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whose finitely generated relatively free profinite semigroups are equidivisible. Be-
sides the pseudovarieties of completely simple semigroups, they are precisely the
pseudovarieties that are closed under Mal’cev product on the left by the pseudova-
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1. Introduction

A pseudovariety of semigroups is a class of finite semigroups closed un-
der taking subsemigroups, homomorphic images and finitary products. In
the past few decades, pseudovarieties provided the main framework for the
research on finite semigroups, motivated by Eilenberg’s correspondence the-
orem between pseudovarieties and varieties of languages. In this context, the
finitely generated relatively free profinite semigroups associated to each pseu-
dovariety proved to be of fundamental importance. We assume the reader
has some familiarity with this background. The books [19, 1] are indicated
as supporting references. The paper [2] might also be useful for someone
looking for a brief introduction.
In this paper we are concerned with equidivisible relatively free profinite

semigroups. A semigroup S is equidivisible if for every u, v, x, y ∈ S, the
equality uv = xy implies that u = x and v = y, or that there is t ∈ S such
that ut = x and v = ty, or such that xt = u and y = tv. Equidivisible semi-
groups were introduced in [12] as a generalization of free semigroups. They
were further investigated in [13] where a characterization of the completely
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simple semigroups as being a special class of equidivisible semigroups was
given (cf. Theorem 5.1).
A pseudovariety of semigroups V is said to be equidivisible if every finitely

generated free pro-V semigroup is equidivisible. The paper [4] includes results
about a special class of semigroup pseudovarieties, the WGGM pseudovari-
eties, the ones whose corresponding relatively free profinite semigroups are
“weakly generalized group mapping”. In the same paper, the WGGM con-
dition is applied to obtain sufficient conditions for a pseudovariety to be
finitely join irreducible in the lattice of ordered pseudovarieties. It is also
shown in [4] that a sufficient condition for a semigroup pseudovariety V to
be WGGM is to be equidivisible and to contain LSl (the pseudovariety of fi-
nite semigroups whose local monoids are semillatices). This adds motivation
to investigate the natural question: which pseudovarieties are equidivisible,
other than those of completely simple semigroups?
In this paper we give a complete characterization of the equidivisible pseu-

dovarieties of semigroups (Sec. 8), showing that those which are not contained
in the pseudovariety of completely simple semigroups are precisely the ones
of the form V = LI©m V, where LI denotes the pseudovariety of locally trivial
semigroups and ©m denotes the Mal’cev product of pseudovarieties.
The semigroup pseudovarieties of the form V = A©m V, where A denotes the

pseudovariety of aperiodic semigroups, are those whose corresponding variety
of languages is closed under language concatenation [23, 6]. In [3, Lemma 4.8]
it is shown that every such pseudovariety is equidivisible, with a proof that
uses the closure under concatenation. In contrast to the approach made in [3]
for this class of pseudovarieties, our proof of the equidivisibility of the pseu-
dovarieties of the form V = LI©m V does not use a characterization in terms
of the corresponding varieties of languages, which are those that are closed
under unambiguous product of languages [14, 15]. For our complete charac-
terization of the equidivisible pseudovarieties, and in both directions of the
proof, we had to use a distinct approach, based on the two-sided Karnofsky-
Rhodes expansion of semigroups. This approach was inspired by the proof
given in [18] that if a pseudovariety of semigroups V is stable under (one-
sided) right Karnofsky-Rhodes expansion, then the finitely generated free
pro-V semigroups have unambiguous ≤R-order. It turns out that, by a deep
result of Rhodes et al. [20, 21], the pseudovarieties of the form V = LI©m V are
precisely those that are stable under two-sided Karnofsky-Rhodes expansion
(Corollary 3.3).
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Roughly speaking, the two-sided Karnofsky-Rhodes expansion keeps track
of the transition edges used to read a word in the two-sided Cayley graph
of the semigroup expanded. If we only keep track of the strongly connected
components, we obtain another expansion, which we call the two-sided con-
nected expansion. We deduce from our main result that a pseudovariety is
closed under two-sided Karnofsky-Rhodes expansion if and only if it is closed
under two-sided connected expansion (cf. Corollary 8.4).
Another by-product of our results concerns the pseudovariety LG of finite

semigroups whose local monoids are groups. After showing directly that the
equidivisible subpseudovarieties of LG are precisely those containing LI, we
apply our main result to deduce that, whenever V is a subpseudovariety of
LG, the join LI ∨ V is equal to the Mal’cev product LI©m V (Corollary 8.6).

2. Preliminaries

Recall that [19, 1, 2] are our supporting references. We use the standard
notation V ∨ W, V ∗ W, V ∗∗ W and V©m W respectively for the join, the
semidirect product, the two-sided semidirect product, and the Mal’cev prod-
uct of pseudovarieties of semigroups. Occasionally (only in the preparatory
Section 3) we refer to pseudovarieties of semigroupoids (namely the pseu-
dovariety ℓI of trivial semigroupoids) and to varietal operations concerning
them. We refer to [19, 2] for details.
The following pseudovarieties of semigroups appear in this paper:

• S: finite semigroups;
• A: finite aperiodic semigroups;
• G: finite groups;
• I: trivial semigroups;
• D: finite semigroups all of whose idempotents are right zeros;
• K: finite semigroups all of whose idempotents are left zeros;
• LI = K ∨ D: finite semigroups whose local monoids are trivial;
• LG: finite semigroups whose local monoids are groups;
• LSl: finite semigroups whose local monoids are semilattices;
• CS: finite completely simple semigroups;
• CR: finite completely regular semigroups.

