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INTERSECTION OF A DOUBLE CONE AND A LINE

IN THE SPLIT-QUATERNIONS CONTEXT

R. SERÔDIO, P. D. BEITES AND JOSÉ VITÓRIA

Abstract: This is a work on an application of split-quaternions to Analytic Ge-
ometry. Concretely, the intersection of a double cone and a line is studied in the
real split-quaternions setting and it can be the empty set, a point, two points or a
line. The distinction of these cases, and the determination of the intersection, has
use in computer graphics, motion planning and collision detection. Three powerful
concepts are most useful for this purpose: the norm of a real split-quaternion and
the Lorentz, cross and inner, products of vectors in the (2 + 1)-Minkowski space.
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1. Introduction
Among the problems that can be approached in Spatial Analytic Geom-

etry, some concern intersections of geometric 3D objects. For instance, the
intersection of a cone and a line is one of them. Beyond its intrinsic math-
ematical interest, the latter problem is also relevant in other areas such as
computer graphics, motion planning and collision detection.

There is a series of books, called Graphics Gems, that provides the graphics
community with tools to face real programming issues. In [3], the intersection
of a line and a cylinder was treated. An extension of this work appeared in
[1], where the intersection of a line and a cone was addressed.

In the present text, we study the intersection of a double cone and a line in
the real split-quaternions context. Through the norm of the split-quaternion
that gives the line direction, we characterize the conditions for the inter-
section to occur. This can be the empty set, a point, two points or a line.
Moreover, when it happens, we present an explicit formula for computing the
intersection.
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In section 2 we present the real split-quaternion algebra and recall its iden-
tification with a real matrix algebra. In section 3 we characterize the in-
tersection of a double cone with a line, giving explicit expressions for the
intersection when it occurs.

2. The real split-quaternions
In this section we collect some definitions, notations and results that are

needed in the next section.
Let F be an arbitrary field and U be a finite-dimensional vector space over

F .
The vector space U over F is a semi-Euclidean (or pseudo-Euclidean) space

if F = R and U is equipped with a non-degenerate indefinite bilinear form.
As in the positive definite case, the mentioned form is called the inner product
and we denote it by 〈·, ·〉.

If U is a semi-Euclidean space, then an element x ∈ U is said to be spacelike,
lightlike or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0, respectively. The
light cone is the set of all lightlike-elements. As in the definite case, two
elements x, y ∈ U are said to be orthogonal if 〈x, y〉 = 0. So, the light cone
consists of all elements that are orthogonal to themselves.

A vector space homomorphism ϕ : U → U is called an involution of U if,
for all u, v ∈ U , ϕ(ϕ(u)) = u and ϕ(uv) = ϕ(v)ϕ(u).

The vector space U over F is an algebra over F if U is equipped with
a bilinear map s : U 2 → U , usually called multiplication. Given an alge-
bra U , with multiplication denoted by juxtaposition, we now recall a few
more concepts related to composition algebras assuming, from now on, that
ch(F ) 6= 2.
U is a composition algebra over F if it is endowed with a nondegenerate

quadratic form (the norm) n : U → F (that is, the associated symmetric
bilinear form (x, y) = 1

2(n(x + y) − n(x) − n(y)) is nondegenerate) which is
multiplicative, i.e., for any x, y ∈ U ,

n(xy) = n(x)n(y).

Let U be a composition algebra over F . An element z ∈ U is isotropic if
z 6= 0 and n(z) = 0. A unital composition algebra U , that is, a composition
algebra with identity e is a Hurwitz algebra. Furthermore, the involution
x 7→ x = (x, e)e − x of U , called the standard conjugation, satisfies xx =
xx = n(x)e and x+ x = tr(x)e, being tr(x) ∈ F the trace of x. An element
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x ∈ U is invertible if and only if n(x) 6= 0. Moreover, x−1 =
x

n(x)
if x is

invertible.
By the generalized Hurwitz theorem in [4], a 4-dimensional Hurwitz algebra

over F is a (generalized) quaternion algebra, that is, an algebra over F with
two generators i and j satisfying the relations i2 = a, j2 = b and ij = −ji,
with a, b ∈ F\{0}. This algebra can be denoted as in [6], using the Hilbert

symbol, by
(
a,b
F

)
. Setting ij = k, we have that

(
a,b
F

)
is 4-dimensional over

F , with basis {1, i, j, k}. Moreover, k2 = −ab and any two of the elements
in {i, j, k} anticommute.

