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Abstract: Generalizing the obvious representation of a subspace Y ⊆ X as a
sublocale in Ω(X) by the congruence {(U, V ) | U ∩ Y = V ∩ Y } one obtains the
congruence {(a, b) | o(a)∩S = o(b)∩S}, first with sublocales S of a frame L, which
(as it is well known) produces back the sublocale S itself, and then with general
subsets S ⊆ L. The relation of such S with the sublocale produced is studied (the
result is not always the sublocale generated by S). Further, one discusses in general
the associated adjunctions, in particular that of relations on L and subsets of L and
views the aforementioned phenomena in this perspective.
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Introduction

Consider a subset (subspace) Y of a topological space X. The sublocale
(generalized subspace) corresponding to Y in the frame of open sets Ω(X) is
associated with the congruence

{(U, V ) | U ∩ Y = V ∩ Y, U, V ∈ Ω(X)}

(which, of course, comes from the quotient map Ω(j) : Ω(X) → Ω(Y ) where
j : Y → X is the embedding: Ω(j)(U) = j−1[U ] = U ∩ Y ). More generally,
any sublocale S of a frame L is obtained as the quotient L/RS where

RS = {(a, b) | o(a) ∩ S = o(b) ∩ S}

(o(x) are the open sublocales associated with x ∈ L).
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Now take an arbitrary subset A ⊆ L. Unlike a general subset of a topolog-
ical space, which always carries a subspace, such an A does not, in general,
make immediate (point-free) topological sense. But the congruence

RA = {(a, b) | o(a) ∩ A = o(b) ∩ A}

produces a sublocale L/RA — we call it sat(A) — even if A is not one. One
naturally asks what is its relation to the set A (for instance whether it is the
sublocale generated by A). The study of this relationship is one of the main
motivations of this article.
We start with a much more transparent situation of sup-lattices (generaliz-

ing frames) from [8] and their meet-subsets (generalizing sublocales). There,
the situation is simple, and we show, in Section 2, that the procedure creates
for any subset the smallest meet-set containing it. In connection with that
we encounter an adjunction between relations on L and subsets of L; this is
described in Section 3.
Turning to frames one soon learns that sat(A) is not always the smallest

sublocale containing A, as one might at the first sight assume. In fact it does
not have to contain A at all. This is analyzed in Sections 4 and 5. Among
other we show that A ⊆ sat(A) if and only if the meet-subset generated by A
is already a sublocale, and on the other hand we present an example of the
set of cozero elements with this inclusion that does not satisfy a condition
that otherwise naturally relates meet-subsets and sublocales.
In Section 6 we discuss the adjunction of relations vs. subobjects in this

special setting and show how the mentioned phenomena appear in its per-
spective, and in Section 7 we finish the article presenting a localic version of
the frame quotient theorem.

1. Preliminaries

1.1. Recall from [8] the category SupLat of sup-lattices, with complete
lattices for objects and

∨
-homomorphisms (mappings preserving arbitrary

suprema) for morphisms. The right Galois adjoint of a
∨
-homomorphism

f : K → L will be denoted by f∗ : L → K. The correspondence f 7→ f∗ gives
rise to a natural duality

SupLat ∼= SupLatop.
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1.2. For a relation R ⊆ L × L on a sup-lattice L call an s ∈ L weakly

saturated (more precisely, weakly R-saturated) if

aRb ⇒ (a ≤ s iff b ≤ s).

Obviously

• a meet of weakly saturated elements is weakly saturated

and hence we have the least weakly saturated upper bound

κ(x) = κR(x) =
∧
{s | x ≤ s, s weakly saturated}

of x giving rise to a monotone mapping κ : L → L such that

x ≤ κ(x) and κκ(x) = κ(x).

If we set
L/wR = κ[L] = {x | x = κ(x)}

we obtain a sup-lattice (with, in general, the suprema differing from those in
L) and a

∨
-homomorphism

κ′ = (x 7→ κ(x)) : L → L/wR.

It is a standard fact that

• xRy ⇒ κ′(x) = κ′(y), and
• if for a

∨
-homomorphism h : L → K one has xRy ⇒ h(x) = h(y)

then there is precisely one
∨
-homomorphism h : L/wR → K such

that h · κ′ = h; moreover, for x ∈ L/wR, h(x) = h(x).

