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TRANSDERMAL IONTOPHORESIS - A QUANTITATIVE
AND QUALITATIVE STUDY

J. A. FERREIRA, P. DE OLIVEIRA AND G. PENA

Abstract: The use of enhancers to increase the drug molecules penetration into
target tissues is an usual technique in drug delivery. In transdermal drug delivery,
electric fields are often used to increase the drug transport through the skin. In this
paper we study a drug delivery mechanism from a reservoir which is in contact with
the skin. We assume that the drug transport in the coupled system is enhanced by a
small electric field that induces a convective field. We establish energy estimates for
the coupled system and we propose a semi-analytical discrete coupled model that
mimics the continuous model. The qualitative behaviour of the system is illustrated.
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1. Introduction
Intelligent drug delivery devices have been developed during the last decades

to deliver drugs in a controlled manner at specific locations. Some of these
systems use stimuli-responsive polymers (where the drug is entrapped) that
are able to respond to the modification of the external environment (like
electric fields, pH and temperature). Electric fields are an interesting type
of stimulus because they can be precisely controlled, and the drug delivery
responses can be predicted.

The use of electric fields as enhancers is popular in transdermal drug deliv-
ery where iontophoresis ([1, 5, 7, 8, 10, 12]) and electroporation ([1, 3, 4, 14])
or a combination of both, are usual procedures. Drug delivery systems for
cancer treatment based on this technology were recently developed ([13]). In
this case, the device based on drug-encapsulated nanoparticles is remotely
controlled by an electric field to deliver the biological agent in the cancer
target tissue (electrochemotherapy, see [9]). Each of the above applications
involves complex phenomena. For instance, in transdermal drug delivery,
enhanced by an electric field, the drug and its solvent vehicle leaves the
polymeric matrix, enters the stratum corneum and is transported through
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the skin to reach the circulatory system. In both media, the transport occurs
by passive diffusion, electromigration (migration of ions due to the electric
field) and electroosmosis (transport due the solvent movement) ([7, 11, 12]).

In an iontophoresis procedure, a small electric field is applied to the coupled
system to enhance the drug transport. If the drug molecules are positively
charged, then the anode is in contact with the reservoir and the cathode is in
the opposite position. The anode will repel the positively charged drug into
the skin. If the drug is negatively charged it will be placed under the cathode
that will repel it into the skin.The generated electric field induces a convective
flux in the system that depends on the drug molecules valence, intensity of
the electric field, temperature, electric conductivity of both media and drug
diffusion ([7, 8]). In this case, the anode is called the active electrode and
the cathode the passive electrode.

We are interested in studying transdermal iontophoretic applications con-
sisting of a coupled system having a reservoir containing a charged drug and
a tissue, see Figure 1.

Electrode
Electrode

Iontophoresis

device

Skin

Blood stream

Reservoir

Figure 1. Drug delivery system for the skin enhanced by an
electric potential.

In this case, the polymeric reservoir is in contact with the skin which is
a multilayered tissue: epidermis (100µm), dermis (2 − 3mm) and subcuta-
neous tissue. These three layers have different hystological characteristics
and functions, however, to simplify the mathematical model, we represent
the skin as one layer. The electric field is generated by a potential of low
intensity applied during long periods of time. The drug transport occurs by
passive diffusion and convection caused by the potential gradient.
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The main goal of this paper is the study of a mathematical model that
describes the drug transport through the reservoir and the target tissue,
under the effect of an electric field. The considered model is a two-layer
simplification of the multi-layered model introduced in [6], in the case of
a perfect contact between reservoir and skin. The paper is organized as
follows. In Section 2 we present the coupled mathematical model. Solving
the coupled problem for the electric field, the convective field is explicitly
given and the Laplace-drug equations are replaced by convection-diffusion
equations. Energy estimates are obtained in Section 3. Such estimates are
used to obtain lower bounds for the released drug. A numerical method
that mimics the qualitative behaviour of the continuous model is introduced
and studied in Section 4. In Section 5 we present some numerical results
illustrating the behaviour of the coupled system in different scenarios. In
Section 6 some conclusions are presented.