For a semigroup S, let SI be the monoid obtained from S by adding an
extra element I which is the identity of SI . This allows a convenient way
of writing the definition of equidivisibility: the semigroup S is equidivisible
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when, for every u, v, x, y ∈ S, the equality uv = xy implies that there is
t ∈ SI such that ut = x and v = ty, or such that xt = u and y = tv.
If f : S → T is a semigroup homomorphism, then we extend f to a homo-

morphism from SI to T I , also denoted f , by letting f(I) = I. Note that, for
every alphabet A, the monoid (A+)I can be identified with the free monoidA∗

in a natural manner. In particular, if ϕ is a homomorphism from A+ to a
semigroup S, then we have a unique extension of ϕ to a homomorphism from
A∗ to SI , with ϕ(1) = I.
We were inspired by [18] in the use of semigroup expansions to obtain our

main result. With this reference in mind (see also [10]), we quickly recall
that, for a fixed alphabet A, the category of A-generated semigroups is the
category SA whose objects are the pairs of the form (S, ϕ) in which ϕ is an
onto homomorphism A+ → S, and where morphisms (S, ϕ) → (T, ψ) are
the homomorphisms θ : S → T such that θ ◦ ϕ = ψ. An expansion cut to
generators defined in SA is an endofunctor F : SA → SA equipped with a
natural transformation from F to the identity functor of SA. A convenient
way to refer to F is the notation correspondence (S, ϕ) 7→ (SF , ϕF ), where
the pair (SF , ϕF ) is the object F (S, ϕ).

3. The two-sided Karnofsky-Rhodes expansion

Let ϕ be a homomorphism from A+ onto a semigroup S. The two-sided
Cayley graph defined by ϕ is the directed graph Γϕ whose set of vertices is
SI×SI , and where an edge from (s1, t1) to (s2, t2) is a triple ((s1, t1), a, (s2, t2)),
with a ∈ A, such that s1ϕ(a) = s2 and t1 = ϕ(a)t2. Giving to each edge
((s1, t1), a, (s2, t2)) the label a, the graph Γϕ becomes a semi-automaton over
the alphabet A. A labeling of paths is inherited from the labeling of edges
in an obvious way. If u ∈ A+, then we denote by pϕ,u, or simply pu if ϕ is
understood, the unique path from (I, ϕ(u)) to (ϕ(u), I) labeled by u.
For an edge t in a directed graph H, we denote by α(t) its source and by

ω(t) is target. The edge t is a transition edge of H if α(t) and ω(t) are not
in the same strongly connected component of H. Returning our attention
to the two-sided Cayley graph Γϕ, for a path p in Γϕ, denote by T (p) the
set of transition edges in p. Let ≡ϕ be the binary relation on A+ defined by
u ≡ϕ v if and only if ϕ(u) = ϕ(v) and T (pu) = T (pv). The relation u ≡ϕ v is
a congruence, a well-known fact whose routine proof is similar to the explicit

proof we give later of an analogous result, Lemma 4.1. Denote by S
K(ℓI)
ϕ the

quotient A+/≡ϕ and by ϕK(ℓI) the corresponding quotient homomorphism
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A+ → S
K(ℓI)
ϕ . For the sake of simplicity, we will write SK(ℓI) instead of S

K(ℓI)
ϕ ,

if the dependency on ϕ is implicitly understood.
It is well known that the correspondence (S, ϕ) 7→ (SK(ℓI), ϕK(ℓI)) is an ex-

pansion cut to generators, which is called the two-sided Karnofsky-Rhodes
expansion. There is an alternative way of defining this expansion, which
puts it as a special case within a more general framework, and which we re-
fer briefly, leaving the details for the bibliographic references supporting our
discussion. The two-sided Karnofsky-Rhodes expansion is an example of a
two-sided semidirect product expansion defined by a variety of semigroups (in
this case, the variety of trivial semigroups), as introduced by Elston in [10].
In [18], a variation of this approach is followed, one where pseudovarieties
of semigroupoids are used instead of varieties of semigroups. The notation
SK(ℓI) is consistent with the notation used in [18] for the two-sided semidirect
product expansion SK(V) of a profinite semigroup S defined by a pseudovari-
ety V of semigroupoids. As observed in [18, Sec. 10], if V is a pseudovariety
of semigroups, then SK(ℓV) is the corresponding expansion SK(V) introduced
by Elston.
Suppose that the alphabet A is finite. If S is finite then SK(ℓI) is finite,

because a kernel class of ϕK(ℓI) is determined by a kernel class of ϕ together
with a set of transition edges of Γϕ, and there is only a finite number of such
classes and edges.
More generally, as explained in [18, Sec. 10], if S is finite and V is a locally

finite pseudovariety of semigroupoids (which is the case of ℓI), then SK(V) is
a finite semigroup which is in a natural way a two-sided semidirect product
(ΩΓϕ

V) ∗∗ S, and so if S belongs to a pseudovariety W of semigroups, then

SK(V) belongs to V ∗∗W.
As remarked at the beginning of Section 11 of [18], the isomorphism be-

tween the quotient A+/≡ϕ and the two-sided semidirect product (ΩΓϕ
ℓI)∗∗S

is justified by Tilson’s result asserting that two paths in a graph X coincide
in the locally trivial free category generated by X if and only if they have
the same transition edges.
The following result is a special case of [19, Theorem 3.6.4].

Proposition 3.1. Let W be a locally finite pseudovariety and let A be a finite
alphabet. Then (ΩAW)K(ℓI) is isomorphic to ΩA(ℓI ∗∗W).

