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CANONICAL FORMS
FOR SIMULTANEOUS SIMILARITY

OF PAIRS OF INVOLUTIONS

EDUARDO MARQUES DE SÁ

Abstract: In this paper we determine complete canonical forms for the action
of simultaneous similarity on pairs of involutions. This is done in the context of
linear operators of a finite dimensional vector space over an arbitrary field. In some
pinpointed cases, the field is supposed to have characteristic 6= 2. The determination
of a canonical form in the simultaneous similarity orbit of a pair (L,R) of involutions
uses as ingredient the similarity class of LR, a conspicuous simultaneous similarity
invariant; in the course of proof we get, for a given square matrix A, a detailed
description of the set IA of involutions L such that A = LR for some involution R;
canonical forms are obtained for the action of GA (the group of invertible matrices
commuting with A) acting by similarity on the set IA. The set of pairs (L,R) of
involutions such that LR lies in a fixed similarity class is a union of a finite number
of simultaneous similarity orbits; we determine that number, as well as the number
of such orbits assuming the similarity classes of L, R and LR are kept fixed.
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1. Introduction

The general problem of classifying the orbits of m-tuples of n × n complex
matrices under simultaneous similarity is solved in S. Friedland’s renowned
paper [9]; in that paper, a set of explicit invariants is given which charac-
terize the orbits, but no canonical form is obtained. Another interesting
work on simultaneous similarity is [6] where the more general concept of
PS-equivalence is proposed, and a near canonical form is proved for the new
equivalence. I wasn’t able to use that near canonical form to shorten the ar-
gument producing the canonical forms in the particular case treated in this
paper.
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2 EDUARDO MARQUES DE SÁ

The determination of canonical forms for the general problem of simultaneous
similarity is considered hopeless in the sense of an effective determination
of such forms. In the hierarchy of matrix problems, which goes back to
the 1970’s (as presented in, e.g., [3]), the general simultaneous similarity
problem serves as a milestone to the complexity of such problems; it is said
to be wild, to express its high degree of complexity. The determination of
canonical forms for that general problem has been the object of an interesting
algorithm due to G.R. Belitskĭı [2, 20], which, in a restricted sense to be
discussed later on, may be viewed as an archetypal model to the methods
used below.

If the simultaneous similarity action of GLn is restricted to a subset of pairs
(or k-tuples) of n-square matrices, we may have the chance of getting a
feasible solution to the canonical form problem. For example, for pairs of
matrices (A,B) such that AB = BA = 0, canonical forms have been given
in [4]. On the other hand, I.M. Gelfand and V.A. Ponomarev proved that
the subproblem with pairs (A,B) such that AB = BA is equivalent to the
general problem of simultaneous similarity for k-tuples of matrices [11].

In the present paper we consider pairs of involutions, and give canonical
forms for such pairs. In sections 2-3, using a simple localization technique,
we split the problem into several easier subproblems, studying pairs (L,R) of
involutions such that LR has a characteristic polynomial of simple structure.
In section 4 an easy solution is got in case LR has no eigenvalue ±1; in
this case we show GLn acts transitively on the set of pairs such that LR lies
in a fixed similarity orbit. In section 5, by far the lengthier, we treat the
case when the characteristic polynomial of LR is a power of x− 1, or x+ 1;
then a block diagonal canonical form is obtained, each block being a pair of
special involutions called Pascal matrices ; we also give a canonical form of
companion type. For LR in a fixed similarity class, the pairs (L,R) fill in
a finite number of simultaneous similarity orbits; in section 6 we determine
that number, as well as the number of such orbits assuming the similarity
classes of L, R and LR are kept fixed.

Some of our concepts may be given in a semigroup S with a bilateral identity
I. Suppose an element A ∈ S is the product of two involutions, say A = LR,
with L2 = R2 = I. Then RL is the (bilateral) inverse of A, and the equalities
A−1 = LAL = RAR show that A is similar to its inverse by an involution
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(L or R); conversely, if A is similar to its inverse by an involution, then A
is the product of two involutions. All this is easy to check, but in our main
object of study, the semigroup Mn of the n-square matrices over a field, it is
nontrivial and well-known that the similarity of A to A−1 implies similarity
by an involution. Note that the left involution L in a factorization A = LR
also occurs as right factor in another factorization of A into two involutory
factors, because LRL is an involution and A = (LRL)L.

The following sets will play an important role in the sequel:

PA = {X : AXA = X}, CA = {X : AX = XA},
IA = {involutions of PA}, GA = {units of CA}.

Note that IA is the set of all involutions L [R] which occur in a factorization
A = LR. From such a factorization we may obtain other factorizations of
the same kind: A = (TLT−1)(TRT−1), for T ∈ GA. So GA acts on IA by
similarity. In our concrete setting, the purpose is

To determine canonical forms for the action of GA on IA.

As PTAT−1 = TPAT
−1, the displayed problem is closely related to determin-

ing canonical forms for simultaneous similarity of pairs of involutions of S.
A moments thought shows that a solution to one of these problems implies
a solution to the other. The reader may enjoy proving the following trivial
exercises, for any A ∈ S:

1) PAPA ⊆ CA.
2) CAPA = PACA = PA.
3) If P ∈PA, where P and A are units, then PA = PCA = CAP .
4) For units of S, we have (X, Y ) ≈ (X ′, Y ′) iff (XY, Y ) ≈ (X ′Y ′, Y ′),

where ≈ means simultaneous similarity.

The last exercise shows the way followed below to get a canonical form for
a pair (L,R): apply the natural procedure to (LR,R), namely, reduce LR
to a similarity normal form, call it N , and then act with GN on the second
term of the pair for a final reduction.

General notations. F[x] denotes the ring of polynomials over an arbitrary
field F, Mn = Mn(F) the algebra of n-square matrices over F, and GLn the
group of units of Mn; Sn is the group of permutations of {1, . . . , n}; |Σ| is
the cardinality of a set Σ; f [Σ] denotes {f(x) : x ∈ Σ}; In, or just I, is
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the n × n identity matrix; Sn is the n × n skew-identity, resulting from In
by reversing the rows’ order; χA denotes the characteristic polynomial of A;
the transpose of A is denoted At; similarity of matrices and simultaneous
similarity of matrix pairs will be denoted by A ∼ B and (A1, A2) ≈ (B1, B2),
respectively.

2. Split forms

Let ϕ be a monic polynomial of positive degree. A pair (G,F ) ∈ M2
n of

the form (G1 ⊕G2, F1 ⊕ F2) is called a ϕ-split form if G1 and F1 are square
matrices of the same order, ϕ is the characteristic polynomial ofG1F1, and the
characteristic polynomial of G2F2 has positive degree and is relatively prime
with ϕ. We say that (L,R) ∈ M2

n has a ϕ-splitting if it is simultaneously
similar to a ϕ-split form. A pair of the kind (G1 ⊕G2, F1 ⊕ F2) will also be
denoted by

(G1, F1)⊕ (G2, F2).

Lemma 2.1. Let (G1, F1) ⊕ (G2, F2) and (G̃1, F̃1) ⊕ (G̃2, F̃2) be two ϕ-split

forms of (L,R). Then (G1, F1) ≈ (G̃1, F̃1) and (G2, F2) ≈ (G̃2, F̃2).