2. The Laplace-drug equations
In what follows we assume that the reservoir and the target tissue are

isotropic media. This assumption allows the replacement of the 3D physical
model, reservoir in contact with the target tissue, by a 1D model. Let [0, `1]
be the reservoir and (`1, `2] the target tissue layer. We assume that the
left hand side of the reservoir is isolated and the drug molecules that attain
the boundary x = `2 are immediately removed. In the domains (0, `1) and
(`1, `2) a diffusion process takes place enhanced by the electric field generated
by the applied electric potential φ(V ) at x = 0 and x = `2, respectively, φ0

and φ1. We assume that the polymeric matrix of the reservoir and the target
tissue have different electric conductivities σr and σs (S/m), respectively.
We also assume that the diffusion coefficients of the drug in both media are
represented, respectively, by Dr and Ds (m2/s).

The drug transport in the polymeric matrix occurs by passive diffusion and
convection induced by the electric field E = −∇φ. Let Jr be the drug mass
flux. By the Nernst-Planck equation we have

Jr = −Dr∇cr − vrcr, (1)

where cr denotes the drug concentration (g/m3) in the polymeric matrix and
vr (m/s) stands for the mean velocity of the solvent vehicle in the reser-
voir. Let Js represent the drug mass flux in the skin. By the Nernst-Planck
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equation we have

Js = −Ds∇cs − vscs + vsolcs, (2)

where cr denotes the drug concentration in the target tissue. The convective
velocity vsol, caused by the electric field, represents the average velocity of
the solvent vehicle.

The convective velocities vk, k = r, s, are given by the Nernst-Einstein
equation

vr =
DrzF

RTr
∇φr, vs =

DszF

RTs
∇φs − vsol,

where z denotes the valence of the drug molecules, R the Faraday constant
(9.6485 × 104Coulomb/mol), Ti the temperature (K) in the medium i, and
R de gas constant (8.31446J/(Kmol)).

We assume that the electric field is generated by applying low potentials
during long periods of time. In these circumstances, the potential is de-
scribed by the Laplace equation. As both media present different conduc-
tivity properties, two Laplace equations should be considered coupled with
the convection-diffusion equations for the drug transport. From the previous
considerations, the electric potentials in the reservoir, φr, and the skin, φs,
are described by the two equations{

σr∆φr = 0 in (0, `1)
φr(0) = φ0,

(3)

and {
σrs∆φs = 0 in (`1, `2)
φs(`2) = φ1,

(4)

coupled with the transition condition φr(`1) = φs(`1) (continuity of the potential)

σr∇φr(`1) = σs∇φs(`1) (continuity of the electric field).
(5)

We note that condition φs(`2) = φ1, in (4), represents an approximation
of the real experimental condition. The potential φs is not applied in `2 -
the interface between the skin and the blood system - but at the passive
electrode.

The time-space drug evolution is described by the mass conservation law

∂ck
∂t

+∇ · Jk = 0, k = r, s,
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coupled with the Nernst-Planck equations (1)-(2). Then, for ck, k = r, s, we
obtain 

∂cr
∂t
−∇ · (vrcr) = ∇ · (Dr∇cr) in (0, `1)× R+,

Dr∇cr(0, t) + vrcr(0, t) = 0, t ∈ R+,

(6)

and 
∂cs
∂t
−∇ · ((vs − vsol)cs) = ∇ · (Ds∇cs) in (`1, `2)× R+,

cs(`2, t) = 0, t ∈ R+.

(7)

The boundary condition in (6) means that the system is insulated while
the boundary condition in (7) states that the drug is immediately removed
by the blood stream.

System (6)-(7) is complemented with the interface conditions cr(`1, t) = cs(`1, t) (continuity of the concentration),

Jr(`1, t) = Js(`1, t) (continuity of the mass flux),
(8)

and the initial condition cr(x, 0) = cr,0, x ∈ (0, `1),

cs(x, 0) = 0, x ∈ (`1, `2).
(9)

Condition (9) means that there is initially a homogeneous drug distribution
in the reservoir and that the target tissue is empty.

3. The drug delivery
Solving the potential problems (3), (4) and (5) we easily obtain

φr(x) =
δφ

`1 + σr
σs

(`2 − `1)
x+ φ0, x ∈ [0, `1],

φs(x) =
σr
σs

δφ

`1 + σr
σs

(`2 − `1)
(x− `2) + φ1, x ∈ [`1, `2].