1.3. A frame L is a complete lattice satisfying

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (1.3.1)

for all A ⊆ L and b ∈ L. A frame homomorphism h : L → K is a
∨
-

homomorphism that preserves, moreover, all finite meets. Thus, the resulting
category of frames Frm is a subcategory of SupLat, not a full one.
A typical frame is the lattice Ω(X) of open sets of a topological space

X, and a typical frame homomorphism is Ω(f) = (U 7→ f−1[U ]) where
f : X → Y is a continuous map. Thus we have a contravariant functor
Ω: Top → Frm. Frames can be viewed as generalized spaces (for sober
spaces, Ω is a full embedding); hence it is of advantage to modify Ω to a
covariant functor Top → Frmop. The category Frmop is called the category
of locales and denoted by Loc (see, e.g., [6]). It is expedient to represent
the morphisms of Loc as the right adjoints h∗ of frame homomorphisms. We
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then speak of such maps as of localic maps and think of them as of generalized
continuous maps between generalized spaces.
The distributivity law (1.3.1) states that the maps (x 7→ x ∧ b) : L → L

preserve all suprema. Consequently, they have right adjoints (y 7→ (b →
y)) : L → L which results in a Heyting operation→ satisfying

a ∧ b ≤ c iff a ≤ b→c.

A frame homomorphism does not necessarily preserve the Heyting opera-
tion. Nevertheless, the operation→plays an important role.
For more about frames see e.g. [7, 9, 10, 11].

1.4. Analogously as in 1.2 we have quotients constructed as follows. We call
an s ∈ L saturated (more precisely, R-saturated) if

aRb ⇒ ∀c, a ∧ c ≤ s iff b ∧ c ≤ s

(in other words,

aRb ⇒ a → s = b → s).

Again, a meet of saturated elements is saturated, we have a monotone map-
ping κ = (x 7→ κ(x)) =

∧
{s | x ≤ s, s saturated} satisfying

x ≤ κ(x), κκ(x) = κ(x) and, moreover, κ(x ∧ y) = κ(x) ∧ κ(y)

(the nucleus of R), and if we set

L/R = {x | x = κ(x)}

we obtain a frame homomorphism κ′ = (x 7→ κ(x)) : L → L/R such that

• xRy ⇒ κ′(x) = κ′(y), and
• if for a frame homomorphism h : L → K one has xRy ⇒ h(x) = h(y)
then there is precisely one frame homomorphism h : L/R → K such
that h · κ′ = h; moreover, for x ∈ L/R, h(x) = h(x)

(see, e.g. [10]).

1.5. Onto frame homomorphisms h are precisely the extremal monomor-
phisms in Frm; consequently, the associated one-to-one localic morphisms
f = h∗ (the extremal epimorphisms in Loc) naturally model embeddings
of subspaces. This leads to the concept of a sublocale S ⊆ L as a subset
satisfying

(S1) A ⊆ S ⇒
∧
A ∈ S, and

(S2) if x ∈ L and s ∈ S then x → s ∈ S.
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Sublocales are precisely the images j[K] of one-to-one localic maps j, which
is the same as the L/R obtained from arbitrary relations R ⊆ L × L (see,
e.g. [10]).
In the context of sup-lattices we will consider the meet-sets M ⊆ L satis-

fying

(M) A ⊆ M ⇒
∧

A ∈ M .

1.5.1. The set of all sublocales of a frame L will be denoted by S(L). Ordered
by inclusion it is a complete lattice. The meets in S(L) coincide with the
intersections, and the joins are defined by

∨
Si = {

∧
A | A ⊆

⋃
Si}. (∗)

S(L) is a co-frame, that is, the opposite S(L)op is a frame.
Similarly we have, for any sup-lattice L the complete lattice M (L) of all

the meet-sets. Again, the meets coincide with the intersections and the joins
are given by the formula (∗). Thus, if L is a frame then S(L) is a complete
sublattice of M (L).
The intersection of any system of sublocales of a frame (resp. meet-subsets

of a sup-lattice) is a sublocale (resp. meet-set). Thus, for any subset A of
a frame (resp. sup-lattice) we have the smallest sublocale sl(A) containing
A resp. the smallest meet-set m(A) containing A. Thus we have monotone
maps

sl : P(L) → S(L) resp. m : P(L) → M (L)

(P(L) is the power-set of L), obviously right adjoints to the inclusion maps
j : S(L) ⊆ P(L) resp. j : M (L) ⊆ P(L). By abuse of notation, we will
also use the symbol sl for the restriction of sl to M (L) → S(L). Note that,
trivially,

m(A) = {
∧
B | B ⊆ A}.

