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Abstract: We establish a Hard Lefschetz theorem for the de Rham cohomology of
compact Vaisman manifolds. A similar result is proved for the the basic cohomology
with respect to the Lee vector field. Motivated by these results, we introduce the
notions of a Lefschetz and of a basic Lefschetz locally conformal symplectic (l.c.s.)
manifold of the first kind. We prove that the two notions are equivalent if there
exists a Riemannian metric such that the Lee vector field is unitary and parallel
and its metric dual 1-form coincides with the Lee 1-form. Finally, we discuss several
examples of compact l.c.s. manifolds of the first kind which do not admit compatible
Vaisman metrics.

1. Introduction

1.1. Antecedents and motivation. It is well known that the global scalar
product on the space of k-forms in an oriented compact Riemannian mani-
fold M of dimension m induces an isomorphism between the kth de Rham
cohomology group Hk(M) and the dual space of the (m − k)th de Rham
cohomology group Hm−k(M). So, using that the dimension of the de Rham
cohomology groups is finite, we deduce the Poincaré-duality: the dimension
of Hk(M) is equal to the dimension of Hm−k(M).

In addition, in some special cases, one may define a canonical isomorphism
between the vector spaces Hk(M) and Hm−k(M). For instance, if M is a
compact Kähler manifold of dimension 2n then, using the (n− k)th exterior
power of the symplectic 2-form, one obtains an explicit isomorphism between
Hk(M) and H2n−k(M). This is known as the Hard Lefschetz isomorphism
for compact Kähler manifolds (see [11]).

On the other hand, it is well known that the odd dimensional counterparts
of Kähler manifolds are Sasakian and co-Kähler manifolds (see [1, 2]). In
these cases, one may also obtain a Hard Lefschetz isomorphism as shown in [5]
for Sasakian and in [6] for co-Kähler manifolds. For a compact co-Kähler
manifold the Hard Lefschetz isomorphism depends only on the underlying
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cosymplectic structure and for a Sasakian manifold it depends only on the
corresponding contact structure.

A particular class of Hermitian manifolds which are related to Kähler, co-
Kähler and Sasakian manifolds are Vaisman manifolds introduced in [21, 22].
A Vaisman manifold is a locally conformal Kähler manifoldM which has non-
zero parallel Lee 1-form ω. In this paper, we will assume, without the loss
of generality, that ω is unitary. If J is the complex structure of M then the
1-form η := −ω ◦ J is called the anti-Lee 1-form of M . The Lee vector field
U is defined as the metric dual of ω, while the metric dual of η is called
the anti-Lee vector field and is denoted by V . The following properties of
Vaisman manifolds can be found in [7] and [15]:

- the couple (U, V ) defines a flat foliation of rank 2 on M which is
transversely Kähler;

- the foliation on M defined by V is transversely co-Kähler;
- the orthogonal bundle to the foliation on M defined by U is integrable

and the leaves of the corresponding foliation are c-Sasakian manifolds.

The above results show that there is a close relationship between Vaisman
manifolds on the one side and Kähler, co-Kähler, and Sasakian manifolds on
the other side. In fact, in a recent paper [17], Ornea and Verbitsky proved
that a compact Vaisman manifold of dimension 2n + 2 is holomorphically
isometric to the mapping torus of a compact 1

2
-Sasakian manifold N of di-

mension 2n + 1. Conversely, the mapping torus of a compact 1
2-Sasakian

manifold is a compact Vaisman manifold.
So, a natural question arise: is there a Hard Lefschetz theorem for a com-

pact Vaisman manifold? The aim of this paper is to give a positive answer
to this question.

1.2. The results in the paper. The main result of this paper is the Hard
Lefschetz theorem for a compact Vaisman manifold which may be formulated
as follows.

Theorem 1.1. Let M be a compact Vaisman manifold of dimension 2n+ 2
with Lee 1-form ω, anti-Lee 1-form η, Lee vector field U , and anti-Lee vector
field V . Then for each integer k between 0 and n, there exists an isomorphism

Lefk : Hk(M) −→ H2n+2−k(M)

which can be computed by using the following properties:
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(i) for every [γ] ∈ Hk(M), there is γ ′ ∈ [γ] such that

LUγ
′ = 0, iV γ

′ = 0, Ln−k+2γ ′ = 0, Ln−k+1ǫωγ
′ = 0;

(ii) if γ ′ ∈ [γ] satisfies the conditions in (i) then

Lefk[γ] = [ǫηL
n−k(LiUγ

′ − ǫωγ
′)].

In this theorem, we write ǫβ for the operator of the exterior multiplication
by a differential form β, and L is defined to be 1

2ǫdη.

The map Lefk : Hk(M) −→ H2n+2−k(M), 0 ≤ k ≤ n, in Theorem 1.1 will
be called the Lefschetz isomorphism in degree k for the compact Vaisman
manifold M .

In order to prove Theorem 1.1, we will first use a result which relates the
de Rham cohomology of an oriented compact Riemannian manifold with the
basic cohomology with respect to a unitary and parallel vector field.

Theorem 1.2. Let W be a unitary and parallel vector field on an oriented
compact Riemannian manifold (P, g) of dimension p and let the 1-form w be
the metric dual of W . Denote by H∗

B(P ) the basic de Rham cohomology of
P with respect to W .Then for each integer k between 0 and p, the map

[(Id, ǫw)] : Hk
B(P ) ⊕Hk−1

B (P ) −→ Hk(P )

defined by

[(Id, ǫw)]([β]B, [β
′]B) = [β + w ∧ β ′] (1.1)

is an isomorphism.

Another result that we will use for proving of Theorem 1.1 is the basic
Hard Lefschetz theorem below.

