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1. Introduction

Laguerre-Hahn orthogonal polynomials are related to Stieltjes functions,
S, that satisfy a Riccati differential equation with polynomial coefficients
[11, 20, 23]

AS ′ = BS2 + CS +D . (1)

The study of recurrences for orthogonal polynomials related to the differential
equations of general type (1) is connected to a wide range of subjects in
mathematics, such as probability theory [16], differential equations [22, 25],
constructive approximation [17], etc. In particular, the semiclassical case -
B ≡ 0 in (1) - has been much studied in the literature due to the well-known
connections with integrable systems and Painlevé equations (see, amongst
many others, [19, 28]).
In the literature of orthogonal polynomials, the study of Laguerre-Hahn

orthogonal polynomials proceeds in two directions. One of them is the study
within the framework of modifications of measures and the analysis of the
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corresponding perturbations on the sequences of orthogonal polynomials. In-
deed, Laguerre-Hahn families of orthogonal polynomials may appear as a re-
sult of modifications of semi-classical orthogonal polynomials, for example,
through some perturbations of the coefficients of the three term recurrence
relation [6, 10, 26], or through spectral rational modifications of the Stielt-
jes functions [7, 13, 29]. Another direction of study concerns the problem
of classification of families of orthogonal polynomials in terms of classes of
differential equations (1), which amounts to the classification in terms of
classes of distributional equations. In more specific terms, given informa-
tion on the polynomial coefficients of (1), the goal is to describe the systems
of equations for the recurrence relation coefficients of the corresponding se-
quence of orthogonal polynomials, the so-called Laguerre-Freud equations
[3, 4, 12, 15, 18]. Generally, such equations are given in terms of non-linear
systems, whose complexity increases with the degrees of the polynomials in
(1). In this topic one should emphasize the vast literature on the semi-
classical case, showing that recurrence coefficients of semi-classical orthogo-
nal polynomials can often be expressed in terms of solutions of the Painlevé
equations (see, amongst many others, [14, 19, 28]).
In the present work we focus on the difference equations for the recurrence

relation coefficients of Laguerre-Hahn orthogonal polynomials in class one (cf.
Section 2), max{deg(A), deg(B)} ≤ 3, deg(C) = 2 or max{deg(A), deg(B)} =
3, deg(C) ≤ 2 in (1). The symmetric case has been analysed in [1], but the
problem of a classification of such a class of orthogonal polynomials remains
open. Our main results, contained in Section 3, show that the recurrence
relation coefficients of some families of orthogonal polynomials belonging to
Laguerre-Hahn class one in the the non-symmetric case are governed by dif-
ference equations of the Painlevé type, namely, dPIV and dPI . The main tool
is the so-called structure relations for Laguerre-Hahn polynomials [11, Eqs.
(3.9), (3.10)] which have been recently re-interpreted and studied within the
theory of matrix Sylvester equations in [7, Theorem 1].
The rest of the paper is organized as follows. In Section 2 we give prelimi-

nary results on Laguerre-Hahn orthogonal polynomials. Section 3 is devoted
to the derivation of recurrences for Laguerre-Hahn orthogonal polynomials
and to show the connection to the discrete Painlevé equation dPIV and dPI .
In Section 4 we present a few illustrative examples.
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2. Preliminary Results

Let P = span {zk : k ∈ N0} be a linear space of polynomials with complex
coefficients and let P′ be its algebraic dual space. We will denote the action
of u ∈ P′ on f ∈ P by 〈u, f〉.
Given the moments of u, un = 〈u, xn〉, n ≥ 0, where we take u0 = 1,

the principal minors of the corresponding Hankel matrix are defined by
Hn = det(ui+j)

n
i,j=0, n ≥ 0, where, by a convention, H−1 = 1. The func-

tional u is said to be quasi-definite (respectively, positive-definite) if Hn 6= 0
(respectively, Hn > 0), for all n ≥ 0.

