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Abstract: We consider a special class of weak dependent random variables with
control on covariances of Lipschitz transformations. This class includes positively,
negatively associated variables and a few other classes of weakly dependent struc-
tures. We prove a Strong Law of Large Numbers with a characterization of conver-
gence rates which is almost optimal, in the sense that it is arbitrarily close to the
optimal rate for independent variables. Moreover, we prove an inequality comparing
the joint distributions with the product distributions of the margins, similar to the
well known Newman inequality for characteristic functions of associated variables.
As a consequence, we prove a Central Limit Theorem, together with its functional
counterpart, and also the convergence of the empircal process for this class of weak
dependent variables.
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1. Introduction
Limit theorems, either with respect to almost sure convergence or conver-

gence in distribution, are a central subject in statistics. In more recent years,
many authors were interested on the asymptotics for dependent sequences
of variables. Several forms of controlling the dependence have been pro-
posed, many of them expressing a control on covariances of transformations
of variables that may be thought of as representing the past with transfor-
mations of another set of variables representing the future. These depen-
dence structures are commonly named weak dependence. Many of these
notions stemmed from the positive dependence and association introduced
by Lehmann [9] and Esary, Proschan and Walkup [5], respectively. Associa-
tion was the first of these two notions to attract the interest of researchers,
and as expected, Strong Law of Large Numbers and Central Limit Theorems
were eventually proved. We refer the reader to the monographs by Bulinski
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and Shashkin [1], Oliveira [14] or Prakasa Rao [15] for an account of relevant
literature. Inevitably, several variations and extensions of these dependence
notions were introduced and limit theorems were proved. Among these, the
negative association defined by Joag-Dev and Proschan [7] was one of the
most popular, with various different extensions introduced in more recent
years: extended negative dependent (END) introduced by Liu [10], widely
orthant dependent (WOD) introduced by Wang, Wang and Gao [17] among
other variations. The proof techniques for these dependence structures re-
lied essentially on an adequate control of covariances between appropriate
families of transformations of the random variables. Thus, it was natural
to define the dependence control through some upper bound of a convenient
family of covariances, leading to the weak dependence notions, as introduced
by Doukhan and Louhichi [4]. Depending on the family and the control form,
these authors introduced different dependence notions. For an account on
these dependence structures and some relations, we refer the reader to the
monograph by Dedecker et al. [3].

In this paper, we will be interested in a particular version of weak depen-
dence, somewhat similar to the quasi-association introduced in Bulinski and
Suquet [2], that includes the positive and negative dependence notions re-
ferred above. For this type of weak dependence, we will prove a Strong Law
of Large Numbers with rates, a Central Limit Theorem and an invariance
principle. Concerning weak dependence notions, some asymptotic results are
proved in Doukhan and Louhichi [4]. However, the only inequality control-
ling tail probabilities, see Corollary 1 in [4], is a Bernstein type inequality,
with a relatively weak form. Later, Corollary 4.1 and Theorem 4.5 in [3] and
Kallabis and Neumann [8] also prove exponential inequalities that are analo-
gous to the Bernstein inequalities, but again with weaker exponents in their
upper bounds. This means that although Strong Law of Large Numbers may
be derived, not only the assumptions will become stronger, but convergence
rates that follow will not be almost optimal, in the sense that these rates may
be arbitrarily close to the well known rates for independent variables. In the
present paper, the version of weak dependence we will be studying allows for
the adaptation of techniques used for associated variables (see, for example,
Ioannides and Roussas [6], Oliveira [13], Sung [16]) providing stronger forms
of the Bernstein-type inequality, meaning that we will obtain almost optimal
convergence rates. As what concerns the asymptotic normality of sums of
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variables, some contributions for some variants of weakly dependent variable
may be found in Doukhan and Louhichi [4].

The paper is organized as follows: Section 2 defines the framework, Sec-
tion 3 proves some basic inequalities needed for the control of the almost sure
convergence, which is the object of Section 4, where Strong Law of Large
Numbers, with characterization of rates, are proved. Finally, in Section 5,
we extend the Newman inequality for characteristic functions to the present
dependence structure, from which a Central Limit Theorem, an invariance
principle and the convergence of the empirical process follow.

2. Definitions and framework
Let Xn, n ≥ 1, be centered random variables and define Sn = X1+· · ·+Xn.

As mentioned before, we will be interested in a particular form of weak
dependence, according to the following definition.