Theorem 1.3. Let M be a compact Vaisman manifold of dimension 2n+ 2
with Lee 1-form ω, anti-Lee 1-form η, Lee vector field U , and anti-Lee vector
field V . Denote by H∗

B(M) the basic cohomology of M with respect to U .
Then for each integer k between 0 and n, there exists an isomorphism

LefBk : Hk
B(M) −→ H2n+1−k

B (M)

which can be computed by using the following properties:

(i) for every [β]B ∈ Hk
B(M), there is β ′ ∈ [β]B such that

iV β
′ = 0, Ln−k+1β ′ = 0; (1.2)
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(ii) if β ′ ∈ [β]B satisfies the conditions in (i) then

LefBk [β]B = [ǫηL
n−kβ ′]B.

The map LefBk : Hk
B(M) −→ H2n+1−k

B (M), for 0 ≤ k ≤ n, will be called
the basic Lefschetz isomorphism in degree k associated with the compact
Vaisman manifold M .

For a Vaisman manifoldM of dimension 2n+2, the couple (ω, η) of the Lee
and anti-Lee 1-forms defines a locally conformal symplectic (l.c.s.) structure
of the first kind with anti-Lee vector field V and infinitesimal automorphism
U (see [23] and Section 2.2 for the definition of an l.c.s. structure of the
first kind). Note that the definition of the Hard Lefschetz and the basic
Hard Lefschetz isomorphism associated with M only depends on the l.c.s.
structure of the first kind. Hence, both isomorphisms provide obstructions
for an l.c.s. manifold to admit Vaisman structures.

Now, let M be a compact manifold of dimension 2n+ 2 endowed with an
l.c.s. structure of the first kind (ω, η). Suppose that U and V are the anti-Lee
and Lee vector field, respectively, on M .

Then, the previous results suggest us to introduce the following Lefschetz
relation between the cohomology groups Hk(M) and H2n+2−k(M) , for 0 ≤
k ≤ n,

RLefk =
{
([γ], [ǫηL

n−k(LiUγ − ǫωγ)])
∣∣γ ∈ Ωk(M), dγ = 0, LUγ = 0, iV γ = 0,

Ln−k+2γ = 0, Ln−k+1ǫωγ = 0
}
.

Similarly, we define the basic Lefschetz relation between the basic coho-
mology groups Hk

B(M) and H2n+1−k
B (M), for 0 ≤ k ≤ n, by

RB
Lefk =

{
([β]B, [ǫηL

n−kβ]B)
∣∣ β ∈ Ωk

B(M), dβ = 0, iV β = 0, Ln−k+1β = 0
}
.

An l.c.s. structure on M of the first kind is said to be:

- Lefschetz if, for every 0 ≤ k ≤ n, the relation RLefk
is the graph of an

isomorphism Lefk : Hk(M) −→ H2n+2−k(M);
- Basic Lefschetz if, for every 0 ≤ k ≤ n, the relation RB

Lefk
is the graph

of an isomorphism LefBk : Hk
B(M) −→ H2n+1−k

B (M).

It is not clear what is the relation between the Lefschetz property and the
basic Lefschetz property in general. However, we may prove the following
result.
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Theorem 1.4. Let M be a compact manifold of dimension 2n+ 2 endowed
with an l.c.s. structure of the first kind (ω, η) such that the Lee vector field
U is unitary and parallel with respect to a Riemannian metric g on M and

ω(X) = g(X,U), for X ∈ X(M).

Then:

(1) The structure (ω, η) is Lefschetz if and only if it is basic Lefschetz.
(2) If the structure (ω, η) is Lefschetz (or, equivalently, basic Lefschetz), then

for each 1 ≤ k ≤ n there exists a non-degenerate bilinear form

ψ : Hk
B(M) ×Hk

B(M) −→ R

ψ([β]B, [β
′]B) =

∫

M

Lefk[β] ∪ [β ′]

which is skew-symmetric for odd k and symmetric for even k. As a
consequence,

bk(M) − bk−1(M) is even if k is odd and 1 ≤ k ≤ n, (1.3)

where br(M) is the rth Betti number of M .

We remark that relations in (1.3) are well-known properties of a compact
Vaisman manifold of dimension 2n+ 2 (see [7, 22]).

1.3. Organization of the paper. In Section 2 we review the construction
of a mapping torus and how it can be used to construct a Vaisman manifold.
In Sections 3, 4, 5, we will prove Theorems 1.2, 1.3, and 1.4, respectively. As
a consequence Theorem 1.1 is also proved in Section 5. Finally, in Section 6,
we give several examples of compact l.c.s. manifolds of the fist kind which
do not admit compatible Vaisman metrics. Some of these examples satisfy
the Lefschetz property and the basic Lefschetz property and others not.

All manifolds considered in this paper will be assumed to be smooth and
connected. For wedge product, exterior derivative and interior product we
use the conventions as in Goldberg’s book [8].

2. Mapping torus and compact Vaisman manifolds

2.1. Mapping torus by an isometry. In this section, we will review the
notion of a mapping torus by an isometry. More details can be found in [10].

Let N be a compact smooth manifold, f : N −→ N a diffeomorphism of
N and α a positive real number.
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We will denote by
(f, Tα) : N × R −→ N × R

the transformation of the product manifold N × R given by

(f, Tα)(x, t) = (f(x), t+ α).

The map (f, Tα) induces a free and properly discontinuous action of the
discrete subgroup Z on N × R defined by

Z × (N × R) −→ N × R, (k, (x, t)) 7→ (f, Tα)k(x, t) = (f k(x), t+ kα),

for (x, t) ∈ N × R.
The mapping torus of N by the couple (f, α) is the space of orbits of this

action

Nf,α =
N × R

Z
.

It is a compact smooth manifold and we have a canonical projection

π : Nf,α −→ S1 =
R

αZ

from Nf,α onto the circle S1 =
R

αZ
.