Proof. There exists a nonsingular matrix T such that T (G1 ⊕ G2) = (G̃1 ⊕
G̃2)T and T (F1⊕F2) = (F̃1⊕F̃2)T . Then T (G1F1⊕G2F2) = (G̃1F̃1⊕G̃2F̃2)T .
Partition T accordingly: T = (Tij)i,j=1,2. Then we have

T12G2F2 = G̃1F̃1T12 and T21G1F1 = G̃2F̃2T21.

The characteristic polynomials of G1F1 and G2F2 are pairwise relatively
prime, and are respectively equal to the characteristic polynomials of G̃1F̃1

and G̃2F̃2. By [10, pp. 215-ff], the displayed conditions imply T12 = 0, T21 = 0;

therefore T = T11 ⊕ T22, and we get F̃i = TiiFiT
−1
ii and G̃i = TiiGiT

−1
ii , for

i = 1, 2, as required. �

While this lemma cares for uniqueness of the direct summands of a ϕ-
splitting, the next one deals with existence.

Lemma 2.2. Assume that (L,R) ∈ M2
n satisfies LR = P1 ⊕ P2, where

the P1, P2 are nonempty and have relatively prime characteristic polynomials
ϕ1, ϕ2. Then (L,R) has a ϕ1-splitting iff (L,R) is already a ϕ1-split form.
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Proof. There exist L1, R1, L2, R2 of appropriate sizes, such that

(L,L−1(P1 ⊕ P2)) ≈ (L1, R1)⊕ (L2, R2)),

L1R1 ∼ P1 and L2R2 ∼ P2.

Let T be a nonsingular matrix such that

L = T (L1 ⊕ L2)T
−1, and L−1(P1 ⊕ P2) = T (R1 ⊕R2)T

−1.

We get (P1 ⊕ P2)T = T (L1R1 ⊕ L2R2), and the argument used in the proof
of lemma 2.1 shows that T = T11 ⊕ T22. Therefore

(L,R) = (T11L1T
−1
11 , T11R1T

−1
11 )⊕ (T22L2T

−1
22 , T22R2T

−1
22 ).

�

Of course a pair (L,R) ∈ M2
n may have no ϕ-splitting, for any ϕ. A trivial

case occurs when LR has an irreducible characteristic polynomial. For a less
trivial example, take for L a matrix with an irreducible pattern of zeroes, and
let D be a diagonal matrix with simple spectrum. By lemma 2.2, (L,L−1D)
has no ϕ-splitting, for any ϕ.

3. Products of two involutions

It is well-known that an invertible matrix A ∈ Mn is the product of two
involutions of Mn iff A is similar to A−1; and this holds iff any similarity
invariant factor of A is self-reciprocal. These results have been proved and
improved in several directions, e.g., [21, 7, 12, 1]. The reader may also find
in [21, 8, 14, 15] modified results of the same kind, in some cases worked
out in the context of orthogonal and symplectic geometry. For the theory of
invariant factors and elementary divisors check, e.g., [10, 13].

For f ∈ F[x] of degree m such that f(0) 6= 0, define the reciprocal of f ,
denoted f ∗, as follows: f ∗(x) = xmf

(
1/x
)
/f(0) (check [22, p. 38]). Note that

f ∗ is always a monic polynomial; and f ∗∗ = f if f is monic. In case f ∗ =
f , we say f is self-reciprocal. The reciprocal operation preserves products,
(fg)∗ = f ∗g∗, and this entails: f is irreducible iff f ∗ is irreducible. So, if
ψ is an irreducible factor of a self-reciprocal polynomial χ, and if ψ is not
self-reciprocal, then ψ∗ is also an irreducible factor of χ; moreover, ψk divides

χ if and only if
(
ψ∗
)k

divides χ; so in the primary factorization of χ, ψ and
ψ∗ occur with the same power. (Cf. [18] for a generalization.) In the sequel
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we shall consider two kinds of companion matrices of a monic polynomial
f(x) = xn − cnxn−1 − · · · − c2x− c1, namely

C(f) =


1

1
. . .

1
c1 c2 c3 · · · cn

 and Ĉ(f) =


cn · · · c3 c2 c1

1
. . .

1
1

 (1)

where non-specified entries are 0. We now give a trimmed proof of the main
result of [21, 7, 12].

Theorem 3.1. For A ∈Mn, the following are pairwise equivalent:

(a) A is the product of two involutions of Mn;
(b) A is similar to its inverse by an involution of Mn;
(c) A is similar to its inverse;
(d) The similarity invariant polynomials of A are self-reciprocal.

Proof. (a)⇒ (b) and (b)⇒ (c) are obvious.

(c) ⇒ (d). If f1|f2| . . . |fs are the similarity invariant polynomials of A then
f ∗1 |f ∗2 | . . . |f ∗s are the similarity invariant polynomials of A−1 (cf. [10, p. 153]).
Therefore (c) implies (f1, . . . , fs) = (f ∗1 , . . . , f

∗
s ).

(d) ⇒ (a). Clearly we only have to consider the case when A is non-
derogatory. Without loss of generality we assume A = C(f). Some simple

computations show that C(f)−1 = Ĉ(f ∗) and C(f) = SnĈ(f)Sn, where
Sn is the n × n skew-identity. As Sn is an involution and we are assuming
f = f ∗, we get C(f) as a product of two involutions (cf. [12]). �

A palindrome is a polynomial g(x) =
∑m

i=0 cix
i such that (c0, . . . , cm) =

(cm, . . . , c0). It is easy to show that

Lemma 3.2. With the exception of x + 1 and x − 1, all irreducible self-
reciprocal polynomials are palindromes of even degrees. �

The cyclotomic polynomials are remarkable examples of palindromes; they
are irreducible over the field of rational numbers, and their irreducibility for
other fields is a well-studied matter in Galois Theory [17].
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Now suppose that (L,R) ∈ M2
n is a pair of involutions, and χA is the char-

acteristic polynomial of A = LR. We may factorize χA as

χA = pe11 · · · peww (π∗1π1)
ε1 · · · (π∗sπs)εs (2)

where the ei, εj are positive integers, the pi are the distinct self-reciprocal
prime factors of χA, and the 2s polynomials πj, π

∗
j are the distinct non-self-

reciprocal prime monic factors of χA. Now let ϕ1 be a divisor of χA such that
ϕ1 and ϕ2 := χ/ϕ1 are non-unit, relatively prime and self-reciprocal; then
A = W (A1 ⊕ A2)W

−1, for some W ∈ GLn, where χAi = ϕi. We may write
Ai = LiRi, where Li, Ri are involutions; we get a ϕ1-splitting

(L,R) ≈ (L1, R1)⊕ (L2, R2)

with the bonus attribute that the four factors on the right are involutions.
Then IA and GA also split accordingly. More precisely:

Lemma 3.3. IA = W (IA1
⊕ IA2

)W−1 and GA = W (GA1
⊕GA2

)W−1.

Proof. We may assumeW = I. M ∈ IA iffM 2 = I and AMA = A. Partition

M as
(
Mij

)2

i,j=1
according to the split form. Then we get AiMijAj = Mij;

as the characteristic polynomials of A1 and A2 are relatively prime and self-
reciprocal, M12 = 0 and M21 = 0; the desired splitting of IA follows at once.
The case of GA may be done in the same manner. �

The previous arguments (with the help of lemma 2.1 for uniqueness) allow a
simple induction to get

Theorem 3.4. If A = LR, where L,R are involutions, then

(L,R) ≈ (L1, R1)⊕ · · · ⊕ (Lw+s, Rw+s), (3)

where all terms Lk, Rk are involutions and LiRi has characteristic polynomial
equal to the i-th power of the factorization (2). Moreover, the direct summand
pairs (Li, Ri) are unique up to simultaneous similarity. If W ∈ GLn provides
the simultaneous similarity (3), then we have IA = W

(⊕
i ILiRi

)
W−1 and

GA = W
(⊕

i GLiRi

)
W−1. �

This theorem suggests to divide the determination of orbits and canonical
forms into cases according to the factorization of χA.
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4.A has no eigenvalues ±1
In this section we prove the following theorem and then discuss some available
canonical forms. In this section, n is necessarily an even number.