1.6. In analogy with closed (open) subspaces of spaces we have closed sublo-
cales

c(a) = ↑a = {x | x ≥ a}

and open sublocales

o(a) = {x | a→x = x} = {a→x | x ∈ L}.

c(a) and o(a) are complements of each other and we have o(a∧b) = o(a)∩o(b),
o(
∨
ai) =

∨
o(ai), c(a ∧ b) = c(a) ∨ c(b) and c(

∨
ai) =

⋂
c(ai).



6 M. A. MOSHIER, J. PICADO AND A. PULTR

2. The relation associated with subspaces and sublocales

2.1. Let X be a topological space and let A ⊆ X be a subset. The resulting
subspace can be represented as the sublocale

Ω(X)/ρ(A)

where

ρ(A) = {(U, V ) | U ∩ A = V ∩ A}.

2.2. In the point-free context we have a more general theorem about sublo-
cales (see [10, VI.1.4.1]).

Proposition. Let S be a sublocale of a frame L. Set

ρ(S) = {(a, b) ∈ L× L | o(a) ∩ S = o(b) ∩ S}.

Then

S = L/ρ(S).

2.3. Obviously, ρ(S) can be equivalently defined as

ρ(S) = {(a, b) ∈ L× L | c(a) ∩ S = c(b) ∩ S} = {(a, b) | ↑a ∩ S = ↑b ∩ S}.

2.3.1. The last formula can be adopted for sup-lattices. In analogy with 2.2
we have

Proposition. If M ⊆ L is a meet-set and ρ(M) = {(a, b) | ↑a∩M = ↑b∩M}
then L/w ρ(M) = M .

Proof : Indeed, set x =
∧
{m ∈ M | x ≤ m}. Since M is a meet-set, x ∈ M .

Obviously, x ≤ y ⇒ x ≤ y, x = x, and (a, b) ∈ ρ(M) iff a = b. If m ∈ M ,
(a, b) ∈ ρ(M), and a ≤ m then b ≤ b = a ≤ m = m, and we see m is weakly
saturated. If m is weakly saturated then, as m = m, we have (m,m) ∈ ρ(M)
and hence m ≤ m and m = m ∈ M .
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3. The contravariant adjunction ρ vs. ε

3.1. The formula from 2.3.1 defines a

ρ : P(L) → Rel(L) = P(L× L).

On the other hand, for a relation R ⊆ L× L consider the set

ε(R) = L/wR.

This set can be expediently described as follows. For (a, b) ∈ L× L set

Q(a, b) = {x | a ≤ x iff b ≤ x}.

Then obviously

ε(R) =
⋂

{Q(a, b) | (a, b) ∈ R}. (3.1.1)

3.2. Proposition. ε is an antitone map Rel(L) → P(L), and ε and ρ are

contravariantly adjoint on the right, that is,

R ⊆ ρ(A) iff A ⊆ ε(R).

Proof : Let R ⊆ ρ(A) and let x ∈ A. If (a, b) ∈ R then (a, b) ∈ ρ(A) and
hence x ∈ Q(a, b). Since this holds for all (a, b) ∈ R, x ∈

⋂
{Q(a, b) | (a, b) ∈

R} = ε(R).
On the other hand, let A ⊆ ε(R) and let (a, b) ∈ R. Then in particular

A ⊆ Q(a, b) and for all x ∈ A, x ≥ a iff x ≥ b. Thus, ↑a ∩ A = ↑b ∩ A, and
(a, b) ∈ ρ(A).

3.3. Observation. For every relation R ⊆ L × L, ε(R) is a meet-set, and

for every A ⊆ L, ρ(A) is a
∨
-congruence.

(The first statement follows from the definition; further, if ↑ai∩A = ↑bi∩A
for all i and if

∨
ai ≤ x ∈ A then ai ≤ x for all i, hence bi ≤ x for all i, and∨

bi ≤ x.)

