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REDUCTION OF PRE-HAMILTONIAN ACTIONS

ANTONIO DE NICOLA AND CHIARA ESPOSITO

Abstract: We prove a reduction theorem for the tangent bundle of a Poisson
manifold (M,π) endowed with a pre-Hamiltonian action of a Poisson Lie group
(G,πG). In the special case of a Hamiltonian action of a Lie group, we are able
to compare our reduction to the classical Marsden-Ratiu reduction of M . If the
manifold M is symplectic and simply connected, the reduced tangent bundle is
integrable and its integral symplectic groupoid is the Marsden-Weinstein reduction
of the pair groupoid M × M̄ .

1. Introduction

Reduction procedures for manifolds with symmetries are known in many
different settings. A quite general approach, whose origin traces back to the
ideas of Cartan [7], was considered in [27] and then generalized in [2, 3]. In
this approach, the reduction of a symplectic manifold (M, ω) is intended as
a submersion ρ : N → Mred of an immersed submanifold i : N →֒ M onto
another symplectic manifold (Mred, ωred) such that i∗ω = ρ∗ωred. In partic-
ular Mred might be the space of leaves of the characteristic distribution of
i∗ω. However, the most famous result is the one provided by Marsden and
Weinstein [24] in the special case where the submanifold N consists of a level
set of a momentum map associated to the Hamiltonian action a of Lie group.
One of the possible generalizations has been introduced by Lu [20] and con-
cerns actions of Poisson Lie groups on symplectic manifolds. Afterwards, the
case of Poisson Lie groups acting on Poisson manifolds has been studied in
[11]. An action of a Poisson Lie group (G, πG) is said to be Poisson Hamil-
tonian if it is generated by an equivariant momentum map J : M → G∗.
In this paper we focus on a further generalization of Poisson Hamiltonian
actions. The main idea, introduced by Ginzburg in [16], is to consider only
the infinitesimal version of the equivariant momentum map studied by Lu.
An action induced by such infinitesimal momentum map is what we call pre-
Hamiltonian. It is important to remark that any Poisson Hamiltonian action
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2 A. DE NICOLA AND C. ESPOSITO

is pre-Hamiltonian but the converse is not true in general. We prove a reduc-
tion theorem for a Poisson manifold endowed with a pre-Hamiltonian action
of a Poisson Lie group. More explicitly, given a pre-Hamiltonian action of a
Poisson Lie group (G, πG) on a Poisson manifold (M, π) we obtain a reduc-
tion of the tangent bundle TM . First, we build up a reduced space by using
the theory of coisotropic reduction. In fact, given a coisotropic submanifold
C of TM the associated characteristic distribution allows us to define a leaf
space C

/

∼, which we denote by (TM)red. The coisotropic submanifold C is
defined by means of a map ϕ̃ from g to the space of 1-forms on M which pre-
serves the Lie algebra structures and is a cochain map. Using the properties
of such a map we are able to prove that (TM)red carries a Poisson struc-
ture. Then, we consider the case in which ϕ̃ generates a pre-Hamiltonian
action. Using the theory of coisotropic reduction, the Tulczyjew’s isomor-
phisms [29, 30] and the theory of tangent derivations [25], we prove that the
reduced tangent bundle coincides with the orbit space C/G. The particu-
lar case of Hamiltonian action and the relation with classical Marsden-Ratiu
reduction are studied. Furthermore, by using [14, 15] we provide an inter-
pretation of the reduced tangent bundle in terms of symplectic groupoids. In
particular, we consider the case of a symplectic action of a Lie group G on
a symplectic manifold M . On the one hand, we show that in this case the
lifted action on the tangent bundle TM is Hamiltonian so that we obtain
a reduced tangent bundle (TM)red which is a symplectic manifold. On the
other hand, it follows from [14] that the symplectic action on (M, ω) can
be lifted to an Hamiltonian action on the corresponding symplectic groupoid
that can be identified with the fundamental groupoid Π(M) ⇉ M of M. This
implies that the symplectic groupoid can be reduced via Marsden-Weinstein
procedure to a new symplectic groupoid (Π(M))red ⇉ M/G. We prove that
in this case our reduced tangent bundle (TM)red is the Lie algebroid cor-
responding to the reduced symplectic groupoid (Π(M))red. If M is simply
connected, this is just the reduction of the pair groupoid M × M̄ .
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2. Hamiltonian actions and coisotropic reduction

In this section we recall some well-known results regarding reduction pro-
cedures for Hamiltonian actions and for the more general case of coisotropic
submanifolds which will be used in the following sections.

Let G be a Lie group and (M, π) a Poisson manifold. An action Φ :
G × M → M is said to be canonical if it preserves the Poisson structure π
on M . Let ϕ : g → Γ(TM) be the infinitesimal generator of the action. In
order to perform a reduction we need to introduce the notion of momentum
map.

Definition 2.1. A momentum map for a canonical action of G on M is a
map J : M → g∗ such that it generates the action by

ϕ(ξ) = π♯(d Jξ),

where Jξ : M → R is defined by Jξ(p) = 〈J(p), ξ〉, for any p ∈ M and ξ ∈ g.