Definition 1. (see [27]) Let u ∈ P
′ and let {Pn}n≥0 be a sequence of poly-

nomials such that deg(Pn) = n , n ≥ 0 . {Pn}n≥0 is said to be a sequence of
orthogonal polynomials with respect to u if

〈u, PnPm〉 = hnδn,m , hn 6= 0 , n,m ≥ 0 . (2)

Throughout the paper we shall take each Pn monic, that is, Pn(z) = zn+
lower degree terms, and we will abbreviate a sequence of monic orthogonal
polynomials {Pn}n≥0 by SMOP.
The equivalence between the quasi-definiteness of u ∈ P

′ and the existence
of a SMOP with respect to u is well known in the literature on orthogonal
polynomials (see [9, 27]). Furthermore, if u is positive-definite, then it has
an integral representation in terms of a positive Borel measure µ supported
on an infinite point set I of the real line such that

〈u, xn〉 =
∫

I

xn dµ(x) , n ≥ 0 , (3)

and the orthogonality condition (2) becomes
∫

I

Pn(x)Pm(x)dµ(x) = hnδn,m , hn > 0 , n,m ≥ 0 .

If µ is an absolutely continuous measure supported on I, and w denotes
its Radon-Nikodyn derivative with respect to the Lebesgue measure, i.e.
dµ(x) = w(x)dx, then we will also say that {Pn}n≥0 is orthogonal with
respect to w.
Monic orthogonal polynomials satisfy a three term recurrence relation [27]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 1, 2, ... (4)

with P0(x) = 1, P1(x) = x− β0 and γn 6= 0, n ≥ 1, γ0 = 1.
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Definition 2. (see [9]) Let {Pn}n≥0 be a SMOP with respect to u ∈ P
′. A

sequence of associated polynomials of the first kind is defined by

P (1)
n (x) = 〈ut,

Pn+1(x)− Pn+1(t)

x− t
〉 , n ≥ 0 ,

where ut denotes the action of u on the variable t.

The sequence {P (1)
n }n≥0 also satisfies a three term recurrence relation

P (1)
n (x) = (x− βn)P

(1)
n−1(x)− γnP

(1)
n−2(x) , n = 1, 2, ... (5)

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

Definition 3. The Stieltjes function of u ∈ P′ is defined by S(x) =
+∞
∑

n=0

un
xn+1

,

where un are the moments of u.

The function S has a continued fraction expansion given by

S(x) =
1

x− β0 −
γ1

x− β1 − γ2
...

(6)

where the γ’s and the β’s are the coefficients in the three term recurrence re-
lation for the corresponding SMOP. Note that if u is positive-definite, defined
by (3), then S is the so-called Borel or Stieltjes transform of the measure,

S(x) =

∫

I

dµ(t)

x− t
, x ∈ C \ I .

In account of (6), the Stieljtes functions corresponding to {Pn}n≥0 and {P (1)
n }n≥0,

denoted by S and S(1), respectively, are related by [29]

γ1S
(1)(x) = − 1

S(x)
+ (x− β0) . (7)

Definition 4. (see [23]) A Stieltjes function S and the corresponding lin-
ear functional u, are said to be Laguerre-Hahn if there exist polynomials
A,B, C,D, such that S satisfies a Riccati differential equation

AS ′ = BS2 + CS +D , A 6= 0 . (8)

A sequence of orthogonal polynomials related to S (or u) is then called
Laguerre-Hahn. If B = 0, then S (or u) is said to be semi-classical.
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Eq. (8) is equivalent to the distributional equation [11, Theorem 3.1]

D(Au) = ψu +B(x−1u2) , ψ = A′ + C . (9)

The polynomial D can be written in terms of A,B, C as

D = −(uθ0A)
′(x) + (uθ0(A

′ + C))(x) + (u2θ20B)(x) .

The definition of θ0p, p ∈ P, as well as the right product of a linear functional
by a polynomial, and the product of two linear functionals, can by found in
[11, 23].

Remark . Let B ≡ 0. If deg(ψ) = 1, deg(A) ≤ 2, then u is called a classical
functional, and the corresponding orthogonal polynomials are the so-called
classical orthogonal polynomials, that is, Hermite, Laguerre and Jacobi poly-
nomials. The case deg(ψ) ≥ 1 corresponds to the semi-classical case.
If u is positive-definite, defined in terms of a weight w, then the semi-

classical character of u, that is, D(Au) = ψu or AS ′ = CS+D, is equivalent
to the Pearson equation Aw′ = Cw, with w satisfying the boundary condi-
tions [23]

xnA(x)w(x)|a,b = 0 , n ≥ 0 ,

where a, b (eventually a or b infinite) are linked with the roots of A. In such
a case, w is the weight function on the support I = [a, b].
In the semi-classical case, integral representations for u are known [21]. Let
us emphasize that, in general, the problem of representing Laguerre-Hahn
linear functionals is an open problem.