Theorem 4.1. Let L and R be involutions such that 1 and −1 are not eigen-
values of A = LR. Then GA acts transitively on IA; that is, (L,R) ≈ (L′, R′)
is equivalent to LR ∼ L′R′, for any involutions L′, R′. All elements of IA
are similar to Sn, the n-th order skew identity.

Proof. The argument is split into several cases.

Case 1: χA has no self-reciprocal prime factors. This corresponds to w = 0
in (2). It is easy to check that an elementary divisor canonical form of A may
be organized to show that A ∼ B ⊕ B−1, where B and B−1 have relatively
prime characteristic polynomials. Choose any such B, and let Σ = B⊕B−1.
The general forms of the elements in GΣ and IΣ are[

C 0
0 D

]
∈ GΣ and

[
0 E−1

E 0

]
∈ IΣ,

with C,D,E ∈ GB. Thus the (similarity) action of GΣ on IΣ is transitive,
and so is the action of GA on IA. As [ 0 I

I 0 ] lies in IΣ, and this matrix is
permutationally similar to Sn, all elements of IA are similar to Sn.

Case 2: χA is a power of a self-reciprocal monic prime p of degree > 1.
Denote by K the splitting field of p. Over K, χA has no self-reciprocal prime
factors. In the extended field we fall under the jurisdiction of Case 1; thus
in the present case our theorem holds over K. According to Theorem 1 of
[16], if two pairs of F-matrices are simultaneously similar over an extension
K of F, then they are simultaneously similar over F as well. So, in Case 2,
our theorem holds over F.

The general case follows from appropriate application of theorem 3.4. �

The transitivity assures that any pair of simple structure in the orbit of (L,R)
may serve as canonical form. We go back to the proof of theorem 3.1, and
denote by α1| . . . |αu the similarity invariant polynomials of LR. Each C(αi)
is the product of the two involutions, Sai and SaiC(αi), where ai denotes
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degαi. This gives rise to the first proposed canonical form

(L,R) ≈
(
Sa1 ⊕ · · · ⊕ Sau, Sa1C(α1)⊕ · · · ⊕ SauC(αu)

)
=(

Sa1, Sa1C(α1)
)
⊕ · · · ⊕

(
Sau, SauC(αu)

)
(4)

Using the factorization (2), split A = LR as A ∼ A(1) ⊕ A(2), where each
elementary divisors of A(1) is a power of a self-reciprocal prime polynomial pi,
and each elementary divisor of A(2) is a power of a non-self-reciprocal prime
polynomial in the set Π = {π1, π

∗
1, . . . , πs, π

∗
s}. Then

(L,R) ≈ (L(1), R(1))⊕ (L(2), R(2)), (5)

where L(i), R(i) are involutions, and L(i)R(i) = A(i). In (5) the (L(i), R(i))
may be replaced by a canonical form of the kind (4); we may also replace
(L(1), R(1)) by a form as (4) with the αi denoting the elementary divisors of
A(1); and we may replace (L(2), R(2)) by a canonical form of a different kind
that we shall describe under (6).

Choose one element in each element of
{
{π1, π

∗
1}, . . . , {πs, π∗s}

}
, and call Φ

the set of chosen elements. Clearly {Φ,Φ∗} is a partition of Π. Let BΦ be
any matrix whose elementary divisors are those of A which are powers of
elements of Φ. Obviously A(2) ∼ BΦ⊕BΦ∗ ∼ BΦ⊕B−1

Φ . Let ζ1, . . . , ζk be the
elementary divisors of BΦ. Then we get a canonical form

(L(2), R(2)) ≈
([

0 I
I 0

]
,

[
0

⊕k
i=1 Ĉ(ζi)⊕k

i=1C(ζi) 0

])
. (6)

5. χA is a power of x− 1, or x + 1

So we are left with the prime factors x ± 1, the exceptions of lemma 3.2.
Firstly we treat the case when χA(x) = (x− 1)n.

Let Hk be the k×k nilpotent Jordan matrix: hij = 1 if j = i+1, and hij = 0
otherwise. Take the Jordan k × k matrix with eigenvalue 1, Jk := Ik −Hk.
If A has characteristic polynomial (x− 1)n, then A is similar to

M = Jn1 ⊕ · · · ⊕ Jnw , (7)

where (n1, n2, . . . ) is an integer partition of n, with w positive parts; we are
assuming n1 > n2 > . . . , and n1 + · · · + nw = n. Let CM := {X ∈ Mn :
XM = MX}, and

PM := {X ∈Mn : MXM = X}.
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The set CM is a well-known sub-algebra of Mn, and PM is a subspace of
Mn, satisfying some useful, elementary properties like:

PM−1 = PM , and MPM = PMM = PM ;

moreover, if X ∈PM is nonsingular, then X−1 ∈PM . We know M = LR,
with L and R involutions. Our aim is to find all involutions of PM .

We say that a k × r matrix Y = (yij) is a Pascal matrix if JkY Jr = Y ;
the set of such matrices is denoted by Pkr. Clearly Y ∈ Pkr iff HkY Hr =
HkY + Y Hr. Note that [HkY ]ij = yi+1,j, [Y Hr]ij = yi,j−1, and [HkY Hr]ij =
yi+1,j−1, with the convention yuv = 0 if u = k + 1 or v = 0. So Y ∈ Pkr iff
yi+1,j−1 = yi+1,j+yi,j−1, a rule similar to Pascal’s for the binomial coefficients,
namely: two diagonally adjacent entries α, β of Y , as in the diagram

α ∗
S β  S = α + β

(8)

determine the value α + β for the entry S just bellow α. It is easy to
see, using (8), that Y is an upper triangle, more precisely yij = 0, for j <
i+ max{0, r − k}. Note that an upper triangle has one of the following two
patterns

~ ∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ · · · ∗

. . . ...
∗

or

~ ∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ · · · ∗

. . . ...
∗ (9)

according to k < r or k > r, respectively, with zeroes in non specified entries.
Let m := min{k, r}. Let c1, . . . , cm be the nonzero entries of a generic Y ’s
first row (c1 is the entry marked as ~). Applying the rule (8) we get the
entries c1,−c1, c1,−c1, . . . down the longest diagonal of Y ; and all other ∗’s
are uniquely determined as well. So dim Pkr = min{k, r}.

We frequently refer to matrices X ∈Mn related to the direct sum (7); then
we shall always assume X partitioned as

X = (Xστ)
w
σ,τ=1 , where Xστ is nσ × nτ , (10)
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and refer to theXστ as the standard blocks of X. For example, we may express
the condition Y ∈PM (in terms of Y ’s standard blocks) as follows JσYστJτ =
Yστ . Therefore, the arguments above lead to the following theorem.