It is an easy exercise to show, directly from the definition we gave of the
two-sided Karnofsky-Rhodes expansion, that if π is the canonical projection
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SK(ℓI) → S then the semigroup π−1(e) satisfies the identity xyz = xz, for
every idempotent e of S. Actually, as remarked in the proof of Lemma 3.4 in
[16], we have ℓI ∗∗ V ⊆ [[xyz = xz]]©m V, and so ℓI ∗∗ V ⊆ LI©m V. Denote by
⋃

n≥1 ℓI ∗∗
n V the sequence of semigroup pseudovarieties recursively defined

by
ℓI ∗∗0 V = V, ℓI ∗∗n V = ℓI ∗∗ (ℓI ∗∗n−1

V), n ≥ 1.

The following theorem is a deep result of Rhodes et al. [20, 21] which the
reader can find in [19, Corollary 5.3.22].

Theorem 3.2. Let V be a pseudovariety of semigroups. Then we have
LI©m V =

⋃

n≥0 ℓI ∗∗
n V.

Say that a pseudovariety of semigroups V is closed under the two-sided

Karnofsky-Rhodes expansion if we have S
K(ℓI)
ϕ ∈ V whenever S ∈ V and ϕ is

a homomorphism from a finitely generated free semigroup onto S. For the
reader’s convenience, we give a proof of the following easy consequence of
Theorem 3.2.

Corollary 3.3. A pseudovariety of semigroups V is closed under the two-
sided Karnofsky-Rhodes expansion if and only if V = LI©m V.

Proof : Suppose that V = LI©m V. Let S ∈ V and consider a homomorphism

ϕ : A+ → S. Using the aforementioned fact that S
K(ℓI)
ϕ ∈ [[xyz = xz]]©m V,

we immediately get that S
K(ℓI)
ϕ ∈ V, because [[xyz = xz]] ⊆ LI. Alternatively,

one can apply (the easy part of) Theorem 3.2, since S
K(ℓI)
ϕ ∈ ℓI ∗∗ V.

Conversely, suppose that V is closed under the two-sided Karnofsky-Rhodes
expansion. Let W be a locally finite subpseudovariety of V. Then ΩAW be-
longs to V. By hypothesis, (ΩAW)K(ℓI) also belongs to V. Applying Propo-
sition 3.1, we conclude that ℓI ∗∗W ⊆ V. As W can be any locally finite
subpseudovariety of V, we actually have ℓI ∗∗ V ⊆ V. We deduce from The-
orem 3.2 that LI©m V = V.

4. The two-sided connected expansion

In this section we show that the pseudovarieties closed under the two-sided
Karnofsky-Rhodes expansion are equidivisible. Actually, it is not necessary
to use the full force of the definition of the expansion. It suffices to use a
weaker expansion which we introduce in this section.
Let ϕ be a homomorphism from A+ onto a semigroup S. Given a path

p in the two-sided Cayley graph Γϕ, denote by C(p) the set of strongly



EQUIDIVISIBLE PSEUDOVARIETIES OF SEMIGROUPS 7

connected components of Γϕ that contain some vertex in p. Let ≈ϕ be the
binary relation on A+ defined by u ≈ϕ v if and only if ϕ(u) = ϕ(v) and
C(pu) = C(pv).

Lemma 4.1. The relation ≈ϕ is a congruence.

Proof : The relation ≈ϕ is clearly an equivalence. Taking into account the
symmetry of its definition, to prove that ≈ϕ is a congruence, it suffices to
show that C(puw) = C(pvw) whenever u, v, w ∈ A+ are such that u ≈ϕ v. Let
x be a vertex of puw that is not in pvw, where u ≈ϕ v. Then, as ϕ(u) = ϕ(v),
we necessarily have x = (ϕ(u1), ϕ(u2w)) for some u1, u2 ∈ A+ such that
u = u1u2. Since x′ = (ϕ(u1), ϕ(u2)) is a vertex of pu, there is some vertex
x′′ in pv such that x′ and x′′ are in the same strongly connected component.
Let t be the label of a path from x′ to x′′, and let z be the label of a path
from x′′ to x′. We have x′′ = (ϕ(v1), ϕ(v2)) for some v1, v2 ∈ A∗ such that
v = v1v2. Note that

ϕ(u1t) = ϕ(v1), ϕ(u2) = ϕ(tv2), ϕ(v1z) = ϕ(u1), ϕ(v2) = ϕ(zu2). (4.1)

Consider the vertex x′′′ = (ϕ(v1), ϕ(v2w)). Looking at (4.1), we see that
we also have ϕ(u2w) = ϕ(tv2w) and ϕ(v2w) = ϕ(zu2w), whence there is
a path from x to x′′′ labeled t, and a path from x′′′ to x labeled z. This
shows that x′′′ belongs to the strongly connected component of x. Since x′′′

belongs to pvw, this establishes the inclusion C(puw) ⊆ C(pvw). Dually, we
have C(pvw) ⊆ C(puw).

If S is finite then ≈ϕ has finite index, because a ≈ϕ-class is defined by a
kernel class of ϕ together with a set of strongly connected components of Γϕ,
and there is only a finite number of such classes and components.
We denote by SC the quotient A+/≈ϕ and by ϕC the canonical homomor-

phism A+ → SC . Clearly, if ϕK(ℓI)(u) = ϕK(ℓI)(v) then ϕC(u) = ϕC(v), and
so SC is a quotient of SK(ℓI). The semigroups SC and SK(ℓI) may not be
isomorphic. For example, consider the onto homomorphism ϕ from the two-
letter alphabet A = {a, b} onto the trivial semigroup S. Then ϕC(a) = ϕC(b)
but ϕK(ℓI)(a) 6= ϕK(ℓI)(b).