Definition 2.1. A finite sequence of random variables Xi, i = 1, . . . , n, is
said to be L-weakly dependent if there exist nonnegative coefficients γ`, ` ≥ 1,
such that for every disjoint subsets I, J ⊂ {1, . . . , n} and real valued Lipschitz
functions f and g, defined on the appropriate Euclidean spaces, the following
inequality is satisfied:

|Cov (f (Xi, i ∈ I) , g (Xj, j ∈ J))| ≤ ‖f‖L‖g‖L
∑
i∈I

∑
j∈J

γ|j−i|,

where ‖f‖L represents the Lipschitz norm of f :

‖f‖L = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

An infinite family of random variables is said to be L-weakly dependent if
every finite subfamily is L-weakly dependent.

This is a form of weak dependence in the same spirit as in Doukhan and
Louhichi [4] or Dedecker et al. [3]. With respect to the discussion in [3],
this dependence follows from what these authors called the κ or the ζ coef-
ficients. This means the examples of L-weakly dependent sequences include
positively associated, negatively associated, Gaussian sequences or models
for interacting particles systems (see Section 3.5.3 in [3] for details for this
last example). Moreover, the notion of quasi-association, introduced by Bu-
linski and Suquet [2], is also included in the L-weak dependence structure
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by choosing γk = Cov(X1, Xk+1), of course assuming the stationarity of the
random variables.

We will assume throughout this paper that

1

n
ES2

n −→ σ2 <∞. (1)

This, obviously, implies that for n large enough, we have ES2
n ≤ 2σ2n. Be-

sides, we will need to decompose Sn into an appropriate sum of blocks. For
this purpose, consider an increasing sequence of integers pn ≤ n

2 such that
pn −→ +∞, put rn = b n

2pn
c, where bxc represents the integer part of x, and

define the blocks:

Yj,n =

jpn∑
k=(j−1)pn+1

Xk, j = 1, . . . , 2rn. (2)

Notice that, if the random variables are bounded by c > 0, then |Yj,n| ≤ cpn.
Moreover, define the alternate sums:

Zn,od =

rn∑
j=1

Y2j−1,n and Zn,ev =

rn∑
j=1

Y2j,n.

Finally, we introduce the generalized Cox-Grimmett coefficients adapted to
the L-weak dependence structure,

v(n) =
∞∑
j=n

γj. (3)

3. Inequalities for bounded variables
This section establishes a few inequalities that are the basic tools for prov-

ing the almost sure convergence results. The inequalities below are extensions
of analogous results for associated random variables. We start by proving a
bound for the Laplace transform of the blocks Yj,n.

Lemma 3.1. Assume that the random variables Xn, n ≥ 1, are stationary,
there exists some c > 0 such that for every n ≥ 1, |Xn| ≤ c almost surely
and that (1) holds. Let dn > 1, n ≥ 1, be a sequence of real numbers. Then,
for every t ≤ dn−1

dn
1
cpn

and n large enough,

EetYj,n ≤ exp
(
2t2σ2pndn

)
.
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Proof. Using a Taylor expansion and taking into account the boundedness
of the random variables, we have

EetYj,n = 1+
∞∑
k=2

tkEY k
j,n

k!
≤ 1+

∞∑
k=2

tkck−2pk−2
n EY 2

j,n

k!
≤ 1+ t2EY 2

j,n

∞∑
k=2

(tcpn)
k−2.

It follows from the assumption on t that tcpn ≤ dn−1
dn

< 1, thus, as the
variables are stationary, we may write

EetYj,n ≤ 1 +
t2ES2

pn

1− tcpn
.

Now as pn −→ +∞, we have that for n large enough, ES2
pn
≤ 2σ2pn. More-

over, we have 1
1−tcpn < dn, so EetYj,n ≤ 1 + 2t2σ2pndn ≤ exp

(
2t2σ2pndn

)
.

Considering now L-weakly dependent variables, we prove an upper bound
for EetZn,od.

Lemma 3.2. Assume the conditions of Lemma 3.1 are satisfied and the vari-
ables Xn, n ≥ 1, are L-weakly dependent. Then, for every t ≤ dn−1

dn
1
cpn

and n
large enough,

EetZn,od ≤ t2e
tcn
2 pnv(pn)

rn−2∑
j=0

exp
(
jtpn(2tσ

2dn − c)
)

+ exp
(
t2σ2ndn

)
. (4)

Proof. Remark first that EetZn,od = E
(∏rn

j=1 e
tY2j−1,n

)
. Now, by adding and

subtracting appropriate terms, we find that

E

(
rn∏
j=1

etY2j−1,n

)