Taking F = R and a = −1, b = 1, we obtain the real split quaternion alge-
bra

(−1,1
R

)
. In what follows, throughout the work, we denote this associative

algebra and its multiplication by Ĥ and juxtaposition, respectively, and its
identity 1 will be omitted most times. Notice that, for instance, i + j is an
isotropic element of Ĥ.

1 i j k
1 1 i j k
i i -1 k −j
j j −k 1 −i
k k j i 1

Table 1. Multiplication table of Ĥ.

Let p = p0 + p1i + p2j + p3k ∈ Ĥ. If p0 = 0 then p is called pure split-
quaternion. The scalar part and the vector part of p are p0 and Vp = p1i +
p2j + p3k, respectively. The conjugate of p is p = p0 − Vp and the norm of p
is

n(p) = p2
0 + p2

1 − p2
2 − p2

3.

In this work, whenever convenient, the subspace Ĥ0, of the pure split-
quaternions, of Ĥ is identified with the (2 + 1)-Minkowski space R2+1. This
is the inner product space consisting of the real vector space R3 equipped
with the Lorentz inner product

〈x, y〉L = −x1y1 + x2y2 + x3y3.
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Notice that 〈x, x〉L = −n(x). The vector space may be regarded as a semi-
normed vector space, provided that the (semi-) norm is given by

‖x‖ =
√
|〈x, x〉L|.

The Lorentz cross product of x, y ∈ R3 is defined as follows, [2]:

x ∧L y =

∣∣∣∣∣∣
−i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
In the cited reference, it is proved that the identity

〈x ∧L y, z ∧L w〉L = −
∣∣∣∣ 〈x, z〉L 〈x,w〉L〈y, z〉L 〈y, w〉L

∣∣∣∣
holds in R3. In particular, taking z = x and w = y leads to the identity

n(x ∧L y) = n(x)n(y)− 〈x, y〉2L. (1)

The multiplication of two split-quaternions p = p0 +Vp and q = q0 +Vq can
be related to the Lorentz inner product and to the Lorentz cross product as
follows: pq = p0q0 + 〈Vp, Vq〉L + p0Vq + q0Vp + Vp ∧L Vq. In particular, if p and
q are pure then

pq = 〈Vp, Vq〉L + Vp ∧L Vq.

Lastly but importantly, for computational purposes, the algebra Ĥ can be
identified with the real algebra M2×2(R), this one equipped with the usual
matrix multiplication. The identification is due to the known isomorphism
ψ : Ĥ→M2×2(R) defined by, [6]:

a+ bi+ cj + dk 7→
[
a+ d b+ c
c− b a− d

]
.

3. Intersection of a double cone and a line
In this section, we will take a line and a double cone and determine the

conditions for their intersection to occur. We will consider a double cone
to be a geometric figure made up of two right circular infinite cones placed
apex to apex such that both share the same axis of symmetry. Of course,
this double cone could be in any place of the three dimensional space, but
for the sake of convenience, we will consider that the cone apexes are at the
origin of the coordinates and that the axis of symmetry is the vertical axis.
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If this is not the case, we can always translate and/or rotate the cone such
that these conditions are met.

In order to study the intersection, we will use the pure split-quaternions
and find out that they form a convenient framework.

Consider the (2 + 1)-Minkowski space with the two horizontal axis chosen
to be spatial dimensions while the vertical axis is time. The split-quaternions
i, j, k are the unit vectors in the t, x, y axis, respectively (Figure 1). For the
sake of simplicity, in what follows, we write 〈·, ·〉 and ∧ instead of 〈·, ·〉L and
∧L, respectively.

Figure 1. The (2 + 1)-Minkowski space with the unit vectors
i, j, k represented.