Proposition 4.2. The correspondence (S, ϕ) 7→ (SC , ϕC) is an expansion
cut to generators.

Proof : Let ϕ : A+ → S and ψ : A+ → T be onto homomorphisms, and let
f : S → T be a homomorphism such that f ◦ϕ = ψ. The mapping f induces a
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homomorphism f̄ of semi-automata from Γϕ to Γψ, defined by the following
mappings from vertices and edges of Γϕ respectively to vertices and edges
of Γψ:

(s, t) 7→ (f(s), f(t)), ((s, t), a, (s′, t′)) 7→ ((f(s), f(t)), a, (f(s′), f(t′))).

Let u, v ∈ A+ be such that u ≈ϕ v. Then we have ϕ(u) = ϕ(v) and ψ(u) =
ψ(v). Let y = (ψ(u1), ψ(u2)) be a vertex in pψu , where u = u1u2, with
u1, u2 ∈ A∗. Then y = f̄(x), where x = (ϕ(u1), ϕ(u2)) is a vertex in pϕu .
Since u ≈ϕ v, there is a vertex x′ in pϕv such that x and x′ are in the same
strongly connected component of Γϕ. Clearly, y = f̄(x) and y′ = f̄(x′) are in
the same strongly connected component of Γψ. As x

′ is in pϕv , we have y
′ in pψv ,

showing that C(pψu) ⊆ C(pψv ). By symmetry, we have C(pψu) ⊇ C(pψv ). This
establishes the equality u ≈ψ v, and therefore we may consider the unique
semigroup homomorphism fC : SC → TC such that fC ◦ ϕC = ψC .

Let us call the expansion (S, ϕ) 7→ (SC , ϕC) the two-sided connected ex-
pansion.
A pseudovariety of semigroups V is closed under two-sided connected ex-

pansion if we have SC whenever S ∈ V.

Proposition 4.3. If V is a pseudovariety of semigroups closed under two-
sided connected expansion then V is equidivisible.

Proof : Let A be a finite alphabet. Suppose u, v, x, y are elements of ΩAV

such that uv = xy. Let Φ be a continuous homomorphism onto a semi-
group S from V, and let ϕ be its restriction to A+. Denote by ΦC the unique
continuous homomorphism from ΩAV onto SC whose restriction to A+ co-
incides with ϕC . Consider elements u0, v0, x0, y0 of A+ such that ϕC(u0) =
ΦC(u), ϕC(v0) = ΦC(v), ϕC(x0) = ΦC(x) and ϕC(y0) = ΦC(y). The vertex

(Φ(u),Φ(v)) = (ϕ(u0), ϕ(v0)) belongs to the path (I, ϕ(u0v0))
u0v0−−→ (ϕ(u0v0), I)

of the two-sided Cayley graph Γϕ. Since uv = xy, we know that ΦC(uv) =

ΦC(xy). Therefore, there is a vertex (r, s) in the path (I, ϕ(u0v0))
x0y0
−−→

(ϕ(u0v0), I) of Γϕ which lies in the strongly connected component of (Φ(u),Φ(v)).

Since (Φ(x),Φ(y)) is clearly also in the path (I, ϕ(u0v0))
x0y0
−−→ (ϕ(u0v0), I),

we conclude that in Γϕ there is a (possibly empty) path from (Φ(u),Φ(v)) to
(Φ(x),Φ(y)) or a path from (Φ(x),Φ(y)) to (Φ(u),Φ(v)).
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Therefore, there is a word tΦ ∈ A∗ such that
{

Φ(utΦ) = Φ(x)

Φ(v) = Φ(tΦy),

in which case we say that Φ is of the first type, or there is a word τΦ ∈ A∗

such that
{

Φ(xτΦ) = Φ(u)

Φ(y) = Φ(τΦv),

in which we say that Φ is of the second type. Note that Φ can be simultane-
ously of the first type and of the second type. The result now follows from a
standard argument, which we write down for the reader’s convenience. We
know that ΩAV is the inverse limit of an inverse system of semigroups from V

defined by a countable set of connecting onto homomorphisms of the form
πm,n : Sm → Sn, where m, n are arbitrary positive integers with m ≥ n. For
each n ≥ 1, let πn be the projection ΩAV → Sn associated to this inverse
system. Note that, for each n ≤ m, the homomorphism πn is of the same
type as πm. On the other hand, since there are only two types, at least one
of them occurs infinitely often. Combining these two simple observations we
conclude that πn is of the first type for every n ≥ 1, or of the second type for
every n ≥ 1. Without loss of generality, we assume the former case. Denote
tπn by tn. We have

πn(utn) = πn(x) and πn(v) = πn(tny), (4.2)

for every n ≥ 1. Let t be an accumulation point in (ΩAV)
I of the sequence

(tn)n. Fix k ≥ 1, and let n ≥ k. Applying πn,k to (4.2), we get

πk(utn) = πk(x) and πk(v) = πk(tny),

for every n ≥ k. By continuity of πk, we obtain

πk(ut) = πk(x) and πk(v) = πk(ty).

This implies ut = x and v = ty. The case where πn is of the second type
for every n ≥ 1 leads to the existence of τ in (ΩAV)

I such that xτ = u and
y = τv.

Corollary 4.4. If V is a pseudovariety of semigroups closed under two-sided
Karnofsky-Rhodes expansion then V is equidivisible.
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Proof : It follows immediately from Proposition 4.3 and the fact that the two-
sided connected expansion of a semigroup S is a homomorphic image of the
two-sided Karnofsky-Rhodes expansion of S.

Corollary 4.5. If V is a pseudovariety of semigroups such that V = LI©m V

then V is equidivisible.