A momentum map J : M → g∗ is said to be equivariant if it is a Poisson
map, where g∗ is endowed with the so-called Lie Poisson structure [6, Sec.
3]. Finally, a canonical action is said to be Hamiltonian if it is generated
by an equivariant momentum map.

A reduction theorem for symplectic manifolds with respect to Hamiltonian
group action was proven in [24]. It extends in a straightforward way to the
case of Poisson manifolds which we now recall.

Theorem 2.2 ([23]). Let (M, π) be a Poisson manifold endowed with a free
and proper Hamiltonian action of a Lie group G and assume that 0 ∈ g∗ is
a regular value for the momentum map J : M → g∗. Then the reduced space

Mred = J−1(0)/G

is a Poisson manifold.

Now we briefly review a more general procedure, called coisotropic reduc-
tion. The main idea, due to Weinstein [31], is that given a Poisson manifold
and a coisotropic submanifold, one can always build up a reduction. Some
nice reviews of this theory can be found in [4], [5] and [8]. Reduction of



4 A. DE NICOLA AND C. ESPOSITO

a Poisson manifold with respect to an Hamiltonian group action as well as
coisotropic reduction can be recovered as special cases of reduction by dis-
tributions [23, 13, 18].

Let (M, π) be a Poisson manifold and C ⊆ M a submanifold. We denote
by

IC = {f ∈ C
∞(M) : f |C = 0} (2.1)

the multiplicative ideal of the Poisson algebra C ∞(M). It is known that C
is coisotropic if and only if IC is a Poisson subalgebra. From now on, we
assume that C is a regular closed submanifold, so we have the identification

C
∞(M)/IC

∼= C
∞(C).

Assume that (M, π) is a Poisson manifold and C ⊆ M is a coisotropic sub-
manifold. From the properties of coisotropic manifolds, we know that there
always exists a characteristic distribution on C, which is spanned by the
Hamiltonian vector fields Xf associated to f ∈ IC. This distribution is
integrable, so we can define the leaf space

Mred := C
/

∼ .

We assume that the corresponding foliation is simple, that is Mred is a smooth
manifold and the projection map

p : C → Mred (2.2)

is a surjective submersion. The manifold Mred is called the reduced man-

ifold. One can show that Mred is a Poisson manifold. More precisely, the
following results hold (see [26, 28]).

Proposition 2.3. Let (M, π) be a Poisson manifold and C ⊆ M a coisotropic
submanifold.

(i) BC := {f ∈ C ∞(M) : {f, IC} ⊆ IC} is a Poisson subalgebra of A

containing I .
(ii) IC ⊆ BC is a Poisson ideal and BC is the largest Poisson subalgebra

of C ∞(M) with this feature
(iii) C

∞(M)red := BC/IC is a Poisson algebra.

The relation between C
∞(Mred) and C

∞(M)red is given by the following
theorem.
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Theorem 2.4. Let M be a Poisson manifold and C a closed regular coisotropic
submanifold defining a simple foliation, so that

p : C → Mred

is a surjective submersion. Then there exists a Poisson structure on Mred

such that C ∞(M)red and C ∞(Mred) are isomorphic as Poisson algebras.

This proves that Mred is a Poisson manifold. Finally, note that the coisotropic
reduction admits as a special case the reduction with respect a Hamilton-
ian group action. In this case, the coisotropic submanifold is given by the
preimage of a regular value of a momentum map. More precisely, consider a
canonical action Φ : G × M → M generated by an ad∗-equivariant momen-
tum map J : M → g∗. If µ ∈ g∗ is a regular value of J and is ad∗-invariant,
then

Cµ = J−1(µ) ⊆ M (2.3)

is either empty or a coisotropic submanifold. Then the leaf space Cµ

/

∼
coincides with the orbit space Cµ/G (see e.g. [5]), so we get the reduced
space of Theorem 2.2.

3. Pre-Hamiltonian actions

In this section we introduce a generalization of Hamiltonian actions in the
setting of Poisson Lie groups acting on Poisson manifolds. For this reason
we first recall some basic notions. A Poisson Lie group is a pair (G, πG),
where G is a Lie group and πG is a multiplicative Poisson structure. The
corresponding infinitesimal object is given by a Lie bialgebra, i.e. the Lie
algebra g corresponding to the Lie group G, equipped with the 1-cocycle,

δ = de πG : g → g ∧ g. (3.1)

If G is connected and simply connected there is a one-to-one correspondence
between Poisson Lie groups and Lie bialgebras (known as Drinfeld’s princi-
ple [10]). When (g, δ) is a Lie bialgebra, the 1-cocycle δ gives a Lie algebra
structure on g∗, while the Lie bracket of g gives a 1-cocycle δ∗on g∗, so that
(g∗, δ∗) is also a Lie bialgebra. Thus, we can define the dual Poisson Lie

group (G∗, πG∗) as the (connected and simply connected) Poisson Lie group
associated to the Lie bialgebra (g∗, δ∗). From now on we assume G to be con-
nected and simply connected in order to get the one-to-one correspondence
stated above.
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Definition 3.1. An action of (G, πG) on (M, π) is said to be a Poisson

action if the map Φ : G × M → M is Poisson, that is

{f ◦ Φ, g ◦ Φ}G×M = {f, g}M ◦ Φ, ∀f, g ∈ C
∞(M) (3.2)

where the Poisson structure on G × M is given by πG ⊕ π.