= Cov

(
rn−1∏
j=1

etY2j−1,n, etY2rn−1,n

)
+ E

(
rn−1∏
j=1

etY2j−1,n

)
EetY2rn−1,n

= Cov

(
rn−1∏
j=1

etY2j−1,n, etY2rn−1,n

)
+ Cov

(
rn−2∏
j=1

etY2j−1,n, etY2rn−3,n

)
EetY2rn−1,n

+E

(
rn−3∏
j=1

etY2j−1,n

)
EetY2rn−3,nEetY2rn−1,n.
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Before iterating this procedure, remark that due to the stationarity of the
random variables, EetY2rn−3,n = EetY2rn−1,n = EetY1,n, so the previous expression
may be rewritten as

E

(
rn∏
j=1

etY2j−1,n

)

= Cov

(
rn−1∏
j=1

etY2j−1,n, etY2rn−1,n

)
+ Cov

(
rn−2∏
j=1

etY2j−1,n, etY2rn−3,n

)
EetY1,n

+E

(
rn−3∏
j=1

etY2j−1,n

)(
EetY1,n

)2
.

Now, we iterate the procedure above to decompose the mathematical expec-
tation of the product to find

E

(
rn∏
j=1

etY2j−1,n

)
=

rn−1∑
j=1

(
EetY1,n

)j−1
Cov

(
rn−j∏
k=1

etY2k−1,n, etY2(rn−j)+1,n

)
+
(
EetY1,n

)rn
.

The L-weak dependence of the variables implies that∣∣∣∣∣Cov

(
rn−j∏
k=1

etY2k−1,n, etY2(rn−j)+1,n

)∣∣∣∣∣
≤ t2etcpn(rn−j+1)

rn−j∑
k=1

(2k−1)pn∑
`=2(k−2)pn+1

(2(rn−j)+1)pn∑
`′=2(rn−j)pn+1

γ`′−`.

(5)

The summation above is similar to the one treated in course of proof of
Lemma 3.1 in [6]. Adapting their arguments, one easily finds that

(2k−1)pn∑
`=2(k−2)pn+1

(2(rn−j)+1)pn∑
`′=2(rn−j)pn+1

γ`′−` =

pn−1∑
`=0

(pn − `)γ2kpn+` +

pn−1∑
`=1

(pn − `)γ2kpn−`

≤ pn

(2k+1)pn−1∑
`=(2k−1)pn+1

γ`,
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thus,

rn−j∑
k=1

(2k−1)pn∑
`=2(k−2)pn+1

(2(rn−j)+1)pn∑
`′=2(rn−j)pn+1

γ`′−` ≤
rn−j∑
k=1

pn

(2k+1)pn−1∑
`=(2k−1)pn+1

γ` ≤ pnv(pn).

Plug this into (5) and use the inequality proved in Lemma 3.1 to obtain upper

bounds for
(
EetY1,n

)j−1
and

(
EetY1,n

)rn. Finally, remember that 2pnrn ≤ n to
conclude the proof.

Lemma 3.3. Assume the conditions of Lemma 3.2 are satisfied. Then, there
exists a constant c1 > 0 such that, for each fixed x > 0 and n large enough,

P(Zn,od > x) ≤
(

c1x
2

4σ4n2d2
n

e
tcn
2 pnv(pn) + 1

)
exp

(
− x2

4σ2ndn

)
(6)

Proof. Using Markov’s inequality and taking into account (4), it follows
that

P(Zn,od > x) ≤ t2e
tcn
2 pnv(pn)e

−tx
rn−2∑
j=0

exp
(
jtpn(2tσ

2dn − c)
)

+ exp
(
t2σ2ndn − tx

)
.

(7)

Minimizing the exponent on the second term above leads to the choice t =
x

2σ2ndn
, which implies that

t2σ2ndn − tx = − x2

4σ2ndn
.

We still have to control the summation on the first term. For this purpose,
remark that for the choice of t as above, 2tσ2dn−c = x

n−c. Thus, for n large
enough 2tσ2dn− c < 0, so the series corresponding to this sum is convergent.
Finally, remark that, again for the choice made for t, we have tx = x2

2σ2ndn
, so

e−tx ≤ c′ exp
(
− x2

4σ2ndn

)
, and the proof is concluded.

4. Strong laws and convergence rates
With the tools proved in the previous section, we may now find conditions

for the Strong Law of Large Numbers and characterize its convergence rate.
The first subsection will deal with bounded random variables, using directly
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the inequalities of Section 3, while on the second subsection we will extend
these results to arbitrary (unbounded) L-weakly dependent variables by using
a truncation technique.

4.1. The case of bounded variables.

Theorem 4.1. Assume that the variables Xn, n ≥ 1, are stationary and L-
weakly dependent, there exists some c > 0 such that for every n ≥ 1, |Xn| ≤ c
almost surely and that (1) holds. Assume that the generalized Cox-Grimmett
coefficients (3) satisfy v(n) = ρn, for some ρ ∈ (0, 1). Then 1

nZn,od −→ 0
almost surely.

