηZ)∗ ·GFg ·GF(ηY ) · (GFηY )∗ ·GFf ·GF(ηX) ·GηX . (7)

But the diagram

GFY

Gg
��

GF2Y
(GηFY )∗oo

GFg
��

GFZ

(GηZ )∗
��

GF2Z
(GηFZ )∗oo

(GFηZ)∗
��

GZ GFZ
(GηZ )∗oo

is commutative: the top square commutes, because (g,Fg) : ηFY → ηFZ is
a morphism of Σ = A

KInj, from Lemma 3.6, and G satisfies condition (ii)
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of Definition 3.1; the bottom square commutes because all morphisms ηZ ,
FηZ and ηFZ belong to Σ, thus (GηZ)∗, (GFηZ)∗ and (GηFZ)∗ are defined
and, from the equality FηZ · ηZ = ηFZ · ηZ , it follows the required equality.
Consequently, we have:

(GηZ)∗ · (GFηZ)∗ ·GFg = (GηZ)∗ ·Gg · (GηFY )∗. (8)

Moreover,

GFf ·GF(ηX) ·GηX = GFf ·GηFX ·GηX = G(ηFY ) ·Gf ·GηX . (9)

Therefore, by applying (8) and (9) to the right-hand side of (7), we get

H(gf ) = (GηZ)∗ ·Gg · (GηFY )∗ ·GF(ηY ) · (GFηY )∗ ·G(ηFY ) ·Gf ·GηX .

In order to conclude that the right-hand side of the last equality is pre-
cisely

Hg ·Hf = (G(ηZ))∗G(g)G(ηY ) (G(ηY ))∗G(f )G(ηX),

it suffices to show that (GηFY )∗ ·GF(ηY ) · (GFηY )∗ ·G(ηFY ) = G(ηY ) (G(ηY ))∗.
This is easy:

(GηFY )∗ ·GF(ηY ) · (GFηY )∗ ·G(ηFY ) =GηY · (GηY )∗ · (GFηY )∗ ·G(ηFY ), by 3.6
=GηY · (GηY )∗ · idFY

=GηY · (GηY )∗.

The order-enrichment of H is immediate from the definition of H , since G
is so.
Finally, from Lemma 3.4, we know that the reflector functor F : X→ A

satisfies conditions (i) and (ii). Thus, as we have just seen, the unique
functor H : X[Σ∗] → A such that HP

Σ
= F is defined by HX = FX and

Hf = (FηY )∗ ·Ff ·FηX = εFY ·Ff ·FηX = f ·εFX ·FηX = f . For every morphism
g : A→ A′ of A, we have Fg ∈ X[Σ∗](A,A

′), with H(Fg) = (Fg : FA→ FA′),
and thus we have a commutative diagram of the form

HA

εA
��

H(Fg)
// HA′

εA′
��

A g
// A′

with εA and εA′ left adjoint retractions in X (see Remark 3.5).
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Remark 3.8. Under the conditions of the above theorem, let E : A→ X be
the corresponding inclusion functor and put K = P

Σ
E : A→ X[Σ∗]. Then

K is faithful, because, for every morphism f : A→ A′ of A, we have that
f = εA′Ff ηA. And it has the property that, for every morphism g : X → X ′

inX[Σ∗], there are amorphism f : A→ A′ inA and a commutative diagram

KA

r
��

Kf
// KA′

r ′
��

X g
// X ′

in X[Σ∗] with r and r ′ retractions which are simultaneously left and right
adjoints. Indeed, it suffices to take r = εFX and r ′ = εFX ′ (see Remark 3.5).

Remark 3.9. As observed before, the category X[Σ∗] described in the proof
of the above theorem is the Kleisli category for the monad over X induced
by its KZ-reflection intoA. We point out that in [14] the authors show that,
for every monad, the Kleisli category can always be seen as a category of
(generalized) fractions.

4.A left calculus of lax fractions
In this section we introduce the notion of a left calculus of lax fractions

relatively to a subcategory Σ of the arrow category X→, which generalizes
the usual left calculus of fractions and allows us to describe the category
of lax fractions of X for Σ in terms of formal fractions s∗f represented by

cospans •
f

// • •
soo with s an object of Σ.

Σ-squares, as described next, are going to be used to define and manip-
ulate the left calculus of lax fractions.

Terminology 4.1. Given a subcategory Σ of X→, we use a square of the
form

•
r //

f Σ
��

•
g
��

•
s

// •

to indicate that f , g , r and s are morphisms of X such that (f ,g) : r→ s is a
morphism of Σ, and a square of this type is called a Σ-square.
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Moreover, by a a Σ-spanwe mean a span • •
f

//roo • with r an object

of Σ. And a Σ-cospan from A to B is a cospan A
g

// J B
soo with s an

object of Σ.
When we have (r, f ) and (g,s) forming a Σ-square as above, we say that

the Σ-span (r, f ) covers the Σ-cospan (g,s).

Thinking of a Σ-span • •
f

//roo • as a formal representation of the

(lax) fraction f r∗, and of the Σ-cospan •
g

// • •
soo as a formal repre-

sentation of the (lax) fraction s∗g , the aboveΣ-square represents the formal
equality f r∗ = s∗g .

Definition 4.2. A subcategory Σ of X→ is said to admit a left calculus of lax
fractions of X if it satisfies the following conditions:

1. Identity. The identities of X are objects of Σ and •
id //

id Σ
��

•

s
��

•
s

// •

for all

objects s of Σ.

2. Composition. If we have •
r //

f Σ
��

•

g
��

•
s

// •

and •
r ′ //

g Σ
��

•

h
��

•
s′

// •

then also

•
r ′r //

f Σ
��

•

h
��

•
s′s

// •

.

3. Square. For every Σ-span • •
f

//roo • , there are morphisms r ′

and f ′ such that

•
r //

f Σ
��

•

f ′

��
•

r ′
// •

.
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4. Coinsertion. Given a diagram •
r //

f
��

•

g
��

h
��

•
s

// •

where the inner square is

aΣ-square, and such that gr ≤ hr, then there is a morphism t, whose
domain is the codomain of s, satisfying the following conditions:

tg ≤ th and •
s //

Σ

•

t
��

•
ts

// •

.

Remark 4.3. Combining the composition of morphisms in the category
Σ with the one given by Composition, we have that any square obtained
by finite horizontal and vertical compositions of Σ-squares is a Σ-square.
This is going to be very useful in the proofs of this section.

Examples 4.4. 1. Recall that a class of morphisms Σ of an ordinary cate-
gory X admits a left calculus of fractions if it satisfies the following condi-
tions:
1’. Σ contains all identities of X.
2’. Σ is closed under composition.

