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Abstract: We characterise regular Goursat categories through a specific stability
property of regular epimorphisms with respect to pullbacks. Under the assumption
of the existence of some pushouts this property can be also expressed as a restricted
Beck-Chevalley condition, with respect to the fibration of points, for a special class
of commutative squares. In the case of varieties of universal algebras these results
give, in particular, a structural explanation of the existence of the ternary operations
characterising 3-permutable varieties of universal algebras. We then prove that the
reflector to any (regular epi)-reflective subcategory of a regular Goursat category
preserves pullbacks of split epimorphisms. This implies that the so-called internal
Galois pregroupoid of an extension is an internal groupoid.
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Introduction

A variety of universal algebras is called a Mal’tsev variety [25] when any
pair of congruences R and S on the same algebra 2-permute, meaning that
RS = SR. The celebrated Mal’tsev theorem asserts that the algebraic theory
of such a variety is characterised by the existence of a ternary term p(x, y, z)
such that the identities p(x, y, y) = x and p(x, x, y) = y hold [22]. The weaker
3-permutability of congruences RSR = SRS, which defines 3-permutable
varieties, is also equivalent to the existence of two ternary operations r and s

such that the identities r(x, y, y) = x, r(x, x, y) = s(x, y, y) and s(x, x, y) = y

hold [17]. A nice feature of 3-permutable varieties is the fact that they are
congruence modular, a condition that plays a crucial role in the development
of commutator theory [12, 16].
Many interesting results have been discovered in regular Mal’tsev cate-

gories [11] and in regular Goursat categories [10], which can be seen as the
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categorical extensions of Mal’tsev varieties and of 3-permutable varieties, re-
spectively. The interested reader will find many properties of these categories
in the references [2, 3, 5, 9, 10, 11, 13, 14, 19, 20, 21, 24], for instance.
For Mal’tsev categories, and many other algebraic categories, there are

some elegant characterisations expressed in terms of the fibration of points [5,
3]. Recall that, given a category C with pullbacks, the fibration of points is
the functor Pt(C) → C associating the codomain W to any “point” in C,
i.e. to any split epimorphism g : U → W with a given splitting j : W → U .
For any morphism β : Y → W in C, the change-of-base functor, defined by
pulling back along β, is denoted by β∗ : PtW (C) → PtY (C). One of the goals
of this paper is to give a characterisation of regular Goursat categories by us-
ing this fibration. It turns out that such a characterisation not only involves
the change-of-base functors β∗ with respect to the fibration of points, but
also their left adjoints β!, which exist as soon as the category admits push-
outs of split monomorphisms [4]. It is precisely the so-called Beck-Chevalley
condition (Theorem 1.4) for the commutative squares of the following type

X
α // //

f
��

U

g
��

Y
β

// //

i

OO

W,

j

OO

where α and β are regular epimorphisms and f and g are split epimorphisms
(i.e. the pair (α, β) is a regular epimorphism in the category Pt(C)). In fact,
the Goursat property can be also expressed in terms of the functors β! alone:
β! preserves binary products, for any regular epimorphism β.
The proof of these results also relies on the fact that the Shifting Lemma [16]

holds in any regular Goursat category [6], since the lattice of equivalence re-
lations on any object is modular [10]. A more general characterisation of
Goursat categories among regular categories is also obtained without requir-
ing the existence of pushouts along split monomorphisms and involves a
stability property for regular epimorphisms (Theorem 1.3). In the varietal
case, the existence of the ternary operations characterising 3-permutable va-
rieties mentioned above can be deduced from this theorem by applying it to
a suitable diagram involving free algebras (Remark 1.5).
As a consequence of the results in this paper, we obtain an extension to

regular Goursat categories of a known result in the regular Mal’tsev context
(Proposition 3.6 in [9]): the reflector to a (regular epi)-reflective subcategory
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of a regular Goursat category always preserves pullbacks of split epimor-
phisms along split epimorphisms (Proposition 2.1). It then follows that the
so-called internal Galois pregroupoid [18] associated to an extension is nec-
essarily an internal groupoid (Corollary 2.3).
Let us finally mention that the possibility of formulating some exactness

properties of Mal’tsev categories in terms of a suitable Beck-Chevalley con-
dition has been first suggested to the authors by Zurab Janelidze during
the Workshop in Category Theory at the University of Coimbra in 2012,
where the work [14] was presented. We would like to warmly thank Zurab
for this suggestion. The present paper shows that a suitable Beck-Chevalley
condition characterises Goursat categories. Independently, Clemens Berger
and Dominique Bourn have discovered a stronger condition that holds in the
special case of exact Mal’tsev categories (Proposition 1.24 in [2]).