Each point in the Minkowski space is usually called an event. In what
follows, through a vectorization of the affine Minkowski space, the end-point
of a position vector (with respect to the origin of the coordinates) is identified
with that vector.

Definition 3.1. A line is the set of events (pure split-quaternions) {a +

λb : a, b ∈ Ĥ0, b 6= 0, λ ∈ R}, where b gives the line direction and a is an
event in the Minkowski space.

Definition 3.2. The double cone is the set of events (pure split-quaternions)
{ti+ xj + yk : x2 + y2 = t2, x, y, t ∈ R}.

Observe that any double cone that we consider can fit this definition after
an appropriate scaling. For this reason, we will consider only double cones
that satisfy this definition. Thus, we will be considering always this double
cone and an arbitrary line.
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The upper cone is known as the future light cone and the lower one as
the past light cone. If an event is inside the future light cone, we will call
it a future event and if it is inside the past light cone, we will call it a past
event (Figure 2). Thus if a is a future event, then tr(a) > 0 and n(a) > 0.
Likewise, if it is a past event, then tr(a) < 0 but still n(a) > 0. In any case,
if a line passes through a future or past event, then it must intersect the
double cone.

Figure 2. A light cone diagram.

Given a vector b, the set of all events orthogonal to b will form a plane
known as a separation plane. Given an event a, if b is either timelike or
lightlike or spacelike, then the inner product of a with b will be negative,
zero or positive when a is above, over or below the separation plane of b,
respectively. Else, if b is spacelike, then the inner product of a with b will be
negative if a and b are on the same side with respect to the separation plane
of b, zero if a is over the separation plane of b, and positive otherwise.

If a line is timelike, i.e, with a timelike vector direction, its separation plane
contains no lightlike event, [5]. In other words, a timelike vector will never
be orthogonal to a lightlike one.

Lemma 3.3. Let u ∈ Ĥ0 be timelike. If u⊥ 6= 0 is orthogonal to u, then u⊥
is spacelike.

Proof : Let u ∈ Ĥ0 be timelike and u⊥ belong to the separation plane of u.
Then n(u) > 0 and 〈u, u⊥〉 = 0.
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For each u⊥ considered, there exists an α such that v = u⊥+αu is lightlike,
i.e, n(v) = 0.

Figure 3. Representation of u, u⊥ and the lightlike vector v.

Hence,

n(v) = −〈v, v〉
= −〈u⊥ + αu, u⊥ + αu〉
= −〈u⊥, u⊥〉 − 2α〈u⊥, u〉 − α2〈u, u〉
= n(u⊥) + α2n(u).

But n(v) = 0. Thus, n(u⊥) + α2n(u) = 0 which implies that n(u⊥) =
−α2n(u). Since n(u) > 0, we conclude that n(u⊥) < 0 and u⊥ is spacelike.

Lemma 3.4. Let u ∈ Ĥ0\{0} be lightlike. If u⊥ 6= 0 is orthogonal to u, then
u⊥ will never be timelike, i.e., n(u⊥) ≤ 0.

Proof : Let us demonstrate by contradiction. Suppose that given u ∈ Ĥ0

lightlike there exists a timelike u⊥ orthogonal to u. If this is the case, then
u is orthogonal to u⊥ and, by Lemma 3.3, u must be spacelike, which is a
contradiction since u is by hypothesis lightlike. This completes the proof.

Observe that if u is spacelike, then an orthogonal vector u⊥ may be space-
like, lightlike or timelight. For example, given the spacelike vector u =
(1, 1, 1), any orthogonal vector u⊥ = (x, y, t) must satisfy the equation t =
x+ y. The vectors v1 = (1, 1, 2), v2 = (1,−1, 0) and v3 = (1, 0, 1) satisfy the
referred equation but n(v1) > 0, n(v2) < 0 and n(v3) = 0, which implies that
v1, v2 and v3 is timelike, spacelike and lightlike, respectively.
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Proposition 3.5. Let u, v be two events such that at least one of them is
timelike. Then n(u ∧ v) < 0.