3.4. Proposition. ερ(A) = L/wρ(A) = m(A), the smallest meet-set con-

taining A.

Proof : By 3.2 A ⊆ ε(ρ(A)) and ε(ρ(A)) is a meet-set. Now let M be a meet-
set and let A ⊆ M . Then ερ(A) ⊆ ερ(M) = L/wρ(M) = M by 2.3.1.
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3.5. Comparing Propositions 2.3.1 and 3.4 with 2.2 one may conjecture that
in the frame context we should have L/ρ(A) = sl(A), the sublocale generated
by A ⊆ L. But this is not generally true: in fact, A is not necessarily a subset
of L/ρ(A). We will discuss the relation of A ⊆ L and sl(A) in the next section.

4. Saturation and generating sublocales

4.1. If A is a subset of a frame L we will say that an s ∈ L is A-saturated if
it is ρ(A)-saturated (recall 1.4), that is, if

↑a ∩ A = ↑b ∩ A ⇒ a → s = b → s. (4.1.1)

Obviously this condition is equivalent to

↑a ∩ A ⊆ ↑b ⇒ a → s ≤ b → s. (4.1.2)

The set of all A-saturated elements, that is, the sublocale L/ρ(A) will be
denoted by

sat(A).

4.2. Lemma. sat(A) ⊆ m(A).

Proof : Let s ∈ sat(A) and let x be a lower bound of A∪↑s. Then A∪↑s ⊆ ↑x
and hence 1 = s→ s ≤ x→ s, hence x ≤ s, and we see that s =

∧
(A ∩ ↑s),

and A ∩ ↑s ⊆ A.

4.3. Proposition. The following statements on a subset A in a frame are

equivalent.

(1) sl(A) = sat(A) = m(A).
(2) sl(A) = sat(A).
(3) A ⊆ sat(A).

Proof : Trivially (1)⇒(2) and (2)⇒(3).
(3)⇒(1): Let A ⊆ sat(A) Then by 2.2, sl(A) ⊆ sat(A) and by 4.2, sl(A) ⊆
sat(A) ⊆ m(A) ⊆ sl(A).

4.4. Here is a simple criterion for A ⊆ sat(A) (and hence sat(A) = L/ρ(A) =
sl(A)).

Proposition. Let A be such that

∀a ∈ A, ∀x ∈ L, x→a ∈ A. (H)
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Then A ⊆ sat(A).

Proof : Let A ∩ ↑u ⊆ ↑v. Let a ∈ A and set x = u→a. Then u ≤ x→a ∈ A
and hence v ≤ x→a and finally u→a = x ≤ v→a.

4.5. We will see that the property (H) is a precise counterpart of the meet-
structure extending a sup-lattice to a frame, and hence the fact comes as
no surprise (see 5.4 below). Rather, it may be a slight surprise that the
condition is not necessary, and that there is an important case of an A with
A ⊆ sat(A) which does not satisfy (H).
Recall the relation≺ (a ≺ b iff a∗∨b = 1 where a∗ is the pseudocomplement

– see the standard literature on frames, also for regularity, the relation ≺≺
and complete regularity we will speak of below). A relation � ⊆ L × L is
said to be a ∗-inclusion if

(∗1) a� b ⇒ a ≺ b (i.e. a∗ ∨ b = 1),
(∗2) a� b ⇒ b∗ � a∗, and
(∗3) ∀a ∈ L, a =

∨
{x | x� a}.

Thus for instance the strong inclusions from Banaschewski [1] are ∗-inclu-
sions. But also the relation ≺ itself is one in a regular L.

A subset A ⊆ L is �-dense if for each x � y there is an a ∈ A such that
x ≤ a� y.

4.6. Proposition. Let � be a ∗-inclusion in a regular L and let A be a

�-dense subset closed under finite joins. Then A ⊆ sat(A).