Note that the triple (A, ψ,B) satisfying (9) is not unique, indeed, many
triples of polynomials can be associated with such a distributional equation,
but only one canonical set of minimal degree exists. To a Laguerre-Hahn
linear functionals one associates the class, a non-negative integer, defined as
follows.

Definition 5. [23] The class of the linear functional u satisfying (9) is the
minimum value of max {deg(ψ) − 1, d − 2}, d = max {deg(A), deg(B)}, for
all triples of polynomials (A, ψ,B) satisfying (9).

The functional u related to the Riccati equation AS ′ = BS2 + CS +D is
of class s = max {deg(C)− 1, d− 2} if, and only if, the polynomials A,B, C
and D have no common zeroes [1, Prop. 2.5].
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The recurrence relations (4) and (5) can be written in the matrix form

Yn = AnYn−1 , Yn =

[

Pn+1 P
(1)
n

Pn P
(1)
n−1

]

, An =

[

x− βn −γn
1 0

]

, n ≥ 1 ,

(10)

with initial conditions Y0 =

[

x− β0 1
1 0

]

. The matrix An is known as the

transfer matrix.

Theorem 1. (see [7]) Let S be a Stieltjes function, let {Yn}n≥0 be the cor-
responding sequence defined in (10), and let βn, γn be the coefficients in the
recurrence relation. The following statements are equivalent:
(a) S satisfies (8),

AS ′ = BS2 + CS +D , A,B, C,D ∈ P ;

(b) Yn satisfies the matrix Sylvester equation

AY ′
n = BnYn − YnC , n ≥ 0 , (11)

where

Bn =

[

ln Θn

−Θn−1/γn ln−1 + (x− βn)Θn−1/γn

]

, C =

[

C/2 −D
B −C/2

]

with ln,Θn polynomials of uniformly bounded degrees, satisfying the initial
conditions

A = (x− β0)(l0 − C/2)−B +Θ0 , (x− β0)D + l0 + C/2 = 0 ,

Θ−1 = D, l−1 = C/2 ; (12)

(c) the transfer matrix An =

[

x− βn −γn
1 0

]

satisfies the matrix Sylvester

equation

AA′
n = BnAn −AnBn−1 , n ≥ 1 . (13)

Remark . If the class of the linear functional related to (8) is s, the polyno-
mials ln,Θn in Bn satisfy deg(ln) = s+ 1, deg(Θn) = s [11].

Let us emphasize that Eq. (13) is obtained from the compatibility between
the Lax pair

{

Yn = AnYn−1

AY ′
n = BnYn − YnC , n ≥ 1 .

(14)
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Furthermore, we have [7, Corollary 1]

trBn = 0 , n ≥ 0 , (15)

detBn = detB0 + A
n

∑

k=1

Θk−1

γk
, n ≥ 1 , (16)

with detB0 = D(A+B)− (C/2)2.
Eq. (13) has two non-trivial equations, respectively, from positions (1, 1)

and (1, 2):

A = (x− βn)(ln − ln−1) + Θn − γn
Θn−2

γn−1
, (17)

ln + (x− βn)
Θn−1

γn
= ln−2 + (x− βn−1)

Θn−2

γn−1
. (18)

Eq. (18) can be written as

ln + ln−1 + (x− βn)
Θn−1

γn
= ln−1 + ln−2 + (x− βn−1)

Θn−2

γn−1
.

Thus, by denoting Ln = ln+ ln−1+(x−βn)
Θn−1

γn
, we have Ln = Ln−1, n ≥ 1,

which yields Ln = L0, n ≥ 1. Using (12) we get L0 = 0, hence,

ln + ln−1 + (x− βn)
Θn−1

γn
= 0 , n ≥ 0 , (19)

which is another form of (15).
Let us now look at Eq. (17). By multiplying it by Θn−1/γn and using (19),

we obtain

A
Θn−1

γn
= −(l2n − l2n−1) + Θn

Θn−1

γn
−Θn−1

Θn−2

γn−1
. (20)

Note that (19) implies

detBn = −l2n +Θn
Θn−1

γn
, (21)

therefore, Eq. (20) can be written as

A
Θn−1

γn
= detBn − detBn−1 .

