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ABSTRACT: We consider a fitness-driven model of dispersal of N interacting pop-
ulations, which was previously studied merely in the case N = 1. Based on some
optimal transport distance recently introduced, we identify the model as a gra-
dient flow in the metric space of Radon measures. We prove existence of global
non-negative weak solutions to the corresponding system of parabolic PDEs, which
involves degenerate cross-diffusion. Under some additional hypotheses and using a
new multicomponent Poincaré-Beckner functional inequality, we show that the so-
lutions converge exponentially to an ideal free distribution in the long time regime.
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1. Introduction

Living organisms tend to form distributional patterns but not to be arranged
either uniformly or randomly. This spatial heterogeneity plays a crucial role
in ecological theories and their practical applications. It should be taken into
account when modeling epidemics, ecological catastrophes, competition, adap-
tation, maintenance of species diversity, parasitism, population growth and
decline, social behaviour, and so on [21]. In order to understand the way the
species distribute themselves it is important to pay attention to their dispersal
strategies.

In this paper we study a system of PDEs for several interacting populations
whose dispersal strategy is determined by a local intrinsic characteristic of or-
ganisms called fitness (cf. [10, [I1]), essentially the signed difference between
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available resources and their consumption by the individuals. The fitness man-
ifests itself as a growth rate, and simultaneously affects the dispersal as the
species move along its gradient towards the most favorable environment. The
equilibrium when the fitnesses of all populations vanish can be referred to as
the ideal free distribution [14, 13|, since no net movement of individuals occurs
in this case. We are thus going to study the system

Oyu; = —le(’LLZVfZ) + Uz'f@', X e Q,t > 0, 1=1,..., N, (11)

of N interacting species located in a bounded domain 2 C R%. For prescribed
resources m = (m;(x)) we assume a generic linear relation between the popu-
lation densities u = (u;(t, z)) and their corresponding fitnesses f = (f;(¢, x)):

f=m — Au. (1.2)

We assume that both the matrix A and the vector m depend on x € €, thus
our model is spatially heterogeneous. Formula ([L2)) expresses the idea that the
fitness is determined by the difference between the available resources m and
the animals’ consumption Au.

The mathematical difficulties which we will face when studying the parabolic
system ([LT)-(T2) come from the fact that it involves both cross-diffusion (for
N > 1) and degenerate diffusion. In the case of merely one population (N = 1),
the fitness-driven dispersal model (L], (L2) was suggested in [27, 10| and
studied in [12], 18] (see also [4]). Related fitness-driven two-species models were
investigated in [3, 25] where one population uses the fitness-driven dispersal
strategy and the other diffuses freely or does not move at all. In the case when
A is a constant matrix, m = 0, and the second (reaction) term wu;f; in (L)
is omitted, system (L)), (L2)) is equivalent to the degenerate cross diffusion
system which was recently analyzed in [I] with an application to seawater
intrusion. Another population dynamics model which involves cross-diffusion
is the Shigesada, Kawasaki and Teramoto model

(9tui =A (ul (dz + Z Clz'ju]'>> + u; ((Cz — Z bZJ’LLJ)) , (13)

where the coefficients are non-negative constants. It has been extensively stud-
ied (mostly for N = 2) from the point of view of well-posedness and long-time
behaviour (see, e.g., [9, 6, 17, 16l 26, 24] and the references therein). Note that
the constants d; in (L3]) are usually assumed to be strictly positive, hence this
problem is not as degenerate as our system (L), (L2]).
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On the other hand, being inspired by the ideas of the Monge-Kantorovich
optimal transport theory [32, 33|, we have recently constructed in [I8] a new
distance on the space of non-negative finite Radon measures. The same dis-
tance was almost simultaneously introduced in the independent works [8], 22]
(see also subsequent [23, [7, [15]). This metric generates a formal (infinite dimen-
sional) Riemannian structure on this space, and provides first- and second-order
differential calculus in the spirit of Otto [29]. With this differential calculus at
hand we were able to identify in [I§] the scalar model as a metric gradient flow,
which allowed us to prove long-time convergence to the ideal free distribution
with explicit exponential rates. The goal of this paper is to extend our previ-
ous results to the multispecies case N > 1. we will observe that the problem
(LT), (I2) can be interpreted as a formal gradient flow of some driving entropy
functional on the Cartesian product of N spaces of non-negative Radon mea-
sures with respect to this geometric structure (provided that the matrix A(z) is
symmetric). Roughly speaking, the entropy £(u) = |ju — uOOH%Q(Q) ~ HfH%Q(Q)
will quantify the deviation from the ideal free distribution u*°, characterized
by f = 0. In this framework and under some general structural assumptions
on A and m, we will prove existence of non-negative weak solutions to our
problem (which to the best of our knowledge was known so far only in the
scalar case [12]), and show that, at least for subcritical initial entropies, all
the species persist and exponentially converge to the ideal free distribution.
All our arguments will have a strong optimal transport flavor, but, due to the
multicomponent nature of the problem preventing our entropy functional from
being geodesically convex, the abstract results for metric gradient flows in [2]
do not apply directly. As a consequence some technical work will be needed
to justify the formal Riemannian computations and a priori estimates (in par-
ticular some chain rules in weighted spaces), and we will argue using several
approximations and regularizations in a more standard PDE framework.