Proof. Let ε > 0 be arbitrarily chosen, and apply (6) with x = nε to find
the upper bound

P(Zn,od > nε) ≤
(
c1ε

2

4σ4d2
n

e
tcn
2 pnv(pn) + 1

)
exp

(
− nε2

4σ2dn

)
. (8)

We have now to reverify the conditions of Lemma 3.1 and the convergence
of the series that appeared in course of proof of Lemma 3.3. Indeed, when
proving this lemma, we verified the assumptions of Lemma 3.1 with x fixed,
while the present choice considers x growing with n. First, we need to verify
that t = ε

2σ2dn
< dn−1

dn
1
cpn

, as required to use Lemma 3.1. This inequality is
equivalent to

ε <
σ2

c

(dn − 1)

pn
. (9)

Thus, we need to choose the sequences such that dn
pn

is bounded away from

0. Secondly, for the control of the series appearing in (7), we need that
2tσ2dn − c < 0. Now, as x = nε, we have 2tσ2dn − c = ε− c, so, choosing ε
small enough this will be negative. Choose the tuning sequence as dn = apn,
for some a > 0, and pn = nθ, for some θ ∈ (1

2 , 1). Let us now look at the
term inside the large parenthesis in (8). The growth rate of this term is

dominated by the exponential factors, e
tcn
2 v(pn), as the remaining terms have

polynomial behavior. Taking into account the choice for t, it follows easily

that e
tcn
2 v(pn) ∼ exp

(
εn

4σ2dn
+ nθ log ρ

)
∼ exp

(
n1−θ + nθ log ρ

)
and this is

bounded as θ > 1
2 and ρ ∈ (0, 1). Finally, choose ε such that nε2

4σ2dn
= α log n,

for some α > 1. We have just proved that

P(Zn,od > nε) ≤ C exp (−α log n) =
C

nα
,



ASYMPTOTIC RESULTS FOR CERTAIN WEAK DEPENDENT VARIABLES 9

which define a convergence series, thus concluding the proof.

Note that it follows from the arguments of this proof that under the as-
sumptions of Theorem 4.1, there exists C > 0 such that

P (|Zn,od| > nε) ≤ C exp

(
− nε2

4σ2dn

)
. (10)

This remark will be useful later while extending these results to unbounded
variables.

It is obvious that the result just proved also holds if we replace Zn,od by
Zn,ev, thus we have the almost sure convergence of 1

nSn. For sake of com-
pleteness, we state this result.

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied.
Then 1

nSn −→ 0 almost surely.

We may further identify a convergence rate for the almost sure convergence
above.

Theorem 4.3. Assume that the conditions of Theorem 4.1 are satisfied.
Then 1

nZn,od −→ 0 almost surely with convergence rate log n
n1/2−δ

, where δ > 0 is
arbitrarily small.

Proof. We follow the proof of Theorem 4.1, allowing now ε to depend on
n, that is, considering εn such that

ε2
n =

4σ2αdn log n

n
, α > 1.

We need to verify that the condition on t of Lemma 3.1 is satisfied for an
appropriate choice of the sequences pn and dn, that is, that it holds t =
εn

2σ2dn
< dn−1

dn
1
cpn

. Note that once this is checked, the final arguments of the

proof of Theorem 4.1 follow. So, choose pn = nθ, for some θ > 1
2 . Remember

that we have t = εn
2σ2dn

. We need to choose dn −→ +∞ such that

tcpn =
α1/2c

σ
pn

(
dn log n

n

)1/2

≤ dn − 1 ≤ 2dn

⇔ α1/2c

2σ

pn(log n)1/2

n1/2
≤ d1/2

n ,

leading to dn ∼ n2θ−1 log n. The analysis of the exponential terms follows
analogously as in the proof of Theorem 4.1. Indeed, taking into account the
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choices made for t, εn and dn,

e
tcn
2 v(pn) ∼ exp

(
εnn

4σ2dn
+ nθ log ρ

)
∼ exp

(
α1/2c

2σ

(
n log n

dn

)1/2

+ nθ log ρ

)
∼ exp

(
n1−θ + nθ log ρ

)
,

which is bounded as θ ∈
(

1
2 , 1
)

and ρ ∈ (0, 1). The convergence rate that

follows from the above construction is then of order εn ∼ log n
n1−θ

. To conclude

the proof, just rewrite θ = 1
2 + δ.

The previous result was proved for 1
nZn,od for convenience of the exposition.

An analogous version obviously holds for 1
nZn,ev, thus implying the same

result for 1
nSn. Again, for sake of completeness, we state the final result.

