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A NON-SASAKIAN LEFSCHETZ K-CONTACT MANIFOLD
OF TIEVSKY TYPE
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MARRERO AND IVAN YUDIN

Abstract: We find a family of five dimensional completely solvable compact man-
ifolds that constitute the first examples of K-contact manifolds which satisfy the
Hard Lefschetz Theorem and have a model of Tievsky type just as Sasakian mani-
folds but do not admit any Sasakian structure.

1. Introduction

It is well known that Sasakian geometry is closely related to Kähler ge-
ometry. Indeed, on the one hand, an odd dimensional Riemannian manifold
(M, g) is Sasakian if and only if its metric cone (M × R+, r2g + dr2) is a
Kähler manifold. On the other hand, the Reeb vector field of a Sasakian
manifold generates a transversely Kähler foliation so that, in particular, if
the foliation is regular the leaf space is a Kähler manifold.

A natural problem in Kähler geometry is the study of obstructions to the
existence of a Kähler structure on a given compact symplectic manifold. Sim-
ilarly, in Sasakian geometry a problem of interest is the study of obstructions
to the existence of a Sasakian structure on a given compact contact manifold.
On any Sasakian manifold the Reeb vector field is Killing. Hence the only
interesting case to consider is when a contact manifold has Killing Reeb vec-
tor field with respect to some metric. The problem of constructing explicit
examples of K-contact manifolds with no Sasakian structures arises.

The study of various obstructions to the existence of a Sasakian metric on
a given compact contact manifold intensified after the problem was presented
in a systematic form in [4, Chapter 7]. Several obstructions are now known.

For a contact manifold (M, η), we write H∗
B(M) for the basic cohomology

with respect to the foliation induced by the Reeb vector field. In 2008 Tievsky
proved in his Ph.D. thesis [18] that in order to admit a compatible Sasakian
structure the de Rham cohomology algebra (Ω∗(M), d) of a compact contact
manifold (M, η) has to be quasi-isomorphic as CDGA to a elementary Hirsch
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extension of HB(M). Namely, one has the model (T ∗(M), d) given by

T ∗(M) := H∗
B(M) ⊗ R[y]/(y2), d([α]B + [β]By) := [β ∧ dη]B, (1.1)

where we put deg(y) := 1, α is a basic p-form and β a basic (p − 1)-form.
We will refer to a compact contact manifold (M, η) admitting the model
(T ∗(M), d) as to a manifold of Tievsky type.

Using Tievsky’s result, we proved in [5] that a compact nilmanifold is of
Tievsky type if and only if it is a compact quotient of the Heisenberg group
H(1, n) of dimension 2n+1 by a co-compact discrete subgroup. In particular,
any compact nilmanifold carries a Sasakian structure if and only if it is of
this type. To the knowledge of the authors, so far, there are no examples of
non-Sasakian compact contact manifolds of Tievsky type.

Another obstruction to the existence of Sasakian structures, lately discov-
ered in [7], is provided by the so-called Hard Lefschetz Theorem for Sasakian
manifolds. Let (M2n+1, η) be a compact contact manifold with Reeb vector
field ξ. Consider the following relation between Hp(M) and H2n+1−p(M):

RLefp
=

{(
[β] , [η ∧ (dη)n−p∧ β]

) ∣∣ β ∈ Ωp(M),

dβ = 0, iξβ = 0, (dη)n−p+1∧ β = 0
}
,

for p ≤ n. In [7] it is proved that if (M2n+1, η) admits a compatible Sasakian
metric, then RLefp

is the graph of an isomorphism

Lefp : Hp(M) −→ H2n+1−p(M).

In such a case we say that (M, η) is a Lefschetz contact manifold. In any
Lefschetz contact manifold the p-th Betti number is even for p odd with
1 ≤ p ≤ n. Note that for Sasakian manifolds this fact was known since
[9]. We point out that the property given by the Hard Lefschetz Theorem is
stronger than the above mentioned obstruction in terms of Betti numbers.
Namely, in [6] we constructed examples of K-contact manifolds satisfying
these restrictions on the Betti numbers but for which the Hard Lefschetz
Theorem does not hold.