The paper is organized as follows: In Section 2l we impose precise structural
assumptions and state our results. In Section [3 we describe the optimal trans-
port distance on the product measure space M* ()", discuss the induced for-
mal Riemannian structure and calculus, and highlight the gradient-flow struc-
ture of the system. We also present two formal but crucial computations, con-
sisting of a priori entropy and gradient estimates to be derived more rigorously
later on. Section Ml is devoted to the existence of weak solutions, whose proof
will involve three successive regularizations. The last Section [ contains the
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proof of the long-time convergence, based on a new vectorial Poincaré-Beckner
type inequality which serves as an entropy-entropy production inequality for our
gradient flow. The Appendix contains a technical functional analytic lemma.

2. Conventions and main results

Throughout the whole paper we assume that @ C R? is an open, connected,
bounded domain with sufficiently smooth boundary. We always denote vector
functions with values in RY by bold letters, e.g., f = (fi(t,z)). We assume that
we are given a function m = (m;(x)) : Q@ — RY and a symmetric positive-
definite matrix function A = (a;(x)) : @ — R¥*N and without further
mention we shall always assume the uniform ellipticity condition

O<)\A§A($)§AA, xEﬁ

for some structural constants Ay < Ay. We assume that A and m are suffi-
ciently smooth. Note that we do not assume that all the components of A and
m are non-negative.

All the integrals are always implicitly written with respect to the Lebesgue
measures dx,dt, or dedt. The symbol M™(Q) denotes the space of (non-
negative) Radon measures on 2. Parentheses denote the scalar product in
L3(Q), L2(Q)N or L*(Q)M*4 The symbol C,(J; X) stands for the space of
weakly continuous (resp., narrowly continuous) curves with defined on J C R
and with values in X = L*(Q) (resp., X = MT(Q)).

We study the system

Oyu; = —le(uZVfl) +U2fl, T € Q, t>0,1=1,..., N,

w3 =0, x €0, t>0, (2.1)
u; (0, 7) = ud(x), x € (.

As already mentioned in the introduction and without further mention, we
always denote the fitness by

f =m — Au,
and the ideal free distribution u®(x) is obtained by solving f = 0, i-e
u™ := A 'm & f=0.

Note that at this stage u®™ can have negative components and may therefore be
biologically irrelevant (but it will be non-negative later on with extra structural
conditions on A, m), and that u® is trivially a steady state of (2.1I) with f; = 0.
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We will show in Section B that (ZT]) is the gradient flow of the entropy
1

E(u) = —/A(u— u™) - (u—u*)
2 Jo

:%/QA_lf-f:%/Q(uoo—u)-f, we 22N (2.2)
with respect to some optimal transport distance.
Definition 2.1. Let u’ € L2(Q)Y, uY > 0. A vector function
u € Cy([0,00); LA)™) M Lig ([0, +00); HI(Q)Y),
u; > 0, is called a non-negative weak solution to problem (2.1I) provided

d

dt u W= Z/ uzvfz Vw; +u2flwl)7 Vw € (C (Q))Nv

in the sense of distributions D'(0,00), and the initial condition u(0) = u® is

satisfied weakly in the space L*(Q)N

Theorem 1 (existence of non-negative weak solutions). Let u® € L?(Q)Y with
ud > 0. There exists a non-negative weak solution

u € L*(0, +00; LA(Q)™) ) Cul[0, +00); LH(Q)Y)
ﬂLloc Hl(Q) )

to problem (2.10), satisfying the Entropy-Dissipation-Inequality

ae)+ 30 [ [ w(VAF IR < ) @3

for a.e. 0 <ty <t.