It is evident that the above definition generalizes the notion of canonical
action.

Definition 3.2 ([20, 21]). A momentum map for the Poisson action Φ :
G × M → M is a map J : M → G∗ such that

ϕ(ξ) = π♯(J∗(θξ)), (3.3)

where ϕ : g → Γ(TM) denotes the infinitesimal generator of the action, θξ is
the left invariant 1-form on G∗ defined by the element ξ ∈ g = (TeG

∗)∗ and
J∗ is the cotangent lift of J .

Definition 3.3. Let J : M → G∗ be a momentum map of the action Φ.
Then,

(i) J is said to be G-equivariant if it is a Poisson map, i.e.

J∗π = πG∗, (3.4)

(ii) Φ is said to be a Poisson Hamiltonian action if it is a Poisson
action induced by a G-equivariant momentum map.

This definition generalizes Hamiltonian actions in the canonical setting.
Indeed, we notice that, if the Poisson structure on G is trivial, the dual G∗

corresponds to the dual of the Lie algebra g∗ and the 1-form J∗(θξ) is then
exact. Thus, it recovers the usual definition of momentum map J : M → g∗

for Hamiltonian actions in the canonical setting since ϕ(ξ) is a Hamiltonian
vector field. As pointed out by Ginzburg in [16], in many cases it is enough
to consider the infinitesimal version of the G-equivariant momentum map,
which is a map from the Lie bialgebra g to the space of 1-forms on M . Recall
that a Poisson structure π on a manifold M defines a Lie bracket [·, ·]π on
the space of 1-forms.

Definition 3.4. Let (M, π) be a Poisson manifold endowed with an action of
a Poisson Lie group (G, πG) having infinitesimal generator ϕ : g → Γ(TM).

(1) A PG-map is a map ϕ̃ : g → Ω1(M) such that
(i) ϕ̃[ξ,η] = [ϕ̃ξ, ϕ̃η]π
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(ii) d ϕ̃ξ = ϕ̃ ∧ ϕ̃ ◦ δ(ξ).
(2) Moreover, if ϕ̃ generates the action, that is

ϕ(ξ) = π♯(ϕ̃ξ), (3.5)

we say that it is an infinitesimal momentum map.

The existence and uniqueness of the infinitesimal momentum map were
studied in [16]. In particular, it was shown that an action of a compact
group with H2(g) = 0 admits an infinitesimal momentum map.

We are interested to study reduction for actions that admit an infinitesimal
momentum map or just a PG-map.

Definition 3.5. An action of a Poisson Lie group on a Poisson manifold is
said to be pre-Hamiltonian if it is a Poisson action and it is generated by
an infinitesimal momentum map.

It is important to remark that this notion is weaker than that of Poisson
Hamiltonian action, as it does not reduce to the canonical one when the
Poisson structure on G is trivial. In fact, in this case we only have that ϕ̃ξ

is a closed form, but in general this form is not exact. Concrete examples of
pre-Hamiltonian actions which are not Poisson Hamiltonian were provided
in [16]. The study of the conditions in which the infinitesimal momentum ϕ̃
map determines the momentum map J can be found in [12].

Remark 3.6. Recall that a Gerstenhaber algebra (see [19]) is a triple (A =
⊕i∈ZAi,∧, [ , ]) such that (A,∧) is a graded commutative associative algebra,
(A = ⊕i∈ZA(i), [ , ]), with A(i) = Ai+1, is a graded Lie algebra, and for
each a ∈ A(i) one has that [a, ] is a derivation of degree i with respect
to ∧. A differential Gerstenhaber algebra (A = ⊕i∈ZAi, d,∧, [ , ]) is
a Gerstenhaber algebra equipped with a differential d, that is a derivation
of degree 1 and square zero of the associative product ∧. One speaks of a
strong differential Gerstenhaber algebra if, moreover, d is a derivation
of the graded Lie bracket [ , ]. A morphism of differential Gerstenhaber

algebras is a cochain map that respects the wedge product and the graded
Lie bracket. It was proven in [19] that there is a one to one correspondence
between Lie bialgebroids and strong differential Gerstenhaber algebras. Let
(M, π) be a Poisson manifold and (G, πG) a Poisson Lie group. Then by [19]
one has that (∧•g, δ,∧, [ , ]) and (Ω•(M), dDR,∧, [ , ]π) are strong differential
Gerstenhaber algebras. It is easy to check that the notion of infinitesimal
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momentum map can be rephrased as a morphism of differential Gerstenhaber
algebras

ϕ̃ : (∧•g, δ,∧, [ , ]) −→ (Ω•(M), dDR,∧, [ , ]π). (3.6)

However, notice that in general, despite being a morphism of differential
Gerstenhaber algebras, an infinitesimal momentum map ϕ̃ : g → Ω1(M)
does not always correspond to a morphism of vector bundles g → T ∗M and
hence it does not necessarily induce a morphism of Lie algebroids from g to
T ∗M .