(10)

where δφ = φ1− φ0 is the potential difference. From (10) and (2) we deduce
the convective velocities
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vr =

DrzF

RTr

δφ

`1 + σr
σs

(`2 − `1)

vs =
DszF

RTs

σr
σs

δφ

`1 + σr
σs

(`2 − `1)
− vsol.

(11)

We introduce now the weak formulation of the initial boundary value coupled
problem (6), (7), (8) and (9). To do that we define the following space
V = {w ∈ H1(0, `2) : w(`2) = 0}.

The weak solution for the previous problem is a function c ∈ L2(R+, V ) ∩
C1(R+, L2(0, `2)) such that

(c′(t), w) + (vc(t),∇w) = −(D∇c(t),∇w), t ∈ R+, ∀w ∈ V, (12)

where (·, ·) denotes the usual inner product in L2(0, `2), and

c(0) = cr,0 in [0, `1], c(0) = 0 in (`1, `2]. (13)

Then the drug distribution is defined by

cr(t) = c(t) in [0, `1], cs(t) = c(t) in [`1, `2].

In (12), D and v are defined by

D =

{
Dr, x ∈ (0, `1),
Ds, x ∈ (`1, `2),

v =

{
vr, x ∈ (0, `1),
vs, x ∈ (`1, `2).

To study the stability of the weak problem we recall the following Friedrichs-
Poincaré inequality

‖w‖2 ≤ `2
2

2
‖∇w‖2 , w ∈ V. (14)

An energy estimate for c(t) was established in [6], which we recall in Theo-
rem 1.

Theorem 1. If c ∈ L2(R+, V )∩C1(R+, L2(0, `2)) is a solution of (12), (13)
then

‖c(t)‖2 ≤ e

(
− 1

`22
mink=r,sDk+

maxk=r,s v
2
k

2 mink=r,s Dk

)
t ‖c(0)‖2 , t ∈ R+

0 . (15)

From Theorem 1, the stability (as well as uniqueness of solution) of the
IBVP (12), (13) can be concluded.
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The upper bound (15) can be used to study the qualitative behaviour of
the drug mass inside of the coupled system and the absorbed drug. Let

M(t) = A

∫ `2

0

c(t) dx, t ∈ R+
0 ,

be the total drug mass in the coupled system, where A represents the area of
a square cross section and

√
A is the distance between the passive and active

electrodes, see Figure 2.

Skin

Blood stream

`2

√
A

√
A

Ae Pe

Figure 2. Simplified representation of the problem (Ae repre-
sents the active electrode and Pe the passive one).

As
M(t) ≤

√
`2A ‖c(t)‖ ,

we obtain from Theorem 1 an upper bound for this mass.

Corollary 1. Under the assumptions of Theorem 1,

M(t) ≤
√
`2Ae

(
− 1

`22
mink=r,sDk+

maxk=r,s v
2
k

2 mink=r,s Dk

)
t
2 ‖c(0)‖ , t ∈ R+

0 . (16)

Moreover, if
maxk=r,s v

2
k

mink=r,sD2
k

<
2

`2
2

, (17)

then
lim
t→∞

M(t) = 0 exponentially. (18)

Let Pe, the Péclet number, be defined by

Pe =
maxk=r,s |vi|
mink=r,sDk

`2.
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Condition (17) means that if the Péclet number is less than
√

2 then we
can easily compute the time level t∗ such that the drug mass in the coupled
system is less than a positive limit L. In fact, from (16), t∗ satisfies

t∗ ≥ 2

− 1
`22

mink=r,sDk +
maxk=r,s v2

k

2 mink=r,sDk

ln

(
L

A
√
`2 ‖c(0)‖

)
. (19)

As A
√
`2 ‖c(0)‖ represents the initial mass in the system, we always have

L ≤ A
√
`2 ‖c(0)‖ and consequently, estimate (19) is physically sound.

Let Mabs(t) be the absorbed mass at time t ∈ R+,

Mabs(t) = M(0)−M(t).