Several examples of K-contact manifolds with no Sasakian structure have
recently appeared in [4, 6, 12, 14, 15, 16]. Each of them uses some of the
known obstructions on Betti numbers, on Hard Lefschetz property or on
higher Massey products to prove that the given manifold does not admit
any Sasakian structure. Examples of non-formal Sasakian manifolds as well
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as examples of formal K-contact manifold with no Sasakian structure are
presented in [3].

The aim of the paper is to give the first example of a compact 5-dimensional
K-contact manifold which has all the above listed features of a compact
Sasakian manifold, even the same type of real homotopy model, and yet it
does not admit any Sasakian structure. More precisely, we present a family
of 5-dimensional compact completely solvable K-contact formal manifolds
of Tievsky type with no Sasakian structure. We give two descriptions of
our family of examples. Namely, in Section 2 for each real number p we
construct a 5-dimensional compact K-contact completely solvable manifold

Ĝ(p) starting from a nilpotent Lie group of dimension 3 and then we compute

its de Rham cohomology. In Section 3 we show that each Ĝ(p) can be also be
constructed from a completely solvable Lie group of dimension 3 and has the
structure of a principal S1-bundle over a symplectic compact solvmanifold of
dimension 4 which was considered in [8]. This second description allows us

to prove that the manifold Ĝ(p) possesses the claimed properties.

2. A first description of the compact solvmanifold

2.1. The completely solvable Lie group G(p). LetH(1, 1) be the Heisen-
berg group of dimension 3 which may be described as the group of real ma-
trices of the form 


1 x z
0 1 y
0 0 1


 .

The group H(1, 1) is a connected simply connected nilpotent Lie group. We
will denote by (x, y, z) the standard global coordinates on H(1, 1).

Then, our connected simply connected Lie group of dimension 5 is the
semi-direct product

G(p) = (H(1, 1) ⋊ψ R) ⋊φ R,

where ψ : R → Aut(H(1, 1)) and φ : R → Aut(H(1, 1) ⋊ψ Ru) are the
representations defined by

ψ(u)(x, y, z) = (epux, e−puy, z), φ(t)(x, y, z, u) = (x, y, z + tu, u). (2.1)

Here p ∈ R\{0} is a parameter and (x, y, z, u, t) are the standard coordinates
on G(p) = R5.
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The Lie group H(1, 1)⋊ψR was considered previously in [10] (see page 756
in [10]).

From (2.1) we deduce that the multiplication in G(p) is given by

(x, y, z, u, t)(x′, y′, z′, u′, t′) = (x+ epux′, y + e−puy′,
z + z′ + xe−puy′ + tu′, u+ u′, t+ t′).

(2.2)

The 1-forms

α = e−pudx, β = epudy, θ = du, γ = dt, η = dz − xdy − tdu (2.3)

give a basis of left-invariant 1-forms on G(p). Note that

dα = pα∧ θ, dβ = −pβ ∧ θ, dθ = 0, dγ = 0, dη = −α∧ β − γ ∧ θ. (2.4)

Next, we consider the dual basis {A,B, U,R, ξ} of left-invariant vector fields.
It follows that

A = epu
∂

∂x
, B = e−pu(

∂

∂y
+x

∂

∂z
), U =

∂

∂u
+t

∂

∂z
, R =

∂

∂t
, ξ =

∂

∂z
, (2.5)

and, therefore,

[A,B] = ξ, [A,U ] = −pA, [B,U ] = pB, [R,U ] = ξ, (2.6)

the rest of the basic Lie brackets being zero.
This implies that G(p) is a non-nilpotent, but completely solvable Lie

group.