Theorem 4.4. Assume that the conditions of Theorem 4.1 are satisfied.
Then 1

nSn −→ 0 almost surely with convergence rate log n
n1/2−δ

, where δ > 0
is arbitrarily small.

4.2. General random variables. We now want to drop the boundedness
assumption. To extend the results just proved, we will use a truncation
technique together with a control on the tails of the distributions. Define, for
a given fixed c > 0, the nondecreasing function gc(x) = max(min(x, c),−c),
performing a truncation at level c. Remark that, for every c > 0, gc is
Lipschtizian with ‖gc‖L = 1. Choose some sequence cn −→ +∞, to be made
precise later, and define, for j, n ≥ 1, the random variables

X1,j,n = gcn(Xj), X2,j,n = Xj −X1,j,n,

and the partial summations

S1,n =
n∑
j=1

(X1,j,n − EX1,j,n), S2,n =
n∑
j=1

(X2,j,n − EX2,j,n).

Theorem 4.5. Assume that the L-weakly dependent variables Xn, n ≥ 1,
are stationary, (1) holds, and the generalized Cox-Grimmett coefficients (3)
satisfy v(n) = ρn, for some ρ ∈ (0, 1). Assume further that,

∃τ > 3, U > 0 : sup
|t|≤τ

Eet|X| ≤ U. (11)
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Then 1
nSn −→ 0 almost surely with convergence rate (log n)3/2

n1/2−δ
, where δ > 0 is

arbitrarily small.

Proof. It is obvious that P(|Sn| > 2nε) ≤ P(|S1,n| > nε) + P(|S2,n| > nε).
As Theorem 4.1 applies it follows, taking into account (10), that,

P (|S1,n| > nεn) ≤ 2C exp

(
− nε2

n

4σ2dn

)
.

As in the proof of Theorem 4.3 choose ε2
n = 4σ2αdn log n

n , for some α > 1. This
means that P (|S1,n| > nεn) ≤ 2Cn−α, thus defining a convergent series. As
before, choose pn = nθ, for some θ ∈

(
1
2 , 1
)
. As in the proof of Theorem 4.3,

we need to verify that the assumptions of Lemma 3.1 are satisfied. Taking
into account the bounding value for the truncated variables, the assumption
of Lemma 3.1 is now written as t = εn

2σ2dn
≤ dn−1

dn
1

`npn
, which is equivalent to

tcnpn =
α1/2

σ

(
dn log n

n

)1/2

cnpn ≤ dn − 1 ≤ dn

⇔ α1/2

σ

(log n)1/2

n1/2
cnpn ≤ d1/2

n .

Using now the choice for pn, this means we may choose dn = α
σ2n

2θ−1c2
n log n,

thus obtaining

ε2
n = 4α2n2θ−2c2

n log n.

We need now to control P (|S2,n| > nεn). Note first that, taking into account
the stationarity,

P (|S2,n| > nεn) ≤ nP (|X2,1,n − EX2,1,n| > ε) ≤ n

ε
EX2

2,1,n.

Denoting F̄ (x) = P(|X1| > x), we have that

EX2
2,1,n =

∫
(cn,+∞)

(x− cn)2 F̄ (dx) =

∫ +∞

cn

2(x− cn)F̄ (x) dx.

Now, using Markov’s inequality, it follows that F̄ (x) ≤ e−txEet|X1| ≤ Ue−tx, if
t ∈ (0, τ). Thus, for t ∈ (0, τ), by integrating the expression above it follows
that

EX2
2,1,n ≤

2U

t2
e−tcn,
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so finally,

P (|S2,n| > nεn) ≤
2nU

t2ε2
n

e−tcn.

If we now choose cn = log n and t = α+ 2(1− θ), this upper bound behaves
like n−α, as the upper bound for P (|S2,n| > nεn). Finally, plug these choices
into the expression of εn to explicitly identify the convergence rate, finding

εn = 4α2 (log n)3/2

n1−θ ,

and write θ = 1
2 + δ.

Note that the convergence rate proved in Theorem 4.5 is close to the op-
timal convergence rate for the Strong Law of Large Numbers for associated

random variables which is of order (log n)1/2(loglog n)η/2

n1/2
for arbitrarily small η > 0,

as proved by Yang, Su and Yu [18].

5. A Central Limit Theorem
We now look at the convergence in distribution of sums of L-weakly de-

pendent variables, extending a Central Limit Theorem (CLT) for associated
random variables by Newman [11, 12] to the L-weak dependence structure.
The proof of Newman’s result (see Theorem 2 in [11] or Theorem 12 in [12])
relies on an inequality for characteristic functions, the Newman inequality
for characteristic functions (Theorem 1 in Newman [11] or Theorem 10 in
Newman [12]) that controls the approximation between the joint distribu-
tion and the product of the marginal distributions. So, we start by proving
a version of this inequality for the present dependence structure.