Proof : Let us suppose, without loose of generality, that u is timelike. Then,
n(u) > 0. We can decompose v such that v = αu + βu⊥, where u⊥ is a
convenient vector belonging to the separation plane of u. Hence,

n(v) = −〈v, v〉
= −〈αu+ βu⊥, αu+ βu⊥〉
= −α2〈u, u〉 − β2〈u⊥, u⊥〉
= α2n(u) + β2n(u⊥),

and

〈u, v〉 = 〈u, αu+ βu⊥〉
= α〈u, u〉
= −αn(u).

From (1), we obtain

n(u ∧ v) = n(u)n(v)− 〈u, v〉2

= n(u)
(
α2n(u) + β2n(u⊥)

)
− (−αn(u))2

= α2n2(u) + β2n(u)n(u⊥)− α2n2(u)

= β2n(u)n(u⊥).

But by hypothesis, n(u) > 0. From Lemma 3.3, n(u⊥) < 0 and so we
conclude that n(u ∧ v) < 0.

In the following theorem, we characterize the conditions for a line to inter-
sect a double cone and give an explicit formula for the intersections.

Theorem 3.6. Let L be a line passing at an event a and with direction b 6= 0.

(1) If n(b) 6= 0, then the line L will intersect the double cone at 0, 1 or 2
points whenever n(a ∧ b) is positive, zero or negative, respectively. The
intersecting points are given by

s = a+
< a, b > ±

√
−n(a ∧ b)

n(b)
b.

(2) If n(b) = 0, then the line L will intersect the double cone at 0, 1 or
infinite points.
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(i) If a doesn’t belong to the separation plane of b, then the line L will
intersect the double cone once at

s = a+
n(a)

2 < a, b >
b.

(ii) If a belongs to the separation plane of b
(α) and n(a) = 0, then the line L will intersect the double cone

an infinite number of times, i.e., all the points of the line will
belong to the double cone;

(β) and n(a) 6= 0, then the line L will not intersect the double
cone.

Proof : Consider the line that passes through an event a and has direction
b 6= 0. The generic point of this line can be represented by X = a+ λb, with
λ ∈ R. The intersection of this line with the double cone will consist of the
points of this line that belong to the double cone. But all the points of the
double cone are lightlike. Hence, if s is such a point, then 〈s, s〉 = 0. But

〈s, s〉 = 〈a+ λb, a+ λb〉
= 〈a, a〉+ 2λ 〈a, b〉+ λ2 〈b, b〉 .

Since 〈a, a〉 = −n(a) and 〈b, b〉 = −n(b), we obtain

λ2n(b)− 2λ 〈a, b〉+ n(a) = 0. (2)

If n(b) 6= 0, then

λ =
2 〈a, b〉 ±

√
4 〈a, b〉2 − 4n(a)n(b)

2n(b)

=
〈a, b〉 ±

√
〈a, b〉2 − n(a)n(b)

n(b)
.

But 〈a, b〉2 − n(a)n(b) = −n(a ∧ b). Hence,

λ =
〈a, b〉 ±

√
−n(a ∧ b)

n(b)
,

from where we conclude that the line will intersect the double cone 0, 1 or
2 times whenever n(a ∧ b) is positive, zero and negative, respectively. In the
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two latter cases, the intersection points of the line with the double cone will
be given by

s = a+
〈a, b〉 ±

√
−n(a ∧ b)

n(b)
b.

If n(b) = 0, then from equation (2), we obtain

−2λ 〈a, b〉+ n(a) = 0. (3)

If the event a belongs to the separation plane of b, then 〈a, b〉 = 0. In this
case, the points of the line will belong to the double cone if, and only if,
n(a) = 0. In this case, all points of the line will belong to the double cone.
If this is not the case, there will be no intersection.

If the event does not belong to the separation plane of b, then 〈a, b〉 6= 0
and the solution of equation (3) will be

λ =
n(a)

2 〈a, b〉
.

In this case, the intersection point of the line with the double cone will be
given by

s = a+
n(a)

2 〈a, b〉
b.

Observe that if the event a or the direction b are timelike, then, by Propo-
sition 3.5, n(a ∧ b) < 0 and the line will always intersect at least once the
double cone.
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