Proof : Let A∩↑u ⊆ ↑v and let a ∈ A. We need to show that u → a ≤ v → a.
Let x, y ∈ L be such that x� y � u→a. Then y∗ � x∗ and because of the

�-density we can find a c ∈ A such that y∗ ≤ c� x∗. Then

x ∧ c = 0 and c ∨ (u→a) ≥ y∗ ∨ (u→a) = 1

so that

u = u ∧ (c ∨ (u→a)) = (u ∧ c) ∨ (u ∧ (u→a)) ≤ c ∨ a ∈ A ∩ ↑u

and v ≤ c ∨ a. Now (as x ∧ c = 0)

x ∧ v ≤ x ∧ (c ∨ a) = x ∧ a ≤ a and hence x ≤ v→a.

Recalling the choice of x and y, using (∗3) twice, we conclude that u→a ≤
v→a.
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4.7. Recall that in classical topology, a cozero set in a space X is a preimage
f−1[Rr {0}] where f : X → R is a continuous map. Cozero sets, hence, are
special open sets. The system of cozero sets is closed under countable unions
and finite intersections.
All that can be precisely translated in the point-free setting, but it is much

easier to work with the following equivalent definition. An element a of a
frame L is cozero if

a =
∨
{an | an≺≺a, n = 1, 2, . . .} (4.7.1)

The set of all cozero elements will be denoted by CozL. It is obviously a
σ-frame (that is, a lattice with countable joins and with the distributivity
(1.3.1) assumed for such joins) and a sub-σ-frame of L (see e.g. [3, 5]).
In a completely regular L the formula (4.7.1) can be replaced by

a =
∨

an, a1≺≺a2≺≺ · · ·≺≺an≺≺ · · · (4.7.2)

from which we easily infer that in a completely regular frame,

1. if a≺≺b then there is a c ∈ CozL such that a≺≺c≺≺b (hence, it is ≺≺-dense
even in a stronger sense than required in 4.5), and

2. each a ∈ L is a join of cozero elements.

Thus, the very important subset A = CozL ⊆ L satisfies the conditions of
4.6 and hence A ⊆ sat(A). However, there are completely regular frames L
such that CozL does not satisfy (H) (see e.g. [4, 2]).

4.8. The mapping sl : M (L) → S(L) (1.5.1) is a right adjoint of the inclusion
j : S(L) → M (L). But j has also a left adjoint ls : M (L) → S(L) where ls(A)
is the largest sublocale contained in A. This construction plays a role e.g.
in the image-preimage adjunction for a localic map (see [10]). Note that
A ∈ M (L) is essential; ls does not work for the embedding S(L) ⊆ P(L).
Here it will help us to understand better the general relationship between A
and sat(A).

4.8.1. Lemma. sat(A) = sat(m(A)).

Proof : If M ⊆ A then
∧

M ≥ u iff a ≥ u for each a ∈ M . Consequently,
m(A) ∩ ↑u ⊆ ↑v iff A ∩ ↑u ⊆ v.

4.8.2. Proposition. We have

sat(A) = ls(m(A)).
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Proof : By 4.2, sat(A) ⊆ m(A) and by 4.1 it is a sublocale; hence sat(A) ⊆
ls(m(A)). The operation sat is obviously monotone, and by propositions
4.4 and 4.3, if S is a sublocale then sat(S) = S. Thus, if S is a sublocale
and S ⊆ m(A) then S = sat(S) ⊆ sat(m(A)) and hence, by the lemma,
S ⊆ sat(A) so that sat(A) is the largest sublocale contained in m(A).

5.More about the inclusion A ⊆ sat(A)

5.1. Consider an element b ∈ L and the closed sublocale c(b) = ↑b. In c(b),
the element b is the zero, and we have the pseudocomplement

x∗b = x→b

and the relative rather below relation

x ≺b y iff x∗b ∨ y = 1.

Now if L is regular, c(b) is regular, as every sublocale of L, and we have for
x ≥ b, x =

∨
{y | y ≺b x}.

In the sequel, b, x∗b and ≺b will be always used in the sense just indicated.

5.2. Theorem. Let A be a subset of a regular L. Set b =
∧

A and consider

the following statements.

(1) A is ≺b-dense in c(b) and closed under finite joins.

(2) A ⊆ sat(A).
(3) m(A) is ≺b-dense in c(b).

Then (1) ⇒ (2) ⇒ (3).

Proof : (The proof of the first implication is in fact a repetition of the proof
of 4.6 but we do it in detail, because the circumstances are changed.)