Theorem 5.1. (Newman’s inequality for L-weakly dependent random vari-
ables) Let X1, X2, . . . , Xn be L-weakly dependent random variables. Then, for
every t ∈ R,∣∣∣∣∣E

(
n∏
j=1

eitXj

)
−

n∏
j=1

E
(
eitXj

)∣∣∣∣∣ ≤ 4t2
n−2∑
j=1

(n− j − 1)γj. (12)
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Proof. We start by adding and subtracting the appropriate terms to the
left side of (12) to find∣∣∣∣∣E

(
n∏
j=1

eitXj

)
−

n∏
j=1

E
(
eitXj

)∣∣∣∣∣
≤

∣∣∣∣∣E
(

n∏
j=1

eitXj

)
− E

(
eitXn

)
E

(
n−1∏
j=1

eitXj

)∣∣∣∣∣
+

∣∣∣∣∣E (eitXn
)
E

(
n−1∏
j=1

eitXj

)
−

n∏
j=1

E
(
eitXj

)∣∣∣∣∣
≤

∣∣∣∣∣Cov

(
n−1∏
j=1

eitXj , eitXn

)∣∣∣∣∣+

∣∣∣∣∣E
(
n−1∏
j=1

eitXj

)
−

n−1∏
j=1

E
(
eitXj

)∣∣∣∣∣ .
Iterating now this procedure, we find that∣∣∣∣∣E

(
n∏
j=1

eitXj

)
−

n∏
j=1

E
(
eitXj

)∣∣∣∣∣ ≤
n−1∑
m=2

∣∣∣∣∣Cov

(
m−1∏
j=1

eitXj , eitXm

)∣∣∣∣∣ .
To bound the covariance terms above, expand this covariance using the
trigonometric representation of the complex exponential to find four terms
involving cosinus or sinus functions. Now, for example,∣∣∣∣∣Cov

(
cos

(
t
m−1∑
j=1

Xj

)
, cos (tXm)

)∣∣∣∣∣ ≤ t2
m−1∑
j=1

γm−j,

taking into account that ‖ cos(tx)‖L = t and using the L-weakly dependence
of the variables. Obviously, the same upper bound applies to the remaining
terms, so we finally have∣∣∣∣∣E

(
n∏
j=1

eitXj

)
−

n∏
j=1

E
(
eitXj

)∣∣∣∣∣ ≤ 4t2
n−1∑
m=2

m−1∑
j=1

γm−j = 4t2
n−2∑
j=1

(n− j − 1)γj.

This inequality is the main tool for proving a Central Limit Theorem for
associated variables (see, for example, Theorem 4.1 in Oliveira [14]). So,
having extended Newman’s inequality to L-weakly dependent variables, we
immediately may state the corresponding CLT. The arguments for the proof
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are similar to those of Theorem 5 in Newman [11], except on what regards
the control of the approximation to independence.

Theorem 5.2. Let Xn, n ≥ 1, be centered, L-weakly dependent, strictly
stationary and square integrable random variables satisfying (1) and

D =
∞∑
`=1

γ` <∞. (13)

Then, 1√
n
Sn converges in distribution to a centered normal random variable

with variance σ2.

Proof. The proof is based on a decomposition Sn similar to (2), into the
sum of blocks of size p ∈ N, now not depending n as before, and using (12).
So, given p ∈ N, put m = bnpc, and redefine the blocks

Yj,p =

jp∑
k=(j−1)p+1

Xk, j = 1, . . . ,m, and Ym+1,p =
n∑

k=mp+1

Xk.

Let ϕn(t) represent the characteristic function of 1√
n
Sn. We will establish

that
∣∣∣ϕn(t)− e−t2σ2/2

∣∣∣ −→ 0. Let us start by writing∣∣∣ϕn (t)− e−
t2σ2

2

∣∣∣ ≤ |ϕn(t)− ϕmp(t)|+ ∣∣ϕmp(t)− ϕmp (t)
∣∣

+

∣∣∣∣ϕmp (t)− e−
t2σ2p
2

∣∣∣∣+

∣∣∣∣e− t2σ2p2 − e− t2σ22

∣∣∣∣ , (14)

where σ2
p = 1√

pVar(Sp), and prove that each term of the right hand side goes

to zero. Let p be fixed for the time being. As what concerns the first term
of the upper bound in (14), we have, using Cauchy’s inequality,