Theorem 5.1. Y ∈ PM if and only if all standard blocks of Y are Pascal
matrices. The dimension of PM is

∑w
σ,τ=1 min{nσ, nτ}. �

The condition X ∈ CM , is equivalent to JnσXστ = XστJnτ ; and this in turn
is equivalent to HnσXστ = XστHnτ . The set CM is completely determined
in [10, pp. 220-ff ]; the result is expressed here in terms of Toeplitz matrices
(those satisfying xij = xi+1,j+1): X ∈ CM if and only if all standard blocks
Xστ are upper triangular Toeplitz matrices. CM has the same dimension as
PM . So the generic Y ∈PM and X ∈ CM have the same pattern of zeroes.

5.1. Partitioned matrices with upper triangular blocks. The algebra
CM and the vector space PM are contained in the algebra TM of all ma-
trices having a partition (10) with upper triangular standard blocks. This
algebra may be reduced to a block-upper triangular form by means of a per-
mutational similarity, the permutation being the same which transforms the
Jordan canonical form M into its Weyr canonical form (cf. [19, 2, 3]). This
permutational reduction is the same as done in [20] for the algebra CM . Later
on we use a refined notation. Let η1 > η2 > · · · > ηv be the distinct positive
parts of the partition (n1, n2, . . . ), and denote by mi the multiplicity of ηi,
for i = 1, . . . , v. Clearly n = m1η1 + · · ·+mvηv. Let Xi be the submatrix of
X made up of the square standard blocks Xστ of size ηi× ηi; note that Xi is
a principal square submatrix of X, of order miηi, composed by m2

i standard
blocks of X. Then

X =


X1 ∗ · · · ∗
∗ X2 · · · ∗
...

... . . . ...
∗ ∗ · · · Xv

 , (11)

where each ∗ represents a composite of non-square standard blocks Xστ of
X, and any square block of X is a block of some Xk. For k = 1, . . . , v, select
in each block Xστ of Xk the first entry of the main diagonal of Xστ ; the
selected entries form an mk ×mk principal submatrix of Xk that we denote
by Zk(X), and often shorten to Zk. The following lemma is proved by simple
combinatorics based on the fact that any standard block Xστ below the Xi’s
in (11) has a zero first column (check (9)), and if Xστ is a block of some Xk,
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the only nonzero entry of the first column of Xστ is its top-left entry (which
is an entry of Zk).

Lemma 5.2. There exists a permutation matrix P , which satisfies

PXP t =


Z1 ∗ . . . ∗ ∗

Z2 . . . ∗ ∗
. . . ...

...
Zv ∗

r(X)

 , (12)

for any X ∈ TM , where r(X) is the matrix obtained by deleting all rows and
columns of X corresponding to Z1, . . . , Zv. �

Clearly, as X runs over PM [GM ], Z1 ⊕ · · · ⊕ Zv fills completely the algebra
Mn1 ⊕ · · · ⊕Mnv [resp., the group GLn1 ⊕ · · · ⊕GLnv ]. For any X, Y ∈ TM ,
T ∈ T ∗

M and i ∈ {1, . . . , v}, we have

Zi(XY ) = Zi(X)Zi(Y ), and Zi(TXT
−1) = Zi(T )Zi(X)Zi(T )−1.

This implies the following

Lemma 5.3. The similarity classes of Z1(X), . . . , Zv(X) are invariant for
the action of T ∗

M on TM . Suppose X ∈ TM [X ∈PM ]. For any Wi similar
to Zi(X), i = 1, . . . , w, there exists Y in the T ∗

M -orbit [resp., GM -orbit] of
X that satisfies W1 ⊕ · · · ⊕Wv = Z1(Y )⊕ · · · ⊕ Zv(Y ). �

Lemma 5.4. Let Zkd be the mk-square submatrix of Xk made up of the d-th
entry of the main diagonal of each block Xστ of Xk. Then

detX =
v∏

k=1

ηk∏
d=1

detZkd.

Proof. The matrix r(X) of (11) has a partition (X ′στ)
w
σ,τ=1, where X ′στ is

upper triangular of size (nσ − 1)× (nτ − 1). So the triangular reduction (12)
may be inductively refined by a permutational similarity performed on the
rows and columns of r(X). We convention that matrices of one non-positive
size is empty; so some of the X ′στ may be empty. Note that Zk1 is the previous
Zk. Therefore, from (12),

detX =

(
v∏

k=1

detZk1

)
det r(X),
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and we get the lemma’s formula by induction. �

Corollary 5.5. In the notation of lemma 5.4, detX =
∏v

k=1 detXk and, if
the Xστ are Toeplitz upper triangular standard blocks,

detX =
v∏

k=1

(
detZk1

)ηk. �

Restriction homomorphisms. The method used to get r(X) in lemma
5.2 may be slightly extended. For a fixed e ∈ N, eliminate in each block Xστ

the first e rows and the first e columns; let r(Xστ) be the resulting restricted
standard blocks, and r(X) the resulting restricted matrix. As r(Xστ) is upper
triangular, r(X) lies in Tr(M). Note that if e > nk, then all standard blocks
Xστ are empty for min{σ, τ} > k. It is clear that

Xστ =

[
Eστ ∗
0 r(Xστ)

]
,

where Eστ is an e-square upper triangular matrix; as e does not depend on
σ, τ , r(XστXτµ) = r(Xστ)r(Xτµ). Therefore r(XY ) = r(X)r(Y ) for X, Y ∈
TM . So the restriction mapping r : TM → Tr(M) is an algebra homomor-
phism, which obviously preserves the Toeplitz property and the Pascal rule
(8). From corollary 5.5, if X ∈ CM is nonsingular, then r(X) is nonsingular
as well (this follows from the fact that Zkr = Zk1 or Zkr = ∅). According to
this we have three restrictions of r:

rc : CM → Cr(M), rp : PM →Pr(M) and rg : GM → Gr(M) .

Lemma 5.6. rc, rp and rg are epimorphisms of, respectively, algebras, vector
spaces and groups. �

The simple proof is omitted. An example shows the way to do it. In the
following diagram, a south-east standard block of size 7 × 11, of Pascal [or
Toeplitz] type, whose nonzero entries are denoted by ∗’s, is shown in the
process of extension to a matrix of the same type (Pascal or Toeplitz), by
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adding e rows on top and e columns on the left, with e = 6:

� � � � � � � · · · · · ·
� � � � � � � · · · · ·
� � � � � � � · · · ·
� � � � � � � · · ·
� � � � � � � · ·
� � � � � � � ·
∗ ∗ ∗ ∗ ∗ ∗∗
∗ ∗ ∗ ∗ ∗∗
∗ ∗ ∗ ∗∗
∗ ∗ ∗∗
∗ ∗∗
∗∗
∗

. (13)

The �’s represent the entries of the extension which are uniquely determined
by the top row of ∗’s, and by the type of extension, namely, by the Pascal
rule (8) [or the Toeplitz rule]. The entries denoted by ·’s may be filled in
with some flexibility: we may choose arbitrarily the first row of dots, the
remaining dots being uniquely determined by that choice; the dotted entries
contribute to the kernel of rx, for x = c, p, g (note, en passant, that ker rx is
an affine variety of TM with dimension

∑
{min{e, ni, nj} : 1 6 i, j 6 w}).

The similarity actions of GM and Gr(M) are also well related, in the sense
that the following diagram

GM ×PM −−→ PM

rg×rp
y yrp

Gr(M)×Pr(M) −−→ Pr(M)

(14)

is commutative, where the horizontal arrows denote the group actions.