By iterating, we get (16).
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3. Recurrences for Laguerre-Hahn orthogonal polynomi-

als of class s = 1

The Stieltjes functions S associated with the Laguerre-Hahn orthogonal
polynomials of class s = 1 satisfy AS ′ = BS2 + CS + D with deg(D) = 1
and

max {deg(A), deg(B)} ≤ 3 , deg(C) = 2 ,

or

max {deg(A), deg(B)} = 3 , deg(C) ≤ 2 .

One of the key ingredients in the sequel is the differential system (11). This
is the matrix form of the so-called structure relations

A
(

P (1)
n

)′
= DPn+1 + (ln + C/2)P (1)

n +ΘnP
(1)
n−1 , n ≥ 0 , (22)

AP ′
n+1 = (ln − C/2)Pn+1 − BP (1)

n +ΘnPn , n ≥ 0, (23)

(see [11, Eqs. (3.9), (3.10)]) with the polynomials ln,Θn satisfying deg(ln) =
2, deg(Θn) = 1.

Remark . In the semi-classical case, that is, B ≡ 0, Eq. (23) becomes
AP ′

n+1 = (ln −C/2)Pn+1 +ΘnPn, which can be comparable to [8, Eq. (1.5)].

Lemma 1. Let S be a Stieltjes function of class s = 1. Let {Pn}n≥0 be the
SMOP associated with S, satisfying the recurrence relation (4),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

Set

A(x) = a3x
3 + a2x

2 + a1x+ a0 , B(x) = b3x
3 + b2x

2 + b1x+ b0 ,

C(x) = c2x
2 + c1x+ c0 , D(x) = d1x+ d0

ln(x) = ℓn,2x
2 + ℓn,1x+ ℓn,0 , Θn(x) = θn,1x+ θn,0 .

With the functions defined above, we have

d1 = −a3 − b3 − c2 , (24)

d0 = −(2a3 + 2b3 + c2)β0 − a2 − b2 − c1 , (25)

ℓn,2 = (n+ 1)a3 + b3 + c2/2 , (26)

ℓn,1 = a3(ηn + β0) + (n+ 1)a2 + b3β0 + b2 + c1/2 , (27)
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ℓn,0 = λn,0 − θn,1 , (28)

λn,0 = −2a3(νn + β0ηn − γ1) + (n+ 1)a1 + b3(γ1 + β2
0) + b2β0 + b1 + c0/2

+(ηn + β0)(a3(ηn + β0) + a2) , (29)

θn,1 = −γn+1((2n+ 3)a3 + 2b3 + c2) , (30)

θn,0 = −γn+1 {2a3(ηn + (n+ 2)βn+1 + β0) + a2(2n+ 3) + 2b3(β0 + βn+1)

+2b2 + c2βn+1 + c1} (31)

with

ηn =

n
∑

k=1

βk , νn =

n
∑

1≤i<j≤n

βiβj −
n

∑

k=2

γk , n ≥ 1 . (32)

Also, we have

a1+b1+c0+(2a2+2b2+c1)β0+(3a3+3b3+c2)β
2
0+(3a3+2b3+c2)γ1 = 0 . (33)

Proof : In account of (4) and (5),

P (1)
n (x) = xn − ηnx

n−1 + νnx
n−2 + · · · ,

Pn+1(x) = xn+1 − (ηn + β0)x
n + (νn + β0ηn − γ1)x

n−1 + · · · .
Eqs. (24) and (25) follow by equating the coefficients of xn+2 and xn+1,
respectively, in (22). Eqs. (26) – (28) follow by equating the coefficients
of xn+3, xn+2, and xn+1, respectively, in (23). Eqs. (30) – (31) follow by
equating the coefficients of x2 and x, respectively, in (15) (written as Eq.
(19)). Eq. (33) follows by equating the coefficients of xn in (22).

3.1. Discrete Painlevé equations for some Laguerre-Hahn Stieltjes

functions. We will use two key ingredients to deduce recurrences for the
Laguerre-Hahn polynomials: the formula for the trace and the determinant
of the matrix Bn, Eqs. (15) and (16), defining the Lax pair (14).