3.1. Properties of PG-maps. The notion of a PG-map is crucial in order
to prove a reduction theorem in this context. For this reason in this section
we study some of its properties. In particular, we can prove that any PG-
map (and hence any infinitesimal momentum map) defines a Lie bialgebroid
morphism. Let us first recall the definitions related with Lie algebroids that
we use in this paper.

Definition 3.7. Let E → M and F → N be two Lie algebroids. A Lie

algebroid morphism is a bundle map Φ : E → F such that

Φ∗ : (Γ(∧•F ∗), dF ) → (Γ(∧•E∗), dE)

is a cochain map.

Definition 3.8. Assume that E → M is a Lie algebroid and that its dual
vector bundle E∗ → M also carries a structure of Lie algebroid. The pair
(E, E∗) of Lie algebroids is a Lie bialgebroid if these differentials are deriva-
tions of the corresponding Schouten brackets, i.e. for any X, Y ∈ Γ(E)

d∗[X, Y ] = [d∗ X, Y ] − [Y, d∗ X] (3.7)

It is important to mention that given a Lie bialgebroid (E, E∗), the Lie
algebroid structure on E always induces a linear Poisson structure on E∗

and viceversa. The most canonical example is given by the Lie bialgebroid
(TM, T ∗M) associated to a Poisson manifold M . In particular, given a Pois-
son manifold M , its tangent bundle carries a linear Poisson structure as
shown in the following lemma.

Lemma 3.9 ([22, Prop. 10.3.12]). Let (M, πM) be a Poisson manifold. Then
its tangent bundle TM has a linear Poisson structure πTM defined by

π♯
TM ◦ αM = kM ◦ Tπ♯

M , (3.8)
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where kM : TTM → TTM is the canonical involution of the double tangent
bundle and αM : TT ∗M → T ∗TM is the Tulczyjew isomorphism [29, 30].

We can now give the needed definition of a morphism of Lie bialgebroids.

Definition 3.10. A Lie bialgebroid morphism is a Lie algebroid mor-
phism which is a Poisson map.

In order to prove that any PG-map ϕ̃ (see Def. 3.4), corresponds to a Lie
bialgebroid morphism, we need to introduce a dual notion to that of PG-map.

Definition 3.11. Given a map ϕ̃ : g → Ω1(M), we can associate the map
c : TM → g∗ defined by

〈c(Xm), ξ〉 = 〈Xm, ϕ̃ξ(m)〉, (3.9)

for any Xm ∈ TmM . If ϕ̃ is an infinitesimal momentum map we call c a
comomentum map.

We are now ready to prove the announced result.

Proposition 3.12. Let ϕ̃ : g → Ω1(M) be a PG-map. The associated map
c : TM → g∗ is a Lie bialgebroid morphism.

Proof : From the definition it follows immediately that c is a morphism of
vector bundles. Indeed, being a vector bundle over a point, g∗ has just one
fiber, hence ϕ̃ sends fibers into fibers. Moreover, c is fiberwise linear, due to
the linearity of ϕ̃. Finally, the pull-back c∗ : Γ(∧•g) → Γ(∧•T ∗M) is given
by the the natural extension of the map ϕ̃ and hence it is a cochain map.
Thus, c is a morphism of Lie algebroids. It remains to prove that the map
c∗ : C

∞(g∗) → C
∞(TM) is a Poisson map, i.e. {f, g}g∗ ◦ c = {f ◦ c, g ◦ c}TM .

First, we consider f and g to be linear maps from g∗ to R, so can denote
them as

f = lξ, g = lη

for ξ, η ∈ g. For any ξ ∈ g, we now define

lξ† := lξ ◦ c.

So, we aim to prove that
{lξ†, lη†} = l[ξ,η]†.

Using the definition of c it is evident that

lξ†(vm) = ϕ̃ξ(vm),
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for any vm ∈ TmM . Thus
lξ† = ϕ̃ξ.

Hence,
{lξ†, lη†} = {ϕ̃ξ, ϕ̃η} = ϕ̃[ξ,η] = l[ξ,η]†.

The extension to smooth functions can be easily done. In facts, we can
immediately extend the result to polynomials and it is known that the space
of polynomials is dense in the space of smooth functions.

4. Reduction of the tangent bundle

In this section, using the techniques of coisotropic reduction recalled in
Sec.2 and the properties of PG-maps, we prove a reduction theorem for the
tangent bundle of a Poisson manifold (M, π) under the action of a Poisson
Lie group. It is known that the tangent bundle of a Poisson manifold inher-
its a linear Poisson structure. We will show that a PG-map automatically
produces a coisotropic submanifold of the tangent bundle. Thus, we obtain a
reduced Poisson manifold. Furthermore, in the special case in which there is
a pre-Hamiltonian action of a Poisson Lie group (G, πG) on (M, π) we study
the properties of the tangent lift of the action and this allows us to prove
that the Poisson reduced space coincides with the G-orbit space as in the
canonical setting. Finally, in the classic case of an Hamiltonian action on
a Poisson manifold, we analyze the relation of the reduced tangent bundle
(TM)red and the reduced manifold Mred produced by Theorem 2.2.