The whole thing here may be done with the restriction defined as the elimi-
nation, in each block Xστ , of the last e rows and columns.

5.2. The case of a single Jordan block with eigenvalue 1. We now
settle the case when M has only one Jordan block, namely M = Jn; we
denote Hn and Jn simply by H and J . Then CJ is F[J ] = F[H]; it is the
set of upper-triangular Toeplitz matrices, the sub-algebra of Mn generated
by H (and by J). The elements of CJ may be presented as g(H), where
g ∈ F[[x]], the ring of formal power series, because g(x) will be ultimately
chopped off modulo xn. For example, the inverse of 1− x is `(x) =

∑
k>0 x

k;

so J−1 = `(H), the upper triangle of all 1’s. Note that PJ = Pnn, the set
of the n-square Pascal matrices.
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Lemma 5.7. Let Y ∈ PJ and f ∈ F[[x]]. Define ξ(x) = x
x−1. We have

ξ(H) = −
∑

k>1H
k, Y f(H) = f(ξ(H))Y and f(H)Y = Y f(ξ(H)).

Proof. The formula for ξ(H) is obvious. It is easy to check that Y H =
Y − Y J = (I − J−1)Y = ξ(H)Y ; so the second formula holds for f(x) = x,
and the general case is obtained by induction. The third formula follows
from the second one, because ξ(ξ(x)) = x. �

As explained above, for any γ = (γ1, . . . , γn) ∈ Fn there exists one and only
one n-square Pascal matrix with γ as first row; this matrix will be denoted
P (γ1, . . . , γn). We single out two special Pascal matrices

∆ = P (1, 0, . . . , 0) and Γ = P (1, 1, . . . , 1), (15)

also denoted ∆n and Γn if needed. Computing the entries Γij of Γ by the

rule (8) is like building a Pascal triangle; we get Γij = (−1)i−1
(
j−1
i−1

)
, with

the convention
(
j
i

)
= 0 if j < i. Note that any leading or trailing principal

submatrix of a Pascal matrix is again Pascal, and that the second row of ∆
is (0,−1, . . . ,−1); therefore ∆n = 1⊕ (−Γn−1).

Lemma 5.8. ∆ and Γ are involutions, and J = Γ∆.

Proof. For `(x) = (1−x)−1, the first row of `(H) is (1, 1, . . . , 1), the same as
the first row of J−1; thus Γ = ∆J−1. As ∆n, Γn ∈ Pnn and ∆n = ΓnJ , we
get: ∆n is an involution iff Γn is an involution. The fact that Γ 2

n = ∆2
n = In

follows by a simple induction using ∆n = 1⊕ (−Γn−1). �

Remarks on characteristic 2. The case when F has characteristic 2 is
going to be left out by the following main reasons. Firstly, in characteristic
6= 2, an involution is similar to one of the n+ 1 matrices −Ik⊕ In−k, while in
characteristic 2 the Jordan form of an involution is a direct sum of blocks of
two types: J2 = [ 1 1

0 1 ] and J1 = [1]. As a second fact, to find all involutions
of PJ amounts to finding all power series f(x) such that f(H)∆f(H) = ∆;
from lemma 5.7, this means to characterize those f ’s which satisfy

f(x)f(ξ(x)) = 1.

Introducing the expressions f(x) =
∑

k>0 ckx
k and ξ(x) = −

∑
k>1 x

k, we get

(c0 + c1x+ c2x
2 + . . . )

[
c0 − c1

∑
k>1 x

k + c2

(∑
k>1 x

k
)2 − · · ·

]
= 1. (16)
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This gives rise to an infinite sequence of equations involving the ci’s. The
first equation is c2

0 = 1 and, when we equate to 0 the coefficient of x2k of the
left hand side of (16), 2c0c2k comes out as a quadratic expression in the ci’s
for i < 2k. So the case of characteristic 2 raises problems of a very different
nature from those treated below. �

From now on we assume
F has characteristic 6= 2

Lemma 5.9. Assume Y ∈ PJ is nonsingular. There exists one and only
one polynomial g(x) of the form

g(x) =
∏

odd w<n

(1− θwxw), (17)

(a product of bn2c factors) such that the matrix Y ∗ = g(H)−1Y g(H) has first
row with entries y∗1i = 0 for all even i.

Proof. For upper triangular matrices Y consider the similarity transformation
Y 7→ Y ∗ := (I − θHw)−1Y (I − θHw). Let ek be the k-th row of I, and
Yk := ekY . Using e1H

k = ek+1, compute the first row of Y ∗:

e1Y
∗ = e1(I − θHw)−1Y (I − θHw)

= e1

∑
i>0

θiH iwY (I − θHw) =
∑
i>0

θiYiw+1(I − θHw)

=

(
Y1 + θYw+1 +

∑
i>2

θiYiw+1

)
(I − θHw)

=Y1 − θ(Y1H
w − Yw+1) +

[∑
i>2

θiYiw+1 −
∑
i>1

θi+1Yiw+1H
w

]
. (18)

As Y is upper triangular, the first w+ k− 1 entries of YkH
w are 0; therefore,

the row in (18) between brackets has its first 2w entries 0. Thus we have:
the transformation Y 7→ Y ∗ does not change the elements yi1 for 1 6 i 6 w,
and y∗1,w+1 = y1,w+1 − θ(y11 − yw+1,w+1).

For Y ∈ PJ , the diagonal elements of Y are yii = (−1)i+1y11; therefore,
if w is odd, then y∗w+1,1 = yw+1,1 − 2θy11, and we may zero out y∗w+1,1 by
appropriate choice of θ, without changing the elements of the first row of Y
on the left of y1,w+1. Taking w = 1, 3, 5, . . . we may successively eliminate
all entries of the first row of Y in even positions.
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To show the uniqueness of g note that in (17) there is no repeated exponent
w. So we may order the factors (1− θwxw) by strictly increasing values of w
from left to right. We act on Y by similarity with matrices (I − θ1H), (I −
θ3H

3), . . . , in this order; to zero out successively x12, x14, . . . ; in each step,
each θ1, θ3, . . . is uniquely determined. �

Lemma 5.10. Let P ∈ PJ be an involution. The involutions of PJ are
the matrices ±f(H)Pf(H)−1, for f ∈ F[x], f(0) 6= 0. For an involution
X ∈ PJ , x11 = ±1 and the sign of x11 is a complete invariant for the
GJ-similarity action on IJ .

Proof. Clearly the matrices ±f(H)∆f(H)−1 are involutions. Conversely let
us pick any involution Y ∈PJ . Then Y has diagonal (±1,∓1,±1,∓1, . . . ).
The matrix Y ∗ of lemma 5.9 is also an involution; therefore, for k > 2,
the product of the k-th column of Y ∗ by the first row is zero; reading this
condition entry-wise for successively increasing odd values of k, we get y∗1k = 0
for all odd k 6= 1. Therefore, the first row of Y ∗ is (±1, 0, . . . , 0), in other
words, Y ∗ = ±∆. We thus have Y = ±g(H)∆g(H)−1. The value range and
invariance of x11 are obvious. �

Therefore, we have two GJ -orbits in IJ , that we denote by I+
J and I−J

I+
J = {X ∈ IJ : x11 = 1} and I−J = {X ∈ IJ : x11 = −1}.

Theorem 5.11. Suppose C ∼ J , say C = TJT−1. Clearly IC = TIJT
−1.