Proof : Apply Corollary 4.4 and (the easy part of) Corollary 3.3.

5. Equidivisible subpseudovarieties of CR

It was proved in [13] that every completely simple semigroup is equidivisi-
ble. In fact, the following stronger result was established.

Theorem 5.1. A semigroup S is completely simple if and only if for every
u, v, x, y ∈ S, the equality uv = xy implies the existence of t1, t2 ∈ SI such
that ut1 = x, t1y = v, u = xt2, and y = t2v.

On the other hand we have the following simple fact.

Lemma 5.2. If V is a pseudovariety of completely regular semigroups con-
taining Sl then V is not equidivisible.

Proof : Consider the alphabet A = {a, b}. We claim that ΩAV is not equidi-
visible. Indeed, we have ab · (ab)ω = a · b. On the other hand, since
c(ab) * c(a), there is no t ∈ (ΩAV)

I such that ab · t = a. Similarly, there is

no t ∈ (ΩAV)
I such that t · (ab)ω = b. This establishes the claim.

Since a pseudovariety of completely regular semigroups not containing Sl

is contained in CS, combining Theorem 5.1 and Lemma 5.2 we deduce the
following result.

Corollary 5.3. A pseudovariety of completely regular semigroups is equidi-
visible if and only if it is contained in CS.

6. Letter super-cancelability as a necessary condition for

equidivisibility

Let S be an A-generated compact semigroup. This implies S = SIA =
ASI. Say that S is right letter cancelative when, for every a ∈ A and u, v ∈
SI , the equality ua = va implies u = v. Say moreover that S is right
letter super-cancelative when, for every a, b ∈ A and u, v ∈ SI , the equality
ua = vb implies a = b and u = v. We have the obvious dual notions
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of left letter cancelative and left letter super-cancelative semigroup. If S is
simultaneously right and left letter (super-)cancelative, then we say S is letter
(super-)cancelative.
Say that a pseudovariety of semigroups V is right letter (super-)cancelative

if ΩAV is right letter (super-)cancelative, for every finite alphabet A. One
also has the dual notions of left letter (super-)cancelative and letter (super-)
cancelative pseudovariety.

Example 6.1. If V is a semigroup pseudovariety containing some nontrivial
monoid and such that V = V ∗ D, then V is letter super-cancelative (cf. [7,
Prop. 1.60] and [1, Exercise 10.2.10]).

In [4] one finds a characterization of the (right/left) super-cancelative pseu-
dovarieties as a routine exercise of application of basic results in the theory
of profinite semigroups. The following simple observation is included in that
characterization.

Lemma 6.2. A semigroup pseudovariety V is right letter super-cancelative
if and only if D ⊆ V and V is right letter cancelative. Dually, V is left
letter super-cancelative if and only if K ⊆ V and V is left letter cancelative.
Therefore, V is letter super-cancelative if and only if LI ⊆ V and V is letter
cancelative.

Letter super-cancelability appears as a necessary condition for equidivisi-
bility in the following way.

Proposition 6.3. If V is an equidivisible pseudovariety of semigroups not
contained in CS then V is letter supper-cancelative.

Proof : Fix a finite alphabet A. Let u, v ∈ (ΩAS)
I and let a, b ∈ A be such

that V |= ua = vb. Since ΩAV is equidivisible, there is t ∈ (ΩAV)
I such that

V |= ut = v and V |= a = tb, or such that V |= vt = u and V |= b = ta.
Suppose that t 6= I. Suppose also that V |= a = tb. Replacing by a every
letter occurring in tb, we get V |= a = aν for some profinite exponent ν >
1. This implies that V ⊆ CR. Corollary 5.3 states that the equidivisible
subpseudovarieties of CR are precisely the subpseudovarieties of CS. Since
V is not contained in CS, we reach a contradiction. Similarly, V |= a = tb
leads to a contradiction. To avoid the contradiction, we must have t = I,
whence a = b and V |= u = v. Symmetrically, V |= au = bv implies a = b
and V |= u = v.
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Combining Proposition 6.3 with Lemma 6.2 we get the following corollary.

Corollary 6.4. If V is an equidivisible pseudovariety not contained in CS,
then V contains LI.

7. Equidivisible subpseudovarieties of LG

Recall that the class LG of all finite local groups is the largest pseudovariety
of semigroups whose semilattices are trivial. Local groups are thus general-
izations of completely simple semigroups that turn out to be sometimes much
harder to handle. For our purposes, the following technical result turns out
to be essential.

Lemma 7.1. If V is a subpseudovariety of LG containing D, then V is right
letter super-cancelative.

Proof : Let u and v be pseudowords and a and b be letters such that the
pseudoidentity ua = vb holds in V. The pseudovariety D is right letter
super-cancelative, whence a = b and D satisfies u = v. In particular, u = v
or both u and v are infinite pseudowords. Suppose the latter case occurs.
Let sn be the suffix of u of length n, which is also the suffix of length n of v,
that is, there are factorizations u = unsn and v = vnsn. By compactness,
there exists a convergent subsequence of the sequence of triples (un, vn, sn)
and, therefore, there exist pseudowords u′, v′, w, where w is infinite, such that
u = u′w and v = v′w (in S). Since w is infinite, there is a factorization of
the form w = w1w

ω
2w3 [1, Corollary 5.6.2]. As V is contained in LG, it must

satisfy the following pseudoidentities:

w = w1w
ω
2w3 = w1(w

ω
2w3aw

ω
2 )
ωw3 = w1w

ω
2w3at = wa · t

where t = (wω
2w3aw

ω
2 )
ω−1w3. Hence, since the pseudovariety V satisfies ua =

va, it also satisfies

u = u′w = u′wa · t = ua · t = va · t = v′wa · t = v′w = v.