4.1. Coisotropic and pre-Hamiltonian reduction. Consider a Lie bial-
gebra (g, δ), a Poisson manifold (M, π) and let ϕ̃ : g → Ω1(M) be a PG-map.
These ingredients are sufficient to obtain a coisotropic reduction. In Sec. 3.1,
to a PG-map ϕ̃ we associated a dual map c : TM → g∗ by (3.9) and we
proved that it is a Poisson map.

The results on coisotropic reduction recalled in Sec. 2 can be immediately
applied to this case. More explicitly, we can prove the following result.

Theorem 4.1. Let (M, π) be a Poisson manifold endowed with a a PG-map
ϕ̃ : g → Ω1(M). Then C := c−1(0) ⊆ TM is a coisotropic submanifold,
where 0 ∈ g∗ is a regular value of c. Moreover, if C defines a simple foliation
on TM , then the reduced manifold (TM)red = C

/

∼ has a Poisson structure.

Proof : The fact that C is a coisotropic submanifold follows immediately by
the fact that {0} is a symplectic leaf in g∗ and from the fact that c is a Poisson
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map, as proved in Proposition 3.12. To complete the proof it is enough to
apply the coisotropic reduction Theorem 2.4 to our C.

Now, we want to prove that the reduction in the case of a Pre-Hamiltonian
action of a Poisson-Lie group gives rise to a special case of the coisotropic
reduction obtained above. In the following we always assume the action to
be free and proper.

Assume that we have an infinitesimal momentum map ϕ̃ : g → Ω1(M). The
associated action is in general not Hamiltonian unless ϕ̃ξ is exact. However,
we will see that if ϕ̃ξ is closed the lifted action on the tangent bundle is always
Hamiltonian. In order to prove these results, we need some tools from the
theory of derivations along maps [25].

A tangent derivation (that is, a derivation along τ ∗
M , see [25]) of degree

p is a linear operator D : Ωk(M) → Ωk+p(TM) such that

D(ω1 ∧ ω2) = Dω1 ∧ τ ∗
Mω2 + (−1)kpτ ∗

Mω1 ∧ D ω2. (4.1)

We define iT : Ωk(M) → Ωk−1(TM) as the tangent derivation of degree −1
such that it is zero on functions and acts on any 1-form θ : M → T ∗M by

iTθ(v) = 〈θ(τM(v)), v〉, (4.2)

for any v ∈ TM .

Remark 4.2. Notice that given ϕ̃ : g → Ω1(M) and c : TM → g∗ we can
express the map

g → C
∞(TM)

ξ 7→ cξ := c ◦ ξ

in terms of the tangent derivation iT defined above. We get

cξ = iT ϕ̃ξ (4.3)

Then, one easily obtains that on any k-form ω on M ,

iTω(w1, . . . , wk−1) = 〈ω(τTM(w)), T τM(w1), . . . , T τM(wk−1)〉

for any w1, . . . , wk−1 ∈ TTM such that τTM(w1) = . . . = τTM(wk−1). If ω1 is
a k-form and ω2 is an l-form, from (4.1) one has

iT (ω1 ∧ ω2) = iTω1 ∧ τ ∗
Mω2 + (−1)kτ ∗

Mω1 ∧ iTω2 (4.4)

One can also define

dT θ = iT d θ + d iTθ (4.5)
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It is easy to check that dT : Ωk(M) → Ωk(TM) is a tangent derivation of
degree 0 and

dT (ω1 ∧ ω2) = dT ω1 ∧ τ ∗
Mω2 + (−1)kτ ∗

Mω1 ∧ dT ω2. (4.6)

The following result is known but a proof is not easily available, so we
provide one below.

Lemma 4.3. For any 1-form θ : M → T ∗M on a manifold M , one has
Tθ : TM → TT ∗M and

αM ◦ Tθ = dT θ. (4.7)

Proof : In this proof we will make use of the Einstein summation convention.
Let us take suitable local coordinate charts (qi) in M and (qi, vj) in TM
(with i, j = 1, . . . , n). Then, the 1-form θ, seen as a map θ : M → TM has
the following coordinate expression

θ(q) = (qi, θj(q)). (4.8)

Hence for any v ∈ TM of coordinates (qi, vj) one has

iTθ(v) = θi(q)v
i.

Thus

d iTθ(v) = (qi, vj, ∂qi
θj(q)v

j, θj(q)). (4.9)

On the other hand

d θ =
1

2
(∂qi

θj − ∂qj
θi)dqi ∧ dqj.

Hence

iT d θ(v) = (∂qj
θi − ∂qi

θj)v
jdqi. (4.10)

Thus dT θ = iT d θ + d iTθ has the following local coordinate expression

dT θ(v) = (qi, vj, ∂qj
θi(q)v

j, θj(q)). (4.11)

On the other hand, from (4.8) one has

Tqθ(v) = vi d qi + ∂qi
θjv

i d vj.

Hence as a map

Tθ(v) = (qi, θj(q), v
i, ∂qi

θj(q)v
i).