The action of GC on IC has two orbits, I+
C := TI+

J T
−1 and I−C := TI−J T

−1.
The orbit I+

C consists of the matrices Y ∈ IC such that (I−Y )(I−C)n−1 = O.

Proof. The last assertion is the only one deserving some attention. X ∈ I+
J

iff the first column of I−X is zero; and this holds iff (I−X)(I−J)n−1 = O,
i.e., (I − TXT−1)(I − C)n−1 = O. The theorem follows from Y ∈ I+

C iff
Y = TXT−1, with X ∈ I+

J . �

Corollary 5.12. We have (Γn, ∆n) ≈ (Sn, SnC((x−1)n)), where C(f) is the
companion matrix in (1), and Sn is the skew-identity.

Proof. We let C := C((x − 1)n)), and apply theorem (5.11). Note that
Γn ∈ I+

J . So we only need to prove that Sn ∈ I+
C (because TΓT−1 ∈ I+

C , and
all matrices in I+

C are GC-similar). So we have to show that

(I − Sn)(I − C)n−1 = O. (19)
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Note that I − C is nilpotent, non-derogatory and, therefore, (I − C)n−1 has
rank one. The sum of the last row of C(f) is 1−f(1); in case f(x) = (x−1)n

that sum is 1. Hence C is row stochastic, and therefore each row of I−C has
sum 0; so u = [1, 1, . . . , 1]t is an eigenvector of I − C corresponding to the
eigenvalue 0. It is easy to check that, if e1 = [1, 0, . . . , 0]t, then the vectors

e1, (I − C)e1, (I − C)2e1, . . . , (I − C)n−1e1

are linearly independent, i.e., they form a Jordan chain for I − C. As a
consequence, (I − C)n−1e1 is proportional to u (in fact, it equals u). This
implies that all rows of (I−C)n−1 are equal; thus Sn(I−C)n−1 = (I−C)n−1,
and (19) holds, as desired. �

5.3. Back to a direct sum of Jordan blocks with eigenvalue 1. For
any involution K, we denote by µ(K) the multiplicity of 1 as an eigenvalue
of K. The signature of an involution L of PM , is the v-tuple

sg(L) =
(
µ(Z1(L)), . . . , µ(Zv(L))

)
. (20)

The signature≈ of a pair of involutions, (L,R), such that LR ∼M , is defined
as the signature of any L′ ∈ PM similar to L; the notation is sg≈(L,R), or
just sg(L,R). In the definition of sg(L,R) we used lemma 5.3. The invariance
of sg(R) [sg≈(L,R)] for GM -similarity [resp., simultaneous similarity] also
follows easily.

For each w-tuple of signs, ε = (ε1, . . . , εw) ∈ {1,−1}w, let Lε and Rε be the
matrices

Lε = ε1Γn1 ⊕ · · · ⊕ εwΓnw and Rε = ε1∆n1 ⊕ · · · ⊕ εw∆nw . (21)

Clearly M = LεRε for any ε. For k ∈ {1, . . . , v}, let Uk be the set of those i ∈
{1, . . . , w} such that ni = ηk; we know |Uk| = mk. So U1, . . . , Uv are disjoint
consecutive intervals which cover {1, . . . , w}. Any permutation σ ∈ Sw, such
that σ[Uk] = Uk (for all k) will transform ε into ε′ = (εσ(1), . . . , εσ(w)); then
(Lε, Rε) ≈ (Lε′, Rε′) by an obvious permutational simultaneous similarity. As
Γni ∼ ∆ni, then Lε and Rε are similar, i.e., µ(Lε) = µ(Rε).

We say that ε is adjusted if each section (εi : i ∈ Uk) is a non-increasing
mk-tuple, i.e., (

εi : i ∈ Uk
)

= (1, 1, . . . , 1︸ ︷︷ ︸
µk

,−1,−1, . . . ,−1︸ ︷︷ ︸
mk−µk

),



PAIRS OF INVOLUTIONS 19

where 0 6 µk 6 mk. If ε is not adjusted, then we may reorder each section
(εi : i ∈ Uk) in non-increasing order; the w-tuple ε′ obtained in this way is
called the adjusted of ε. We thus have proven

Lemma 5.13. Two pairs (Lε, Rε) and (Lτ , Rτ) are simultaneously similar if
and only if they have the same signature. �

Theorem 5.14. For an involution Ψ ∈ PM , there exists a unique adjusted
sign tuple ε such that Ψ is GM -similar to Lε.

Proof. Partition Ψ as (Ψrs)
w
r,s=1, where each Ψrs is a Pascal matrix of size

nr×ns. We keep the notation related to the partition (11), namely ni, ηk,mk,
and the meaning of Zk = Zk(Ψ) and r(Ψ) of (12). In the current case, the
diagonal blocks Z1, . . . , Zv, r(Ψ) are involutions. By induction, there exists
W ∈ Gr(M) such that

W r(Ψ)W−1 = Λ1 ⊕ · · · ⊕ Λw,
where each Λr is a Pascal involution of order nr − 1 for 1 6 r 6 w (the last
mv Λi’s are empty if nw = 1). As rg is surjective (lemma 5.6) choose U ∈ GM

such that r(U) = W , and define Ω := UΨU−1. The commutativity of (14)
implies

r(Ω) = Λ1 ⊕ · · · ⊕ Λw.
In case ns > 1, r(Ωss) is an involution of Pns−1,ns−1; so the diagonal entries
of Ωss ∈ Pnsns are alternately ±1. Each off-diagonal block Ωrs satisfies
r(Ωrs) = 0, in other words: all entries of Ωrs are zero except, possibly, those
in ker r-positions (check the comments following (13)), in this case the entry
in the top-right position of Ωrs. Let ωij be the entries of Ω, 1 6 i, j 6 n. For
1 6 r 6 w, let αr, βr ∈ {1, . . . , n} be defined by the conditions:

ωαrαr is the first diagonal entry of Ωrr

ωβrβr is the last diagonal entry of Ωrr.

So the top-right entry of Ωrs is ωαrβs. Note that αr = βr iff nr = 1. Clearly
Ω has a partition like (12), with r(Ψ) replaced by r(Ω).

Case ηv = 1. In this case, Ωv, the matrix consisting of the 1-by-1 standard
blocks Ωrs, is nothing but Zv; thus it is an involution of Mmv

, and it may be
any such involution. Partition Ω as

Ω =

[
Σ K
C Ωv

]
. (22)
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The pattern of zeros of K and C are as follows: all rows of K [columns of
C] are zero except (possibly) those of indices αr [resp., βr], for r such that
nr > 1.

For any Q ∈ GLmv
, the matrix Q̄ = In−mv

⊕ Q lies in GM . Choose Q such
that QΩvQ

−1 is a diagonal involution; when we transform Ω into Q̄Ω̄Q̄−1,
the matrix Σ and the patterns of K and C do not change, and Ωv becomes
a diagonal involution. So we shall assume that Ωv is a diagonal involution.
Therefore the diagonal entries of Ω are ±1.

Let Epq be the np × nq matrix with all entries 0 except the top-right entry
which is 1; and let Tpq(x) = In + xEpq. Clearly Tpq(x) ∈ GM and Tpq(x)−1 =
Tpq(−x). We shall zero out all off diagonal standard blocks Ωrs using a
sequence of similarity transformations by matrices Tpq(x). Let

Ω′ = Tpq(x)ΩTpq(x)−1.

This is the similarity which transforms Ω into Ω′ in two steps:

Step 1: add to row αp, the row βq multiplied by x, followed by
Step 2: add to column βq, the column αp multiplied by −x.