3’. For every span • •
f

//roo • with r ∈ Σ, there is a cospan

•
f ′

// • •
r ′oo with r ′ ∈ Σ and f ′r = r ′f .

4’. If we have a diagram •
r // •

h //

g
// • with r ∈ Σ and gr = hr then

there is some t ∈ Σ with tg = th.

Let X be an ordinary category, equivalently, a category enriched with
the discrete order =. Let Σ be a class of morphisms of X, regarded as a
full subcategory of X→. Then Σ admits a left calculus of lax fractions if
and only if it admits a left calculus of fractions in the usual sense. Indeed,
the equivalence of the three first conditions is immediately seen. To show
that, in the presence of 1-3, 4 implies 4’, let g and h be a pair of morphisms
equalized by a morphism r of Σ. For f = gr = hr and s = id we obtain a
diagram as the first one in Definition 4.2.4, which is a Σ-square because
of the fullness of Σ. Consequently, there is some morphism t under the
conditions of the second diagram of Definition 4.2.4; since s is the identity,
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we conclude that t ∈ Σ. Conversely, given a diagram as the first one in
Definition 4.2.4, with gr = hr, let t be a morphism of Σ such that tg = th.
Then, the second diagram of Definition 4.2.4 is indeed a Σ-square, since
ts ∈ Σ.
In this case P

Σ
: X→ X[Σ∗] is just the category of fractions PΣ : X→ X[Σ−1].

Moreover, (i) every map of X[Σ−1] can be represented as (P
Σ
s)−1P

Σ
f with

s ∈ Σ, and (ii) (P
Σ
s)−1P

Σ
f = (P

Σ
t)−1P

Σ
g iff there is a commutative diagram in

X of the form

•

x
��

•

f
>>~~~~~~~~

g   @
@@

@@
@@

@
• •

s
``@@@@@@@@

t~~~~
~~

~~
~~

•

y

OO

with xs = yt in Σ. In [7], J. Bénabou presents a calculus of fractions which
provides necessary and sufficient conditions on Σ for (i) and (ii).

2. Let Σ be the subcategory ofX→ whose objects are all left adjoint sections
of X, and the morphisms between them are all (f ,g) : r→ s with f r∗ = s∗g .
Then Σ is clearly a subcategory of X, and it admits a left calculus of lax
fractions. To show Coinsertion, given a morphism (f ,g) : r → s, let h be a
morphism of X with gr ≤ hr; then s∗ plays the role of t in Definition 4.2,
the inequality being obtained as follows: s∗g = s∗sf r∗ = s∗grr∗ ≤ s∗hrr∗ ≤ s∗h.

3. Let X be an order-enriched category with conical pushouts (see Section
5). A morphism e : X → Y of X is said to be order-epic if, for every pair of
morphisms f ,g : Y → Z with f e ≤ ge, we have that f ≤ g . It is easily seen
that every (conical) pushout of an order-epic morphism along an arbitrary
morphism is also order-epic. Let Σ be the subcategory of X→ defined as
follows. The objects are all order-epic morphisms, and the morphisms
are all morphisms of X→ of the form (id, e) : id → e with e order-epic,
represented by the square • •

e
��

•
e

// •

, all morphisms (f ,g) : e → e′ of X

such that the square •

f
��

e // •
g
��

•
e′

// •

is a pushout, and all morphisms of X→
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obtained by finite horizontal and vertical composition of these two types
of squares. It is easy to see that Σ is indeed a subcategory of X→ which
admits a left calculus of lax fractions.

4. In the category Pos, we say that a morphism m : X → Y is an (order)
embedding if it satisfies the conditionm(x) ≤m(x′) ⇒ x ≤ x′, for all x,x′ ∈ X .
We know that, in Pos, every complete lattice is Kan-injective with respect
to embeddings, and given f : X → C with C a complete lattice f /m is
defined by (see [6] and [1])

(f /m)(b) =
∨

m(x)≤b

f (x). (10)

Moreover, embeddings are precisely those morphisms m : X → Y with re-
spect to which the two-element chain D = (0 < 1) is Kan-injective; indeed,
given a,a′ ∈ X with m(a) ≤ m(a′), define f : X → D by f (x) = 1 if a ≤ x,
otherwise f (x) = 0. Then, if D is Kan-injective with respect to m, we have
1 = f (a) = (f /m)m(a) ≤ (f /m)m(a′) = f (a′), and this implies the equality
f (a′) = 1, i.e. a ≤ a′.
Let Σ be the subcategory of Pos→ consisting of:
• Objects: all embeddings;
• Morphisms: all morphism (u,v) : m→ n, with m : X → Y and n : Z →

W embeddings, satisfying the following condition, for all y ∈ Y and z ∈ Z :

n(z) ≤ v(y) =⇒ there is some x ∈ X with z ≤ u(x) and m(x) ≤ y. (11)

We show that Σ = DKInj. As a consequence, Σ admits a left calculus of
lax fractions. Indeed, in Proposition 5.3 we will see that if X has finite
weighted colimits then, for every subcategory A of X, Σ = AKInj always
admits a left calculus of fractions.
Since we already have seen that embeddings are precisely themorphisms

of X with respect to which D is Kan-injective, it remains to show that (11)
characterizes the morphisms ofDKInj. Let then the morphism (u,v) :m→ n
of Pos→ satisfy (11), and consider a morphism f : Z→D. We want to show
that (f u)/m = (f /n)v. Since (f u)/m ≤ (f /n)v always holds, it suffices to
show that, for each y ∈ Y , ((f /n)v)(y) = 1 implies ((f u)/m)(y) = 1; in other
words, taking into account (10), if y ∈ Y and z ∈ Z are such that f (z) = 1
and n(z) ≤ v(y), then there is some x ∈ X with f u(x) = 1 and m(x) ≤ y.
But the satisfaction of this last condition is clearly ensured by (11). Con-
versely, let (u,v) : m→ n be a morphism of DKInj, and consider y ∈ Y and
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z ∈ Z with n(z) ≤ v(y). Let f : Z→D be defined by f (z′) = 1 if z ≤ z′, other-
wise, f (z′) = 0. Since f (z) = 1 and n(z) ≤ v(y), we have that ((f /n)v)(y) = 1.
Thus also ((f u)/m)(y) = 1. But this means that there is some x ∈ X with
m(x) ≤ y and (f u)(x) = 1, the last equality meaning that z ≤ u(x).
Let Ω0 be the contravariant endofunctor of Pos sending every poset X

to the poset Ω0X of its lower sets, and every monotone map f : X → Y
to the preimage map Ω0f : Ω0Y → Ω0X . In [2], we show that condition
(11) above is equivalent to the Beck-Chevalley condition (Ω0u)

∗ ·Ω0m =
Ω0n · (Ω0b)

∗, where −∗ stands for the left adjoint.