From (15), equivalently, ln(x) + ln−1(x) + (x− βn)
Θn−1(x)

γn
= 0 , n ≥ 0, we

get

ln(βn) + ln−1(βn) = 0 , (34)

ln(0) + ln−1(0)

βn
=

Θn−1(0)

γn
, βn 6= 0 . (35)

From (16) we get, for every α such that A(α) = 0,

detBn−1(α) = detB0(α) ,



10 G. FILIPUK AND M. N. REBOCHO

hence, taking into account (21), we have

Θn−1(α)
Θn−2(α)

γn−1
= detB0(α) + l2n−1(α) .

Therefore, for α such that A(α) = 0,

Θn−1(α)

γn

Θn−2(α)

γn−1
=

det(B0)(α) + (ln−1(α))
2

γn
. (36)

Eqs. (34) – (36) will be used in the proof of the next Theorem.

Theorem 2. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +D
with

A(x) = a1x , B(x) = b3x
3 + b2x

2 + b1x+ b0 , (37)

C(x) = c2x
2 + c1x+ c0 , D(x) = d1x+ d0 ,

where d1 and d0 are given by (24) and (25), respectively. Let {Pn}n≥0 be a
SMOP associated with S, satisfying the recurrence relation (4),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . ,

with βn 6= 0 , n = 0, 1, 2, . . . .
Set η = 2b3 + c2, µ = b3(γ1 + β2

0) + b2β0 + b1 + c0/2 , λ = 2b3β0 + 2b2 + c1.
The following statements hold:
(a) Let η < 0. The sequences {xn}∞n=0 and {yn}∞n=0 expressed in terms of the
coefficients in the three term recurrence relation by

xn =

√−η
ηβn + λ

, yn = −(ηγn + na1 + µ) (38)

satisfy the following discrete system of Painlevé equations dPIV :

xn−1xn =
yn + na1 + µ

y2n − ξ0
, yn + yn+1 =

1

xn

(

λ√−η − 1

xn

)

, (39)

with the initial conditions x0 =

√−η
ηβ0 + λ

, y0 = −(η + µ).

(b) Let η > 0. The sequences {xn}∞n=0 and {yn}∞n=0 expressed in terms of the
coefficients in the three term recurrence relation by

xn =

√
η

ηβn + λ
, yn = ηγn + na1 + µ (40)
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satisfy the following discrete system of Painlevé equations dPIV :

xn−1xn =
yn − na1 − µ

y2n − ξ0
, yn + yn+1 =

1

xn

(

λ√
η
− 1

xn

)

, (41)

with the initial conditions x0 =

√
η

ηβ0 + λ
, y0 = η + µ.

Proof : Let us show how to deduce equations in case (a). Case (b) is similar.
Eq. (34) gives us, under the notation of Lemma 1,

(ℓn,2β
2
n + ℓn,1βn + ℓn,0) + (ℓn−1,2β

2
n + ℓn−1,1βn + ℓn−1,0) = 0 .

Taking into account the formulae for ℓn,2, ℓn,1 given in (26) and (27), the
above equation yields

ηβ2
n + λβn = −ℓn−1,0 − ℓn,0, η = 2b3 + c2, λ = 2b3β0 + 2b2 + c1 ,

thus,

βn (ηβn + λ) = −ln−1(0)− ln(0) . (42)

Therefore, we obtain, for βn 6= 0,

(ηβn + λ) (ηβn−1 + λ) =
(ln−1(0) + ln(0))

βn

(ln−2(0) + ln−1(0))

βn−1
.

In account of (35), the equation above can be written as

(ηβn + λ) (ηβn−1 + λ) =
Θn−1(0)

γn

Θn−2(0)

γn−1
. (43)

In account of (36) with α = 0 (as A(x) = a1x), Eq. (43) can be written as

(ηβn + λ) (ηβn−1 + λ) =
(ln−1(0))

2 − ξ0
γn

(44)

with ξ0 = − detB0(0).
Note that, as ln(0) = ηγn+1+(n+1)a1+µ, µ = b3(γ1+β

2
0)+b2β0+b1+c0/2,

then (42) yields

βn(ηβn + λ) = −(ηγn + na1 + µ)− (ηγn+1 + (n+ 1)a1 + µ) . (45)

By defining xn, yn as in (38),

xn =

√−η
ηβn + λ

, yn = −(ηγn + na1 + µ) ,



12 G. FILIPUK AND M. N. REBOCHO

we obtain that Eqs. (44) and (45) are, respectively, the first and second
equations given in (39). Indeed, let us write Eq. (44) in its equivalent form

√−η
(ηβn + λ)

√−η
(ηβn−1 + λ)

=
−ηγn

(ln−1(0))2 − ξ0
,

that is, we have xn−1xn =
yn + na1 + µ

y2n − ξ0
. Also, let us write the left-hand side

of (45) as
ηβn + λ√−η

(

λ√−η − ηβn + λ√−η

)

.