1. Goursat categories

In this section we give a new characterisation for a regular category [1] to
be a Goursat category through a stability property of regular epimorphisms,
similar to the known characterisation for regular Mal’tsev categories given in
Proposition 3.6 in [14].
Recall that a regular category C is called a Goursat category [10] when the

composition of (effective) equivalence relations R and S on a same object
in C is 3-permutable: RSR = SRS. Given a relation R = (R, r1, r2) from
an object X to an object Y , we write Ro for the opposite relation (R, r2, r1)
from Y to X.
From [10] and [20] we have:

Theorem 1.1. Let C be a regular category. The following conditions are
equivalent:

(i) C is a Goursat category;
(ii) E◦ 6 EE, for any reflexive relation E;
(iii) (1X ∧ T )T ◦(1X ∧ T ) 6 TT , for any relation T on an object X;
(iv) PP ◦PP ◦ 6 PP ◦, for any relation P .

Proof : (i) ⇔ (ii). By Theorem 1 in [20].
(i) ⇔ (iv). By Theorem 3.5 of [10].
(i) ⇔ (iii). This type of equivalence was mentioned at the end of [20]. Note
that condition (iii) is a stronger version of condition (ii), so that it will suffice
to prove that (iv) ⇒ (iii). In a regular context, it suffices to give a proof in
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set-theoretical terms (see Metatheorem A.5.7 in [3], for instance). Suppose
that (x, x) ∈ T, (y, x) ∈ T and (y, y) ∈ T . We want to prove that (x, y) ∈ TT ,
i.e. that (x, α) ∈ T and (α, y) ∈ T , for some α ∈ X. We define a relation P

from X ×X to X by: ((a, b), c) ∈ P if and only if (a, c) ∈ T and (c, b) ∈ T .
One then sees that

(x, x)Px, (y, x)Px, (y, x)Py, (y, y)Py

implying that
(x, x)PP ◦PP ◦(y, y).

By condition (iv) it follows that

(x, x)PP ◦(y, y)

and there is an α ∈ X such that

(x, x)Pα, (y, y)Pα.

One concludes then that
xTαTy.

Before proving the main results of this section we need to recall a useful
property of regular Goursat categories, namely the validity of the so-called
Shifting Lemma [16]. In the context of varieties of universal algebras this
property is equivalent to the modularity of the lattice of congruences on
any of its algebras. The modularity of the lattice (LX ,∨,∧) of equivalence
relations on any object X also holds in any regular Goursat category, as
shown in [10]. More precisely, given equivalence relations R, S and T in LX ,

R 6 T ⇒ ( R ∨ (S ∧ T ) = (R ∨ S) ∧ T ) .

In this context, the supremum R ∨ S of two equivalence relations in LX is
given by the triple relational composite R∨ S = RSR. By using generalized
elements the validity of the Shifting Lemma can be expressed as follows:

Shifting Lemma

Given equivalence relations R, S and T on the same object X such that
R∧S 6 T , whenever x, y, t, z are elements inX with (x, y) ∈ R∧T , (x, t) ∈ S,
(y, z) ∈ S and (t, z) ∈ R, it then follows that (t, z) ∈ T :

x
S

RT

t

R T

T C

�

{jy
S

z

(1)
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The Shifting Lemma holds in any regular Goursat category [6], as we are
now going to recall by using the internal logic of a regular category. Given a
diagram (1), the 3-permutability of the equivalence relations implies that

(t, z) ∈ S(R ∧ T )S = (R ∧ T )S(R ∧ T ).