2.2. A co-compact discrete subgroup of G(p). In this section, we will
describe a co-compact discrete subgroup of G(p).

In fact, we will prove the following result

Proposition 2.1. Let p be a real number, p 6= 0, and N a unimodular 2× 2
matrix with integer entries and eigenvalues ep and e−p. Suppose that (x0, x1)
(resp. (y0, y1)) is an eigenvector for the eigenvalue ep (resp. e−p). Then, one
may find a co-compact discrete subgroup Γ(p) of G(p) of the form

Γ(p) = (ΓN ⋊ψ Z) ⋊φ z2Z,

where z2 = x1y0 − x0y1 and ΓN is a co-compact discrete subgroup of H(1, 1)
which satisfies the following conditions:

(1) ΓN is invariant under the restriction to Z of the representation ψ and
(2) ΓS = ΓN ⋊ψ Z is a co-compact discrete subgroup of the Lie group

S = H(1, 1) ⋊ψ R which is invariant under the restriction to z2Z of
the representation φ.
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Proof : In order to obtain co-compact discrete subgroups of the Lie group S,
a general construction was developed in [10] (see pages 756 and 757 in [10]).

We will see that it is possible to choose a co-compact discrete subgroup
ΓS of S of the form ΓN ⋊ψ Z, with ΓN a co-compact discrete of H(1, 1) such
that ΓS is invariant under the restriction to z2Z of the representation φ. In
order to obtain ΓS, we will follow the construction in [10].

Suppose that

N =

(
n00 n01

n10 n11

)
∈ Sl(2,Z).

Then, we take the matrices in H(1, 1)

h0 =




1 x0 z0

0 1 y0

0 0 1


 , h1 =




1 x1 z1

0 1 y1

0 0 1


 (2.7)

with z0, z1 ∈ R which will be fixed later.
We have that

h2(h0h1) = h1h0,

with

h2 =




1 0 z2

0 1 0
0 0 1


 and z2 = x1y0 − x0y1 6= 0, (2.8)

(note that {(x0, y0), (x1, y1)} is a basis of R2).
Thus, we deduce that

h2h0 = h0h2, h1h2 = h2h1, hm1

1 hm0

0 = hm0m1

2 hm0

0 hm1

1 , for m0, m1 ∈ Z.
(2.9)

Denote by ΓN the subgroup of H(1, 1) which is generated by h0 and h1.
From (2.9), it follows that

ΓN = {hm0

0 hm1

1 hm2

2 / m0, m1, m2 ∈ Z} ⊆ H(1, 1). (2.10)

In fact, the map

Z3 → ΓN , (m0, m1, m2) → hm0

0 hm1

1 hm2

2

is a group isomorphism, where we consider the multiplication

(m0, m1, m2)(m
′
0, m

′
1, m

′
2) = (m0 +m′

0, m1 +m′
1, m2 +m′

2 +m1m
′
0)

on Z3.
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Next, we need to ensure that the subgroup ΓN is invariant under the re-
striction to Z of the representation ψ. This will produce some restrictions
on the real numbers z0 and z1.

In fact, using that the eigenvalues of N are different from 1, one may choose
z0, z1 ∈ R such that

ψ(1)(h0) = hn00

0 hn01

1 hr2, ψ(1)(h1) = hn10

0 hn11

1 hs2

with r, s ∈ Z.
This implies that ΓN is invariant under the restriction to Z of ψ. Thus, we

have that ΓS = ΓN ⋊ψ Z is a co-compact discrete subgroup of the Lie group
S = H(1, 1) ⋊ψ R.

On the other hand, from (2.1) we deduce that the multiplication in the Lie
group S is given by

(x, y, z, u)(x′, y′, z′, u′) = (x+epux′, y+e−puy′, z+z′+xe−puy′, u+u′). (2.11)

Therefore, using again (2.1), it follows that

φ(t)(x, y, z, u) = (x, y, z, u)(0, 0, tu, 0).

Consequently, if m ∈ Z and (x, y, z, u) ∈ ΓS then we deduce that

φ(z2m)(x, y, z, u) = (x, y, z, u)(hmu2 , 0) ∈ ΓS.

In other words, ΓS is invariant under the restriction to z2Z of the represen-
tation φ. This implies that

Γ(p) = ΓS ⋊φ z2Z = (ΓN ⋊ψ Z) ⋊φ z2Z (2.12)

is a co-compact discrete subgroup of G(p).