It follows from (16) that

Mabs(t) ≥M(0)− A
√
`2e

(
− 1

`22
mink=r,sDk+

maxk=r,s v
2
k

2 mink=r,s Dk

)
t
2 ‖c(0)‖ , t ∈ R+

0 . (20)

To obtain a second estimate for M(t), we need to improve estimate (15).
Taking in (12) w = c(t) we have

d

dt
‖c(t)‖2 = −2

∥∥∥√D∇c(t)∥∥∥2

− 2(vc(t),∇c(t)). (21)

From (21) we deduce

d

dt
‖c(t)‖2 ≤ −2 min

k=r,s
Dk ‖∇c(t)‖2 + 2 max

k=r,s
|vk| ‖c(t)‖ ‖∇c(t)‖ ,

that leads to

d

dt
‖c(t)‖2 ≤

(
−2 min

k=r,s
Dk +

√
2`2 max

k=r,s
|vk|
)
‖∇c(t)‖2 .

Assuming (17) we obtain

d

dt
‖c(t)‖2 ≤

(
−2 min

k=r,s
Di +

√
2`2 max

k=r,s
|vk|
)

2

`2
2

‖c(t)‖2 ,

and finally

‖c(t)‖2 ≤ e

(
− 2

`22
mink=r,sDk+

√
2
`2

maxk=r,s |vk|
)
t ‖c(0)‖2 , t ∈ R+

0 . (22)

From the previous considerations we conclude that under condition (17),
we have

M(t) ≤ A
√
`2e

(
− 2

`22
mink=r,sDi+

√
2
`2

maxk=r,s |vk|
)
t
2 ‖c(0)‖ , t ∈ R+

0 . (23)
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As we have
P 2
e

2
−
√

2Pe + 1 ≥ 0, ∀Pe > 0,

we conclude that the upper bound of (16) for the drug mass in the reservoir-
target tissue is greater or equal than the upper bound in (23). Furthermore,
in this case, the instant t∗ such that M(t) < L corresponding to (19) is given
by

t∗ ≥ 2

− 2
`22

mink=r,sDk +
√

2
`2

maxk=r,s |vk|
ln

(
L

A
√
`2 ‖c(0)‖

)
, (24)

where the lower bound in (24) is smaller than the lower bound in (19). From
(24) we obtain

Mabs(t) ≥M(0)− A
√
`2e

(
− 2

`22
mink=r,sDk+

√
2
`2

maxk=r,s |vk|
)
t
2 ‖c(0)‖ , t ∈ R+

0 . (25)

We finally observe that estimates (20) and (25) can be used to study the
dependence of the lower limits for absorbed mass on the parameters that
determine the iontophoresis.

4. A discrete model
In this section we present a finite difference method that presents the same

qualitative behaviour of the continuous model. We fix a mesh size h in [0, `2]
and we define the following grid Ih = {xi, i = 0, . . . , N}:

x0 = 0, x1 = x0 +
h

2
, xi = xi−1 + h, i = 1, . . . , N, xN = `2

xM−1/2 = xM−1 +
h

2
, xM = `1 +

h

2
,

where `1 = xM−1/2. Let x−1 = −h
2 . By I∗h we denote the grid Ih ∪ {x−1}.

By D−x, Dc and D2 we denote the backward, first order centered and second
order centered finite difference operators, respectively. By M4 and M2 we
represent the average operators

M4vh(xj) =
1

4
(vj+1 + 2vj + vj−1) , j = 1, . . . , N − 1,

and

M2vh(xj) =
1

2
(vj + vj−1) , j = 1, . . . , N,

respectively. We consider that D2vh(xM−1) is based on a nonuniform grid and
defined using the grid points xM−2, xM−1 and xM−1/2. Similarly, Dcvh(xM−1)
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is defined using the nonequally spaced grid points xM−2 and xM−1/2. We also
introduce the boundary operator Dη

Dηvh(x0) = DrDcvh(x0) + vrM4vh(x0).