Accordingly, there exist a and b such that (t, a) ∈ R ∧ T , (a, b) ∈ S, and
(b, z) ∈ R∧T . Then (a, b) is also in R, thus in T , since R∧S 6 T ; it follows
that (t, z) ∈ T , as desired.
The property expressed by the Shifting Lemma has been extended to a

categorical context in [7], giving rise to the notion of Gumm category. Indeed,
the Shifting Lemma can be equivalently reformulated in any finitely complete
category C by asking that a specific class of internal functors are discrete
fibrations (see [6] and [7] for more details).
One of the fundamental results in this paper is given in Theorem 1.3 below,

where regular Goursat categories are characterised by a stability property of
regular epimorphisms with respect to pullbacks. Such a stability condition is
an extension of the following one were regular epimorphisms are stable with
respect to kernel pairs:

Theorem 1.2. [13] Let C be a regular category. The following conditions
are equivalent:

(i) C is a Goursat category;
(ii) any pushout

X
α // //

f
��

U

g
��

Y
β

// //

i

OO

W,

j

OO

where f and g are split epimorphisms and α and β are regular epi-
morphisms (commuting also with the splittings), is a Goursat pushout:
the comparison morphism λ : Eq(f) → Eq(g) induced by the universal
property of the kernel pair Eq(g) of g is also a regular epimorphism.

Theorem 1.3. Let C be a regular category. The following conditions are
equivalent:

(i) C is a Goursat category;
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(ii) for any commutative cube

X ×Y Z

��

&&MMMMMMMMMM

λ // U ×W V

���
�
�
�
�
�

&&NNNNNNNNNN

Z

l
��

ffMMMMMMMMMM γ
// // V

h

��

ffNNNNNNNNNN

X

OO

f &&MMMMMMMMMMMM
α // //____________ U

OO�
�
�
�
�
�

g &&M
M

M
M

M
M

Y

k

OO

i
ffMMMMMMMMMMMM

β
// // W,

OO

j
ffM

M
M

M
M

M

(2)

where the left and right faces are pullbacks of split epimorphisms and
α, β and γ are regular epimorphisms (commuting also with the split-
tings), then the comparison morphism λ : X ×Y Z → U ×W V is also
a regular epimorphism;

(iii) for any commutative cube

X ×Y Z

πX

��

πZ &&NNNNNNNNNNN

δ // // A

���
�
�
�
�
�

$$II
III

II
II

I

Z

l
��

〈il,1Z〉
ffNNNNNNNNNNN γ

// // V

h

��

ddIIIIIIIIII

X

〈1X ,kf〉

OO

f &&NNNNNNNNNNNNN
α // //___________ U

OO�
�
�
�
�
�

g $$I
I

I
I

I

Y

k

OO

i
ffNNNNNNNNNNNNN

β
// // W,

OO

j
ddI

I
I

I
I

(3)

where the left face is a pullback of split epimorphisms, the right face
is a commutative diagram of split epimorphisms and the horizontal
arrows α, β, γ, δ are regular epimorphisms (commuting also with the
splittings), then the right face is a pullback.

Proof : (i) ⇒ (ii). Again, it suffices to give a proof in set-theoretical terms.
Let (u, v) ∈ U ×W V . Then there exist x ∈ X and z ∈ Z such that α(x) = u

and γ(z) = v; thus gα(x) = hγ(z). We define a binary relationR on Y×U×V

by:

((y1, u1, v1), (y2, u2, v2)) ∈ R

if y1 = l(z̄), u1 = α(x̄), y2 = f(x̄) and v2 = γ(z̄), for some x̄ and z̄. We have
the following relations:
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• (f(x), α(x), γkf(x))R (f(x), α(x), γkf(x)), for x̄ = x and z̄ = kf(x);

• (l(z), αif(x), γ(z))R (f(x), α(x), γkl(z)), for x̄ = if(x) and z̄ = kl(z);

• (l(z), αil(z), γ(z))R (l(z), αil(z), γ(z)), for x̄ = il(z) and z̄ = z.

From gα(x) = hγ(z), we get that γkf(x) = γkl(z) and αif(x) = αil(z). So:

(f(x), α(x), γkf(x))(1Y×U×V ∧R)R◦(1Y×U×V ∧R)(l(z), αil(z), γ(z)).

From Theorem 1.1(iii), we can conclude that

(f(x), α(x), γkf(x))RR (l(z), αil(z), γ(z)).