Pick any nonzero entry of C, say ωαpβq , such that ωαpαpωβqβq = −1. Note
that nq > np = 1. In step 1, the row βq has a sole nonzero entry, namely
ωβqβq = ±1; so this step only changes the chosen entry ωαpβq ; and adds to
it xωβqβq . In step 2, some of the top-right entries of the standard blocks
of Σ may change, but all the rest of Σ remains intact; moreover, as Ωv is
diagonal, the only element of C which is changed is the chosen entry ωαpβq ,
which transforms, after the two steps are made, into

ω′αpβq = ωαpβq + x(ωβqβq − ωαpαp)

So, as ωβqβq − ωαpαp = ±2, we may zero out ω′αpβq by appropriate choice of x.

Now we treat the case ωαpαpωβqβq = 1. The assumption Ω2 = In when read
in terms of standard blocks, implies

w∑
k=1

ΩpkΩkq = 0, for p 6= q. (23)

In our case (np = 1), ΩpkΩkq is the last row of Ωkq multiplied by ωαpβk; this
is a zero row if (nk > 1 ∧ q 6= k) or (nk = 1 ∧ p 6= k); (the last term of this
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disjunction follows from the fact that Ωv is diagonal). So (23) reduces to:

ΩppΩpq +ΩpqΩqq = 0.

As Ωpp = ωαpαp and ΩpqΩqq is the last row of Ωqq multiplied by ωαpβq , we
have ωαpαpωαpβq + ωαpβqωβqβq = 0, that is ωαpβq = 0.

We have proven the existence of a similarity action of GM that zeroes out
the matrix C in (22). Of course the same procedure applies to K with minor
changes, with similarity transformations that do not change the null matrix
C, and zero out K. The conclusion of case ηv = 1 is that we may assume
that Ω splits as Ω = Σ ⊕ Ωv. We shall assume, without loss of generality,
that ηv > 2.

Case ηv > 2. The elimination of an entry ωαpβq , with p 6= q, for which
ωαpαpωβqβq = −1 is done as before, using an elementary matrix Tpq(x); things
are easier because the acting row αp and column βq each have a sole nonzero
entry, namely ωαpαq and ωβqβq . The proof that ωβpβpωαqαq = 1 implies ωβpαq =
0 is done as before using the equation (23).

We have proven that Ψ is GM -similar to a direct sum Φ1 ⊕ · · · ⊕ Φw, where
each Φr is an involution of Pnrnr . By lemma 5.10, Φr is GJnr -similar to εrΓnr ,
where εr is the first diagonal entry of Φr. So Ψ is GM -similar to Lε. By
permuting the order of the diagonal blocks, if necessary, we may assume ε is
adjusted. The GM -invariance of the signature proves uniqueness. �

The work done so far is enough to present a canonical form:

Theorem 5.15. For any pair of involutions, (L,R), such that LR ∼ M ,
there exists a unique adjusted sign tuple ε such that (L,R) ≈ (Lε, Rε). �

5.4. Direct sum of Jordan blocks with eigenvalue −1. The whole
theory developed for the eigenvalue 1 may be repeated for −1 with minor
changes. One way of doing this is to replace M with −M ; as P−M = PM ,
C−M = CM and G−M = GM , the action of G−M on I−M is the same as we
have seen above.

For simultaneous similarity, we have (L,R) ≈ (X, Y ) iff (L,−R) ≈ (X,−Y )
[iff (−L,R) ≈ (−X, Y )]. So theorem 5.15 has the obvious consequence

Corollary 5.16. For any pair of involutions, (L,R), such that LR ∼ −M ,
there exist unique adjusted sign tuples ε and τ , such that (L,R) ≈ (Lε,−Rε)
and (L,R) ≈ (−Lτ , Rτ). �
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Note that in this corollary τ [ε] is the adjusted of −ε [resp., −τ ].

Review of the main results of this section

For the action of GM on IM , the signature is a complete invariant, and the
Lε for adjusted ε’s form a set of canonical forms.

For the simultaneous similarity action of GLn on pairs of involutions (L,R)
such that χLR = (x − λ)n, λ = ±1, the Segre characteristic (n1, . . . , nw)
of LR and the signature≈ form a complete system of invariants. The Segre
characteristic produces the v-tuple of multiplicities, (m1, . . . ,mv), and the
concept of adjusted ε. In case λ = 1 [λ = −1], the pairs (Lε, Rε) [resp.,
(Lε,−Rε)], for adjusted ε’s form a set of canonical forms.

In the case λ = 1, we may present the canonical form (Lε, Rε) as

(Lε, Rε) = ε1(Γn1, ∆n1)⊕ · · · ⊕ εw(Γnw , ∆nw). (24)

Let us define Vk by

Vk := SkC((x− 1)k).

According to corollary 5.12, we have (Γk, ∆k) ≈ (Sk, Vk). In this way, we
may replace the canonical pair (Lε, Rε) by a sparser one, (Sε, Vε), defined by

(Sε, Vε) = ε1(Sn1, Vn1)⊕ · · · ⊕ εw(Snw , Vnw) (25)

In the case λ = −1, one has the sparser canonical form (Sε,−Vε).

The following picture shows the matrix Lε = Γ7⊕Γ6⊕Γ4⊕Γ3⊕Γ2⊕Γ1, where
ε = (1, 1, 1, 1, 1, 1); the block diagonal and the Pascal structure of each block
are well visible. On the right we show PLεP

t, where P is the permutation
matrix that transforms the Jordan form M = J7 ⊕ J6 ⊕ J4 ⊕ J3 ⊕ J2 ⊕ J1,
into the corresponding Weyr normal form [19]. Although the right hand side
matrix shows some regularity in the distribution of the binomial coefficients,
the new pattern is a lot scattered and difficult to decipher. This matrix P has
been used by G. R. Belitskĭı to reduce the algebra CM (in fact a generalized
form of it) to a block triangular form [2, 20]; this has a great advantage in
working in Belitskĭı’s much more general framework; in the present reduced
case, the option for a Jordan normal form M offers nicer pattern readability
of canonical forms like (24).
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1 1 1 1 1 1 1

-1 -2 -3 -4 -5 -6

1 3 6 10 15

-1 -4-10-20

1 5 15

-1 -6

1

1 1 1 1 1 1

-1 -2 -3 -4 -5

1 3 6 10

-1 -4-10

1 5

-1

1 1 1 1

-1 -2 -3

1 3

-1

1 1 1

-1 -2

1

1 1

-1

1

1 1 1 1 1 1 1

-1 -2 -3 -4 -5 -6

1 3 6 10 15

-1 -4 -10 -20

1 5 15

-1 -6

1

1 1 1 1 1 1

-1 -2 -3 -4 -5

1 3 6 10

-1 -4 -10

1 5

-1

1 1 1 1

-1 -2 -3

1 3

-1

1 1 1

-1 -2

1

1 1

-1

1

6. Concluding remarks

6.1. General canonical forms. We may use theorem 3.4 to glue together,
as a direct sum, the canonical forms obtained in sections 4 and 5, namely
those in (4)-(5)-(6) and (24)-(25). For a given pair (L,R) of involutions, the
similarity class of A = LR is a simultaneous similarity invariant. Decompose
the characteristic polynomial of A as

χA = pe11 · · · perr (π∗1π1)
ε1 · · · (π∗sπs)εs(x− 1)n

+

(x+ 1)n
−
, (26)

where the pi are the distinct self-reciprocal prime factors of χA, deg pi > 2,
and the 2s polynomials πj, π

∗
j are the distinct non-self-reciprocal prime monic

factors of χA; and n+ [n−] is the algebraic multiplicity of 1 [resp., −1] as an
eigenvalue of LR. We let n1 > · · · > nw [n1 > · · · > nw] be the sizes of the
Jordan blocks of A with eigenvalue 1 [resp., −1]; clearly n1+· · ·+nw = n+ and
n1+· · ·+nw = n−; we assume there are v [v] distinct ni’s [resp., nj’s], and the
corresponding multiplicities are denoted by m1, . . . ,mv [resp., m1, . . . ,mv].