Let ch(t) be a grid function defined in the grid points I∗h ∪ {xM−1/2} that
satisfies the following system of differential equations

c′i(t)− v(xi)Dcci(t) = D(xi)D2ci(t), i = 0, 1, 2, . . . , N − 1, (26)

where vk = vr, if i ≤M−1, and vk = vs otherwise, coupled with the following
algebraic conditions {

Dηch(t)(x0) = 0
cN(t) = 0,

(27)

DrD−xcM−1/2(t)+vrM2ch(t)(xM−1/2) = DsD−xcM(t)+vsM2ch(t)(xM). (28)

We assume that at the initial time we have

ci(0) = cr,0, i = 0, . . . ,M − 1, ci(0) = 0, i = M, . . . , N − 1. (29)

The boundary conditions (27) are the discretizations of the boundary con-
ditions of the differential problem. Moreover, the interface condition (28) is a
discrete version of (8). The semi-discete problem (26)-(29) can be rewritten
in the following equivalent form{

c′h(t) = Lhch(t), t > 0,
ch(0) is defined by (29).

(30)

To study the qualitative behaviour of the semidiscrete approximation ch(t)
defined by (30) we introduce now the convenient functional environment
following [2].

We introduce the following discrete L2(0, `2) inner product (·, ·)h for grid
functions defined in Ih and null on xN ,

(uh, vh)h =
h

4
u0v0 +

M−2∑
j=1

hujvj +
3

4
huM−1vM−1

+
3

4
huMvM +

N−1∑
j=M+1

hujvj.

(31)
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By ‖·‖h we denote the norm induced by this inner product. For grid functions
defined in Ih ∪ {xM−1/2} we use the following notations

(uh, vh)h,+ =
h

2
u1v1 +

M−1∑
j=2

hujvj +
h

2
uM−1/2vM−1/2

+
h

2
uMvM +

N∑
j=M+1

hujvj.

and

‖vh‖h,+ =
√

(vh, vh)h,+.

We remark that (·, ·)h and (·, ·)h,+ satisfy

−(D2uh, vh)h = (D−xuh, D−xvh)h,+, (32)

for all grid functions uh, vh defined in I∗h ∪ {xM−1/2} where uh and vh satisfy
(27), (28) for vr = vs = 0. Condition (32) mimics the correspondent con-
tinuous relation and it is the basic compatibility requirement for (·, ·)h and
(·, ·)h,+. We observe that existence of the transition point where (28) holds
increases the complexity of the analysis and the need of auxiliary results that
will have an important role in what follows.

The following discrete Poincaré inequalities have an important role in what
follows.

Theorem 2. For grid functions vh defined in Ih ∪ {xM−1/2} and null on the
boundary point xN we have

‖vh‖2
h ≤ `2

2 ‖D−xvh‖2
h,+ (33)

and
‖vh‖2

h,+ ≤ `2
2 ‖D−xvh‖2

h,+ . (34)

Proof : To simplify the presentation we denote by hi, i = 1, . . . , N + 1, the
distance between two consecutive points of the grid Ih ∪ {xM−1/2}. As we
have

vj = −
N∑

i=j+1

hiD−xvi, j = 0, . . . , N − 1,

we obtain
v2
j ≤ `2 ‖D−xvh‖2

h,+ , j = 0, . . . , N − 1,
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that leads to (33).
The proof of inequality (34) follows the same steps.

If uh is defined in Ih ∪ {xM−1/2, null at x = xN and satisfies

DrD−xuM−1/2 + vrM2uh(xM−1/2) = DsD−xuM + vsM2uh(xM), (35)

then
‖uh‖2

h,+ ≤ Cnor ‖uh‖2
h , (36)

with

Cnor =
4

3

(
1 + 2

max{(Dr − h
4vr)

2, (Ds + h
4vs)

2}(
Dr +Ds + h

4(vr − vs)
)2

)
provided that h satisfies the following condition

Dr +Ds +
h

4
(vr − vs) 6= 0. (37)

It can be showed that Lh is nonsingular for a certain class of coupled prob-
lems.

Theorem 3. If

Pe <
√

2, (38)

then the finite difference operator Lh is nonsingular in the space

Vh =
{
vh defined in I∗h ∪

{
xM−1/2

}
: Dηvh(x0) = 0, vh(xN) = 0, vh satisfies (35)

}
.