So, (f(x), α(x), γkf(x))R(y′, u′, v′)R(l(z), αil(z), γ(z)), for some (y′, u′, v′).
From the definition of R we can conclude that: l(z̄) = f(x), α(x̄) = α(x),
f(x̄) = y′, γ(z̄) = v′ and l(¯̄z) = y′, α(¯̄x) = u′, f(¯̄x) = l(z), γ(¯̄z) = γ(z), for
some x̄, z̄, ¯̄x, ¯̄z. Then, there exists (x̄, ¯̄z) ∈ X ×Y Z, since f(x̄) = y′ = l(¯̄z),
such that λ(x̄, ¯̄z) = (α(x̄), γ(¯̄z)) = (α(x), γ(z)) = (u, v).
(ii) ⇒ (i). We can consider the left and right faces in the cube (2) to be

kernel pairs of split epimorphisms. Then condition (ii) translates into the
statement of Theorem 1.2(ii).
(ii) ⇒ (iii). By assumption we know that the induced arrow λ : X ×Y Z →

U ×W V is a regular epimorphism, and this implies that the unique induced
arrow c : A → U×W V such that cδ = λ is a regular epimorphism as well. To
show that c is also a monomorphism it suffices to show that Eq(λ) 6 Eq(δ),
since one always has Eq(δ) 6 Eq(λ).
As a preliminary step, we first show that Eq(πX)∧Eq(λ) 6 Eq(δ). Consider
an element ((x, z), (x, w)) ∈ Eq(πX)∧Eq(λ). This implies that f(x) = l(z) =
l(w), and (z, w) ∈ Eq(γ); accordingly, ((il(z), z), (il(w), w)) ∈ Eq(δ). Define
then the relation P from X ×Y Z to Z as follows:

((a, b), c) ∈ P if and only if ((a, b), (a, c)) ∈ Eq(δ),
so that also (a, c) ∈ X ×Y Z by definition. Then:

• ((x, z), z) ∈ P ;
• ((il(z), w), z) ∈ P , since l(z) = l(w) and ((il(z), z), (il(w), w)) ∈ Eq(δ), as
observed above;
• ((il(w), w), w) ∈ P ;
• ((x, w), w) ∈ P .

It follows that ((x, z), (x, w)) ∈ PP ◦PP ◦ and, from Theorem 1.1, we get
((x, z), (x, w)) ∈ PP ◦. There is then a θ such that ((x, z), θ) ∈ P and
((x, w), θ) ∈ P . The fact that Eq(δ) is an equivalence relation implies that
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((x, z), (x, w)) ∈ Eq(δ), since ((x, z), (x, θ)) ∈ Eq(δ) and ((x, w), (x, θ)) ∈
Eq(δ). It follows that Eq(πX) ∧ Eq(λ) ≤ Eq(δ).
Consider then an element ((x1, z1), (x2, z2)) ∈ Eq(λ): this means that

f(x1) = l(z1), f(x2) = l(z2) and λ(x1, z1) = λ(x2, z2) (thus, in particular,
α(x1) = α(x2)). We are going to show that δ(x1, z1) = δ(x2, z2). To do so,
we apply the Shifting Lemma to the following situation

(x1, kf(x1))
Eq(πX)

Eq(λ)Eq(δ)

(x1, z1)

Eq(λ) Eq(δ)

+
�

�

(x2, kf(x2))
Eq(πX)

(x2, z2),

where the solid lines represent relations holding by assumption. Note that
all the elements (x1, z1), (x2, z2), (x1, kf(x1)), (x2, kf(x2)) are in X×Y Z and,
moreover, ((x1, kf(x1)), (x2, kf(x2))) ∈ Eq(λ): this follows from the fact that
((x1, kf(x1)), (x2, kf(x2))) ∈ Eq(δ) (since α(x1) = α(x2)). The inequality
Eq(πX) ∧ Eq(λ) 6 Eq(δ) allows one to apply the Shifting Lemma to the
diagram above and to conclude that also the relation in the dashed line
holds, i.e. ((x1, z1), (x2, z2)) ∈ Eq(δ).
(iii) ⇒ (ii). This implication easily follows by taking the (regular epimor-

phism, monomorphism) factorisation of the comparison morphism λ given in
diagram (2), say λ = mδ. One then obtains a cube of the type (3) which,
by assumption, is such that the right face is a pullback. Consequently, λ is
isomorphic to the regular epimorphism δ.