Then, (45) reads as
1

xn

(

λ√−η − 1

xn

)

= yn + yn+1.

Remark . The case A(x) ≡ 0, that is, a1 = 0 in (37), concerns a second
degree equation BS2 + CS + D = 0. In such a case, S is related to the
so-called family of second degree forms [24].

Remark . Equations (39) and (41) can be obtained as a limiting case of the
asymmetric Painlevé equation dPIV [5, Eq. (1.2)] given by

unun−1 =
a(vn + zn − b)

v2n − γ2
, vn + vn+1 =

c

un
+
zn+1/2 + d

un − 1
(46)

with zn = α1n + β1. Indeed, by taking b = 0, un = xn/ε, vn = εyn, zn =
ε(µ + na1), a = 1/ε, γ = ε/

√
ξ0, c = 1/ε+ λ/

√−η, d = −1/ε and letting ε
tend to zero we obtain (39). For (41) the calculations are similar.

3.1.1. The case A(x) = a0 6= 0.. Let us emphasize that the technique used
in Theorem 2 to deduce the difference equations for the coefficients βn, γn
cannot be applied to the case A(x) = a0 6= 0. Indeed, (34) yields (42), with
ln(0) = ηγn+1+µ, and such an equation implies (43). However, in the present
case, (43) does not give new identities and (44) does not hold since A(0) 6= 0.
The difference equations concerning the case A(x) = a0 6= 0 are given in

the theorem that follows.

Theorem 3. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +D
with

A(x) = a0 6= 0 , B(x) = b3x
3 + b2x

2 + b1x+ b0 ,

C(x) = c2x
2 + c1x+ c0 , D(x) = d1x+ d0 ,
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where d1 and d0 are given by (24) and (25), respectively. Let {Pn}n≥0 be a
SMOP associated with S, satisfying the recurrence relation (4),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . ,

with βn 6= 0 , n = 0, 1, 2, . . . .
Set η = 2b3 + c2, µ = b3(γ1 + β2

0) + b2β0 + b1 + c0/2, λ = 2b3β0 + 2b2 + c1.
The recurrence relation coefficients βn, γn are related through the following
discrete system:

βn(ηβn + λ) = −(ηγn + µ)− (ηγn+1 + µ) , n ≥ 0 , (47)

η(βn + βn+1) + λ =
−na0 + γ1(η(β0 + β1) + λ)

γn+1
, n ≥ 1 . (48)

Moreover, the sequences

xn = ηβn + λ/2 , zn = η2 (−na0 + γ1(η(β0 + β1) + λ)) (49)

satisfy the alternative discrete Painlevé equation dPI

zn−1

xn−1 + xn
+

zn
xn + xn+1

= −x2n + γ , γ = (λ/2)2 − 2µη (50)

with the initial conditions x0 = ηβ0 + λ/2, x1 = ηβ1 + λ/2 .

Proof : Set A(x) = a0, where a0 is a non-zero constant. Eq. (34) yields (42),
with ln(0) = ηγn+1 + µ, thus, we have (47).

Let us now look at Eq. (17), A = (x−βn)(ln−ln−1)+Θn−γnΘn−2

γn−1

, evaluated

at x = βn,

a0 = Θn(βn)− γn
Θn−2(βn)

γn−1
.

Using the formulae in Lemma 1 we get, after simplifications,

a0 = −γn+1(η(βn + βn+1) + λ) + γn(η(βn−1 + βn) + λ) , n ≥ 1 , (51)

where η = 2b3 + c2, λ = 2b3β0 + 2b2 + c1. By writing (51) as

Tn+1 = Tn − a0, Tn = γn(η(βn−1 + βn) + λ) ,

iteration yields Tn+1 = −na0 + T1, thus we obtain

γn+1(η(βn + βn+1) + λ) = −na0 + γ1(η(β0 + β1) + λ) ,

hence, we obtain (48).
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Using the equivalent form of (48),

γn+1 =
−na0 + γ1(η(β0 + β1) + λ)

ηβn + ηβn+1 + λ
,

into (47), we obtain the second order difference equation

η
−(n− 1)a0 + γ1(η(β0 + β1) + λ)

ηβn−1 + ηβn + λ
+ η

−na0 + γ1(η(β0 + β1) + λ)

ηβn + ηβn+1 + λ

= −ηβ2
n − λβn − 2µ .