Proof : Using summation by parts we establish

(−Lhuh, uh)h ≥ min
k=r,s

Dk ‖D−xuh‖2
h,+ − (M2(vvh), D−xuh)h,+. (39)

We have successively

−(M2(vuh), D−xuh)h,+ ≤ max
k=r,s
|vk| ‖uh‖h,+ ‖D−xuh‖h,+

≤ `2√
2

max
k=r,s
|vk| ‖D−xuh‖2

h,+ .
(40)

From (39), (40) and using (33) we get

(−Lhuh, uh)h ≥
2

`2
2

(
min
k=r,s

Dk −
`2√

2
max
k=r,s
|vk|2

)
(41)

that concludes the proof.
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We remark that the previous bound (41) leads to

max
0 6=uh∈Vh

(Lhuh, uh)h
‖uh‖2

h

≤ − 2

`2
2

(
min
k=r,s

Dk −
`2√

2
max
k=r,s
|vk|2

)
. (42)

We recall that the logarithmic norm of the linear operator Lh (or its matrix
representation) µ[Lh] induced by the inner product (·, ·)h is given by

µ[Lh] = lim
τ→0+

‖I + τLh‖h − 1

τ

and satisfies

µ[Lh] = max
0 6=uh∈Vh

(Lhuh, uh)h
‖uh‖2

h

.

Consequently

µ[Lh] ≤ −
2

`2
2

(
min
k=r,s

Dk −
`2√

2
max
k=r,s
|vk|2

)
.

As ch(t) satisfies (26)-(28), it follows

ch(t) = etLhch(0), t ≥ 0,

which leads to

‖ch(t)‖h ≤ ‖etLh‖h‖ch(0)‖h, t ≥ 0.

As we have

‖etLh‖h ≤ e
−t 2

`22

(
mink=r,sDk− `2√

2
maxk=r,s |vk|2

)
, t ≥ 0,

we obtain the following result:

Theorem 4. Let ch(t) be a grid function defined in I∗h∪{xM−1/2} that satisfies
(26)-(29). If (37) and (38) hold then

‖ch(t)‖h ≤ e
2

`22
(−mink=r,sDk+`2 maxk=r,s |vk|)t ‖ch(0)‖h , t ∈ R+

0 . (43)

Theorem 4 allow us to conclude the stability of the initial boundary value
problem (26)-(29). Let

Mh(t) =
h

4
c0(t) +

M−2∑
j=1

hcj(t) +
3

4
h (cM−1(t) + cM(t)) +

N−1∑
j=M+1

hcj(t), t ∈ R+
0 ,
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be the discrete drug mass in the coupled system. Theorem 4 can be used to
obtain an estimate for Mh(t). In fact, under condition (38) we have

Mh(t) ≤ e
1

`22
(−mink=r,sDk+`2 maxk=r,s |vk|)t ‖ch(0)‖h , t ∈ R+

0 .

We also get a lower estimate for the absorbed mass Mabs(t)

Mabs(t) ≥M(0)− e
1

`22
(−mink=r,sDk+`2 maxk=r,s |vk|)t ‖ch(0)‖h , t ∈ R+

0 . (44)

Let us consider in the integration in time of the semi-discrete problem
(26)-(29) the implicit-Euler method. To do that we fix a time interval [0, T ]
where we introduce a time grid {tn, n = 0, . . . , N∆t} where tn−tn−1 = ∆t, n =
1, . . . , N∆t, and N∆t∆t = T. Let cnh, n = 0, . . . , N∆t, be defined by

cn+1
i = cni + ∆tD(xi)D2c

n+1
i + ∆tDc(vic

n+1
i ),

i = 0, . . . ,M − 1,M,M + 1, . . . , N − 1,
n = 0, . . . , N∆t − 1,

(45)

{
DrDcc

n
h +M2(vrc

n
h) = 0, n = 0, . . . , N∆t,

cnN = 0, n = 1, . . . , N∆t,
(46)

DrD−xcnM−1/2 +M2

(
(vcnh)

(
xM−1/2

))
= DsD−xcnM +M2 ((vsc

n
h) (xM)) ,

n = 1, . . . , N∆t,
(47)

c0
i = cr,0, i = 0, . . . ,M − 1, c0

i = 0, i = M, . . . , N − 1. (48)

Under condition (38) we establish in the next result that the fully discrete
scheme (45)-(48) is unconditionally stable.