Theorem 7.2. A subpseudovariety of LG is equidivisible if and only if it is
contained in CS or it contains LI.

Proof : We already know that every subpseudovariety of CS is equidivisible
by Theorem 5.1. Thus, for the remainder of the proof, we assume that V is
a subpseudovariety of LG not contained in CS.
If V is equidivisible, then V contains LI by Corollary 6.4. For the converse,

suppose that V contains LI and that V satisfies the pseudoidentity uv = xy.
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By Lemma 7.1, V is right letter super-cancelative. By duality, V is also left
letter super-cancelative. Therefore, to prove that there is a (possibly empty)
pseudoword t such that in V we have ut = x and v = ty, or xt = u and y = tv,
we may assume that all the pseudowords u, v, x, y are infinite. Hence, uv = xy
may be viewed as an equality between products in the minimum ideal of a
suitable ΩAV, which is a completely simple semigroup. By Theorem 5.1, we
may conclude that V is equidivisible.

8. Characterization of equidivisible pseudovarieties

Let ϕ be a homomorphism from A+ onto a semigroup S. Given u ∈ A+, a
transition edge for u in Γϕ is an element of T (pu). Note that T (pu) is always
nonempty, since there is no path from (ϕ(u), I) to (I, ϕ(u)) in Γϕ. If A and
S are finite, then T (pu) is finite and so, for some integer n, we can consider
the sequence (εi)i∈{1,...,n} of transition edges for u in Γϕ, where εi is the i-th
transition edge appearing in pu.
In this section we shall work primarily with the expansion ϕK(ℓI), but at

some point it will be convenient to use another expansion which we next
describe. In a graph, the content of a path p is the set c(p) of edges in
the path. Consider the relation ≡ϕ,Sl on A+ defined by u ≡ϕ,Sl v if and
only if c(pu) = c(qv). Note that since pw starts at (I, ϕ(w)), if u ≡ϕ,Sl v
then ϕ(u) = ϕ(v) holds. The relation ≡ϕ,Sl is a congruence and the quotient
homomorphism A+ → A+/≡ϕ,Sl is precisely the two-sided semidirect product
expansion ϕK(ℓSl) : A+ → SK(ℓSl) (cf. [10, Sec. 5.4]).∗

Suppose moreover that A and S are finite. Then SK(ℓI) and SK(ℓSl) are
both finite semigroups. Denote by Φ (respectively, ΦK(ℓI) and ΦK(ℓSl)) the
unique continuous homomorphism from ΩAS onto S (respectively, SK(ℓI) and
SK(ℓSl)) whose restriction to A+ is ϕ (respectively, ϕK(ℓI) and ϕK(ℓSl)). Let
u ∈ ΩAS. Consider an arbitrary sequence (un)n of elements of A+ converging
to u. Then, there is N such that ΦK(ℓI)(u) = ϕK(ℓI)(un) for every n ≥ N .
Therefore, we can define a transition edge for u in Γϕ as being an element of
T (pun) for every sufficiently large n, since this set depends only on ϕ and u.
In a similar way, one can define the sequence of transition edges for u in Γϕ as

∗The reader is cautioned for some misprints in the discussion made in [10, Sec. 5.4]; for instance,
at some point a map ψ is defined that takes a word u to the set of edges in pu, and not to the set of
transition edges as by mistake it is written there. The characterization of ϕK(ℓSl) is an application
of [10, Corollary 5.4] and of a result of I. Simon [22] (a proof of which may be found in [9, Theorem
VIII.7.1]) stating that two paths in a graph have the same content if and only if they are equal in
the free category relatively to ℓSl.
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being the sequence of transition edges for un in Γϕ for every sufficiently large
n, and an edge for u in Γϕ as being an element of c(pun) for every sufficiently
large n. Note that a transition edge for u is indeed an edge for u.
If ψ is a continuous homomorphism from ΩAS onto a finite semigroup T ,

then we denote by Γψ the two-sided Cayley graph of the restriction of ψ to A+.
Since ψ is the unique continuous extension to ΩAS of its restriction to A+,
the homomorphisms ψK(ℓI) and ψK(ℓSl) are defined in view of the previous

paragraph. Their images are also denoted S
K(ℓI)
ϕ and S

K(ℓSl)
ψ , respectively.

Lemma 8.1. Let ϕ be a continuous homomorphism from ΩAS onto a finite
semigroup S, where A is a finite alphabet. Let u ∈ ΩAS. If ((s1, t1), a, (s2, t2))
is an edge for u in Γϕ, then there is a factorization u = u1au2 of u, with
u1, u2 ∈ (ΩAS)

I, such that ϕ(u1) = s1 and ϕ(u2) = t2.

Proof : We may consider a sequence (un)n of elements of A+ converging to u
and such that ϕK(ℓSl)(un) = ϕK(ℓSl)(u) for every n. In particular, for every n,
the edge ((s1, t1), a, (s2, t2)) is an edge for un in Γϕ, and so un factors as
un = un,1aun,2 for some un,1, un,2 ∈ A∗ such that ϕ(un,1) = s1 and ϕ(un,2) = t2.
By compactness, the sequence of pairs (un,1, un,2) has some accumulation
point (u1, u2) in (ΩAS)

I × (ΩAS)
I. By continuity of multiplication and of ϕ,

we have u = u1au2, ϕ(u1) = s1 and ϕ(u2) = t2.