Now recall that (see e.g. [30])

αM(qi, pj, q̇
h, ṗk) = (qi, q̇h, ṗk, pj).
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Hence
αM ◦ Tθ(v) = (qi, vj, ∂qj

θi(q)v
j, θj(q)). (4.12)

By comparing (4.11) and (4.12), the claim follows.

Given a pre-Hamiltonian action, the above results allow us to compute
explicitly the infinitesimal generator of the tangent lift of the action, as can
be seen in the following

Theorem 4.4. Let Φ : G×M → M be a pre-Hamiltonian action of a Poisson
Lie group with infinitesimal momentum map ϕ̃.

(i) The infinitesimal generator ϕT of the tangent lift of Φ is given by

ϕT (ξ) = XiT ϕ̃ξ
+ π♯

TM ◦ iTd ϕ̃ξ.

(ii) If for each ξ ∈ g, one has d ϕ̃ξ = 0, then the lifted (infinitesimal)
action on (TM, πTM) is Hamiltonian, with fiberwise-linear momentum
map defined by cξ = iT ϕ̃ξ.

Proof : (i) Since ϕ̃ generates the action, we have the relation

ϕ(ξ) = π♯
M ◦ ϕ̃ξ.

Moreover (see [17] or [22, p.365]),

ϕT (ξ) = kM ◦ T (ϕ(ξ)).

Now, by substituting the first relation in the second one, we obtain

ϕT (ξ) = kM ◦ Tπ♯
M ◦ T ϕ̃ξ.

By using (3.8) and (4.7), we get

ϕT (ξ) = π♯
TM ◦ αM ◦ T ϕ̃ξ

= π♯
TM ◦ dT ϕ̃ξ

= π♯
TM ◦ (d iT ϕ̃ξ + iT d ϕ̃ξ)

= XiT ϕ̃ξ
+ π♯

TM ◦ iT d ϕ̃ξ.

(ii) Clearly, if d ϕ̃ξ = 0, we get ϕT (ξ) = XiT ϕ̃ξ
.

It is clear that if d ϕ̃ξ = 0 for any ξ ∈ g, then we can reduce the tangent
bundle by using the well-known Theorem 2.2 of reduction of Poisson man-
ifolds, since in Theorem 4.4 we proved that in this case the tangent lift of
the action is Hamiltonian. In other words, the reduction procedure obtained
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above recovers the reduction of Poisson manifolds in the specific case in which
the infinitesimal momentum map associates a closed form to any element of
the Lie bialgebra. In particular, this happens in the case of a symplectic
action on a symplectic manifold (M, ωM). Then, the tangent bundle is also
symplectic, with the symplectic form given by dTωM .

Corollary 4.5. Let g → X(M) be a symplectic action of a Lie algebra g on
a symplectic manifold (M, ωM). Then, the lifted action on (TM, dTωM) is
Hamiltonian, with fiberwise-linear momentum map c : TM → g∗defined by

cξ = iT (iϕ(ξ)ωM).

Proof : Under the above assumptions we have that the action is clearly pre-
Hamiltonian with infinitesimal momentum map ϕ̃ : g → Ω1(M) given by

ϕ̃ξ = iϕ(ξ)ωM .

Moreover, Lϕ(ξ)ωM = 0 implies d iϕ(ξ)ωM = 0 since ωM is closed.

Theorem 4.4 allows us to show that, in the case of a (free and proper)
pre-Hamiltonian G−action, the reduced Poisson manifold (TM)red = C

/

∼
of Theorem 4.1 is the orbit space of the lifted action of G on C ⊆ TM .

Theorem 4.6. Let Φ : G×M → M be a pre-Hamiltonian action of a Poisson
Lie group with infinitesimal momentum map ϕ̃ and comomentum map c. We
have

(TM)red = C/G.

Proof : Let {ei}i=1,...,n be a basis of g∗ and ci : TM → R the components of
c. Thus,

c =
∑

i

cie
i.

Since C = c−1(0) and IC is the set of functions vanishing on C, then by [5,
Lemma 5] any f ∈ IC can be written as

f =
∑

i

f ici, (4.13)

where

f i : TM → R.
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Consider the inclusion i : C → TM and a Hamiltonian vector field Xf on
TM (recall that they span the characteristic distribution on C). From (4.13)
we have

i∗Xf =
∑

i

i∗(f iXci
+ ciXf i),

by the Leibniz rule. The term i∗(ciXf i) is zero because ci vanishes on C. So
we get

i∗Xf =
∑

i

i∗(f iXci
). (4.14)

From Theorem 4.4 and (4.3), we have

ϕT (ei) = XiT ϕ̃i
+ π♯

TM ◦ iTd ϕ̃i = Xci
+ π♯

TM ◦ iTd ϕ̃i, (4.15)

where ϕ̃i := ϕ̃(ei). We have

δ(ei) =
∑

j<k

γjk
i ej ∧ ek,

where γjk
i are some real constants. Now, using the property d ϕ̃ξ = ϕ̃∧ϕ̃◦δ(ξ)

we can write

iTd ϕ̃i =
∑

j<k

γjk
i iT (ϕ̃j ∧ ϕ̃k).