5. (cf. [2]) Let Loc be the category of locales (i.e., frames) and localic maps,
i.e., maps f preserving all infima and whose left adjoint f ∗ preserves finite
meets. Recall that embeddings in Loc are precisely the localic maps h
made split monomorphisms by its left adjoint: h∗h = id ([15]).
Let Σ0 be the subcategory of Loc→ having all embeddings as objects and

whose morphisms are those (u,v) : m → n of Loc→ satisfying the Beck-
Chevalley condition v∗n =mu∗. We are going to show that Σ0 admits a left
calculus of lax fractions.
In [9] we showed that for every finitely generated frame F, given an em-

beddingm : X→ Y and f : X→ F, themapmf ∗ is a frame homomorphism,
thus (mf ∗)∗ is localic, and moreover

f /m = (mf ∗)∗. (12)

We also proved that embeddings are precisely the localic maps with re-
spect to which the free frame F1 generated by 1 = {0} is Kan-injective. In
order to conclude that Σ0 admits a left calculus of lax fractions we show

that Σ0 = F
KInj

1 . Then, since Loc has finite weighted colimits, the result
follows from Proposition 5.3.
Indeed, assume that in the commutative square

X
m //

u
��

Y
v
��

Z n
// W

m and n are embeddings and mu∗ = v∗n. Then, for every f : Z → F1, we
have:

(f /n)v = (nf ∗)∗v = (v∗(nf ∗))∗ = (mu∗f ∗)∗ = (m(f u)∗)∗ = (f u)/m.
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Conversely, assume that (u,v) : m → n lies in F
KInj

1 . We show mu∗ = v∗n.
Given z ∈ Z , let g : F1 → Z be the frame homomorphism sending the el-
ement 0 to z. The localic map g∗ : Z → F1 satisfies the equality (g∗/n)v =
(g∗u)/m, i.e., by (12), (ng)∗v = (mu∗g)∗; then, by applying the operator −∗ to
the last equality, we obtain v∗ng =mu∗g , thus v∗n(z) = v∗ng(0) =mu∗g(0) =
mu∗(z).

6. Recall that in Loc dense embeddings are those preserving the bottom
⊥, and flat embeddings are those preserving finite joins. Let now F0, F1

and F2 be the free frames generated by the empty set, 1 = {0} and 2 = {0,1},
respectively, and let fi : Fi → F1, i = 0,2, be the localic maps determined
by f0(⊥) = 0, f2(0 ∨ 1) = 0 and f2(x) = ⊥ for x , ⊤, 0 ∨ 1. In [9] dense
embeddings were characterized as precisely the localic maps with respect
to which the morphism f0 is Kan-injective. And flat embeddings were
characterized there as precisely those morphisms with respect to which
both f0 and f2 are Kan-injective. Let Σ1 and Σ2 be the full subcategories of

the category Σ0 = F
KInj

1 , described in 5, consisting of all dense embeddings,
and all flat embeddings, respectively. Both Σ1 and Σ2 admit a left calculus
of lax fractions. Indeed, by using the same arguments as in the previous
example, we see that Σ1 = {f0}

KInj and Σ2 = {f0, f2}
KInj.

7. Let Top0 be the category of T0-topological spaces and continuous maps,
considered as an order-enriched category via the dual of the specialization
order. Let Lc : Top0 → Loc be the functor taking every space X to the
frame of its open sets ΩX , and every continuous map f : X → Y to the
right adjoint of the preimage map f −1 :ΩY →ΩX . Then the subcategory
Σ of Top→0 consisting of all (topological) embeddings and all morphisms
(u,v) :m→ n between embeddings such that (Lc(u),Lc(v)) : Lc(m)→ Lc(n)
belongs to the category Σ0 described above (in 5) admits a left calculus of
lax fractions. Indeed as shown in [2], Σ is precisely SKInj in Top0 where S is
the Sierpiński space.

A collection of examples of subcategories Σ = A
KInj of X→ admitting a

left calculus of lax fractions (which indeed includes Examples 3, 5 and 6
of 4.4 (see [9]), is obtained from the next proposition.

Proposition 4.5. If A is a KZ-reflective subcategory of X, then Σ = A
KInj ad-

mits a left calculus of fractions.
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Proof : Using Lemma 3.4, the satisfaction of Identity and Composition is
clear. To obtain Square, in 4.2.3 let X be the domain of r and let Y and Z
be the codomains of r and f , respectively; put r ′ = ηZ and f ′ = Ff (Fr)∗ηY .
From Remark 3.5, we know that (FηZ)∗ = εFZ , and then, since F(Fr)∗ · FηY ·
ηY = F(Fr)∗ · ηFY · ηY = ηFX · (Fr)∗ · ηY , we have that

(FηZ)∗ · F
2f · F(Fr)∗ · FηY · ηY = Ff · εFX · ηFX · (Fr)∗ · ηY = Ff · (Fr)∗ · ηY .

Since (FηZ)∗ · F(Ff · (Fr)∗ · ηY ) and Ff · (Fr)∗ are both morphisms of A (see
2.2), we conclude that they are equal; that is, by Lemma 3.4 again, our
square is of Σ type.

To show Coinsertion, let us have a diagram X
r //

f
��

Y
g
��

h
��

Z s
// W

where the in-

ner square is a Σ-square and with gr ≤ hr. Put t = (Fs)∗ηW . Then, tg =
(Fs)∗ηWg = (Fs)∗FgηY = Ff (Fr)∗ηY = (Fs)∗FsFf (Fr)∗ηY . But FsFf (Fr)∗ =
FgFr(Fr)∗ ≤ FhFr(Fr)∗ ≤ Fh. Thus

tg ≤ (Fs)∗FhηY = (Fs)∗ηWh = th.

Moreover, we have ts = (Fs)∗ηW s = (Fs)∗FsηY = ηY ; hence, by Lemma 3.4
and Remark 3.5, ts ∈ Σ. To show that (id, t) : s → ts is a morphism of
Σ we also use property (ii) of Lemma 3.4: (F(ts))∗Ft = (FηY )∗F(Fs)∗FηW =
εFYF(Fs)∗FηW = (Fs)∗εFWFηW = (Fs)∗.

In Proposition 5.3 we will see that if X has finite weighted colimits then,
for every subcategory A of X, Σ = AKInj always admits a left calculus of
fractions.

Let Σ be a subcategory of X→ admitting a left calculus of lax fractions.
We are going to see that then we obtain a category of lax fractions as fol-
lows: the objects of X[Σ∗] are those of X, and the morphisms are going
to be equivalence classes of Σ-cospans. In general, X[Σ∗] is not locally
small (even if X is so), analogously to what happens in the ordinary case
to X[Σ−1] for Σ admitting a left calculus of fractions.
The following definitions and lemmas are a preparation for Theorem

4.11 below.