Lemma 8.2. Let θ : B+ → A+ be a homomorphism satisfying θ(B) = A,
for some alphabets A and B. Consider a homomorphism ϕ from A+ onto
a semigroup S. Let ψ be the homomorphism from B+ onto S such that
ψ = ϕ ◦ θ. Then we have

ψK(ℓI)(u) = ψK(ℓI)(v) =⇒ ϕK(ℓI)(θ(u)) = ϕK(ℓI)(θ(v)),

for every u, v ∈ B+. Consequently, S
K(ℓI)
ϕ is a homomorphic image of S

K(ℓI)
ψ .

Proof : The proof relies on the following fact: there is in Γψ a path from
(s1, t1) to (s2, t2) labeled by u ∈ B+ if and only if there is in Γϕ a path from
(s1, t1) to (s2, t2) labeled by θ(u) ∈ A+. In particular, ((s1, t1), b, (s2, t2)) is a
transition edge of Γψ if and only if ((s1, t1), θ(b), (s2, t2)) is a transition edge
of Γϕ.
Let u, v ∈ B+ be such that ψK(ℓI)(u) = ψK(ℓI)(v). Then we immediately

have ϕ(θ(u)) = ϕ(θ(v)). Suppose that ((s1, t1), a, (s2, t2)) is a transition edge
of Γϕ belonging to the path pθ(u). We have s1 = ϕ(w1) and t2 = ϕ(w2)
for some w1, w2 ∈ A∗ such that θ(u) = w1aw2. There is a factorization
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u = u1bu2 with w1 = θ(u1), w2 = θ(u2) and a = θ(b). It then follows that
((s1, t1), b, (s2, t2)) is a transition edge of Γψ belonging to pu. It belongs also
to pv, since ψ

K(ℓI)(u) = ψK(ℓI)(v). Therefore, ((s1, t1), a, (s2, t2)) is a transition
edge of Γϕ in pθ(v). Symmetrically, every transition edge of Γϕ belonging to

pθ(v) also belongs to pθ(u), establishing that ϕK(ℓI)(θ(u)) = ϕK(ℓI)(θ(v)).

Therefore, we can consider the onto homomorphism ρ : S
K(ℓI)
ψ → S

K(ℓI)
ϕ

defined by ρ(ψK(ℓI)(u)) = ϕK(ℓI)(θ(u)).

We are now ready to prove our main result.

Theorem 8.3. A pseudovariety of semigroups V is equidivisible if and only
if it is contained in CS or it is closed under the two-sided Karnofsky-Rhodes
expansion.

Proof : The “if” part follows from Corollaries 4.4 and 5.3.
Conversely, suppose that V is an equidivisible pseudovariety not contained

in CS. Let u, v be elements of ΩXS such that V |= u = v, where X is some
finite alphabet. For a finite alphabet A, let ϕ be a continuous homomorphism
from ΩAS onto a semigroup S from V. Consider the finite alphabet B =
A∪X. There is a continuous onto homomorphism θ : ΩBS → ΩAS such that
θ(B) = A. Let ψ be the unique continuous homomorphism from ΩBS onto

S such that ψ = ϕ ◦ θ. We will show that S
K(ℓI)
ψ |= u = v.

Viewing u, v as elements of ΩBS, and because V |= u = v, we have ψ(u) =
ψ(v). We claim that ψK(ℓI)(u) = ψK(ℓI)(v). Let (εi)i∈{1,...,n} and (δi)i∈{1,...,m} be
the sequences of transition edges in Γψ respectively for u and for v. Without
loss of generality, we may assume that n ≤ m.
Suppose that the set

{i ∈ {1, . . . , n} | εi 6= δi} (8.1)

is nonempty, and let j be its minimum. By Lemma 8.1, there are factoriza-
tions u = u1au2 of u and v = v1bv2 of v, with a, b ∈ B and u1, u2, v1, v2 ∈
(ΩBS)

I , such that

εj = ((ψ(u1), ψ(au2)), a, (ψ(u1a), ψ(u2))

and
δj = ((ψ(v1), ψ(bv2)), b, (ψ(v1b), ψ(v2)).

Note that α(εj) and α(δj) belong to the same strongly connected component
of Γψ, by the minimality of the index j.
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Since V |= u1a ·u2 = v1 · bv2 and V is equidivisible, there is t ∈ (ΩBS)
I such

that
V |= u1at = v1 and V |= u2 = tbv2, (8.2)

or
V |= v1t = u1a and V |= bv2 = tu2. (8.3)

If Case (8.2) holds, then there is in Γψ a (possibly empty) path from ω(εj)
to α(δj), labeled by a word t0 ∈ B∗ such that ψ(t0) = ψ(t). Since α(δj)
and ω(δj) belong to the same strongly connected component, we conclude
there is in Γψ a path from ω(εj) to α(εj), contradicting the fact that εj is a
transition edge.
Therefore, Case (8.3) holds with t 6= I. By Proposition 6.3, it follows

from (8.3) that there is t′ ∈ (ΩBS)
I with t = t′a and

V |= v1t
′ = u1 and V |= bv2 = t′au2. (8.4)

Suppose that t′ 6= I. Again by Proposition 6.3, it follows from (8.4) that
there is t′′ ∈ (ΩBS)

I with t′ = bt′′ and

V |= v1b · t
′′ = u1 and V |= v2 = t′′ · au2. (8.5)

This implies the existence of a path in Γψ from ω(δj) to α(εj), which once
more leads to a contradiction with the definition of a transition edge.
Therefore, we have t′ = I, and so, thanks to Proposition 6.3, from (8.4)

we get V |= v1 = u1, a = b and V |= v2 = u2. This yields εj = δj, which
contradicts the initial assumption. Therefore, the set (8.1) is empty. In
particular, εn = δn holds. Since εn is the last transition edge for u, we have
ω(δn) = (ψ(u), I), which means that δn is the last transition edge for v,
whence m = n and εi = δi for every i ∈ {1, . . . , n}. This concludes the proof
that ψK(ℓI)(u) = ψK(ℓI)(v).