(1)⇒(2): Let A be ≺b-dense in c(b) and let A∩ ↑u ⊆ ↑v. Pick an a ∈ A and
x, y with x ≺b y ≺b u→a. Then

y∗b ≺b x
∗b and y∗b ∨ (u→a) = 1.

Using the ≺b-density choose a c ∈ A with y∗b ≤ c ≺b x
∗b. Then

x ∧ c = b and c ∨ (u→a) ≥ y∗b ∨ (u→a) = 1

and hence (use the closedness of A under ∨)

u = u ∧ (c ∨ (u→a)) = (u ∧ c) ∨ (u ∧ (u→a)) ≤ c ∨ a ∈ A ∩ ↑u.
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Thus, v ≤ c ∨ a and since a ∈ A and hence a ≥ b,

x ∧ v ≤ x ∧ (c ∨ a) = (x ∧ c) ∨ (x ∧ a) = b ∨ (x ∧ a) ≤ a

and we conclude that x ≤ v→ a, and since x ≺b y ≺b u→ a were otherwise
arbitrary, finally u→a ≤ v→a.

(2)⇒(3): By 4.3, m(A) is a sublocale, and since b ∈ m(A) we have x∗b = x→
b ∈ m(A) for every x. In particular, x∗b∗b ∈ m(A) and hence, if x ≺b y we
can insert x ≤ x∗b∗b ≺b y.

5.2.1. Note. The previous statement is, of course, still far from a necessary
and sufficient condition (in particular, the requirement of the finite joins in
(1) is very strong: for instance, (2) is trivial for A a sublocale, and a sublocale
typically is not closed under joins). On the other hand, in view of the fact
that A ⊆ sat(A) iff m(A) = sat(A) = sat(m(A)), the discrepancy in the
density condition in (1) and (2) does not seem to be quite so bad.

5.3. From 4.4 we immediately obtain

Fact. For every up-set A, that is, every A = ↑A = {x | ∃a ∈ A, x ≥ a}, we
have A ⊆ sat(A).

(This is also obvious from the following observation: if A = ↑A then A =⋃
a∈A ↑a =

⋃
a∈A c(a) and hence m(A) =

∨
a∈A c(a) in the coframe of sublo-

cales.)

5.4. On the other hand, for down-sets, that is, the A = ↓A = {x | ∃a ∈
A, x ≤ a}, the inclusion A ⊆ sat(A) is rare. We will analyze the case of the
A = ↓u generated by a single element u.
Obviously

m(↓u) = ↓u ∪ {1}.

5.4.1. Lemma. ↓u ⊆ sat(↓u) iff

∀a ≤ u, x ∧ y ≤ a ⇒ (x ≤ a or y ≤ u). (∗)

Notes. 1. The implication (∗) is to be taken literally, that is, with the order
of x, y as indicated: if x � a then y has to be ≤ u even if x ≤ u.
2. Note that (∗) is a stronger form of primeness; in particular, applying

the implication for a = u we see that u has to be prime.
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Proof : By 4.3, ↓u ⊆ sat(↓u) iff m(↓u) = ↓u ∪ {1} is a sublocale.
Let m(↓u) be a sublocale, let a ≤ u and let x ∧ y ≤ a, that is, y ≤ x→a.

We have x→a ∈ m(↓u) and hence if x � a, that is, x→a 6= 1, y ≤ x→a ≤ u.
On the other hand, let (∗) hold and let a ∈ m(↓u). If a = 1, x→a = 1 ∈

m(↓u) trivially. Else, a ≤ u and since x ∧ (x→a) ≤ a we have either x ≤ a
and x→a = 1 or x→a ≤ u.

5.4.2. Proposition. We have ↓u ⊆ sat(↓u) in a frame L if and only if u is

a prime and L = ↓u ∪ ↑u.

Proof : Let (∗) hold and let x � u. Suppose that also x � u so that a =
u∧x 6= x, u. As u � a we have to have x ≤ u, a contradiction. The primeness
follows applying (∗) for a = u.
On the other hand, let L = ↓u ∪ ↑u and let u be prime. Then (∗) holds

for a = u. Thus, let a < u and x ∧ y ≤ a, that is, y ≤ x→ a. If y � u
then u ≤ y ≤ x→ a and u ∧ x ≤ a. Assuming u ≤ x leads to the excluded
u = u ∧ x ≤ a so that x ≤ u and x = u ∧ x ≤ a.