Remark 2.2. The Lie group S is completely solvable and the quotient man-
ifold S/ΓS is a compact solvmanifold. In fact, S/ΓS is diffeomorphic to an
Inoue surface of type S+ (see page 757 in [10]).

2.3. De Rham cohomology of the compact solvmanifold Ĝ(p) =
G(p)/Γ(p). The Lie group G(p) is completely solvable. So, in order to com-

pute the de Rham cohomology of Ĝ(p), we may use Hattori’s theorem [11]
and we have that

H∗(Ĝ(p)) ≃ H∗(g∗),

where g is the Lie algebra of G(p).
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Thus, if we denote by α̂, β̂, θ̂, γ̂ and η̂ the 1-forms on Ĝ(p) which are induced
by the left-invariant 1-forms α, β, θ, γ and η, respectively, we deduce the
following result.

Corollary 2.3. The de Rham cohomology groups of Ĝ(p) are the vector
spaces

H0(Ĝ(p)) = 〈1〉,

H1(Ĝ(p)) = 〈[θ̂], [γ̂]〉,

H2(Ĝ(p)) = 〈[θ̂ ∧ γ̂]〉 = 〈[θ̂ ∧ γ̂ − α̂ ∧ β̂]〉,

H3(Ĝ(p)) = 〈[η̂ ∧ (θ̂ ∧ γ̂ − α̂ ∧ β̂)]〉,

H4(Ĝ(p)) = 〈[η̂ ∧ γ̂ ∧ α̂ ∧ β̂], [α̂ ∧ β̂ ∧ θ̂ ∧ η̂]〉,

H5(Ĝ(p)) = 〈[α̂ ∧ β̂ ∧ θ̂ ∧ γ̂ ∧ η̂]〉.

(2.13)

3. A second description of the contact compact solvman-

ifold Ĝ(p)
In this section, we will present a different description of the compact solv-

manifold Ĝ(p) as a principal S1-bundle over a symplectic compact solvmani-
fold (K/ΓK)×S1 of dimension 4. In fact, from (2.4), we deduce that η̂ defines

a contact structure on Ĝ(p) and, in addition, we will see that (K/ΓK) × S1

is just the space of orbits of the Reeb vector field associated with η̂ and
the symplectic structure on this space is induced by the contact structure of

Ĝ(p).
Define K to be the connected simply connected Lie group of dimension 3

given by
K = R2 ⋊ζ R

where ζ : R → Aut(R2) is the representation given by

ζ(u)(x, y) = (epux, e−puy),

for u ∈ R and (x, y) ∈ R2 (see [1]).
Thus, if we consider the standard coordinates (u, x, y) on K then the mul-

tiplication is given by

(x, y, u)(x′, y′, u′) = (x+ epux′, y + e−puy′, u+ u′). (3.1)

We have that a basis of left-invariant 1-forms is {αK , βK, θK}, with

αK = e−pudx, βK = epudy, θK = du. (3.2)
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Note that

dαK = pαK ∧ θK, dβK = −pβK ∧ θK, dθK = 0. (3.3)

Now, we consider the dual basis {AK, BK, UK} of left-invariant vector fields
on K. It follows that

AK = epu
∂

∂x
, BK = e−pu

∂

∂y
, UK =

∂

∂u

and, thus,

[AK, UK] = −pAK, [BK, UK] = pBK ,

the rest of the basic Lie brackets being zero.
Therefore, K is a non-nilpotent completely solvable Lie group.
The group K admits co-compact discrete subgroups (see [2]). In fact,

suppose that N ∈ Sl(2,Z), with eigenvalues ep and e−p, and that (x0, x1),
(y0, y1) are eigenvectors of N as in Section 2.2. Then, we have that the
integer lattice ΓR2 on R2, which is generated by the basis {(x0, y0), (x1, y1)},
is invariant under the restriction to Z of ζ and

ΓK = ΓR2 ⋊ζ Z (3.4)

is a co-compact discrete subgroup of K (see [2]).