We will denote by θ the closed 1-form on Nf,α given by

θ = π∗(θS1),

where θS1 is the length element of the circle S1.
Note that if τf,α : N × R −→ Nf,α is the canonical projection then

τ ∗f,α(θ) = dt. (2.1)

On the other hand, it is clear that the vector field
∂

∂t
on N × R is (f, Tα)-

invariant. Thus, it induces a vector field U on the mapping torus Nf,α in
such a way that

θ(U) = 1. (2.2)

Now, suppose that h is a Riemannian metric on N and that f : N −→ N is
an isometry. Then, we can consider the metric

h+ dt2

on the product manifold N × R. It follows that

(f, Tα)∗(h+ dt2) = h+ dt2

and, thus, the Riemannian metric h+ dt2 is Z-invariant.
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This implies that h+ dt2 induces a Riemannian metric g on Nf,α which is
characterized by the following condition

τ ∗f,αg = h+ dt2. (2.3)

Moreover, one may prove the following result.

Proposition 2.1. The 1-form θ on Nf,α is unitary and parallel with respect
to the Riemannian metric g and

θ(X) = g(X,U), for X ∈ X(Nf,α). (2.4)

2.2. Compact Sasakian and Vaisman manifolds. In this section, we
will review the relation between compact Sasakian manifolds and compact
Vaisman manifolds.

First of all, we will recall the notions of a contact and of a c-Sasakian man-
ifold. The reader is referred to monographs [1] and [2] for detailed exposition
on this subject.

A 1-form η on a smooth manifold N of dimension 2n + 1 is said to be a
contact 1-form if η∧(dη)n is a volume form on N . In this case, the pair (N, η)
is called a contact manifold. One can show that in a contact manifold (N, η)
there exists a global vector field ξ, called Reeb vector field, characterized by
the properties

η(ξ) = 1, iξdη = 0.

We will denote by I : TN −→ TN the identity map acting on the tangent
bundle.

Let c be a positive real number. A c-Sasakian manifold is a contact man-
ifold (N, η) which carries a Riemannian metric h such that ξ is the metric
dual of η and a (1, 1)-tensor field φ satisfying the following conditions

(i) φ2 = −I + η ⊗ ξ;
(ii) dη(X, Y ) = 2c h(X, φY ) for any vector fields X, Y on N ;

(iii) the tensor field J on N × R defined by

J

(
X, f

∂

∂t

)
:=

(
φX + fξ,−η(X)

∂

∂t

)
, (2.5)

where X, Y ∈ X(N) and f ∈ C∞(N × R), is a complex structure.

If c = 1, then N is called a Sasakian manifold. Note that given a Sasakian
structure (φ, ξ, η, h) on a manifold N , we can obtain a c-Sasakian structure
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(φ, ξ, η, h′) on N with the same underlying contact structure by the following
transformation

φ′ = φ, ξ′ = ξ, η′ = η, h′ = c−1 h+
(
1 − c−1

)
η ⊗ η. (2.6)

Next, we will recall the definition of a locally conformal symplectic (l.c.s.)
structure of the first kind and of a Vaisman manifold. More details can be
found in [7, 16, 23].

An l.c.s. structure of the first kind on a manifold M of dimension 2n+ 2
is a couple (ω, η) of 1-forms such that:

(i) ω is closed;
(ii) the rank of dη is 2n and ω ∧ η ∧ (dη)n is a volume form.

The form ω is called the Lee 1-form while η is said to be the anti-Lee 1-form.
If (ω, η) is an l.c.s. structure of the first kind on M then there exists a

unique vector field V , the anti-Lee vector field of M , which is characterized
by the following conditions

ω(V ) = 0, η(V ) = 1, iV dη = 0.

Moreover, there exists a unique vector field U , the Lee vector field of M ,
which is characterized by the following conditions

ω(U) = 1, η(U) = 0, iUdη = 0.

Remark 2.2. If (ω, η) is an l.c.s. structure of the first kind then the 2-form

Ω := dη + η ∧ ω

is non-degenerate and

dΩ = ω ∧ Ω.

Moreover, the Lee vector field U satisfies the condition LUΩ = 0. In other
words, Ω is an l.c.s. structure of the first kind in the sense of Vaisman
[23] with Lee 1-form ω and infinitesimal automorphism U . Conversely, if Ω
is an l.c.s. structure of the first kind with Lee 1-form ω and infinitesimal
automorphism U then the rank of dη is 2n and ω ∧ η ∧ (dη)n is a volume
form, with η the 1-form on M given by

η = −iUΩ.

A Vaisman manifold is an l.c.s. manifold of the first kind (M,ω, η) which
carries a Riemannian metric g such that:
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(1) the tensor field J of type (1, 1), given by

g(X, JY ) = Ω(X, Y ), for X, Y ∈ X(M),

is a complex structure which is compatible with g, that is,

g(JX, JY ) = g(X, Y );

(2) the Lee 1-form ω is parallel with respect to g.

Remark 2.3. If ω is the Lee 1-form of a Vaisman manifold M then ‖ω‖ is
a constant λ > 0. We will assume, without loss of generality, that ω is
unitary which implies that the anti-Lee and Lee vector fields U and V also
are unitary.

If (M,J, g) is a Vaisman manifold one may prove that U is parallel (and,
thus, Killing), V is Killing and

[U, V ] = 0, LUJ = 0, LV J = 0.

Moreover, under the assumption in Remark 2.3, the leaves of the foliation
ω = 0 have an induced 1

2-Sasakian structure (for more details, see [7, Chapter
5]).

Now, suppose that N is a compact Sasakian manifold with Sasakian struc-
ture (φ, ξ, η, h) and that f : N −→ N is a contact isometry. This means
that

f ∗η = η, f ∗h = h, (2.7)

which implies that f ∗(dη) = dη and, thus,

φf(x) ◦ Txf = Tf(x)f ◦ φx, Txf(ξx) = ξf(x), (2.8)

for every x ∈M , where Txf is the tangent map to f at x.
By considering a homothetic transformation as in (2.6) we can obtain a

c-Sasakian structure (φ, ξ, η, h′) on N with c = 1
2. Note that f is a contact

isometry also with respect to the new structure.