6. The ρ-ε adjunction for frames

6.1. An H-subset of a frame is an A ⊆ L satisfying the property (H) from
4.4. Obviously an intersection of H-sets is an H-set and hence we have the
smallest H-set h(M) containing an arbitrary subset M ⊆ L, resulting in a
map

h : P(L) → H (L)

left adjoint to the embedding j : H (L) → P(L).

6.1.1. Note. Hence, H (L) is a complete lattice with meets coinciding with
the intersections. Note that the joins are easily seen to be again the

∨
Hi = {

∧
M | M ⊆

⋃
Hi}

(since x →
∧
M =

∧
{x → m | m ∈ M}). Hence S(L) is a complete

sublattice of H (L).

6.2. Since every sublocale is an H-set we have that h(A) ⊆ sl(A). Obviously
sl(A) = sl(h(A)), and by 4.4. h(A) ⊆ sat(h(A)). Hence, by 4.3

sl(A) = sl(h(A)) = sat(h(A)) = m(h(A))

resulting in the commutative triangle
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P(L)

h

��

sl

##G

G

G

G

G

G

G

G

G

G

G

G

G

G

H (L)
m

// S(L)

Thus, recalling the facts from 4.3 we can describe the situation in the
following tangle of Galois adjunctions

P(L)

sat

��

h ⊣

��

sl
D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

⊣

""D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

m

⊣ // M (L)
j

oo

ls

��

slM ⊣

��

H (L)

j

OO

mH

⊣ // S(L)
j

oo

jD
D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

bbD
D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

j ⊣

OO

Note that the only arrow in this diagram which is not adjoint to anything
is sat.

6.3. A relation R ⊆ L× L is ∧-stable if

(ai, bi) ∈ R, i = 1, 2 ⇒ (a1 ∧ a2, b1 ∧ b2) ∈ R

(thus, if L is a frame, the frame congruences are precisely the ∧-stable
∨
-

congruences). The set of all ∧-stable relations will be denoted by

Rel∧(L).

6.3.1. Proposition. Let A be an H-subset of a frame. Then ρ(A) is ∧-
stable.

Proof : Let ↑a ∩A = ↑b ∩ A and let x ∈ ↑(a ∧ c) ∩ A. Then a ∧ c ≤ x, hence
a ≤ c → x ∈ A and (c → x) ∈ ↑a ∩ A = ↑b ∩ A, so that b ≤ c → x and
b ∧ c ≤ x.



GENERATING SUBLOCALES BY SUBSETS AND RELATIONS 15

6.3.2. Corollary. If A is an H-subset of a frame then ρ(A) is a frame

congruence.

6.4. Proposition. Let A be a meet-subset of L. Then the following state-

ments are equivalent:

(1) A is a sublocale (that is, an H-set).
(2) ρ(A) is ∧-stable.
(3) ρ(A) is a frame congruence.

Proof : (1)⇒(2) is in 6.3.1 and by 3.3, (2)≡(3).

(2)⇒(1): Let a ∈ A and let x ∈ L be arbitrary. Set c = x → a and
κ(c) =

∧
{y ∈ A | c ≤ y}. Then obviously (c, κ(c)) ∈ ρ(A) and by the ∧-

stability (c∧x, κ(c)∧x) ∈ ρ(A). We have c∧x ≤ a ∈ A and hence κ(c)∧x ≤ a
so that κ(c) = κ(x → a) ≤ x → a and hence x → a = κ(x → a) ∈ A.

6.4.1. Since ε(R) is always a meet-set we obtain

Corollary. If ρε(R) is ∧-stable then ε(R) is a sublocale.

6.4.2. Proposition. If R is ∧-stable then ε(R) is a sublocale.

Proof : Suppose u ∈ ε(R) and x → u /∈ ε(R) for some x. Then there is an
(a, b) ∈ R such that x→u ∈ Q(a, b) and hence, say, a ≤ x→u and b � x→u.
But then a ∧ x ≤ u and b ∧ x � u, while (a ∧ x, b ∧ x) ∈ R.