Hence, from (4.3) and (4.4) we get

iTd ϕ̃i =
∑

j<k

γjk
i (cj ∧ τ ∗

M ϕ̃k − τ ∗
M ϕ̃j ∧ ck).

Thus, since the ci s’ are functions, we have

π♯
TM(iTd ϕ̃i) =

∑

j<k

γjk
i (cjπ

♯
TM(τ ∗

M ϕ̃k) − ckπ
♯
TM(τ ∗

M ϕ̃j)).

From (4.15), by using this relation we get

i∗ϕT (ei) = i∗(Xci
+ π♯

TM(iTd ϕ̃i)) = i∗Xci
(4.16)

because the functions ci s’ vanish on C. Substituting (4.16) in (4.14) we have

i∗Xf =
∑

i

i∗(f i) · i∗ϕT (ei).

We have proved that the leaves of the characteristic distribution are the
G-orbits.
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Remark 4.7. As an example, let us consider the dressing action G×G∗ → G∗,
which is Poisson Hamiltonian with momentum map J = id. Thus, using the
linearization TG∗ ∼= G∗ × g∗ and the definition of the comomentum map
(3.9), we get

c = prg∗ : G∗ × g∗ → g∗.

Hence, in this case the reduction of the tangent bundle gives as a result just
the space of orbits of the dressing action:

(TG∗)red = G∗/G.

4.2. Relation with the Hamiltonian case. Let us consider the partic-
ular case in which the pre-Hamiltonian action is Hamiltonian, so we have
a momentum map J : M → g∗ and ϕ̃ξ = d Jξ (for instance, this occurs if
ϕ̃ξ = J∗(θξ) and πG = 0). As recalled in Section 2, in this case we have the
well-known reduction Theorem 2.2 which gives a reduced Poisson manifold
Mred = J−1(0)/G. The following theorem gives the relation between Mred

and (TM)red.

Theorem 4.8. Let (M, π) be a Poisson manifold endowed with an Hamil-
tonian action of a Lie group G and assume that 0 ∈ g∗ is a regular value
for the momentum map J : M → g∗. Then, the space (TM)red is a vector
bundle over M/G and there is a connection dependent isomorphism

(TM)red|Mred
∼= T (Mred) + g̃,

where g̃ is the associated bundle to the principal bundle J−1(0) → J−1(0)/G
by the adjoint action of G on g.

Proof : Recall that

Mred = J−1(0)/G,

where J : M → g∗ and

(TM)red = c−1(0)/G,

where c : TM → g∗ is the comomentum map associated to ϕ̃. Moreover, we
have

ϕ̃ξ = d Jξ,

for each ξ ∈ g. Hence cξ : TM → R is given by

cξ = iT ϕ̃ξ = iT d Jξ = dT Jξ. (4.17)
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We can extend the action of dT to act on g∗-valued functions such as J in
an obvious way, giving as a result dT J : TM → g∗. Then, from (4.17) we
obtain c = dT J and hence

(TM)red = (dT J)−1(0)/G. (4.18)

Note that (dT J)−1(0) → M is a vector subbundle of TM → M , since dT J
is fiberwise linear and J is a submersion. As a consequence,

(dT J)−1(0)/G

is a vector bundle over M/G.
Now, we have

(dT J)−1(0)|J−1(0) = T (J−1(0)). (4.19)

Indeed, if v ∈ T (J−1(0)) ⊂ TM then J(τM(v)) = 0 and 〈d J(τM(v)), v〉 = 0.
Hence

(dT J)(v) = iT d J(v) = 0.

Conversely, if v ∈ (dT J)−1(0) and J(τM(v)) = 0 then τM(v) ∈ J−1(0) and

0 = (dT J)(v) = iT d J(v) = 〈d J(τM(v)), v〉.

Thus, we get v ∈ T (J−1(0)).
We use now the following fact. It is well known that a free and proper

action of a Lie group on a manifold M induces a free and proper action
of G on TM . Then by [9, Lemma 2.4.2] one has a connection dependent
isomorphism

(TM)/G ∼= T (M/G) + g̃,

where g̃ is the associated bundle to the principal bundle M → M/G by the
adjoint action of G on g. If we apply the above result to J−1(0), we get

(TJ−1(0))/G ∼= T (J−1(0)/G) + g̃ = T (Mred) + g̃

and hence by (4.19) we obtain

(dT J)−1(0)|J−1(0)/G ∼= T (Mred) + g̃,

where g̃ is the associated bundle to the principal bundle J−1(0) → J−1(0)/G
by the adjoint action of G on g. On the other hand, from (4.18) we have

(TM)red|Mred
= (dT J)−1(0)/G|J−1(0)/G = (dT J)−1(0)|J−1(0)/G,
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since the tangent projection is equivariant with respect to the considered
group actions. Hence we conclude that

(TM)red|Mred
∼= T (Mred) + g̃.

This theorem shows that in case of an Hamiltonian action our reduced tan-
gent bundle is closely related to the tangent bundle of the classical Marsden-
Ratiu reduced manifold.