In addition, let α be a positive real number andNf,α =
N × R

Z
the mapping

torus of (N, φ, ξ, η, h′) defined by f and α.
In Section 2.1, we constructed a Riemannian metric g on Nf,α from the

metric h′ on N . Moreover, using (2.7) and (2.8), we deduce that the complex
structure on N × R given by (2.5) is Z-invariant. Therefore, it induces a
complex structure J on Nf,α in such a way that (Nf,α, J, g) is a compact
Vaisman manifold.
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Note that the exact 1-form dt on N × R is Z-invariant and it induces a
closed 1-form ω on Nf,α which is in fact the Lee 1-form of Nf,α.

The anti-Lee vector field V is just the vector field on Nf,α which is induced
by the Reeb vector field ξ, while the Lee vector field U is induced by ∂

∂t
.

In particular, the leaves of the foliation ω = 0 are diffeomorphic to N .
In fact, in [17], the authors prove the following result.

Theorem 2.4 ([17]). Let M be a compact Vaisman manifold of dimension
2n + 2. Then, there exists a compact Sasakian manifold N of dimension
2n + 1, a contact isometry f : N −→ N and a positive real number α such

that M is holomorphically isometric to Nf,α =
N × R

Z
with the structure

defined above.

3. Proof of Theorem 1.2

Proof : Denote by ⋆ the Hodge star isomorphism on P and by

δ = (−1)pk+p+1 ⋆ d ⋆

the codifferential on the space of k-forms on P . Note that (see page 97 in
[8])

⋆ ⋆ = (−1)k(p−k)Id, ⋆ δ = (−1)pd ⋆ . (3.1)

Let {W1, . . . ,Wp} be a local orthonormal basis of vector fields on P and
{W 1, . . . ,W p} the corresponding dual basis of 1-forms. For a k-form θ on P ,
we have that

dθ =

p∑

j=1

ǫW j∇Wj
θ, δθ = −

p∑

j=1

iWj
∇Wj

θ, (3.2)

where ∇ is the Levi-Civita connection on P and ǫW j is the operator of the
exterior multiplication by the 1-form W j.

Using (3.2), the following result follows.

Lemma 3.1. If θ is a parallel k-form on P , then θ is harmonic.

Now, we will proceed in two steps.

First step. We will prove that if γ is a closed k-form on P which is basic
with respect to W (that is, iWγ = 0 and LWγ = 0) and Hγ is the harmonic
representative of [γ], then Hγ also is basic with respect to W and w ∧Hγ is
a harmonic (k + 1)-form.
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Lemma 3.2. Under the assumptions of Theorem 1.2, if α is a harmonic
form, then iWα and w ∧ α are also harmonic.

Proof : By [8, Theorem 3.7.1] we have LWα = 0, since W is Killing and α is
harmonic. As dα = 0, we get diWα = 0, that is iWα is closed.

Now, we compute the codifferential of iWα. Using (3.2), we get

δiWα = −

p∑

j=1

iWj
∇Wj

iWα.

Since W is parallel, we have
[
∇Wj

, iW
]

= i∇Wj
W = 0. Thus

δiWα =

p∑

j=1

iW iWj
∇Wj

α = −iW δα = 0.

Therefore iWα is also coclosed and hence harmonic. The second part of the
claim follows from the first by using Hodge duality.

Now, let β := γ − Hγ. By [8, Theorem 3.7.1], we get LWHγ = 0 as W
is Killing. Since γ is basic, we obtain that LWβ = 0. Since β is exact, by
Hodge theory we have dGδβ = β, where G denotes the Green operator on
P . As δHγ = 0, we get

dGδγ = γ −Hγ. (3.3)

Let us apply iW to both sides of (3.3). We get

iWHγ = −iWdGδγ = −LWGδγ+diWGδγ = −GδLWγ+diWGδγ = diWGδγ,

where we use that LW commutes with G and δ, because W is Killing. There-
fore, iWHγ is exact. But it is also harmonic by Lemma 3.2. Hence iWHγ = 0.
This shows that Hγ is basic. Moreover, the form w ∧ Hγ is harmonic by
Lemma 3.2.

Second step. We will prove that the map

[(Id, ǫw)] : Hk
B(P ) ⊕Hk−1

B (P ) −→ Hk(P )

defined by (1.1) is an isomorphism.
Since w is a parallel 1-form, we have that w is closed by Lemma 3.1. This

implies that the map [(Id, ǫw)] is a well-defined linear morphism.
Next, denote by Hγ the harmonic representative of a closed k-form γ on

P . Note that
[Hγ] = [γ]. (3.4)



12 B. CAPPELLETTI-MONTANO, A. DE NICOLA, J. C. MARRERO AND I. YUDIN

Then, we can consider the map

([H− ǫwiWH]B, [iWH]B) : Hk(P ) −→ Hk
B(P ) ⊕Hk−1

B (P ) (3.5)

defined by

([H− ǫwiWH]B, [iWH]B)[γ] = ([Hγ − w ∧ iWHγ]B, [iWHγ]B). (3.6)

First of all, we show that this map is well defined. In fact, we have that

[γ] = [γ ′] ⇒ Hγ = Hγ ′. (3.7)

This implies that the right hand side of (3.6) does not depend on the choice
of the representative in the cohomology class [γ]. It is left to check that
the forms Hγ − w ∧ iWHγ and iWHγ are basic and closed. It follows from
Lemma 3.2 that they are harmonic and, hence, closed. It is obvious that
Hγ − w ∧ iWHγ and iWHγ are in the kernel of iW . Thus both of them are
closed and basic, and the map (3.5) is well defined.