Remark 2.1. We were not able to prove any uniqueness result due to the lack
of geodesic convexity, which usually gives contractivity in the metric sense and
thus uniqueness; we therefore believe that any hypothetical proof of uniqueness

cannot come from standard mass transport arguments and should rely on some
PDE approach.

To fix the ideas and improve readability, we assume that A does not de-
pend on x. The generalization to the x-dependent case would require tech-
nical work and employs the fact that the last sum in the expansion Vf; =
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Vim;—_;a;;Vuj—)_;u;jVagj is of lower order with respect to the penultimate
one, but all the arguments below would carry through with minor modifica-
tions.

With an additional assumption, we obtain long-time convergence u(t) — u
to the ideal free distribution with survival of all the species:

o

Theorem 2 (long-time behavior). Let u’ be as in Theorem [, and assume in
addition that the structural hypothesis (5.1]) holds. Then u™(x) > 0 (compo-
nentwise), and there exists E* = E*(A,m) > 0 such that, for any subcritical
initial datum E(u°) < E*, our solution u converges exponentially to u™ as

E(u(t)) < e ME(u" (2.4)
for all t >0 and some v = v(u’, m, A, Q) > 0.

Note that our coercivity assumption A > A4 controls £(u) > 24{ju —
uOOH%Q(Q), thus the entropy decay (24) immediately implies L? convergence.

The consequences and interpretation of the additional assumption (5.1]) will be
discussed later on in Section Bl In Theorem Pl we had to restrict to subcritical
entropies £(u’) < E* for technical reasons, but we conjecture that (Z4) holds
for any u’ > 0 (unless some component of u’ is identically zero). Indeed our
proof of the long-time convergence works provided that no extinction occurs,
say ||ui(t)||zr) > ¢ > 0foralli € {1,...,N}, ¢t >0, and some p > 1. For
both the ODE dynamics (i-e when all densities and resources are constant in
space) and for the one-animal PDE dynamics [12, 18] this is true, but due to
the cross-diffusion we were not able to prove the non-extinction in the general
case. In other words, our subcriticality assumption in Theorem [2is a technical
workaround guaranteeing that our solution stays away from a finite number of
certain partial extinction regimes. These regimes correspond to the situations
when some (or all) populations go extinct, and the survivors compose a (lower-
dimensional) ideal free distribution. This allows us to provide an explicit value
for E* depending only on the structure of the problem, see Section [3] for the
details.

3. The gradient-flow structure and a priori estimates

The celebrated Benamou-Brenier formula was originally established in [3] to
characterize the quadratic Monge-Kantorovich-Wasserstein distance as a dy-
namical evolution problem, and is restricted to conservative optimal transport
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of measures with fixed mass (typically probability measures). In [I8] we con-
structed an optimal transport distance d on the space of arbitrary non-negative
Radon measures M™(£2), based on a modified dynamical Benamou-Brenier for-
mula allowing for mass variations. More precisely, for any ug, u; € M™*() the
distance reads

(g, 1) = i / / (V) + gn(2)[P) ()t

where the infimum is taken among narrowly continuous curves
t = up € Cu([0,1]; MT(Q))
with endpoints ug, u; such that the non conservative continuity equation
Opur + div(w Vi) = urgs

holds in the sense of distributions D’'((0, 1) x ). Biologically, one can think of
g as fitness: in the continuity equation above the individuals u reproduce or die
with rate g equal to the local fitness, and move along the velocity field Vg to-
wards the most favorable environment. Our construction was originally derived
in the whole space Q = R? but immediately extends to general domains im-
posing natural zero-flux boundary conditions on the velocity fields Vg; on 0f).
In addition to nice geometrical and topological properties (completeness, exis-
tence of geodesics, lower semi-continuity with respect to weak-+ convergence,
characterization of Lipschitz curves...) the metric d gives a formal Riemannian
structure @ la Otto [29] on the space M™(2), endowing the tangent plane

T M ={0u=2_: ¢ = —div(uVyg) +ug, g€ H'(du)}

with the norm
€12 00e = 912y = / (V4P + lgP)du (3.1)

and scalar product

(C1, C2>Tu/\/l+ = (91792)H1(du) = /Q(Vgl - Vg + g192)du.