Now, let ζ be an arbitrary continuous homomorphism from ΩBS into S
K(ℓI)
ψ .

Because ψK(ℓI) is onto, there is a continuous endomorphism λ of ΩBS such
that ζ = ψK(ℓI) ◦ λ. Since we also have V |= λ(u) = λ(v), we deduce that

ζ(u) = ζ(v). This establishes our claim that S
K(ℓI)
ψ |= u = v.

Applying Lemma 8.2, we conclude that S
K(ℓI)
ϕ |= u = v. By Reiterman’s

Theorem [17], we deduce that S
K(ℓI)
ϕ ∈ V, thus proving that V is closed under

the two-sided Karnofsky-Rhodes expansion.

Corollary 8.4. Let V be a pseudovariety of semigroups. The following con-
ditions are equivalent:
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(1) V is equidivisible and it is not contained in CS;
(2) V = LI©m V;
(3) V is closed under the two-sided Karnofsky-Rhodes expansion;
(4) V is closed under the two-sided connected expansion.

Proof : The equivalence (2)⇔(3) is Corollary 3.3. In particular, a pseudovari-
ety closed under the the two-sided Karnofsky-Rhodes expansion contains LI.
As LI is not contained in CS, the equivalences (1)⇔(2)⇔(3) then follow
from Theorem 8.3. Since the two-sided connected expansion is a quotient of
the two-sided Karnofsky-Rhodes expansion, we clearly have (3)⇒(4). Con-
versely, suppose that V is closed under the two-sided connected expansion.
By Proposition 4.3, V is equidivisible. We claim that V is not contained in CS.
Consider the mapping ϕ from Ω{a}S onto the trivial semigroup S = {1}. The
path in Γϕ from (I, 1) to (1, I) labeled a intersects precisely two strongly con-
nected components of Γϕ, while, for every k ≥ 2, the path in Γϕ from (I, 1)
to (1, I) labeled ak intersects precisely three strongly connected components
of Γϕ. Therefore, denoting by ϕC the canonical continuous homomorphism
from Ω{a}S to SC whose restriction to {a}+ is the connected expansion of

ϕ|{a}+, we have ϕC(a) 6= ϕC(aω+1). This shows that SC /∈ CR, establishing

the claim, and concluding the proof that we have (4)⇒(1).

There is one important further connection of the conditions of Corollary 8.4
with varieties of languages. Indeed, as has been proved by Pin [14] (cf. [15,
Theorem 7.3]), the language counterpart of the operator V 7→ LI©m V is the
closure under unambiguous product.
We conclude the paper with one further application of our results for pseu-

dovarieties of local groups. Combining Corollary 8.4 with Theorem 7.2, we
obtain the following.

Corollary 8.5. If V is a subpseudovariety of LG containing LI then V =
LI©m V.

It is well known that LI ∨ H = LI©m H for every pseudovariety H of groups
[11, Corollary 3.2]. The previous results provide an indirect proof of the
following extension of that fact, which appears to be new.

Corollary 8.6. If V is a subpseudovariety of LG then LI ∨ V = LI©m V.

Proof : Let V be a subpseudovariety of LG. Then the pseudovariety LI ∨ V is
equidivisible by Theorem 7.2. Therefore, applying Corollary 8.5, we obtain
LI ∨ V = LI©m(LI ∨ V) ⊇ LI©m V ⊇ LI ∨ V.
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Reading [8, Corollary 4.3] one finds the following basis for LI ∨ CS:

LI ∨ CS = [[zω(xy)ωxtω = zωxtω, xyωz = (xyωz)ω+1]].

As an example of application of Corollary 8.6, we obtain a simplified basis
for LI ∨ CS, made of a pseudoidentity involving only three letters.

Proposition 8.7. The pseudovariety LI∨CS is defined by the pseudoidentity
(xy)ω(xz)ω(xy)ω = (xy)ω.

Proof : By [5, Theorem 6.1], taking Σ = {(zt)ωz = z}, H = I, W = {x1},
m = 0, and α1 = xω+1

1 , we obtain that the pseudovariety LI©m CS is defined
by the following pseudoidentities:

(

(

x(zt)ωzy
)ω
xzy

(

x(zt)ωzy
)ω
)ω

=
(

x(zt)ωzy
)ω

(8.6)

(xzy)ω−1
(

x(zt)ωzy
)ω+1

(xzy)ω = (xzy)ω. (8.7)

Note that the first of these pseudoidentities is valid in LG while the pseudova-
riety defined by the second one is contained in LG. Hence, LI©m CS is defined
by the pseudoidentity (8.7). Further simplifications of the pseudoidentity
(8.7) may be carried out as follows. First, since it defines a subpseudovariety
of LG, the (ω+1)-power of the infinite element in the middle may be replaced
by the base of that power. Second, pre-multiplying both sides by zy, post-
multiplying by x(zyx)ω−1 and applying suitable conjugations to shift infinite
powers, we obtain the pseudoidentity (zyx)ω(zt)ω(zyx)ω = (zyx)ω. Substi-
tuing x by zy, we deduce the equivalent pseudoidentity (zy)ω(zt)ω(zy)ω =
(zy)ω, as the former can be recovered by substituting in the latter y by yx.
Renaming variables, this shows that (xy)ω(xz)ω(xy)ω = (xy)ω is a simplified
basis for LI©m CS. Finally, we apply Corollary 8.6.
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