By multiplying the above equation by η we get

η2
−(n− 1)a0 + γ1(η(β0 + β1) + λ)

ηβn−1 + ηβn + λ
+ η2

−na0 + γ1(η(β0 + β1) + λ)

ηβn + ηβn+1 + λ

= −
(

η2β2
n + ληβn + (λ/2)2

)

+ (λ/2)2 − 2µη .

Thus, by defining xn, zn as in (49), the above equation reads as (50).

Remark . Moreover, using (47) with n = 0 and (33), we get the following
condition on β0:

4b23 + c2(b1 + c2 + 2b2β0) + b3(c2(4 + β2
0)− 2c1β0 − 2c0) = 0.

3.2. Further results and generalizations. Another way to prove Theo-
rem 2 and to generalize to the case A(x) = x − α, where α is an arbitrary
parameter (recall that α = 0 in Theorem 2) is by symbolic computations,
which can be performed in any computer algebra system, for instance, Math-
ematica∗.
Indeed, assuming the form

xn =
k1

k2βn + k3
, yn = k4γn + k5(n)

and

xn−1xn =
yn − k6(n)

y2n − ξ0
, yn + yn+1 =

1

xn

(

k7 −
1

xn

)

,

where only k5 and k6 are the functions of n and others are constants, and
substituting into (13) and (15), we obtain the following theorem.

∗www.wolfram.com
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Theorem 4. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +D
with

A(x) = x− α , B(x) = b3x
3 + b2x

2 + b1x+ b0 ,

C(x) = c2x
2 + c1x+ c0 , D(x) = d1x+ d0 ,

where d1 and d0 are given by (24) and (25), respectively. Let {Pn}n≥0 be a
SMOP associated with S, satisfying the recurrence relation (4),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

The corresponding equations (13) and (15) are solved by

xn =
k1(2b3 + c2)

k2(2b2 + 2αb3 + c1 + αc2 + 2b3β0) + βn(2b3 + c2)
,

yn =
k22(2n+ 2b1 + c0 + 2b2β0 + 2b3(β

2
0 + γ1) + 2(2b3 + c2)γn + g1

2(2b3 + c2)k21
,

satisfying

xn−1xn =
2(k22(2n+ 2b1 + c0 + 2b3β0 + 2b3(β

2
0 + γ1) + g2)− 2(2b3 + c2)k

2
1yn)

(2b3 + c2)k21(c
2
0 + 4b0(b2 + c1 + (2b3 + c2)β0)− 4y2n)

,

and

yn + yn−1 =
k2xn(2b2 + c1 + 2b3β0 + 2α(2b3 + c2))− (2b3 + c2)k1

(2b3 + c2)k1x2n
.

Here, g1 = α2(2b3 + c2) + α(2b2 + c1 + 2b3β0)), g2 = α2(2b3 + c2) + α(2b2 +
c1 + 2b3β0), and k1, k2 are constants. The initial conditions are given by

x0 =
(2b3 + c2)k1

k2(2b2 + c1 + 4b3β0 + c2β0 + α(2b3 + c2))

and y0, which is obtained from the formulae above with n = 0.

Note that by taking k2 = ηk1/
√−η, where η = 2b3 + c2 and α = 0, we

obtain case (a) in Theorem 2, and similarly for case (b).

Remark . The technique used in Theorem 2 can not be extended to the case
deg(A) ≥ 2. Note that if deg(A) ≥ 2, then in the right-hand side of (42)
there appear additional sequences ηn and νn (see (32) for definitions).
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4. Examples

There are several families of orthogonal polynomials related to the Stieltjes
function satisfying AS ′ = BS2 + CS + D such that the previous Theorems
apply. Some of them are as follows.