4.6. The relation � between Σ-cospans. A Σ-cospan from A to B of the
form

A
f

// I B
soo
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will be denoted by (f , I , s) or just by (f , s).
Given objects A and B of X, we consider a relation � between Σ-cospans

from A to B given by

(f , I , s) � (g, J , t)

if there is a diagram of the form

A
f

//

≥
I

x Σ
��

B
soo

X Boo

A g
// J

y

Σ

OO

B
t

oo

where, as indicated, xf ≤ yg , and the two squares on the right-hand side
are Σ-squares, i.e., (id,x) : s → sx and (id,y) : t → yt are morphisms of Σ
with xs = yt.

Lemma4.7. ForΣ admitting a left calculus of lax fractions, let A D
roo d // B

be a Σ-span covering the two Σ-cospans A
fi // Ii B

sioo , i = 1,2 (see Termi-

nology 4.1). Then (f1, I1, s1) � (f2, I2, s2), and, analogously, (f2, I2, s2) � (f1, I1, s1).

Proof : We show that (f1, I1, s1) � (f2, I2, s2). Using Square, form the Σ-square

B
s1 //

s2 Σ
��

I1
r1
��

I2 r2
// J

. (13)

Since, by hypothesis, (d,fi) : r → si is a morphism of Σ for i = 1,2, by

vertical composition of Σ-squares, we obtain the Σ-square D
r //

s2d Σ
��

A

r1f1
��

I2 r2
// J

.

Moreover, (r1f1)r = r1s1d = r2s2d = (r2f2)r. Consequently, by Coinsertion,
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there is some morphism p : J → I0 such that p(r1f1) ≤ p(r2f2), and

B
r2 //

Σ

J

p
��

B pr2
// I0

. (14)

To conclude that (f1, I1, s1) � (f2, I2, s2), it remains to verify that the two
squares on the right-hand side of the following diagram are of Σ type:

A
f1 //

≥

I1
pr1
��

B
s1oo

I0 Boo

A
f2

// I2

pr2

OO

Bs2
oo

. Concerning the bottom one, it follows from the compo-

sition of the following Σ-squares, where we use (14), the fact that Σ is a
subcategory of X→, and Identity:

B
s2 //

Σ

I1

Σ

I1
r2
��

B
s2 //

Σ

I1

Σ

r2 // Z

p
��

B s2
// X pr2

// I0

(15)

Concerning the top one, observe that, from (13), Identity and Composition,

we have that the outside square of the diagram B

Σ

B
s2 Σ

��

s1 // I1
r1
��

B s2
// I2 r2

// J

is a Σ

one. Now, composing vertically with the Σ-square given by the composi-
tion of the two Σ-squares in the bottom of (15), and taking into account
that r2s2 = r1s1, we obtain the desired Σ-square.
Analogously, we can show that (f2, I2, s2) � (f1, I1, s1).

Lemma 4.8. The relation � on the class of all Σ-cospans is reflexive and tran-
sitive.
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Proof : Reflexivity holds since the identity morphism (id, id) : s→ s is in Σ.
Concerning transitivity, let (f , I , s), (g, J , t) and (h,K,u) beΣ-cospans from

A to B such that (f , I , s) � (g, J , t) and (g, J , t) � (h,K,u) through the follow-
ing diagram:

A
f

//

≥

I

x Σ
��

B
soo

X Boo

A
g

//

≥

J

z Σ
��

y

Σ

OO

B
too

Z Boo

A
h

// K

w

Σ

OO

Bu
oo

Then we have that the Σ-span B B
idBoo t // J covers both the Σ-cospans

J
y

// X B
yt

oo and J
z // Z B

ztoo . Consequently, by Lemma 4.7, (y,yt) �

(z,zt). Therefore, there aremorphisms a : X→ Y and b : Z → Y with which
we obtain the diagram

A
f

//

≥

I

x

Σ

��

B
soo

A
g

// J
y

//

≥

X

a

Σ

��

B
yt

oo

Y Boo

A g
//

≥

J
z

// Z

b

Σ

OO

B
zt

oo

A
h

// K

w

Σ

OO

Bu
oo

with (ax)f ≤ ayg ≤ bzg ≤ (bw)h. Thus (f , s) � (h,u).
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4.9. The equivalence classes ofΣ-cospans and their composition. We say
that twoΣ-cospans (f , s) and (g, t) with the same domain and codomain are
equivalent, and write

(f , s) ≡ (g, t)

whenever (f , s) � (g, t) and (g, t) � (f , s).
Since � is reflexive and transitive, ≡ is an equivalence relation.
We denote the equivalence class of a Σ-cospan (f , s) by [(f , s)]. When

there is no reason for confusion, we also represent the equivalence class
by one of its elements.
Since � is reflexive and transitive, we obtain a partial order ≤ between

equivalence classes of Σ-cospans with the same domain and codomain as
follows:

[(f , s)] ≤ [(g, t)] whenever (f , s) � (g, t).

In particular, we conclude that, for two Σ-cospans as in Lemma 4.7,
(f1, I1, s1) ≡ (f2, I2, s2).
Next we define a composition between equivalence classes of Σ-cospans,

for Σ admitting a left calculus of lax fractions. We give the definition and
we show that it is well-defined and that it is preserved by the order ≤
defined between equivalence classes of Σ-cospans.
Given two Σ-cospans (f , I , s) : A→ B and (g, J , t) : B→ C, we define

[(g, J , t)] · [(f , I , s)]

as being the equivalence class of any Σ-cospan (g ′f ,K,s′t) : A → C ob-
tained by forming a Σ-square as follows:

A
f

// I

g ′ Σ
��

B
soo

g
��

K J
s′

oo C
t

oo

From now on a composition of two Σ-cospans (f , I , s) : A→ B and (g, J , t) :
B→ C will be denoted by

(g, J , t) ◦ (f , I , s)

and it refers to any Σ-cospan (g ′f ,K,s′t) : A → C obtained as described
above.
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The above composition is well-defined, that is, if I
g ′

// K J
s′oo and

I
ĝ

// M J
ŝoo are two Σ-cospans covered by the Σ-span I B

soo
g

// J ,

then (g ′f ,K,s′t) ≡ (ĝf ,M, ŝt).
Indeed, in that case, by Lemma 4.7, (g ′,K,s′) � (ĝ ,M, ŝ), thus we have a

diagram of the form

A
f

// I
≥

g ′
// K

a Σ
��

J
s′oo C

too

Σ

N Joo C
too

Σ

A
f

// I
ĝ

// M

b

Σ

OO

J
ŝ

oo C
t

oo

showing that (g ′f ,K,s′t) � (ĝf ,M, ŝt); and analogously, we have (ĝf ,M, ŝt) �
(g ′f ,K,s′t).