Here tangent vectors dyu = ¢ € T, M™ are always identified with scalar po-
tentials ¢ € H'(du) through the elliptic equation — div(uVg) + ug = ¢ (sup-
plemented with zero-flux boundary conditions on 0f if needed). In particular
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this allows to compute metric gradients for functionals F(u fQ
M as
OF OF
dyg Fu) = —di \Y — 3.2
grady F(u) iv (u 5u> U (3.2)
where ‘;—5 = 0,F(x,u) stands for the first variation with respect to u and

V =V, is the usual gradient in space. We refer to [18] for further details and
explanations.

Since we want to deal here with multicomponent variables u = (uq, ..., uy)
we endow (MT(Q))Y with the natural product distance

N
= Z dQ(UZ‘, UZ‘),
=1

giving the natural Riemannian metrics
(€' ) vy = (887 iau Z/ Vi - Vgl + gig7)du;

in the tangent space Tyy(M™T)V 69 T, M. Here we identify again the tan-

gent vectors ¢ = ((q,...,(N) W1th potent1als g = (g1, ...gn) via the elliptic

equations — div(u;Vg;) + u;9; = ¢ (with homogeneous Neumann boundary

conditions). The metric derivatives with respect to D can be simply com-

puted applying (B2) component by component, i-e gradients of functionals
u) = [, F(z,u,...,uy) read

. OF OF
grady F(u) = <_ div (uzvé—ul) * Ui(s—lbi)i:L..N.

For the particular case £(u) = 1 [, A( )-(u—u>) and with the previous
notation f = m — Au, we have o — (A(u —u™)); = (Au —m); = —f;, thus
our system of PDEs can indeed be written as the gradient flow

d

d—? = —grady €(u) < O = —div(u; Vf) + i f;. (3.3)

At this stage let us derive two formal estimates, which will be crucial for
the subsequent analysis. Here we ignore all the regularity issues, and we shall
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make these estimates rigorous throughout the several regularized problems in-
volved in the proof of existence. The first estimate is the Entropy-Dissipation-
Inequality (23]), and is inherent to the gradient-flow structure. Indeed from
(B3) we should have along reasonably smooth solutions that

d& du
“ <gradDg<u>, E>W+)N — | grady E@)|, ey

Given the above definition of the tangent norms and the explicit computation
of the metric gradient in terms of the fitness, this reads in our setting

E(u(tl))JrZ/tl/Qui(\VfiF—l—\fi|2) = E(u(ty)) forall 0 <ty <t.

This is often referred to as the Entropy-Dissipation-Fquality for the obvious
reasons, and implies of course (2.3]). However the latter inequality is well known
to still completely characterize metric gradient flows [2], and will turn out to be
more flexible and easier to obtain rigorously along the various approximations.

The second fundamental estimate, which will serve as a technical tool, is the
a priori gradient estimate

HVUH%Q(O,T;LQ(Q)NM) <C+T)

and can be viewed as a “flow interchange” estimate as introduced in [2§]. Indeed
the estimate formally follows from computing the dissipation of the Boltzmann
entropy H(u;) = [o{uilogu; —u; + 1} along solutions of our PDE, which is
the gradient flow of the driving functional £. More precisely, testing logu; in
(ZT) (recall that our weak solutions will be non-negative) we compute

d
—H(u;) = / log u; Oyu; = / log ul{ — div(u; V f; + uzfl)}

Q)
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Writing f; = m; — (Au); in the last gradient term, summing over i’s, and
integrating in time, this can be rearranged as

Z {H(UZ(T)) + /OT/QVW ' V(Au)l} < Z {%(Uz(o))

1 1

T 1 T 1 (T
+/ /Vui-Vmi+—/ /ui|f¢|2+—/ /ui\logui|2 :
0 Jo 2Jo Jao 2Jo Jao

Observe from £(u) > 44 |lu — m||;2(q)~ and the previous EDI (Z3) that u(t)
is bounded in L*(2)", thus the subquadratic terms H(u;(0)) and [, u;|log u;|?
are controlled uniformly in time in the right-hand side. Exploiting next H (u;(T)) >
0 and the coercivity A > A4, a suitable use of Young’s inequality finally gives

A4
by | VUH%Q(O,T;LQ(Q)N)

2 92 1 g 2
<CO4T).