Theorem 5. If Pe <
√

2 then the numerical concentration cnh defined by the
implicit finite difference method (45)-(48) satisfies

‖cnh‖h ≤ e−n∆t C
2(1+∆tC)

∥∥c0
h

∥∥
h
, n = 1, . . . , N∆t, (49)

where

C =
2

`2
2

(
min
k=r,s

Dk −max
k=r,s
|vk|`2

)
. (50)

Also, if

B = − 1

`2
2

min
k=r,s

Dk +
maxk=r,s |vk|2
mink=r,sDk

Cnor, (51)
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is nonnegative or positive such that B∆t < 1, then the finite difference
scheme (45)-(48) satisfies

‖cnh‖h ≤ en∆t B
2(1−∆tB)

∥∥c0
h

∥∥
h
, n = 1, . . . , N∆t, (52)

Proof : From (45)-(48) we establish∥∥cn+1
h

∥∥2

h
≤ ‖cnh‖2

h − 2∆tmin
k=r,s

Dk

∥∥D−xcn+1
h

∥∥2

h,+

+ 2∆tmax
k=r,s
|vk|

∥∥cn+1
h

∥∥
h,+

∥∥D−xcn+1
h

∥∥
h,+

. (53)

(1) Pe < 1:
Taking into account inequality (34) we get∥∥cn+1
h

∥∥2

h
≤ ‖cnh‖2

h + 2∆t

(
−min

k=r,s
Dk + max

k=r,s
|vk|`2

)∥∥D−xcn+1
h

∥∥2

h,+
. (54)

As (38) holds, considering the inequality (33) in (54) we obtain∥∥cn+1
h

∥∥2

h
≤ ‖cnh‖2

h −∆tB
∥∥cn+1

h

∥∥2

h
,

where C > 0 is defined by (50), and consequently∥∥cn+1
h

∥∥2

h
≤ 1

(1 + ∆tC)n+1

∥∥c0
h

∥∥2

h
. (55)

Finally, (49) easily follows from (55).
(2) Other case:

From (53) and (36) it can be shown the following∥∥cn+1
h

∥∥2

h
≤ ‖cnh‖2

h − 2∆tmin
k=r,s

Dk

∥∥D−xcn+1
h

∥∥2

h,+
(56)

+ 2∆tmax
k=r,s
|vk|
√
Cnor

∥∥cn+1
h

∥∥
h

∥∥D−xcn+1
h

∥∥
h,+

(57)

that leads to∥∥cn+1
h

∥∥2

h
≤ ‖cnh‖2

h + ∆t(−2 min
k=r,s

Dk + ε2)
∥∥D−xcn+1

h

∥∥2

h,+
(58)

+ ∆t
1

ε2
max
k=r,s
|vk|2Cnor

∥∥cn+1
h

∥∥2

h
, (59)

where ε 6= 0.
From (58), with ε2 = min

k=r,s
Dk, and using (33), we obtain

(1−∆tB)
∥∥cn+1

h

∥∥2

h
≤ ‖cnh‖2

h , (60)
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where B is defined by (51). If B < 0, then an estimate like (49) holds,
replacing C for |B|. Otherwise, if B > 0 is such that B∆t < 1 then
from (60) we get∥∥cn+1

h

∥∥2

h
≤
(

1

1−∆tB

)n+1 ∥∥c0
h

∥∥2

h
, (61)

Finally, inequality (52) easily follows from (61).

Theorem 5 means that the implicit method (45)-(48) is unconditionally
stable when Pe < 1 or when B < 0. Otherwise, it is conditionally stable.

5. Numerical results
In this section we illustrate the behaviour in different scenarios of the drug

concentration in the reservoir and target tissue as well as the released drug.
We consider `1 = 10−3, `2 = 2.5 × 10−3(m), for a reservoir with 1(mm) of
thickness and a target tissue of 1.5(mm) of thickness and A = 1.