6.5. Recall the contravariant Galois adjunction

P(L)
ρ

//
Rel(L)

ε
oo

from 3.2. By 6.3.2 and 6.4.2 this now restricts, for a frame L, to an adjunction

H (L)
ρ′

//
Rel∧(L)

ε′
oo

Consider the compositions

P(L)
ρ′h=ρ

//
Rel∧(L)

jε′=ε

oo

We have here again a contravariant adjunction on the right. Indeed

R ⊆ ρ h(A) iff h(A) ⊆ ε′(R) iff A ⊆ j ε′(R).



16 M. A. MOSHIER, J. PICADO AND A. PULTR

Now, finally, we have a counterpart to the identity m = ερ from 3.4.

6.5.1. Proposition. For any subset A ⊆ L, sl(A) = ε ρ(A).

Proof : By 6.2 ε ρ(A) = j ε′ρ′h(A) = j mh(A) = j(sl(A)).

7. The quotient theorems in view of the adjunctions

7.1. For a relation R on a sup-lattice L and a subset A ⊆ L we will write

R⊣⊢A

if ε(R) = ερ(A) or, equivalently, ρ(A) = ρε(R).

7.2. Observations. 1. If R = ρ(M) or A = ε(R) then R⊣⊢M .

2. If R⊣⊢A then ρε(R)⊣⊢A and R⊣⊢ερ(A).

3. More generally, if R⊣⊢A, and if R ⊆ R′ ⊆ ρε(R) and A ⊆ A′ ⊆ ερ(A)
then R′⊣⊢A′.

(For 2 use the identities ερε = ε and ρερ = ρ, and for 3 the obvious fact that
if Ri⊣⊢A for i = 1, 2 and R1 ⊆ R ⊆ R2 then R⊣⊢A, and similarly for A.)

7.3. Proposition. Let R⊣⊢A and let f : K → L be the right adjoint of a∨
-homomorphism h : L → K. Then

∀(a, b) ∈ R, h(a) = h(b) iff ρ(A) ⊆ ρ(f [K]).

Hence, if h(a) = h(b) for all (a, b) ∈ R, then f [K] ⊆ m(A).

Proof : ⇐: Let ρ(A) ⊆ ρf [K], that is, f [K] ⊆ ερ(A). Then, as R⊣⊢A,
f [K] ⊆ ε(R) and by (3.1.1), f [K] ⊆

⋂
{Q(a, b) | (a, b) ∈ R}, and we have

∀x ∈ K ∀(a, b) ∈ R, a ≤ f(x) iff b ≤ f(x),

that is,

∀x ∈ K ∀(a, b) ∈ R, h(a) ≤ x iff h(b) ≤ x.

Hence (a, b) ∈ R implies that h(a) = h(b).

⇒: If (a, b) ∈ R implies h(a) = h(b), that is, h(a) ≤ x iff h(b) ≤ x, we have
for all x ∈ K that (a, b) ∈ R implies a ≤ f(x) iff b ≤ f(x). In other words,
(a, b) ∈ R implies that f(x) ∈ Q(a, b), and f(x) ∈

⋂
{Q(a, b) | (a, b) ∈ R} =

ε(R), so that f [K] ⊆ ερ(A).
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7.4. Modifying the definition of R⊣⊢A to ∧-stable relations and ε, ρ as in
6.5 we obtain by the same procedure

Theorem. Let f : K → L be a localic map and let h : L → K be its left

adjoint. Let R⊣⊢A. Then

∀(a, b) ∈ R, h(a) = h(b) iff f [K] ⊆ sl(A).
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[3] B. Banaschewski and C. Gilmour, Stone-Čech compactification and dimension theory for reg-

ular σ-frames, J. London Math. Soc. 39 (1989) 1-8.
[4] R. L. Blair, Spaces in which special sets are z-embedded, Can. J. Math. 28 (1976) 673-690.
[5] C. Gilmour, Realcompact spaces and regular σ-frames, Math. Proc. Cambridge Philos. Soc.

96 (1984) 73-79.
[6] J. R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972) 5-32.
[7] P. T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.
[8] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer.

Math. Soc., no. 309, 1984.
[9] J. Picado and A. Pultr, Locales treated mostly in a covariant way, Textos de Matemática, vol.
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