Here we used ([Z3) to bound the dissipation term [ [, w|fi]* < E") < C.
We also implicitly assumed that A is a constant matrix, otherwise some extra
lower terms appear but the gradient estimate is still true.

4. Existence of weak solutions

Our construction of weak solutions will involve three levels of approxima-
tion, indexed by the regularization parameters £,6 — 0 and M — oo. More
precisely, we shall consider the regularized problems

{ &gui + S(Au)z‘ = — le(”ZLZVfZ) + ﬂzfz + 5Auz,

s (0, 7) — u0(z with f =m — Au. (4.1)

Here

@; = max(0, min(M, u;))
is the truncation between 0 and M > 1. The operator A is a suitable elliptic
operator of higher order to be precised shortly together with its associated
boundary conditions, and will essentially allow to consider the second-order

cross diffusion as a compact perturbation of €A for fixed ¢ > 0. Note that
in the original PDEs the terms u;V f; only belong to LY(Q) if u € HY(Q)V,
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while the truncations @;Vu; € L*(2) behave much better for fixed M < oo,
Lastly, the 6A term will help to gain coercivity and control the degenerate
cross-diffusion.

We shall first take ¢ — 0, then M — oo, and finally 4 — 0 in this or-
der. The most delicate limit will be M — oo, when we loose the regularity
u;V f; € L*(Q2) to the more delicate u;V f; € L'(Q). This step will also require
the rigorous justification of the formal computations and chain rules from Sec-
tion [3, and will be the most involved. It is worth pointing out that solutions
will become non-negative u;(t, z) > 0 only after taking € — 0, which will then
carry through the next limits M — 00,9 — 0. For convenience we will work in
finite time intervals [0, 7). All our estimates will give local-in time control, and
we will retrieve in the end a global solution by standard diagonal extraction. In
order to keep the notation light we omit the e, M, ¢ indexes as often as possible,
and throughout the manuscript we will precise the dependence of the solution
on the regularizing parameters when needed.

Our first step is to prove existence of solutions to ({1l) for small €, > 0
and large M < oo in any fixed time interval [0, T]. In order to give a precise
meaning to this problem, consider the Hilbert triple (see the Appendix for the
abstract definition)

(H (N, L2, (H)*(Q)Y)  for fixed r > 1 + g.

Denote by A the Riesz isometry between the spaces (H™)Y and
((H™)*)N. We recall the Sobolev embedding H"(Q) C C(Q), which is compact.

The weak form of (A.1]) (with a certain implicit higher-order Neumann bound-
ary condition which is of no importance to us) is the following Cauchy problem

u' + cAu = Q(u), uli—g = u’, (4.2)

where the first equality is understood as an ODE in the space ((H")*)" and
the initial datum should be taken in the sense of C([0, T; (L?)"). The operator
Q : (HYHYN — ((HY)*)Y is determined by duality as

N
(Q(u), w) = Z/ (W V fi - Vw; + 4; fyw; — 0Vu,; - V)
i=1 7%

w € (HYH)N. Note that, for fixed M > 0, the operator () has sublinear growth
and is continuous from C1(Q)Y to ((H")*)N. By LemmaB Il with X = H"(Q)V,
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V =CHQ)N, Y = L3(Q)", there exists a solution u to ([&Z) in the class
L0, T3 (H")Y) WHN (0, T3 (H'))Y) nC([0, T]: (L7 (4.3)

for any fixed T' > 0.