4.1. Example 1: the modified semi-classical Laguerre polynomials.

Consider a SMOP {Pn}n≥0 with respect to the modified Laguerre weight

w(x) = |x|αe−x2+tx , x ∈ R ,

where α > −1 and t ∈ R is some time parameter (see [5]). As w satisfies the
Pearson equation xw′ = (−2x2+tx+α)w, the Stieltjes function of w satisfies
AS ′ = CS + D with A(x) = x, C(x) = −2x2 + tx + α, D = 2x + 2β0 − t,

β0 =

(
∫

R

xw(x)dx

)

/

(
∫

R

w(x)dx

)

.

Then (38) is

xn =

√
2

−2βn + t
, yn = 2γn − n− α/2

and system (39) is

xn−1xn =
yn + n+ α/2

y2n − 1
4α

2
, yn + yn+1 =

1

xn

(

t√
2
− 1

xn

)

.

4.2. Example 2: the associated semi-classical Laguerre polynomials.

Let us start by considering the SMOP {Pn}n≥0 with respect to a modified
Laguerre weight

w(x) = |x|αeα2x
2+α1x+α0 , x ∈ R , (52)

where, for integrability reasons, α > −1, α2 < 0. The Stieltjes function
related to {Pn}n≥0 satisfies

xS̃ ′ = C̃S+D̃ , C̃(x) = 2α2x
2+α1x+α, D̃(x) = −2α2x−2α2β0−α1 . (53)

Let us now consider the sequence of associated polynomials of the first kind

{P (1)
n }n≥0, and let S(1) denote its Stieltjes function. In account of (53) and

(7), S(1) is Laguerre-Hahn of class s = 1, as it satisfies

x
(

S(1)
)′

= B
(

S(1)
)2

+ CS(1) +D (54)



PAINLEVÉ EQUATIONS FOR RECURRENCE COEFFICIENTS OF LAGUERRE-HAHN OP 17

with

B = γ1D̃ , C = −C̃−2(x−β0)D̃ , D =
1

γ1

(

x+ (x− β0)C̃ + (x− β0)
2D̃

)

,

that is,

B(x) = b1x+ b0 , b1 = −2γ1α2 , b0 = −γ1(2α2β0 + α1) ,

C(x) = c2x
2 + c1x+ c0 , c2 = 2α2 , c1 = α1 , c0 = −α− 2α1β0 − 4α2β

2
0 ,

D(x) = d1x+ d0 , d1 =
1

γ1
(1 + α + α1β0 + 2α2β

2
0) ,

d0 = −β0
γ1
(α + α1β0 + 2α2β

2
0) .

Then, (38) is

xn =

√
−2α2

2α2βn + c1
, yn = −(2α2γn+n+µ) , µ = −2α2γ1−α/2−α1β0−2α2β

2
0

and (39) is

xn−1xn =
yn + n+ µ

y2n − ξ0
, yn + yn+1 =

1

xn

(

α1√
−2α2

− 1

xn

)

with ξ0 =
1
4C

2(0)− B(0)D(0).

4.2.1.Remarks. Let us remark that when (52) reduces to w(x) = xαe−x, α >
2, x > 0, an integral representation for the linear functional corresponding

to S(1) is known. In such case, {P (1)
n }n≥0 is orthogonal with respect to the

linear functional defined by [2]

〈u, p(x)〉 =
∫ ∞

0

p(x)xαe−x dx

|ψ(α, 1− α, xe−πi)|2 , α > 2 ,

where

ψ(a, b, x) = 1 +

+∞
∑

n=1

(a)n
(b)n

xn ,

(a)n = a(a+ 1) · · · (a+ n− 1) , (a)0 = 1 .

In general, the integral representation of the Laguerre-Hahn Stieltjes func-
tions is an open problem. Another open problem (see [29]) is to determine
all the Stieltjes functions, say S1, satisfying a Riccati equation such as (54),
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which are obtained by a rational spectral transformation of S satisfying (53),

that is, S1 =
aS + b

cS + d
, where a, b, c, d are polynomials.
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PAINLEVÉ EQUATIONS FOR RECURRENCE COEFFICIENTS OF LAGUERRE-HAHN OP 19
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CMUC, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address : mneves@ubi.pt


	1. Introduction
	2. Preliminary Results
	3. Recurrences for Laguerre-Hahn orthogonal polynomials of class s=1
	3.1. Discrete Painlevé equations for some Laguerre-Hahn Stieltjes functions
	3.2. Further results and generalizations

	4. Examples
	4.1. Example 1: the modified semi-classical Laguerre polynomials
	4.2. Example 2: the associated semi-classical Laguerre polynomials

	References