Lemma 4.10. The relation � is compactible with composition, i.e., if we have
a diagram of Σ-cospans

A
(f1,s1)

//

(f2,s2) //
B

(g1,t1)
//

(g2,t2) //
C

with (f1, s1) � (f2, s2) and (g1, t1) � (g2, t2), then any composition of the two
lower Σ-cospans is �-related to any composition of the two upper Σ-cospans.

Proof : It suffices to prove that the property holds for

(A) (f , s) = (f1, s1) = (f2, s2), and
(B) (g, t) = (g1, t1) = (g2, t2).

(A) Let us have the inequality (g1, t1) � (g2, t2) through the diagram

B
g1 //

≥

J1
y1 Σ

��

C
t1oo

J0 Coo

B g2
// J2

y2

Σ

OO

C
t2

oo
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and, using Square, consider the compositions (gi , Ji , ti) ◦ (f , I , s), i = 1,2,
given by

A
f

// I

g ′i Σ
��

B
soo

gi
��

Ki Jisi
oo C

ti
oo

. (16)

Square also ensures the existence of the following first two Σ-squares,
which in turn, combined with (16), give rise to the third diagram:

Ji
si //

yi Σ
��

Ki

y′i
��

J0
s′i

// Li

, i = 1,2, J0
s′1 //

s′2 Σ
��

L1

r1
��

L2 r2
// M

B
s //

s′2y1g1
��

I

r1y
′
1g
′
1
��

r2y
′
2g
′
2

��
L2 r2

// N

.

(17)
In the last diagram the inner square is of Σ type, because of Composition,
and, furthermore, we have that (r1y

′
1g
′
1)s = r1y

′
1s1g1 = r1s

′
1y1g1 = r2s

′
2y1g1 ≤

r2s
′
2y2g2 = r2y

′
2s2g2 = (r2y

′
2g
′
2)s. Consequently, by Coinsertion, there is p :

M→ P such that

pr1y
′
1g
′
1 ≤ pr2y

′
2g
′
2 and L2

r2 //

Σ

M

p
��

L2 pr2
// P

. (18)

Therefore, we have the following diagram, where t = yiti ,

A
f

// I
y′1g
′
1 //

≥

L1

pr1 1O
��

J0
s′1oo

Σ

C
too

P J0oo

Σ

C
too

A
f

// I
y′2g
′
2

// L2

pr2 2O

OO

J0
s′2

oo C
t

oo

(19)

with both squares 1O and 2O of Σ type. Indeed 1O and 2O are the out-
side squares of the following diagrams obtained by vertical and horizontal
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composition of Σ-squares:

• •

s′2
��

s′1 // •
r1
��

•
s′2 // •

r2 // •
p
��

•
s′2

// •
pr2

// •

•
s′2 // • •

r2
��

•
s′2 // •

r2 // •
p
��

•
s′2

// •
pr2

// •

From (16) and the first diagram of (17), with t = yiti , we obtain the com-
mutative diagram

A
f

// I
g ′i // Ki

y′i Σ
��

Ji
yi Σ

��

sioo C
tioo

A
f

// I
y′ig
′
i

// Mi J0
s′i

oo C
t

oo

. (20)

Now, the diagram obtained by composing vertically first the diagram (20)
with i = 1, next the diagram (19), and lastly the diagram (20) with i = 2,
shows that (g ′1f , s

′
1t1) � (g ′2f , s

′
2t2), as desired.

(B) Let us have the inequality (f1, s1) � (f2, s2) through the diagram

A
f1 //

≥

I1
x1 Σ

��

B
s1oo

I0 Coo

A
f2

// I2

x2

Σ

OO

Bs2
oo

.
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Then the following diagram, where (g̃ , s̃) is a Σ-cospan obtained by Square
applied to the Σ-span (s,g),

A
fi // Ii

xi Σ
��

B
sioo

I0
g̃ Σ
��

B
soo

g
��

M J
s̃

oo C
t

oo

shows that, for i = 1,2, (g̃xifi , s̃t) is a composition of (fi , si) with (g, t). Thus,
the diagram

A
g̃x1f1 //

≥

M

Σ

C
s̃too

A
g̃x2f2

// M C
s̃t

oo

tells us that (g, t) ◦ (f1, s) � (g, t) ◦ (f2, s).

Now we are ready to prove the announced theorem:

Theorem 4.11. Let Σ be a subcategory of X→ admitting a left calculus of lax
fractions. Then the category of fractions P

Σ
: X → X[Σ∗] can be described as

follows:
• the objects of X[Σ∗] are those of X;
• the morphisms of X[Σ∗] are ≡-equivalence classes of Σ-cospans with the

composition and order on morphisms as described in 4.9;
• P

Σ
A = A and P

Σ
f = [(f , id)] for all objects A and morphisms f of X.

Proof : (A) X[Σ∗], as described above, is actually a category.
The identity on an object A is the equivalence class of (idA, idA). Indeed,

given (f , I , s) : A→ B, using the fact that Σ is a subcategory of X→, Square
and Identity, we obtain the diagrams

A
f

// I

idI Σ
��

B
soo

idB
��

I Bs
oo B

idB

oo

and A
f

//

Σ

I

d Σ
��

I

Σ

B
soo

A
f ′

// I B
d

oo Bs
oo
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which show that (idB, idB) ◦ (f , s) ≡ (f , s) and (f , s) ◦ (idA, idA) ≡ (f ′,ds) ≡
(f , s).
Moreover, the associativity of the composition is illustrated by the fol-

lowing diagram, which shows that (h′′g ′f , s′′t′u) is simultaneously a com-
position of the form ((h,u) ◦ (g, t)) ◦ (f , s) and a composition of the form
(h,u) ◦ ((g, t) ◦ (f , s)):

A
f

// I

g ′ Σ
��

B
soo

g
��

M1

h′′ Σ
��

J
s′

oo

h′ Σ
��

C
too

h
��

M0 M2
s′′

oo K
t′

oo Du
oo

(B) P
Σ
is clearly a functor, since P

Σ
(idA) = (idA, idA), and, given f : A→ B

and g : B→ C in X, we have that P
Σ
(g) ·P

Σ
(f ) ≡ (g, idC)◦ (f , idB) ≡ (gf , idC) ≡

P
Σ
(gf ); to see that indeed (g, idC) ◦ (f , idB) ≡ (gf , idC), let (g

′f ,d) be a com-
position of (g, id) with (f , id), i.e., (g,g ′) : id→ d is a morphism of Σ, ob-
tained by Square; then, using Identity, we have the diagram

A
f

// B
g

// C

d Σ
��

C

A
f

// B
g ′

// • C
d

oo

which shows that [(gf , idC)] = [(g, idC)] · [(f , idB)].
Furthermore, P

Σ
is order-enriched: given f ,g : A → B with f ≤ g , then

P
Σ
f ≤ P

Σ
g .