5. Integration of the reduced tangent bundle

In this section we give an interpretation of the reduced tangent bundle
in terms of symplectic groupoids. In particular, we consider the case of a
symplectic action of a Lie group G on a symplectic manifold M . On the one
hand, we have shown that in this case the lifted action on the tangent bun-
dle TM is Hamiltonian so that we obtain a reduced tangent bundle (TM)red

which is a symplectic manifold. On the other hand, we can apply to our case
the results of [14] that hold for a canonical action on an integrable Poisson
manifold (M, π). Now, every symplectic manifold is integrable and the cor-
responding symplectic groupoid that can be identified with the fundamental
groupoid Π(M) of M . Hence, the action of G on M can be lifted to an
Hamiltonian action on the fundamental groupoid Π(M) ⇉ M . This implies
that the symplectic groupoid Π(M) can be reduced via Marsden-Weinstein
procedure to a new symplectic groupoid (Π(M)red ⇉ M/G. We prove that
our reduced tangent bundle (TM)red is the Lie algebroid corresponding to
the reduced symplectic groupoid (Π(M)red.

First, let us recall the needed results from [14].

Theorem 5.1 ([14]). Let G × M → M a free and proper canonical action
on an integrable Poisson manifold (M, π). There exists a unique lifted action
of G on Σ(M) ⇉ M by symplectic groupoid automorphisms. This lifted
action is free and proper and Hamiltonian. Let J : Σ(M) → g∗ denote its
momentum map. Then, the reduced symplectic groupoid, given by

(Σ(M))red = J−1(0)/G

is a symplectic groupoid integrating M/G.

Note that the symplectic form on (Σ(M))red allows us to identify the Lie
algebroid A((Σ(M))red) with the cotangent Lie algebroid T ∗(M/G).
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We will also use the following well-known result on the cotangent bundle
reduction.

Theorem 5.2 ([1]). Given a free and proper action of a Lie group G on M ,
the cotangent lift of the action is Hamiltonian with momentum map given by

〈j(αm), ξ〉 = αm(ϕξ(m)),

for any αm ∈ T ∗
mM , ξ ∈ g. Moreover, we have

(T ∗M)red
∼= T ∗(M/G).

The following lemma shows that in the case of a symplectic action on a sym-
plectic manifold (M, ω), due to the isomorphism ω♭ : TM → T ∗M induced
by ω, the reduced tangent bundle produced by Corollary 4.5 is isomorphic
to the classical reduced cotangent bundle.

Lemma 5.3. Given a symplectic action G × M → M of a Lie group G on
a symplectic manifold (M, ω) we have

(TM)red
∼= (T ∗M)red.

Proof : The momentum map j : T ∗M → g∗ of the cotangent lift of the action
is characterized by

jξ(αm) = αm(ϕξ(m)),

for any m ∈ M , αm ∈ T ∗
mM and ξ ∈ g. Hence, by writing αm = ω♭Xm with

Xm ∈ TmM we get

jξ(ω
♭Xm) = (iXm

ω)m(ϕξ(m)) = ωm(Xm, ϕξ(m)).

On the other hand, by Corollary 4.5 the momentum map c : TM → g∗ of
the tangent lift of the action is characterized by

cξ(Xm) = iT (iϕ(ξ)ω)(Xm) = (iϕ(ξ)ω)m(Xm) = −ωm(Xm, ϕξ(m)).

Thus we conclude that

c = −j ◦ ω♭.

As a consequence,

j−1(0) = −ω♭(c−1(0)).

Since the symplectic form is G-invariant, we conclude that

j−1(0)/G ∼= c−1(0)/G.
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These results allow us to prove that in the symplectic action of a Lie group
on a symplectic manifold the reduced tangent manifold (TM)red is the Lie
algebroid of the reduced symplectic groupoid (Π(M))red ⇉ M/G.

Theorem 5.4. Given a free and proper symplectic action of a Lie group G
on a symplectic manifold (M, ω), we have

A((Π(M)red) ∼= (TM)red.

Proof : By Corollary 4.5, we know that the lifted action to TM is Hamiltonian
with momentum map c. Thus we can perform the reduction of TM obtaining
a reduced tangent bundle

(TM)red = c−1(0)/G

endowed with a symplectic structure.
From Theorem 5.1, we know that the symplectic action can be lifted to a

Hamiltonian action on Σ(M) that in this case can be identified with Π(M)
and the reduced symplectic groupoid is

(Π(M))red := J−1(0)/G ⇉ M/G,

where J : Π(M) → g∗ is the momentum map of the lifted action. In this
case the base manifold M/G is symplectic. Moreover, we have

A((Π(M))red) = T ∗(M/G). (5.1)

Now, by Theorem 5.2, we have

A((Π(M))red) ∼= (T ∗M)red. (5.2)

Hence, by using Lemma 5.3 we get

A((Π(M))red) ∼= (TM)red.

Note that if (M, ω) is simply connected the corresponding symplectic groupoid
is the pair groupoid:

M × M̄ ⇉ M,

with symplectic structure ω ⊕ (−ω). Thus, we obtain the following result.

Corollary 5.5. Let M be symplectic and simply connected and let G×M →
M be a symplectic action. Then,

A((M × M̄)red) ∼= (TM)red.
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