We analyze the dependence on the concentration with the applied potential
and the reservoir and target tissue conductivities. The coupled system’s
parameters (see [3]) are taken as

• Dr = 10−9(m2/s), Ds = 10−12(m2/s),
• σr = 1.5(S/m), σs = 0.015(S/m),
• Tr = Ts = 310.15(K)

and c(x, 0) = 1, x ∈ (0, `1), c(x, 0) = 0, x ∈ (`1, `2). The S.I. units of conduc-
tivity are Siemens per meter (S/m).

The scenarios are defined considering the valence z of the diffusion drug
equal to −1. The numerical results were obtained using the fully implicit
scheme (45)-(48). In Figure 3 we present the concentration profiles for differ-
ent values of δφ, δφ = 0, 0.02, 0.5, 2. As δφ increases, the convective rate of
transport also increases and consequently, less drug concentration remains in
the reservoir and in the target tissue. This behaviour can be observed from
the plot of the absorbed mass in Figure 3. We also illustrate the influence
of the electric conductivity coefficients. In Figure 4 we plot the drug con-
centrations and the released mass for σs = 0.015. We observe that a lower
electric conductivity in the reservoir can lead to an increase of the released
mass. These results were obtained for δφ = 0.5.
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Figure 3. Drug concentration in the coupled system, after 6
hours (left) and absorbed mass during the 6 hours of treatment
(right), for σr = 1.5, σs = 0.015.

Figures 3 and 4 (right) suggest that the reservoir’s conductivity has a large
influence, on the total amount of released drug, than the potential δφ. A
number of simulations that has been carried on Table 1 which clarifies the
dependence of the total mass of absorbed over six hours, on the conduc-
tivity σr and the potential δφ. In these tables, M0(6) represents the total
mass absorbed when δφ = 0. The influence of σr explains why polymeric
conductivity is a major concern for manufacturers.

We finally present how estimate (44) can be useful. In Figure 5 we plot the
real absorbed mass, as well as lower bound (44), which can be used to design
protocols for drug delivery in this context. The parameters chosen for this
particular simulation are Ds = Dr = 10−8, δφ = 0.02 and σr = 0.15. The
remaining parameters are taken as in the previous simulations.

6. Conclusion
In this paper the mathematical model that describes the drug evolution

in the coupled reservoir-target tissue is studied when the drug transport is
enhanced by an applied electric field. We assume that the applied potential
is stationary and is described by a coupled system that admits an explicit
solution. As the electric field generates a convective field, the drug transport
occurs by passive diffusion, convection defined by the electric field and by
the solute transport when the charge of the drug is negative.
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δφ σr Mδφ(6)
Mδφ(6)−M0(6)

M0(6)

0 - 9.952 · 10−4 0

0.015 9.976 · 10−4 0.00241157
0.02 0.15 9.959 · 10−4 6.83 · 10−4

1.5 9.955 · 10−4 3.11 · 10−4

0.015 9.999997 · 10−4 0.00483162
0.2 0.15 9.985957 · 10−4 0.0034209

1.5 9.963522 · 10−4 0.00116656

0.015 10−3 0.00483194
0.5 0.15 9.99788 · 10−4 0.00461911

1.5 9.96953 · 10−4 0.0017705

0.015 10−3 0.00483194
2 0.15 9.9999999994 · 10−4 0.00483194

1.5 9.9872902264 · 10−4 0.00355482

Table 1. Behaviour of the total mass absorbed for six hours,
Mδφ(6)

.
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Figure 4. Drug concentration in the coupled system, after 6
hours (left) and absorbed mass during the 6 hours of treatment
(right), for σs = 0.015, δφ = 0.5.
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Figure 5. Illustration of the absorbed mass lower bound (44).

The convection-diffusion drug system was studied and its stability was
concluded under different assumptions on the parameters of the model. The
energy estimates were used to obtain estimates for the drug in the coupled
system and for the released drug. Such estimates can be used to design
iontophoretic systems with a prescribed behaviour.

A numerical method that mimics the continuous model was proposed. The
discrete interface conditions induces difficulties in the stability analysis. To
avoid such problems a convenient L2 discrete norm and seminorm were in-
troduced and a discrete Poincaré inequality was proved. These ingredients
were crucial to establish discrete energy estimates for an implicit method.
The qualitative behaviour of the numerical solutions was explored.
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