This implies that K̂ = K/ΓK is a compact solvmanifold.
Next, we consider the completely solvable Lie group K×R and the discrete

co-compact subgroup

ΓK×R = ΓK × z2Z, (3.5)

with z2 = x1y0 − x0y1 ∈ R. The corresponding compact solvmanifold is

K × R

ΓK×R

= K̂ × (R/z2Z) ≃ K̂ × S1. (3.6)

On the other hand, using (3.3), we have that

Ω = −(αK ∧ βK + dt ∧ θK) (3.7)

is a left-invariant symplectic 2-form on K×R. Thus, Ω induces a symplectic

form Ω̂ on K̂×S1. In fact, if ω̂ is the length element of S1 and {α̂K , β̂K, θ̂K}

is the global basis of 1-forms on K̂ induced by the left-invariant 1-forms αK ,
βK and θK, respectively, then

Ω̂ = −(α̂K ∧ β̂K + ω̂ ∧ θ̂K). (3.8)

Moreover, we may prove the following result
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Theorem 3.1. The contact compact solvmanifold (Ĝ(p), η̂) is regular, the

orbit space of the Reeb vector field ξ̂ is the compact solvmanifold K̂ ×S1 and
the symplectic structure on K̂ × S1 is just the 2-form Ω̂ given by (3.8).

Proof : Using (2.2) and (3.1), we deduce that the canonical projection

π : G(p) → K × R, (x, y, z, u, t) → (x, y, u, t) (3.9)

is a Lie group epimorphism. In fact, from (2.5), it follows that K ×R is just
the space of orbits of the left-invariant vector field ξ on G(p).

In addition, if Γ(p) is the discrete co-compact subgroup of G(p) given by
(2.12) then, using (2.7), (2.8), (2.10) and (2.12), we obtain that

π(Γ(p)) = (ΓR2 ⋊ζ Z) × z2Z. (3.10)

Thus, from (3.4), (3.5), (3.6) and (3.10), we have that the Lie group epimor-
phism π : G(p) → K × R induces a principal S1-bundle

π̂ : Ĝ(p) → K̂ × S1

where the action of S1 on Ĝ(p) is just the flow of the Reeb vector field ξ̂ and,

therefore, the base space is just the orbit space of ξ̂.
On the other hand, using (2.3), (2.4), (3.2), (3.7) and (3.9), it follows that

π∗(Ω) = dη and, consequently,

π̂∗(Ω̂) = dη̂.

This implies that our contact structure η̂ on Ĝ(p) is regular.

Remark 3.2. The left-invariant 2-form Ω onK×R was used, in [8], in order to
obtain examples of Lefschetz symplectic structures on compact solvmanifolds
of the form (K×R)/D, with D a co-compact discrete subgroup. We remark
that these manifolds are formal (see [8] for more details).

4. The K-contact structure on Ĝ(p) and its properties

In this section, we will introduce a K-contact structure on Ĝ(p) and we
will discuss its properties.

Denote by Â, B̂, Û , R̂ and ξ̂ the vector fields on Ĝ(p) which are induced
by the left-invariant vector fields A, B, U , R and ξ, respectively. Then, it is

clear that {Â, B̂, Û , R̂, ξ̂} is a global basis of vector fields on Ĝ(p). Moreover,

the dual basis of 1-forms is just {α̂, β̂, θ̂, γ̂, η̂}.
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In the following theorem we will use the following notions. Given a com-
mutative differential graded algebra (CDGA) (A, d) we define an elementary
extension of (A, d) with respect to the closed element b ∈ A2, to be A⊗Λ 〈y〉,
with deg(y) = 1 and dy = b. We will say that a contact manifold (M, η) is of
Tievsky type, if the de Rham cohomology algebra Ω∗(M) is quasi-isomorphic
(as CDGA) to the elementary extension of HB(M) with respect to [dη]B.
Note, that according to [18], every Sasakian manifold is of Tievsky type.