Now, from (3.4), it follows that

[(Id, ǫw)] ◦ ([H− ǫwiWH]B, [iWH]B) = Id.

Therefore the map [(Id, ǫw)] is surjective. Next, let β ∈ Ωk
B(M) and β ′ ∈

Ωk−1
B (M) be closed basic forms. Using Lemma 3.2, we deduce that Hβ+w∧

Hβ ′ ∈ [β + w ∧ β ′] is a harmonic form, and thus

H(β + w ∧ β ′) = Hβ + w ∧Hβ ′. (3.8)

Now, from (3.8) and since Hβ, Hβ ′ are basic (see Step 1), we conclude that

([H− ǫwiWH], [iWH]) ◦ [(Id, ǫw)] = Id.

This proves that the map [(Id, ǫw)] is a injection and, thus, an isomorphism.

4. Proof of Theorem 1.3

Thanks to Theorem 2.4, it is sufficient to prove the result for the case when
M is a mapping torus of a compact Sasakian manifold N . We will denote
by LN the exterior multiplication by the 2-form 1

2
dη, acting on the space of

forms on N .
We will proceed in three steps.

First step. We will show that the claim of Theorem 1.3 follows from an
analogous statement for the cohomology of invariant forms on the Sasakian
manifold N .
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Let Ωk(N)f be the subspace of k-forms on N which are f -invariant.
Denote by pr1 : N × R −→ N the canonical projection on the first factor.

We have that if β ∈ Ωk(N)f then the k-form pr∗1 β on N × R is Z-invariant.

Thus, there exists a unique basic k-form β̂ on Nf,α such that

τ ∗f,αβ̂ = pr∗1 β, (4.1)

where we recall that τf,α : N×R −→ Nf,α = N×R

Z
is the canonical projection.

On the other hand, it is clear that

d(Ωk(N)f) ⊆ Ωk+1(N)f .

Therefore, we can consider the subcomplex

. . . −→ Ωk−1(N)f d
−→ Ωk(N)f d

−→ Ωk+1(N)f −→ . . .

of the de Rham complex of M and the corresponding cohomology H∗(N)f .
For a closed β ∈ Ωk(N)f , we write [β]f for the corresponding class inH∗(N)f .

Denote by Ωl
B(Nf,α) the subspace of l-forms which are basic with respect

to the Lee vector field U of Nf,α, that is

Ωl
B(Nf,α) = {γ ∈ Ωl(Nf,α) | iUγ = 0, LUγ = 0}.

Then, the basic de Rham cohomology complex is

. . . −→ Ωl−1
B (Nf,α)

d
−→ Ωl

B(Nf,α)
d

−→ Ωl+1
B (Nf,α) −→ . . .

We recall that U is the vector field onNf,α which is induced by the Z-invariant
vector field ∂

∂t
on N × R. Using this fact, it is easy to prove that the map

̂ : Ω∗(N)f −→ Ω∗
B(Nf,α) (4.2)

defined by (4.1) is an isomorphism of chain complexes. Moreover, the map
(4.2) has the following compatibility properties with respect to the action of
the operators ǫη, iξ, LN on Ωk(N)f and ǫη, iV , L on Ωk

B(Nf,α):

L̂Nβ = Lβ̂, ǫ̂ηβ = ǫηβ̂, îξβ = iV β̂. (4.3)

In addition, using this isomorphism, we see that for proving the claim of the
theorem it is enough to prove that there exists an isomorphism

LefN,f
k : Hk(N)f −→ H2n+1−k(N)f (4.4)

and that the following properties hold:
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Condition 4.1. For every [β]f ∈ Hk(N)f there is β ′ ∈ [β]f such that

iξβ
′ = 0, Ln−k+1

N β ′ = 0.

Condition 4.2. For every closed f -invariant form β that satisfies Condition
4.1, one has

LefN,f
k [β]f = [ǫηL

n−k
N β]f .

In the next step we will prove the existence of the isomorphism (4.4). The
fact that such an isomorphism satisfies Conditions 4.1 and 4.2 will be proved
in the third step.

Second step. Let

[i] : H l(N)f −→ H l(N)

be the linear morphism induced by the canonical inclusion i : Ωl(N)f −→
Ωl(N), 0 ≤ l ≤ 2n+ 1, and let

LefN
k : Hk(N) −→ H2n+1−k(N)

be the Lefschetz isomorphism associated with the Sasakian structure on N

(see [5, Theorem 4.5]), which is defined as follows:

LefNk [β] = [η ∧ Ln−k
N β ′], (4.5)

where β ′ is any representative of [β] ∈ Hk(N) such that

iξβ
′ = 0, Ln−k+1

N β ′ = 0. (4.6)

Note that such a representative β ′ exists, due to [5].
Now, we prove that [i] is a monomorphism, for all 0 ≤ l ≤ 2n+ 1. In fact,

assume that [β]f ∈ H l(N)f and

[i][β]f = 0.

It follows that β is exact and hence

β = d(Gδβ),

where G is the Green operator on N . Therefore, using that f is an isometry
and the fact that β ∈ Ωk(N)f , we obtain

f ∗(Gδβ) = Gδ(f ∗β) = Gδβ.

Thus β is exact in the complex Ω∗(N)f and hence [β]f = 0. Therefore [i] is
a monomorphism.
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Let [f ∗] : H l(N) −→ H l(N) be the isomorphism induced by the contact
isometry f : N −→ N . Now, we check that

LefNk ◦[i](Hk(N)f) ⊂ [i](H2n+1−k(N)f). (4.7)

Let [β]f ∈ Hk(N)f . Choose β ′ ∈ [β] that satisfies (4.6). Then also f ∗β ′ sat-
isfies (4.6), as f is an automorphism of the Sasakian manifold N . Moreover,
f ∗β ′ belongs to [β], since f ∗β = β. Thus we can compute LefN

k ([β]) using
either β ′ or f ∗β ′ in (4.5). Hence

[f ∗] ◦ LefNk ([β]) = [f ∗]([ǫηL
n−k
N β ′]) = [ǫηL

n−k
N (f ∗β ′)] = LefN

k ([β]).