|ϕn(t)− ϕmp(t)| ≤ E
∣∣∣∣exp

(
it√
n
Sn

)
− exp

(
it
√
mp

Smp

)∣∣∣∣
≤ |t|E

∣∣∣∣ Sn√n − Smp√
mp

∣∣∣∣ ≤ |t|
(
E
(
Sn√
n
− Smp√

mp

)2
)1/2

≤ |t|
(

1
√
mp
− 1√

n

)(
ES2

mp

)1/2
+
|t|√
n

(
EY 2

m+1,p

)1/2
.
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It follows from (13) and the stationarity of the variables that ES2
mp ≤ 2σ2mp

and EY 2
m+1,p ≤ 2σ2(n−mp) < 2σ2p. Thus, as n −→ +∞, which implies that

m −→ +∞, it follows

|ϕn(t)− ϕmp(t)| ≤
√

2 |t|σ
(

1−
√
mp
√
n

+
1√
m

)
−→ 0.

The second term in (14) represents the difference between the joint distri-
bution of the blocks and what we would find if they were independent. To
control this term, define Wj,p = 1√

pYj,p. Taking into account the stationarity

of the variables, the characteristic function of Wj,p is ϕp(t). As the variables
Wj,p are transformations of X(j−1)p+1, . . . , Xjp, it follows from the definition
of L-weak dependence, representing the exponential with the trigonometric
functions as done for the proof of Theorem 5.1, that∣∣ϕn(t)− ϕmp (t)

∣∣
=

∣∣∣∣∣E
(

exp

(
it√
m

m∑
k=1

Wk,p

))
−

m∏
k=1

E exp

(
it√
m
Wk,p

)∣∣∣∣∣
≤ 4t2

mp

m−1∑
`=2

(`−1)p∑
j=1

`p∑
j′=(`−1)p+1

γj′−j

=
2t2

mp

 mp∑
j,j′=1

γ|j′−j| −m
p∑

j,j′=1

γ|j′−j|

 .

(15)

It is easy to verify that 1
mp

∑mp
j,j′=1 γ|j′−j| =

∑mp−1
j=1 (1− j

mp)γj −→ D, so

lim sup
n→+∞

∣∣ϕn(t)− ϕmp (t)
∣∣ ≤ 2t2

D − 1

p

p∑
j,j′=1

γ|j′−j|

 .

For the third term in (14), the classical Central Limit Theorem for indepen-
dent random variables implies that

lim
m→+∞

∣∣∣∣ϕmp (t)− e−
t2σ2p
2

∣∣∣∣ −→ 0.
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For the last term in (14), we have
∣∣∣e−t2σ2

p/2 − e−t2σ2/2
∣∣∣ ≤ t2

2

∣∣σ2
p − σ2

∣∣. So,

finally we obtain,

lim sup
n→+∞

∣∣∣ϕn(t)− e− t2σ22

∣∣∣ ≤ t2

2

∣∣σ2
p − σ2

∣∣+ 2t2

D − 1

p

p∑
j,j′=1

γ|j′−j|

 .

Note that the left hand side above does not depend on p. Allowing now
p −→ +∞ and taking into account that limp→+∞ σ

2
p = σ2, it follows that

lim sup
n→+∞

∣∣∣ϕn(t)− e− t2σ22

∣∣∣ = 0.

We now prove a functional version of Theorem 5.2, giving sufficient condi-
tions for the convergence in distribution of the partial sums process:

ξn(t) =
1√
n

bntc∑
j=1

Xj, 0 ≤ t ≤ 1. (16)

Theorem 5.3. Let Xn, n ≥ 1, be centered, L-weakly dependent, strictly
stationary random variables satisfying E |X1|4+δ < ∞, for some δ > 0, and
(1). If the L-weak dependence coefficients γk, k ≥ 1, are decreasing such that
γk = O(k−2−8/δ), then ξn(t), n ≥ 1, converges in distribution to σW , where
W is a standard Brownian motion, in the Skhorohod space D[0, 1].

Proof. The proof follows the usual arguments to prove the convergence
with respect to the Skhorohod topology: prove the convergence of the finite
dimensional distributions and the tightness of the sequence. The one dimen-
sional distributions follows directly from Theorem 5.2. Choose now k points
such that 0 = u0 ≤ u1 < u2 < · · · < uk ≤ 1. We shall prove the asymptotic
normality of the random vector

H(u1, . . . , uk) =
1√
n

(ξn(u1), ξn(u2)− ξn(u1), . . . , ξn(uk)− ξn(uk−1)) .