In the last part of this section we give a characterisation of regular Goursat
categories through the fibration of points. Thus, we add Goursat categories to
the list of (many) algebraic categories characterised in these terms (see [5, 3]).
A point in a category C is a split epimorphism f : X → Y together with a

fixed splitting i : Y → X, usually depicted as

X
f

//Y
ioo .
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The category of points in C is denoted by Pt(C). When C has pullbacks of
split epimorphisms, the functor sending a point to its codomain

Pt(C) → C

U
g

//W
j

oo 7→ W

is a fibration, called the fibration of points [4]. Given a morphism β : Y →
W , the change-of-base functor with respect to this fibration is denoted by
β∗ : PtW (C) → PtY (C). If C has, moreover, pushouts along split monomor-
phisms, then any pullback functor β∗ has a left adjoint

β! : PtY (C) → PtW (C),

X
f

//Y
ioo 7→ β!(X)

β!(f)
//W

β!(i)
oo

where (β!(X), β!(f), β!(i)) ∈ PtW (C) is determined by the right hand part of
the following pushout:

X
β

// β!(X)

Y
β

//

i

OO

W.

β!(i)

OO

Observe that the arrow β in the diagram above is a regular epimorphism
whenever β is a regular epimorphism.

Theorem 1.4. Let C be a regular category with pushouts along split mono-
morphisms. Then the following conditions are equivalent:

(i) C is a Goursat category;
(ii) for any regular epimorphism β : Y → W in C the functor β! : PtY (C) →

PtW (C) preserves binary products;
(iii) for any commutative square

X
α // //

f
��

U

g
��

Y
β

// //

i

OO

W

j

OO

where f and g are split epimorphisms and α and β are regular epi-
morphisms (commuting also with the splittings), the Beck-Chevalley
condition holds: there is a functor isomorphism α!f

∗ ∼= g∗β!.
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Proof : (i) ⇒ (iii). Given a point (Z, l, k) over Y consider the pullback defin-
ing f ∗(Z, l, k):

X ×Y Z
πZ

//

πX

��

Z

l
��

oo

X
f

//

OO

Y.

k

OO

ioo
(4)

The following commutative cube is obtained by applying the functor α! and
β! to the points f ∗(Z, l, k) (over X) and (Z, l, k) (over Y ), respectively:

X ×Y Z

πX

��

πZ &&LLLLLLLLLLL

α // // α!(X ×Y Z)

���
�
�
�
�
�
�

((QQQQQQQQQQQ

Z

l
��

ffLLLLLLLLLLL β
// // β!(Z)

��

hhQQQQQQQQQQQ

X

OO

f ''NNNNNNNNNNNNN
α // //______________ U

OO�
�
�
�
�
�
�

g
))RRRRRRRR

Y

k

OO

i
ggNNNNNNNNNNNNN

β
// // W.

OO

j
iiR R R R R R R R

This diagram is of the form (3). Consequently, the right face is a pullback
by Theorem 1.3(iii), so that g∗β! ∼= α!f

∗.
(iii) ⇒ (ii). Let (X, f, i) and (Z, l, k) be points over Y and consider their

product in PtY (C), which is given by the pullback (4). We take its image
through the functor β! : PtY (C) → PtW (C):

X ×Y Z

πX

��

πZ &&LLLLLLLLLLL

β
// // β!(X ×Y Z)

���
�
�
�
�
�
�

((QQQQQQQQQQQ

Z

l

��

ffLLLLLLLLLLL
// // β!(Z)

��

hhQQQQQQQQQQQ

X

OO

f &&MMMMMMMMMMMMM
// //_____________ β!(X)

OO�
�
�
�
�
�
�

((QQQQQQQ

Y

k

OO

i
ffMMMMMMMMMMMMM

β
// // W.

OO

hhQ Q Q Q Q Q Q

(5)

By applying the assumption to the bottom commutative face, we conclude
that the right face is a pullback, i.e. β! preserves binary products.