This shows that the cohomology class LefN
k ([β]) is [f ∗]-invariant.

Let γ be the harmonic representative in LefNk ◦[i]([β]f). Then f ∗γ is also
a harmonic representative of the same class. Hence f ∗γ = γ, so that [γ]f
is a well-defined class in Hk(N)f and LefN

k ◦[i]([β]f) = [i]([γ]f). This proves
(4.7).

Since [i] is a monomorphism and (4.7) holds, we can define

LefN,f
k : Hk(N)f −→ H2n+1−k(N)f

as the unique map such that

[i] ◦ LefN,f
k = LefNk ◦[i], for 0 ≤ k ≤ n. (4.8)

Since the right hand side of (4.8) is a monomorphism, we deduce that LefN,f
k

is also a monomorphism.
Next, we will prove that LefN,f

k is an epimorphism.
If β ′ ∈ [β] satisfies the conditions (4.6), then also f ∗β ′ ∈ [f ∗][β] satisfies

(4.6). Thus

[f ∗] LefNk [β] = [f ∗][η ∧ Ln−k
N β ′] = [η ∧ Ln−k

N f ∗β ′] = LefNk [f ∗][β].

Hence,

[f ∗] ◦ LefNk = LefN
k ◦[f ∗], for 0 ≤ k ≤ n. (4.9)

Now, let [γ]f be an element in H2n+1−k(N)f .

As we know, LefN
k is an isomorphism (see [5]). This implies that there

exists a unique [β] ∈ Hk(N) such that

LefN
k [β] = [i][γ]f . (4.10)
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Thus, from (4.9) and since [γ]f ∈ H2n+1−k(N)f , we have that

LefNk [β] = [γ] = [f ∗][γ] = [f ∗][i][γ]f

= ([f ∗] ◦ LefNk )[β] = (LefNk ◦[f ∗])[β].

Therefore, using that LefNk is an isomorphism, it follows that

[f ∗][β] = [β].

Note that both Hβ and f ∗Hβ are harmonic representatives of the cohomology
class [β] = [f ∗][β]. Therefore f ∗Hβ = Hβ. So, we can consider [Hβ]f ∈
Hk(N)f and, using (4.8) and (4.10), we have that

[i](LefN,f
k [Hβ]f) = [i][γ]f .

Finally, as [i] is a monomorphism, we conclude that

LefN,f
k [Hβ]f = [γ]f .

This proves that LefN,f
k is also surjective and hence it is an isomorphism.

Third step. We will prove that LefN,f
k satisfies Conditions 4.1 and 4.2.

To prove that every class in Hk(N)f has a representative satisfying Con-
dition 4.1, we start with [β]f ∈ Hk(N)f and then, proceeding as above,
we deduce that f ∗(Hβ) = Hβ. Since [i] is a monomorphism, we get that
[i][Hβ]f = [i][β]f implies that [Hβ]f = [β]f . Moreover, the form Hβ satisfies
Condition 4.1 (see [5]).

Now, let [β]f ∈ Hk(N)f and β ′ ∈ [β]f satisfying (4.6). Then β ′ ∈ [β].

Thus by [5, Theorem 4.5] we have LefNk [β] = [ǫηL
n−k
N β ′] in H2n+1−k(N).

Since f ∗β ′ = β ′, we get also that f ∗(ǫηL
n−k
N β ′) = ǫηL

n−k
N β ′. Thus by (4.8) we

get

[i] LefN,f
k [β]f = [i][ǫηL

n−k
N β ′]f .

Since [i] is a monomorphism, we get LefN,f
k [β]f = [ǫηL

n−k
N β ′] which ends the

proof.

5. Proof of Theorem 1.4

Proof : Proof of (1) in Theorem 1.4

(Lefschetz ⇒ basic Lefschetz)
Assume that the l.c.s. structure (ω, η) is Lefschetz and denote by

[i] : Hk
B(M) −→ Hk(M)
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the canonical monomorphism, that is, [i] = [(Id, ǫω)]|Hk
B(M)⊕{0} (cf. Theorem

1.2).
Let β be a closed basic k-form on M , with k ≤ n. Then, there exists a

closed k-form β ′ on M such that β ′ ∈ [β] and

LUβ
′ = 0, iV β

′ = 0, Ln−k+2β ′ = 0, Ln−k+1ǫωβ
′ = 0. (5.1)

Let β̄ = Gδ(β ′ − β), where G is the Green operator on M . Then LU β̄ = 0
since LUβ = 0 and LU commutes with G and δ because U is a Killing vector
field.

From the properties of the Green operator, it follows that

β ′ = β + dβ̄.

Therefore, if we take

β ′′ = β ′ − ω ∧ iUβ
′ (5.2)

then dβ ′′ = 0, β ′′ ∈ Ωk
B(M) and

β ′′ = β + d(β̄ − ω ∧ iU β̄).

This implies that

β ′′ ∈ [β]B.

Moreover, from (5.1) and (5.2), it follows that

iV β
′′ = 0, Ln−k+1β ′′ = 0.

This shows that every class [β]B contains a representative β ′′ that satis-
fies (1.2).

We define LefBk : Hk
B(M) −→ H2n+1−k

B (M) by

LefBk [β]B = [ǫηL
n−kβ ′]B, (5.3)

where β ′ is any representative of [β]B that satisfies (1.2). Note that ǫηL
n−kβ ′

is closed as d(ǫηL
n−kβ ′) = 2Ln−k+1β ′ = 0 and basic because iUǫηL

n−kβ ′ =

ǫηL
n−kiUβ

′ = 0. We must prove that LefBk is well defined and is an isomor-

phism. To show that LefBk is well defined, we have to check that for any β ′,
β ′′ ∈ [β]B that satisfy (1.2), one has

[ǫηL
n−kβ ′]B = [ǫηL

n−kβ ′′]B.