Then we have canonical forms expressed as

(L,R) ≈(L(1), R(1)︸ ︷︷ ︸
n(1)

)⊕ (L(2), R(2)︸ ︷︷ ︸
n(2)

)⊕ (Lε, Rε︸ ︷︷ ︸
n+

)⊕ (Lδ,−Rδ︸ ︷︷ ︸
n−

) (27)

≈(L(1), R(1))⊕ (L(2), R(2))⊕ (Sε, Vε) ⊕ (Sδ,−Vδ).
Under the braces, the orders of the pairs are shown, with notations referring
to (5) and (26), in particular n(1) and n(2) are the degrees of pe11 · · · perr and
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(π∗1π1)
ε1 · · · (π∗sπs)εs, respectively. We have several choices for the canonical

summands (L(i), R(i)) as described in section 4, namely (4) and (6). The
third summand (Lε, Rε) in (27) is like (24). The summand (Lδ,−Rδ) in (27)
is a direct sum

(Lδ,−Rδ) = δ1(Γn1,−∆n1)⊕ · · · ⊕ δw(Γnw ,−∆nw),

where δ is a sign w-tuple, adjusted with respect to m1, . . . ,mv.

6.2. Orbit counting. Fix a matrix A as in the previous subsection. The
simultaneous similarity orbit of a pair of involutions (L,R) such that LR ∼ A
depends only on the choice of the sign tuples ε and δ in the canonical form
(27). The number of distinct choices of adjusted ε and δ is

v∏
i=1

(1 +mi)
v∏
j=1

(1 +mj).

Therefore, this is the number of simultaneous similarity orbits whose union is
[generated by] the set of pairs of involutions (L,R) such that LR ∼ A [resp.,
such that LR = A].

If two involutions L,R ∈ Mn are not similar, then −1 is an eigenvalue of
LR. This follows easily from the fact that the eigenspace corresponding to
the eigenvalue 1 of one of the involutions has a nontrivial intersection with the
eigenspace corresponding to −1 of the other involution. The canonical form
developed above yields a much stronger result: a complete characterization
of the possible similarity classes of involutions L and R, such that LR ∈ A
(or LR = A).

Theorem 6.1. The locus of (µ(L), µ(R)) for pairs of involutions (L,R) such
that LR = A (or LR ∼ A), is given by

|µ(L) + µ(R)− n| 6 no, |µ(L)− µ(R)| 6 no,
µ(L) + µ(R)− n ≡2 no, µ(L)− µ(R) ≡2 no,

(28)

where ≡2 denotes congruence modulo 2.

Proof. Let µ(L) be the multiplicity of −1 as eigenvalue of L. Clearly µ(L) +
µ(L) = n. According to theorem 4.1, and using the notation of (27), we have
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µ(L(k))− µ(L(k)) = µ(R(k))− µ(R(k)) = 0, k = 1, 2. It is easily seen that

µ(εiΓni)− µ(εiΓni) =

{
0 if ni is even
εi if ni is odd.

µ(δjΓnj)− µ(δjΓnj) =

{
0 if nj is even
δj if nj is odd,

for 1 6 i 6 w and 1 6 j 6 w, and the same is true with Γ replaced by ∆.
Define E =

∑
{εi : odd ni} and D =

∑
{δj : odd nj}. The possible values for

E and D are characterized by

|E| 6 no, E ≡2 no, |D| 6 no, D ≡2 no. (29)

From (27) we get

µ(L)− µ(L) = E +D

µ(R)− µ(R) = E −D
µ(L) + µ(L) = µ(R) + µ(R) = n

Eliminating µ(L) and µ(R), we get µ(L)+µ(R)−n = E and µ(L)−µ(R) = D;
these conditions together with (29) characterize the locus of (µ(L), µ(R)), and
are equivalent to (28). �

For the next counting, the v-tuple of multiplicities m = (m1, . . . ,mv) will be
split into two, according to the parities of the sizes of the Jordan blocks. We
let mo = (mo1, . . . ,movo) and me = (me1, . . . ,meve), where mo [me] is the
sub-tuple of m of the multiplicities of Jordan blocks of A with eigenvalue 1,
of odd [resp., even] orders. The v-tuple of multiplicities m = (m1, . . . ,mv)
(corresponding to Jordan blocks of A with eigenvalue−1) is split according to
the same criteria into two: mo = (mo1, . . . ,movo) and me = (me1, . . . ,meve).
Clearly mo1 + · · ·+movo = no and mo1 + · · ·+movo = no.

For any r-tuple q = (q1, . . . , qr), and any nonnegative integer S, define
N(q, S) as the number of nonnegative integer solutions to the equation
x1 + · · · + xr = S, subject to the restrictions xi 6 qi, for i = 1, . . . , r.
It is not difficult to prove the following closed formula for this number:

N(q, S) =
r∑

k=0

(−1)k
∑

16i1<···<ik6r

(
r + S − qi1 − · · · − qik − k − 1

r − 1

)
. (30)

To get this one may use the inclusion-exclusion principle, as in [5, p. 138], or
traditional generating functions techniques.
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Theorem 6.2. We are given a pair of integers, (`, r) in the locus determined
by theorem 6.1. The set of all pairs of involutions (L,R) such that LR ∼ A,
µ(L) = ` and µ(R) = r is a union of

N(mo,
`+r−n+no

2 )N(mo,
`−r+no

2 )

ve∏
i=1

(1 +mei)

ve∏
j=1

(1 +mej). (31)

simultaneous similarity orbits.

Proof. The conditions (28) imply that the numbers

p = `+r−n+no
2 and p = `−r+no

2

are integers such that 0 6 p 6 no and 0 6 p 6 no. A closer look at the proof
of theorem 6.1 shows that E = p− (no− p) and D = p− (no− p); therefore,
to get µ(L) = ` and µ(R) = r, it is necessary and sufficient that p [p] be the
number of positive εi’s [resp., δj’s] among the no [resp., no] Jordan blocks of
odd sizes with eigenvalue 1 [resp., −1].

To get all distinct (non simultaneously similar) canonical forms (27) under
inspection, we are supposed

a) To assign plus signs to exactly p [p] among the no [resp., no] Jordan
blocks of odd sizes with eigenvalue 1 [resp., −1], in all possible adjusted
ways. The number of ways of doing this is N(mo, p) [resp., N(mo, p)].

b) To assign any signs to the Jordan blocks of even sizes with eigenvalue
1 or −1, in all possible adjusted ways. The number of distinct ways
of doing this is

∏ve
i=1(1 +mei)

∏ve
j=1(1 +mej).

Therefore, as these assignments are independent of each other, the number
of simultaneous similarity classes described in the theorem is the product of
the numbers in a)-b) above. Thus we get the formula (31). �
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