BECK-CHEVALLEY CONDITION AND GOURSAT CATEGORIES 11

(ii) ⇒ (i). Consider the diagram (2), where α, β, γ are assumed to be
regular epimorphisms, and let us show that the induced arrow λ is also a
regular epimorphism. The image of the points over Y of the left face of (2)
by the functor β! determines the commutative diagram (5). One then obtains
the following commutative diagram

β!(X ×Y Z)

��

''OOOOOOOOOOOOOO

φ
//______________ U ×W V

���
�
�
�
�
�
�
�
�

%%LLLLLLLLLLLLLLL

β!(Z)

��

ggOOOOOOOOOOOOOO
τ // // V

��

eeLLLLLLLLLLLLLLL

β!(X)

OO

''OOOOOOOOOOOOOOOOO

σ // //_________________ U

OO�
�
�
�
�
�
�
�
�

&&L
L

L
L

L
L

L
L

W

OO

ggOOOOOOOOOOOOOOOOO

1W
W,

OO

ffL
L

L
L

L
L

L
L

(6)

where the arrows σ, τ and φ are induced by the universal properties of the
pushouts defining β!(X), β!(Z) and β!(X ×Y Z), respectively, and φβ = λ.
The fact that α and γ are regular epimorphisms implies that σ and τ are
regular epimorphisms, while the assumption guarantees that the left face in
the diagram (6) is a pullback in C. It then follows that the induced arrow φ

is a regular epimorphism as well, and so is then the arrow

λ : X ×Y Z → U ×W V.

This shows that condition (ii) in Theorem 1.3 is satisfied, and C is then a
Goursat category, as desired.

Remark 1.5. A variety of universal algebras is 3-permutable when its alge-
braic theory has two ternary operations r and s such that the identities

r(x, y, y) = x, r(x, x, y) = s(x, y, y) and s(x, x, y) = y
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hold [17]. We can prove the existence of such ternary operations by applying
the property stated in Theorem 1.3(ii) to the following commutative cube

P

��

%%KKKKKKKKKKKKKKKK
λ // Eq(∇)

���
�
�
�
�
�
�
�
�

&&MMMMMMMMMMMMMMM

3X

1+∇

��

eeKKKKKKKKKKKKKKKK
∇+1 // // 2X

∇

��

ffMMMMMMMMMMMMMMM

3X

OO

∇+1
%%KKKKKKKKKKKKKKK 1+∇

// //________________ 2X

OO�
�
�
�
�
�
�
�
�

∇
&&MMMMMMMMM

2X



i1 i2





OO



i2 i3





eeKKKKKKKKKKKKKKK

∇
// // X,

i1

OO

i2

ffM M M M M M M M M

where X is the free algebra on one element, kX denotes a k-indexed copower
of X and ij the canonical j-th injection, P denotes the object part of the
pullback defining the left face and

∇ =


1X 1X



 : 2X → X

is the codiagonal. By Theorem 1.3(ii), the comparison morphism λ is a
surjective homomorphism. The terms p1(x, y) = x and p2(x, y) = y are such
that (p1, p2) ∈ Eq(∇). Since λ is surjective, there exist ternary terms, say r

and s, such that:
(r, s) ∈ P , from which we deduce that r(x, x, y) = s(x, y, y), and
λ(r, s) = (p1, p2), which gives r(x, y, y) = x and s(x, x, y) = y.

2. Reflections for Goursat categories

In this section we show that any (regular epi)-reflective subcategory X of a
regular Goursat category C has the property that the reflector I : C → X pre-
serves pullbacks of split epimorphisms along split epimorphisms, extending
the same result which is known for regular Ma’tsev categories (Proposition
3.6 in [9]). Consequently, every internal Galois pregroupoid of an extension
is an internal groupoid.
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Proposition 2.1. Consider a (regular epi)-reflective subcategory X of a reg-
ular Goursat category C

C
I //
⊥ X ,

?
_

U
oo

where U : X → C is a full inclusion. Then the reflector I : C → X preserves
pullbacks of pairs of split epimorphisms.

Proof : Consider the following commutative diagram where the left face is a
pullback of split epimorphisms, the right face is its image through the functor
UI : C → C and η denotes the unit of the adjunction:

X ×Y Z

πX

��

πZ %%KKKKKKKKKKK

ηX×Y Z

// // UI(X ×Y Z)

���
�
�
�
�
�
�

((QQQQQQQQQQQ

Z

l

��

eeKKKKKKKKKKK ηZ // // UI(Z)

��

hhQQQQQQQQQQQ

X

OO

f %%KKKKKKKKKKKK

ηX // //____________ UI(X)

OO�
�
�
�
�
�
�

((QQQQQQ

Y

k

OO

i
eeKKKKKKKKKKKK

ηY
// // UI(Y ).