Since β ′ and β ′′ are basic and

iV β
′ = 0, Ln−k+1β ′ = 0, iV β

′′ = 0, Ln−k+1β ′′ = 0,
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it is easy to check that β ′ and β ′′ satisfy (5.1). Moreover, they are rep-
resentatives of [β] ∈ Hk(M). Thus by the defining properties of Lefk, we
have

[ǫηL
n−kβ ′] = Lefk[β] = [ǫηL

n−kβ ′′]. (5.4)

Thus [i][ǫηL
n−kβ ′]B = [i][ǫηL

n−kβ ′′]B. Since [i] is a monomorphism, we get

[ǫηL
n−kβ ′]B = [ǫηL

n−kβ ′′]B. Hence LefB
k is well defined and satisfies the

required property for its computation.
From (5.4), we get that

Lefk ◦ [i][β]B = [i] ◦ LefBk [β]B

for any [β]B ∈ Hk
B(M). Thus if LefBk [β]B = 0 then Lefk[i][β]B = 0. As Lefk

is an isomorphism, we get that [i][β]B = 0. Since [i] is monomorphism this
implies that [β]B = 0, that is LefB

k is injective.
By Poincaré duality for basic cohomology [20, Theorem 7.54] (see also

calculations on page 69 of [20]), it follows that

dimHk
B(M) = dimH2n+1−k

B (M).

Thus LefkB is an isomorphism, being an injective map between two vector
spaces of the same dimension.

(Basic Lefschetz ⇒ Lefschetz)
Assume that the l.c.s. structure on M is basic Lefschetz.
Let γ be a closed k-form on M , with k ≤ n. We have to show that there

is γ ′ ∈ [γ] satisfying (5.1). Note that

[(Id, ǫω)]−1[γ] = ([γ1]B, [γ2]B) ∈ Ωk
B(M) ⊕ Ωk−1

B (M)

for some basic forms γ1 and γ2 on M . Since the basic Lefschetz property
holds, we can choose γ ′1 ∈ [γ1]B and γ ′2 ∈ [γ2]B such that

iV γ
′
1 = 0, Ln−k+1γ ′1 = 0,

and

iV γ
′
2 = 0, Ln−k+2γ ′2 = 0.

Thus, we can consider the closed k-form

γ ′ = γ ′1 + ω ∧ γ ′2

and it is easy to see that γ ′ ∈ [γ] and

LUγ
′ = 0, iV γ

′ = 0, Ln−k+2γ ′ = 0, Ln−k+1ǫωγ
′ = 0.
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Now, consider the following isomorphisms

[(Id, ǫω)]−1 : Hk(M) −→ Hk
B(M) ⊕Hk−1

B (M),

LefBk ⊕LefBk−1 : Hk
B(M) ⊕Hk−1

B (M) −→ H2n+1−k
B (M) ⊕H2n+2−k

B (M),

σ : H2n+1−k
B (M) ⊕H2n+2−k

B (M) −→ H2n+2−k
B (M) ⊕H2n+1−k

B (M),

[(Id, ǫω)] : H2n+2−k
B (M) ⊕H2n+1−k

B (M) −→ H2n+2−k(M),

where σ is the canonical involution and LefBr : Hr
B(M) −→ H2n+1−r

B (M) is
the isomorphism whose graph is the basic Lefschetz relation RB

Lefr
. We define

the map Lefk : Hk(M) −→ H2n+2−k(M) by

Lefk = [(Id, ǫω)] ◦ σ ◦ (LefBk ⊕LefBk−1) ◦ [(Id, ǫω)]−1.

It is straightforward that Lefk is an isomorphism. It is left to show that for
any closed form γ ∈ Ωk(M) that satisfies (5.1), we have

Lefk[γ] = [ǫηL
n−k(LiUγ − ǫωγ)]. (5.5)

Let γ1 = iU(ω∧γ) and γ2 = iUγ. Note that the forms γ1 and γ2 are closed and
obviously iUγ1 = iUγ2 = 0. Thus they represent certain classes in H∗

B(M).
We have

[(Id, ǫω)]−1[γ] = ([γ1]B, [γ2]B).

Moreover, γ1 satisfies the conditions

iV γ1 = 0, Ln−k+1γ1 = 0,

and γ2 satisfies

iV γ2 = 0, Ln−k+2γ2 = 0.

Thus

LefBk [γ1]B = [ǫηL
n−kγ1]B = [ǫηL

n−kiU(ω ∧ γ)]B (5.6)

and

LefBk−1[γ2]B = [ǫηL
n−k+1γ2]B = [ǫηL

n−k+1iUγ]B. (5.7)

Now, we get by definition of the map Lefk that

Lefk[γ] = [ǫηL
n−k+1iUγ + ǫωǫηL

n−kiU(ω ∧ γ)] = [ǫηL
n−k(LiUγ − ǫωγ)].

This proves the first part of Theorem 1.4.

Proof of (2) in Theorem 1.4
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Assume that the l.c.s. structure (ω, η) is Lefschetz (or, equivalently, basic
Lefschetz) and denote by

LefB
k : Hk

B(M) −→ H2n+1−k
B (M), 1 ≤ k ≤ n,

the isomorphism whose graph is the basic Lefschetz relation RB
Lefk

. Since U is
a parallel vector field, we get that the mean curvature κ of the foliation 〈U〉
is zero. Moreover, it is shown on page 69 of [20] that the characteristic form
of 〈U〉 is ω. Therefore, by Theorem 7.54 in [20], we have a non-degenerate
pairing

〈·, ·〉 : H2n+1−k
B (M) ⊗Hk

B(M) −→ R

given by

〈[µ]B, [β]B〉 =

∫

M

ω ∧ µ ∧ β. (5.8)

Since LefBk is an isomorphism, we get that the bilinear form

ψ := 〈·, ·〉 ◦ (LefBk , Id) (5.9)

on Hk
B(M) is non-degenerate. Let α and β be closed basic k-forms on M .