(C) To verify that P
Σ
satisfies condition (i) of Definition 3.1, let s : A→ B

be an object of Σ. We show that P
Σ
s = [(s, idB)] is a left adjoint section, by

showing that [(idB, s)] · [(s, idB)] = [(idA, idA)] and (s, idB)◦ (idB, s) � (idB, idB);
thus, in particular, we have that ([(s, id)])∗ = [(id, s)]. The Σ-cospan (s, s) is
clearly a composition of the form (idB, s) ◦ (s, idB), and the fact that (s, s) ≡
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(idA, idA) follows from the diagram

A
s // B A

1O

soo

B A
soo

2O

A
idA

// A

s

OO

A
idA

oo

where 1O is a Σ-square because it is the identity morphism on the object
s of Σ, and 2O is a Σ-square because of Identity. In order to conclude that
(s, idB)◦(idB, s) � (idB, idB), let (s1, s2) be a composition of (s, idB) with (idB, s),
as illustrated by the following diagram:

B
idB // B

s1 Σ
��

A
soo

s
��

C Bs2
oo B

idB

oo

Since s1s = s2s, by Coinsertionwe know that there is a morphism d : C→D
such that ds1 ≤ ds2 and the Σ-span (s2, idB) covers the Σ-cospan (d,ds2).
We obtain then the diagram

B
s1 // C

d Σ
��

B
s2oo

D Boo

B
idB

// B

ds2

Σ

OO

B
idB

oo

with ds1 ≤ ds2. That is, (s1, s2) � (idB, idB), where (s1, s2) is a representative
of [(s, idB) ◦ (idB, s)].
Now, the satisfaction of (ii) of Definition 3.1 is easily seen since, given a

morphism (u,v) : r → s in Σ, it is clear that (u, id) ◦ (id, r) ≡ (v,s) ≡ (id, s) ◦
(v, id).
(D) P

Σ
is universal. Let F : X→ X be a functor such that Fs is a left adjoint

section for every s ∈ Σ, and, moreover, for every morphism (f ,g) : r→ s in
Σ, the equality (Fs)∗g = f (Fr)∗ holds. We define H : X[Σ∗]→ X by
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HX = FX and H[(f , I , s)] = (Fs)∗Ff .

First we show that, assuming thatH is a functor, it is the unique one such
that HP

Σ
= F. Indeed we have H(P

Σ
X) = HX = FX ; and H(P

Σ
f ) =H(f , id) =

(F(id))∗Ff = Ff . Furthermore, if H̄ : X[Σ∗] → X is another functor such
that H̄P

Σ
= F, taking into account that we are dealing with order-enriched

functors, we have that:

H̄X = H̄(P
Σ
X) = FX ; and

H̄[(f , I , s)] = H̄[(idI , I , s)] · H̄[(f , I , idI )]

=
(

H̄[(s, I , idI )]
)

∗
· H̄[(f , I , idI )]

=
(

H̄P
Σ
s
)

∗
·
(

H̄P
Σ
f
)

= (Fs)∗Ff
= H[(f , I , s)].

It remains to show that H : X[Σ∗]→ X is indeed a functor.
H is well-defined on equivalence classes and is order-enriched. In order

to conclude these both assertions, taking into account that ≡ is defined by
means of �, it suffices to prove that, for a pair of Σ-cospans (f , I , s), (g, J , t) :
A → B with (f , I , s) � (g, J , t), we have that (Fs)∗Ff ≤ (Ft)∗Fg . Indeed, if
(f , I , s) � (g, J , t), then we have a diagrama as follows:

A
f

//

≥

I
x Σ
��

B
soo

K Boo

A g
// J

y

Σ

OO

B
t

oo

The fact that the two squares on the right-hand side are of Σ type implies
that (F(xs))∗Fx = (Fs)∗ and (Ft)∗ = (F(yt))∗Fy, by assumption on F. Hence,

(Fs)∗Ff = (F(xs))∗FxFf ≤ (F(xs))∗FyFg = (F(yt))∗FyFg = (Ft)∗Fg.

H is functorial. Indeed, H preserves identities since
H[(idA, idA)] = (FidA)∗(FidA) = idFA.

In order to show that H preserves composition, given Σ-cospans (f , s) :
A → B and (g, t) : B → C, let (g̃f , s̃t) be a composition of them, that is,
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•
s //

g Σ
��

•

g̃
��

•
s̃

// •

. Then we have that

H([(g, t)] · [(f , s)]) = H([(g̃f , s̃t)]) = (F(s̃t))∗F(g̃f ) = (Ft)∗(Fs̃)∗Fg̃Ff . But, by
hypothesis, (Fs̃)∗Fg̃ = Fg(Fs)∗. Consequently, we obtainH([(g, t)] · [(f , s)]) =
(Ft)∗Fg(Fs)∗Ff =H([(g, t)]) ·H([(f , s)]).

5.The cocompleteness of AKInj

We recall from [17] that an order-enriched category X has weighted col-
imits if and only if it has conical coproducts and coinserters. We also
recall that X has conical coproducts whenever it has coproducts and the
corresponding injections are collectively order-epic, that is, for every co-
product νi : Xi →

∐

i∈I Xi and every pair of morphisms f ,g :
∐

i∈I Xi → Y
with f νi ≤ gνi , i ∈ I , we have f ≤ g . The coinserter of a pair of morphisms
f ,g : X → Y is an order-epic morphism c : Y → C such that cf ≤ cg and
every morphism d : Y → D with df ≤ dg factorizes uniquely through c;
briefly, c = coins(f ,g).
IfX has weighted colimits, then the arrow categoryX→ also has weighted

colimits, and they are constructed coordinatewise. We are going to see that
A

KInj is closed under weighted colimits in X
→.

Theorem 5.1. Let X have weighted colimits. Then, for every subcategory A of
X, the category AKInj is closed under weighted colimits in X→.