Theorem 4.1. Let φ̂ be the (1, 1)-tensor field on Ĝ(p) which is characterized
by the following conditions:

φ̂(Â) = −B̂, φ̂(B̂) = Â, φ̂(Û) = R̂, φ̂(R̂) = −Û , φ̂(ξ̂) = 0, (4.1)

and ĝ the Riemannian metric on Ĝ(p) whose matrix associated with respect

to the basis {Â, B̂, Û , R̂, ξ̂} is the identity, that is, the basis {Â, B̂, Û , R̂, ξ̂}
is orthonormal. Then:

(1) The almost contact metric structure (φ̂, ξ̂, η̂, ĝ) on Ĝ(p) is K-contact.

(2) The contact structure η̂ on Ĝ(p) has the Hard Lefschetz property.

(3) The minimal model (over R) of Ĝ(p) is isomorphic to the exterior algebra
Λ〈a1, a2, b〉 with zero differential, where the grading is determined by the
requirement that a1, a2 have degree 1, and b has degree 3. In particular,

Ĝ(p) is formal.

(4) The contact manifold (Ĝ(p), η) is of Tievsky type.

(5) The manifold Ĝ(p) does not admit Sasakian structures.

Proof : (1) From (2.4) and(4.1), we deduce that (φ̂, ξ̂, η̂, ĝ) is a contact metric

structure on Ĝ(p). In addition, using (2.6), we have that the element in g,
which induces the left-invariant vector field ξ on G(p), belongs to the center

of g. So, the Reeb vector field ξ̂ is Killing with respect to the Riemannian
metric ĝ.

(2) A direct computation, using (2.13) and the fact that dη̂ = −α̂∧β̂−γ̂∧θ̂,
proves that the Lefschetz relation in degree 1 (resp. degree 2) for the compact

contact manifold (Ĝ(p), η̂) is the graph of an isomorphism between H1(Ĝ(p))

and H4(Ĝ(p)) (resp. H2(Ĝ(p)) and H3(Ĝ(p))). This proves (2).
(3) Define the map τ : Λ〈a1, a2, b〉 → Ω∗(M) by

τ(a1) = γ̂, τ(a2) = θ̂, τ(b) = η̂ ∧ (θ̂ ∧ γ̂ − α̂ ∧ β̂),
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where the 1-forms α̂, β̂, γ̂, θ̂ are defined in Subsection 2.3. Since, the forms γ̂,
θ̂, and η̂∧(θ̂∧γ̂−α̂∧β̂) are closed, the map τ is a well-defined homomorphism
of CDGAs. It follows from Corollary 2.3 that τ is a quasi-isomorphism. Since
Λ 〈a1, a2, b〉 is a free CDGA with zero differential, it is a minimal Sullivan
algebra. Moreover, it is quasi-isomorphic to its cohomology, and thus is
formal.

(4) We will show that there is a quasi-isomorphism from Λ 〈a1, a2, b〉 into

HB(M) ⊗ Λ 〈y〉 with dy := [dη]B. Since ξ is regular, we get that HB(Ĝ(p))
is isomorphic as graded algebra to H((K/ΓK) × S1). The cohomology ring
of H((K/ΓK) × S1) was computed in [8] and it is isomorphic to

Λ 〈u, v〉 ⊗ R[w]/(w2)

with elements u, v of degree 1 and w of degree 2. The element [dη]B = [Ω̂] =
−uv − w in this description. We define the map ρ from Λ 〈a1, a2, b〉 to

A := H((K/ΓK) × S1) ⊗ Λ 〈y〉 (with dy = −uv − w),

by
ρ(a1) = u, ρ(a2) = v, ρ(b) = (uv − w)y.

The elements u and v are closed in A. Moreover,

d((uv − w)y) = −(uv − w)(uv + w) = −uvw + wuv = 0.

Thus the map ρ is well-defined. It is easy to check that ρ induces an iso-
morphism in the cohomology. Thus A is quasi-isomorphic to the de Rham

algebra Ω∗(Ĝ(p)), which shows that Ĝ(p) is a manifold of Tievsky type.
(5) The completely solvable Lie algebra g is not the Heisenberg Lie algebra

of dimension 5. Therefore, the result follows using Corollary 1.5 in [13].
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