OO

hhQ Q Q Q Q Q

This commutative diagram verifies the conditions of the commutative dia-
gram (3) in Theorem 1.3. It follows that the right face is a pullback, since C
is a Goursat category. But U : X → C is a full inclusion that preserves and
reflects pullbacks, and this completes the proof.

We follow [19] in calling a (regular epi)-reflective subcategory X of an exact
category C a Birkhoff subcategory if, moreover, X is closed in C under regular
quotients.

Corollary 2.2. Consider a Birkhoff subcategory X of an exact Goursat cat-
egory C

C
I //
⊥ X ,

?
_

U
oo

where U : X → C is a full inclusion. Then the reflector I : C → X preserves
pullbacks of split epimorphisms along regular epimorphisms.
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Proof : Let

P
p2 // //

p1
��

C

g
��

A p
// //

OO

B

OO

(7)

be a pullback of a split epimorphism g along a regular epimorphism p. By
taking the kernel pairs Eq(p2) of p2 and Eq(p) of p and then applying UI

one gets the commutative diagram

UI(Eq(p2)) // //

��

UI(P )
UI(p2)

// //

UI(p1)

��

(A)

UI(C)

UI(g)

��

UI(Eq(p)) ////

OO

UI(A)
UI(p)

// //

OO

UI(B).

OO

(8)

The two (downward oriented) commutative squares on the left are pullbacks,
since UI preserves pullbacks of split epimorphisms along split epimorphisms.
It suffices to prove that (A) is a pullback, since U reflects pullbacks. Now,
by taking the regular image of Eq(p2) along the regular epimorphism ηP one
gets an effective equivalence relation ηP (Eq(p2)) on UI(P ), since C is an exact
Goursat category. Moreover, UI(p2) is its coequaliser in C, since X is stable in
C under regular quotients. Accordingly, ηP (Eq(p2)) ∼= Eq(UI(p2)). Similarly,
ηA(Eq(p)) ∼= Eq(UI(p)) yielding the following commutative diagram:

UI(Eq(p2)) // //

��

Eq(UI(p2))

��

////

(B)

UI(P )

UI(p1)

��

UI(Eq(p)) // //

OO

Eq(UI(p)) ////

OO

UI(A).

OO

The exterior rectangles are the left pullbacks in diagram (8) and the dotted
arrows are regular epimorphisms by construction. By applying Proposition
4.1 in [15] we conclude that the squares (B) are pullbacks. By the usually
called Barr-Kock theorem [1] we conclude that (A) is a pullback, as desired.

We finally observe that the so-called internal Galois pregroupoids associ-
ated to an extension are always internal groupoids in the Goursat context.
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First recall from [18] that an internal precategory in a category C is a
diagram of the form

P2

p1 //

p2 //

m // P1

d1 //

d2 //
P0

soo

with

(1) d1s = 1P0
= d2s;

(2) d2p1 = d1p2;
(3) d1p1 = d1m, d2p2 = d2m.

In other words, an internal precategory in C can be seen as what remains of
the definition of an internal category in C when one cancels all references to
pullbacks.
Every extension (= regular epimorphism) f : A → B in C induces the

internal groupoid given by the equivalence relation determined by the kernel
pair of f :

Eq(f)×A Eq(f)

p1 //

p2 //

m // Eq(f)

d1 //

d2 //
A.

soo

By applying the left adjoint I : C → X of the inclusion functor U : X → C to
this equivalence relation one always obtains an internal precategory in X :

I(Eq(f)×A Eq(f))

I(p1)
//

I(p2)
//

I(m)
// I(Eq(f))

I(d1)
//

I(d2)
//

I(A).
I(s)

oo

This special kind of internal precategory is called the internal Galois pre-
groupoid of f (see [18] for more details), and is denoted by Gal(f). It turns
out to always be an internal groupoid in the Goursat context:

Corollary 2.3. Consider a (regular epi)-reflective subcategory X of a regular
Goursat category C

C
I //
⊥ X ,

?
_

U
oo

where U : X → C is a full inclusion. Given any extension f : A → B in C,
then the internal Galois pregroupoid Gal(f) is an internal groupoid.

Proof : An internal precategory is an internal groupoid when certain commu-
tative squares of split epimorphisms are pullbacks (see [3], for instance). The
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result follows immediately from the fact that those pullbacks are preserved
by I (Proposition 2.1).
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