Proof : It suffices to show that AKInj is closed under conical coproducts and
coinserters.
Concerning conical coproducts, let hi : Xi→ Yi belong to AKInj, and form

the conical coproduct in X→:

Xi

hi //

νXi ��

Yi

νYi��
∐

i∈I Xi
h //

∐

i∈I Yi

(21)

First we show that h ∈ AKInj and (νX
i ,ν

Y
i ) are morphisms of AKInj. Given

g :
∐

i∈I Xi→ A, with A ∈A, we have a unique morphism g/h with

g/h :
∐

i∈I

Yi → A is such that (g/h)νY
i = (gνX

i )/hi , i ∈ I . (22)
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We show that g/h deserves its designation. Indeed,

(g/h)hνX
i = (g/h)νY

i hi = ((gνX
i )/hi)hi = gνX

i , i ∈ I ,

hence (g/h)h = g . And, for s :
∐

i∈I Yi → A with g ≤ sh, we have gνX
i ≤

shνX
i = sνY

i hi , thus (gν
X
i )/hi ≤ sνY

i , that is, (g/h)ν
Y
i ≤ sνY

i . Since this holds
for all i, g/h ≤ s. Moreover, since g/h is defined by (22), it is clear that all
(νX

i ,ν
Y
i ) are morphisms of AKInj.

Let now have morphisms (ri , si) : hi → t in AKInj, i ∈ I . Then, in X→, we
have a unique morphism (r, s) : h→ t such that (r, s) · (νX

i ,ν
Y
i ) = (ri , si), i ∈ I :

Xi

hi //

ri

��

νXi

##G
GG

GG
GG

GG
Yi

si

��

νYi

{{xx
xx

xx
xx

x

∐

i∈I Xi
h //

r

{{vvvvvvvvv

∐

i∈I Yi
s

##G
GG

GG
GG

GG

R
t // S

(23)

We show that (r, s) is a morphism of AKInj. Consider a : R→ A with A ∈ A.
Then, using the fact that (νX

i ,ν
Y
i ) and (ri , si) are both morphisms of AKInj

and formula (22), we have:

(a/t)sνY
i = (a/t)si = (ari)/hi = (arνX

i )/hi = ((ar)/h)νY
i .

Consequently, (a/t)s = (ar)/h.
Concerning coinserters, let (u1,v1), (u2,v2) : f → g be two morphisms in

A
KInj and let (c,d) be the coinserter of ((u1,v1), (u2,v2)) in X

→:

X
u2 //

u1
//

f
��

Z

g
��

c // C

t
��

Y
v2 //

v1
// W

d
// D

(24)

In particular, c = coins(u1,u2), d = coins(v1,v2), and t is the unique mor-
phism for which tc = dg . We want to show that the morphism (c,d) is also
the coinserter of (u1,v1) and (u2,v2) in AKInj.
First we show that the object t and the morphism (c,d) : g→ t lie inAKInj.

For that, consider k : C → A with A in A. Taking into account that (ui ,vi),
i = 1,2, are morphisms in AKInj, and that cu1 ≤ cu2, we have that

((kc)/g)v1 = (kcu1)/f ≤ (kcu2)/f = ((kc)/g)v2,



32 LURDES SOUSA

and, consequently, since d = coins(v1,v2), there is a unique morphism w :
D→ A with

wd = (kc)/g. (25)

We show that w = k/t. Indeed, wtc = wdg = ((kc)/g)g = kc, thus wt = k,
since c is order-epic, in particular, an epimorphism. Moreover, if w′ :D→
A is such that k ≤ w′t, then kc ≤ w′tc = w′dg , then (kc)/g ≤ w′d, and we
have that wd = (kc)/g ≤ w′d. Now, since d is order-epic, it follows that
w ≤ w′.
The conclusion that (c,d) : g → t is a morphism in A

KInj is immediate
from the definition of w in (25).
Let us now have t′ : C ′→D′ and a morphism (c′,d ′) : g → t′ in A

KInj with
(c′,d ′) · (u1,v1) ≤ (c′,d ′) · (u2,v2).

C ′

t′

��

X
u2 //

u1
//

f
��

Z

c′
33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

g
��

c // C

a

88

t
��

Y
v2 //

v1
// W

d //

d ′
++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV D

b

&&
D′

(26)

Since (c,d) = coins ((u1,v1), (u2,v2)) in X
→, there is a unique morphism

(a,b) : t → t′ such that (ac,bd) = (c′,d ′). We want to show that (a,b) lies
in AKInj. Let then l : C ′ → A have codomain in A. From above, we know
that (la)/t is the unique morphism such that ((la)/t)d = (lac)/g . But, by
hypothesis, (l/t′)bd = (lac)/g , thus (l/t′)bd = ((la)/t)d and, consequently,
(l/t′)b = (la)/t, as desired.

Remark 5.2. Moreover, under the conditions of the above theorem,AKInj is
a coinserter-ideal. That is, given a parallel pair ofmorphisms (u1,v1), (u2,v2) :
f → g inX→, if (u1,v1) belongs toA

KInj then also the coinserter of ((u1,v1), (u2,v2))
lies in AKInj. Indeed, in the above proof of the closedness of AKInj under
coinserters we only used the fact that (u1,v1) belongs to AKInj.

Next we show that the existence of finite weighted colimits in X allows
A

KInj to admit a left calculus of fractions.
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Proposition 5.3. LetX have finite weighted colimits and letA be a subcategory
of X. Then Σ =AKInj admits a left calculus of lax fractions.

Proof : Identity is obvious, since we always have that, supposing that g/s is
defined, (g · id)/id = g = (g/s)s.
Concerning Composition, given two Σ-squares as the two first ones in

Definition 4.2.2, let a : • → A, with A in A, be composable with f . It is

easy to see that, given a composition •
s // •

s′ // • with s and s′ in AKInj,
then a/(s′s) = (a/s)/s′ (see [8]). Thus, we have: (af )/(r ′r) = ((af )/r)/r ′ =
((a/s)g)/r ′ = ((a/s)/s′)h = (a/(s′s))h.

To obtain Square, we show that every pushout •
r //

f
��

•

f ′

��
•

r ′
// •

inXwith r ∈ Σ

is a Σ-square. This follows from the closedness of AKInj under pushouts
proven in [8], and can be derived from Theorem 5.1: the diagram

id
(id,r)

//

(f ,f )
��

r

(f ,f ′)
��

id
(id,r ′)

// r ′

is a pushout in X
→, and (id, r) and (f , f ) are easily seen to be morphisms

in A
KInj; thus, by the above theorem the same holds to (f , f ′) : r→ r ′.