Then, for any α′ ∈ [α]B and β ′ ∈ [β]B such that

iV α
′ = 0, Ln−k+1α′ = 0, iV β

′ = 0, Ln−k+1β ′ = 0,

we get that

ψ([α]B, [β]B) =

∫

M

ω ∧ ǫηL
n−kα′ ∧ β ′

= (−1)k2

∫

M

ω ∧ ǫηL
n−kβ ′ ∧ α′ = (−1)kψ([β]B, [α]B).

This shows that ψ is symmetric if k is even, and skew-symmetric if k is odd.
Consequently, for odd k between 1 and n, ck(M) := dimHk

B(M) is even.
On the other hand, from Theorem 1.2 we deduce that

bk(M) = ck(M) + ck−1(M),

which implies that

bk(M) − bk−1(M) = ck(M) − ck−2(M).

Since ck(M) and ck−2(M) are both even, we get that bk(M)−bk−1(M) is also
even.

Finally, we derive Theorem 1.1 from the previously proved results.
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(Proof of Theorem 1.1). By Theorem 1.3, every compact Vaisman manifold
satisfies the basic Lefschetz property. Thus from Theorem 1.4, we get that
every Vaisman manifold has the Lefschetz property.

6. Examples of non Vaisman compact Lefschetz l.c.s.

manifolds

In this section, we will construct examples of compact l.c.s. manifolds
of the first kind which do not satisfy the Lefschetz property. We will also
present an example of a compact Lefschetz l.c.s. manifold of the first kind
which does not admit compatible Vaisman metrics.

In order to do this we will use the following proposition.

Proposition 6.1. Let M be a (2n+ 2)-dimensional compact l.c.s. manifold
of the first kind such that the space of orbits N of the Lee vector field U of
M is a quotient manifold.

(i) If π : M −→ N is the canonical projection then there exists a contact
1-form ηN on N such that π∗ηN = η, η being the anti-Lee 1-form of
M . Moreover, the anti-Lee vector field V of M is π-projectable and
its projection ξ ∈ X(N) is the Reeb vector field of the contact manifold
(N, ηN).

(ii) There exists a Riemannian metric g on M such that U is parallel and
unitary with respect to g, and, in addition,

ω(X) = g(X,U), for all X ∈ X(M),

where ω is the Lee 1-form of M .

Proof : The first claim is well known and can be found in [23].
We will prove (ii). Denote by F the vector subbundle induced by the

foliation ω = 0. Then TM = F ⊕ 〈U〉. From an arbitrary Riemannian
metric gN on N , we can define a Riemannian metric g on M such that

π : (M, g) −→ (N, gN)

is a Riemannian submersion with the horizontal subbundle F and the vector
field U is unitary with respect to g. This implies that ω(X) = g(X,U).
Moreover, it is easy to prove that U is a Killing vector field. Thus, since the
dual 1-form to U with respect to g is ω and it is closed, we conclude that U
is parallel.
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Under the same conditions as in Proposition 6.1, it is clear that the basic
Lefschetz property for the l.c.s. manifold M is equivalent to the Lefschetz
property for the base contact manifold N . Therefore, using Theorem 1.4 and
Proposition 6.1, we deduce the following result.

Corollary 6.2. Let M be a (2n+ 2)-dimensional compact l.c.s. manifold of
the first kind such that the space of orbits of the Lee vector field is the contact
manifold N . Then, the following conditions are equivalent:

(1) The l.c.s. structure on M satisfies the Lefschetz property.
(2) The l.c.s. structure on M satisfies the basic Lefschetz property.
(3) The contact structure on N satisfies the Lefschetz property.

Now, let N be a compact contact manifold and consider the product man-
ifold M = N × S1 with its standard l.c.s. structure of the first kind, that
is, the Lee 1-form is the length element of S1 and the anti-Lee 1-form is
the contact 1-form on N . Then, it is clear that the space of orbits of the
Lee vector field of M is N . Thus, using Corollary 6.2 and taking as N the
examples of non-Lefschetz compact contact manifolds considered in [3], we
obtain examples of compact l.c.s. manifolds of the first kind which satisfy
the following conditions:

(1) Their Betti numbers satisfy relations (1.3) in Theorem 1.4.
(2) They do not satisfy neither the Lefschetz property nor the basic Lef-

schetz property (and, therefore, they do not admit compatible Vais-
man metrics).

Note that (1) follows using that bk(N) is even if k is odd and k ≤ n, with
dimN = 2n+ 1 and bk(N) the k-th Betti number of N .

On the other hand, in [4], we present an example of a compact Lefschetz
contact manifold N which does not admit any Sasakian structure. So, the
standard l.c.s. structure of the first kind on M = N × S1 is Lefschetz and
basic Lefschetz. However, M does not admit compatible Vaisman metrics.

We conclude stating some open problems concerning these topics. An
interesting problem is to find examples of compact l.c.s. manifolds of the
first kind which satisfy the basic Lefschetz property but they do not satisfy
the Lefschetz property and vice versa. These topics will be the subject of
forthcoming papers.
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mento de Matemáticas, Estad́ıstica e Investigación Operativa, Facultad de Ciencias, Uni-

versidad de La Laguna, La Laguna, Tenerife, Spain

E-mail address : jcmarrer@ull.edu.es

Ivan Yudin

CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address : yudin@mat.uc.pt