Note that, due to the stationarity, it follows again from Theorem 5.2 that each
coordinate of H(u1, . . . , uk) is asymptotically centered normal with variance
(us − us−1)σ

2, s = 1, . . . , k. We now compare the characteristic function
of the random vector with the product of the characteristic functions of its
margins. Denote on the sequel T = maxs=1,...,k |ts|. From the definition
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of L-weak dependence, reasoning as for the decomposition (15), taking into
account that ‖ cos(

∑
j tjXj)‖L = maxj=1,...,k |tj|, it follows that, for every

t1, . . . , tk ∈ R,∣∣∣∣∣E exp

(
i√
n

k∑
s=1

ts (ξn(us)− ξn(us−1))

)
−

k∏
s=1

E exp

(
its√
n

(ξn(us)− ξn(us−1))

)∣∣∣∣∣
≤ 4kT 2

n

k−1∑
s=2

bnus−1c∑
j=1

bnusc∑
j′=bnus−1c+1

γj′−j

=
2T 2

n

bnukc∑
j,j′=1

γj′−j −
k∑
s=1

bnusc∑
j,j′=bnus−1c+1

γj′−j

 .

Note that our assumption on the decrease rate of the γj coefficients im-
plies that (13) holds. So, the above expression is easily seen to converge to
2T 2D(uk − u1 − (u2 − u1) − · · · − (uk − uk−1)) = 0, hence the asymptotic
normality of H(u1, . . . , uk) follows.

To complete the proof, we still have to prove the tightness. We follow
the arguments in the proof of Theorem 5 in Doukhan and Louhichi [4], thus
needing to prove that

∞∑
j=1

j |E(X1Xj+1)| <∞,

Cov(XiXj, XkX`) = O((k − j)−2), 1 ≤ i ≤ j < k ≤ `.

(17)

As what concerns the first condition, as the variables are centered and taking
into account the assumption on the decrease rate of the γ` coefficients:

∞∑
j=1

j |E(X1Xj+1)| ≤
∞∑
j=1

jγj <∞.

Concerning the second condition in (17), write first, for some c > 0 and for
each k ≥ 1, Vk = Xk−(gc(Xk)−Egc(Xk)), using the function gc(·) introduced
in Subsection 4.2. Using this representation the covariance Cov(XiXj, XkX`)
is written as a sum of terms of the form Cov(U1U2, U3U4) where each Uj is
either bounded by 2c or chosen among Vi, Vj, Vk or V`. If all the Uj’s are
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bounded by 2c, from the definition of L-weak dependence and the assumption
that coefficients are decreasing, it follows that

|Cov(UiUj, UkU`)| ≤ c4(γk−i + γk−j + γ`−i + γ`−k) ≤ 4c4γk−j.

If exactly one of the Uj’s is not bounded, say Ui = Yi, we have that, using
Hölder inequality followed by Markov inequality,

|Cov(YiUj, UkU`)| ≤ 2c3E |Yi| = 2c3E(|X1| I|X1|>c) ≤ 2c−δE |X1|4+δ .

For the remaining terms, we may reason in the same way, always finding
an upper bound that, up to multiplication by a constant, is c−δE |X1|4+δ.
Thus, summing all the terms, we have that Cov(XiXj, XkX`) ∼ c−δ +c4γk−j.

Choose now c = γ
−1/(4+δ)
k−j to find Cov(XiXj, XkX`) ∼ γ

δ/(4+δ)
k−j = (k − j)−2,

taking into account the decrease rate for the dependence coefficients. So, the
tightness follows, which concludes the proof of the theorem.

This result complements Theorem 5 in Doukhan and Louhichi [4]. In-
deed, these authors proved a similar result but considering different forms
of weak dependence, as expressed by their ψ coefficients which involved the
sum of the Lipschitz norms of the transformations instead of the product
as we considered in Definition 2.1. It is still possible to prove a result con-
cerning the convergence of the empirical process, again in a similar way as
done in Doukhan and Louhichi [4]. For this later result, in [4] a different
dependence coefficient was considered, so that their result implies directly
the corresponding one for L-weak dependent variables. We state the result
here, without proof, for easier reference on asymptotic results on L-weak
dependent variables.

Theorem 5.4. Let Xn, n ≥ 1, be centered, L-weakly dependent, strictly
stationary random variables uniformly distributed on [0, 1]. If the L-weak
dependence coefficients γk, k ≥ 1, are such that γk = O(k−15/2−δ), for some

δ > 0, then ζn(t) =
√
n
(

1
n

∑n
j=1 I[0,t](Xj)− t

)
, t ∈ [0, 1], n ≥ 1, converges

in distribution in the Skhorohod space D[0, 1] to a centered Gaussian process
indexed by [0, 1] with covariance operator

Γ(s, t) =
+∞∑

k=−∞

Cov
(
I[0,s](X0), I[0,t](X|k|)

)
.
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