To show Coinsertion, given a diagram U
r //

f
��

V
g
��

h
��

W s
// X

with the inner square

of Σ type and gr ≤ hr, let t : X→ T be the coinserter of (g,h). Thus tg ≤ th.
We show that the morphism ts lies in Σ and (id, t) : s→ ts is a morphism
of Σ. Indeed, given a :W → A with A ∈ A, af = (a/s)sf = (a/s)gr ≤ (a/s)hr,
thus (af )/r ≤ (a/s)h. But, by hypothesis, (af )/r = (a/s)g . Thus, (a/s)g ≤
(a/s)h and, consequently, there is a unique morphism u : T → A such that
ut = a/s. It is easy to see that u = a/(ts). For, if, for v : T → A, we have a ≤
v(ts), then a/s ≤ vt, that is, ut ≤ vt, and, since t is an order-epimorphism,
u ≤ v. Moreover, we have (a · id)/s = a/s = ut = (a/(ts))t, that is, (id, t) : s→
ts is a morphism of Σ.
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In the ordinary case, we know that if Σ is a class of morphisms of a
finitely cocomplete category X admitting a left calculus of fractions then
the category of fractions X[Σ−1] has finite colimits ([13]).
In the following we see that if X has finite conical coproducts then, for Σ

a subcategory of X→ admitting a left calculus of lax fractions and satisfy-
ing an extra condition, X[Σ∗] has finite conical coproducts too. Moreover,
if X has weighted colimits then any (quasi)category X[Σ∗] with Σ = A

KInj

has (small) conical coproducts.

Definition 5.4. For X an order-enriched category, a subcategory Σ of X→ is

said to satisfy the Coequalization condition if given Σ-squares U
r //

f Σ
��

V
gi
��

W s
// X

,

i = 1,2, there exists somemorphism t : X→ Y with tg1 = tg2 and •
s //

Σ

•

t
��

•
ts

// •

.

Remark 5.5. 1. Let X have weighted colimits. An argument similar to the
one used for Coinsertion in the proof of Proposition 5.3 shows that AKInj

also satisfies Coequalization, for every subcategory A of X.
2. Let Σ be a subcategory of X→ satisfying the four conditions of a left

calculus of lax fractions together withCoequalization. Then, by using argu-
ments analogous to the ones of the proof of Lemma 4.7, we conclude that,
given two Σ-cospans (f , s) and (g, t) from A to B, we have that (f , s) ≡ (g, t)
if and only if there is a commutative diagram of the following form:

A
f

// I
x Σ
��

B
soo

X Boo

A g
// J

y

Σ

OO

B
t

oo

Proposition 5.6. 1. If X has weighted colimits and Σ = AKInj for some sub-
category A of X, then the (quasi)category X[Σ∗] has, and PΣ preserves, (small)
conical coproducts.
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2. If X has finite conical coproducts and Σ is a subcategory of X→ satisfying
the four conditions of a left calculus of lax fractions together with Coequaliza-
tion, then X[Σ∗] has, and PΣ preserves, finite conical coproducts.

Proof : 1. Given Xi ∈ X[Σ∗], i ∈ I , let νi : Xi →
∐

i∈I Xi be a conical coproduct
in X. We show that [(νi , id)] : Xi →

∐

i∈I Xi constitutes a conical coproduct
in X[Σ∗]. First, we see that the morphisms [(νi , id)] are collectively order-
epic. For that, let us have two Σ-cospans

∐

i∈I

Xi

(g,J ,t)
//

(f ,I ,s)
// Y

with (f , s) ◦ (νi , id) � (g, t) ◦ (νi , id). It is easy to see that (f νi , s) ≡ (f , s) ◦
(νi , id), since, for (id,d) : f → f ′ a morphism of Σ given by Square, we have
(f νi , s) ≡ (f ′νi ,ds). Analogously for (gνi , s). Thus (f νi , s) � (gνi , t). We show
that then (f , s) � (g, t). By hypothesis, there are diagrams of the form

Xi

νi //

≥

∐

Xi

f
// I

xi Σ
��

Y
soo

Ki Yoo

Xi νi
//
∐

Xi g
// J

yi

Σ

OO

Y
t

oo

where all morphisms xis(= yit) are objects of Σ. Since, by Identity, the
morphisms (idY ,xis) : idY → (xis) of X

→ lie in Σ = A
KInj, it follows from

Theorem 5.1 that their multipushout

id
(id,xi s) //

(id,x) ''OOOOOOOOOOOOOO
xis

(id,ui )
��
x

(27)
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also lies in Σ. In particular, we have Σ-squares •
xi s //

Σ

•

ui
��

•
x

// K

; and then, by

vertical composition of Σ-squares, we also have Y
s //

Σ

I
uixi
��

Y x
// K

with uixis =

ujxjs for all i, j ∈ I . Let c : X → C be the coequalizer of all morphisms
uixi . Then (id, c) : x → cx is the coequalizer of all (id,uixi) : s → x in Σ,

and, in particular, we obtain the Σ-square Y
x //

Σ

K
c
��

Y cx
// C

. Now we have that

cuixif νi ≤ cuiyigνi , with cuixi = cujxj , i, j ∈ I . Since (id,ui) : yit = xis→ x
is a morphism of Σ (see (27)), using vertical composition, we also obtain

the Σ-square Y
t //

Σ

J

cuiyi
��

Y cx
// C

with cuiyit = cujyjt, i, j ∈ I . Consequently, for

the coequalizer d : C → D of all morphisms cuiyi we have that all mor-

phisms dcuiyi are equal and Y
cx //

Σ

C

d
��

Y
dcx

// D

. Putting a = dcuixi and b = dcuiyi ,

it follows that af νi ≤ bgνi for all i; then af ≤ bg . Nowwe have the diagram

X
f

//

≥

I
a Σ
��

Y
soo

D Yoo

X g
// J

b

Σ

OO

Y
t

oo

which shows that (f , I , s) � (g, J , t), as desired.
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Let now (fi , Ii , si) : Xi → Y be a family of Σ-cospans indexed by I . Let

Y

s
&&LLLLLLLLLLLLLL

si // Ii
ti
��

I

be the multipushout of the morphisms si : Y → Ii in X. Then, by Theorem

5.1, arguing as for (27), we obtain the Σ-square Y
si //

Σ

Ii
ti
��

Y s
// I

. By the univer-

sality of the coproduct in X, there is a unique morphism w :
∐

Xi → I
in X with wνi = tifi , for all i. Then, composing Σ-cospans, we have:
(w,s) ◦ (νi , id) ≡ (wνi , s) = (tifi , s) ≡ (fi , si). Hence [(w,s)] is a morphism of
X[Σ∗] with [(w,s)] · [(νi , id)] = [(fi , si)]. The uniqueness of [(w,s)] follows
from the fact already proved that the morphisms [(νi , id)] are collectively
order-epic.
By the above description of the coproducts in X[Σ∗] it is clear that PΣ

preserves coproducts.

2. The fact that X[Σ∗] has binary coproducts is proved in a completely
analogous way to 1. Just in the situations where we needed to construct
a multipushout, we use now Square, and in the places where we needed
coequalizers, we use Coequalization. It is easy to see that the initial object
of X is also the initial object of X[Σ∗].

Remark 5.7. We leave as an open question the existence of coinserters in
X[Σ∗] for Σ =AKInj, when X has weighted colimits.
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