4.1. The limit ¢ — 0. In this section M < oo and 6 > 0 are fixed and

only € varies. In order to send ¢ — 0 we first rigorously derive an entropy

estimate. To this end, we test (L2)) with —f (this test function is legitimate

since f(t,x) = m(x) — Au(t, z) belongs to the intersection (L3)), and arrive
at

d

dtg( u) +c(u, Au —m)gry +5(Vu, VAu — Vm) 2)vxa

N
71' '2 '2 — . .
+z;/ﬂ L+ VAP =00 (4.4)

Integrating in time from 0 to any 7 < T', exploiting the coercivity A > A4 Id,
and applying Cauchy’s inequality we find that

1 1
5(11(7')) + §€>\AHUH%2(O’T;(HT)N) + 55)\AHVUH%Q(OJ_;(LQ)NXd)
+ZALMNWHW)

)
< E() + T iy + T |V (45)

24

Recalling that £(u) controls the L? norm, this implies the a priori estimates

lallz o zz2y) < CL+T), (4.6)
HUHL2 0.T5(HYN) = Co~'(1+T), (4.7)
Ml 20,7,y < Ce™'(1+T) (4.8)

for small ¢,d, where the various constants C' are independent of M, e, 6,T.
Testing (E2) by arbitrary w € (H")™ and employing (1) and (8, we deduce

|| L2075 rrryyvy < Ch,
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where C7 = C1(6, M, T) is independent of . By the Banach-Alaoglu theorem
and Aubin-Lions-Simon lemma, we can find a sequence u®* of solutions to (4.2))
with € = g, — 0 (for fixed M, §) such that

u® — u weakly in L*(0,T; (H"Y) and weakly-* in L>(0,T; (L*)"),
u® — u strongly in L*(0,T; (L*)™) and in C([0, TT; ((H")*)™),
(u*) — u’ weakly in L*(0,T; ((H")*)™).
By the classical continuity property [20] of Nemytskii truncations,
0% — 1 strongly in L*(0,T; (L*)Y),
and because f** = m — Au®* — m — Au = f strongly in L?(0, T; (L*)") and
weakly in L?(0,T; H') the products
UV =4,V oand @ f* — 4. f;  weakly in L'(0,T; L)

converge as strong-weak limits. Passing to the limit ¢ — 0 in ([£2), we see
that u solves the problem

u =Qu), ul_=nu’ (4.9)
which is nothing but the weak form of the problem
Ou; = — le(’ZLZVfZ) + azfz + 5Auz, T € Q,
;9L — §9u = 0, z € 09, (4.10)
u; (0, ) = uol(x).
By density it is easy to check that u’ € L2(0,T; ((H")*)"), and the first equal-

ity in (£9) holds in the space (H')*)" for a.e. t. By standard Lions-Magenes
interpolation results [35, Lemma 2.2.7] we have moreover u € C([0, T; (L*)™).

We now show non-negativity of our weak solution u = limu® to (£I0) and
derive a priori L?(0,T; (H')") estimates uniformly in M, d, which will allow
to take the limit M — 00,9 — 0 in the next sections. After the previous limit
e — 0 the solution u belongs at this stage to C([0, T; (L*)™) N L2(0,T; (HY)Y)
for fixed M, 9 > 0. Therefore we can take again —f as a test function and repeat
the previous computations (L4])(LH) with now € = 0, and we get similarly

)+ / [ GTAPHAR) < Elatto)+ Ty [ Tmifspe (111
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for all 0 < tg < t; < T. This is of course an approximation of the Entropy
Dissipation Inequality (Z3]), which will pass to the successive limits M — oo
and 0 — 0 later on.

In order show that u; > 0 we take the admissible test function v; =
min{u;,0} € L?(0,T; H') in (&I0). By the classical Serrin’s chain rule Vu; =
X[ui<0) Vi we get for all components i =1... N

d (1
~ <—/ |vi\2) :/ﬂivfz“vvi‘i‘/aifivi_fs/ Vuil* <0,

where we used that by definition the truncation
@; = max{0, min{u;, M}} =0

wherever v; = min{u;,0} # 0 and Vv; = VuiXu,<0 7 0 so that the first
two integrands in the middle term are identically zero. Since we consider non-
negative initial data u{ > 0 we have v;(0,.) = 0, thus v;(¢,.) = 0 for all later
times and

v; = min{0,u;} =0 = wu;(t,x) > 0 a.e. in (0,7) x .

From now on we slightly abuse the notation and still write 4; = min{wu;, M} >
0 for the upper truncation only, which is justified since we just proved that

In order to mimic the formal gradient estimate from Section 8] we would like
to test logu; in (@I0). However this is not rigorous because logu; may not
be an admissible test function. We use instead the truncated logarithm and
Boltzmann entropy, defined as

log¢ if0<z2<( 2
logéw(z) =< logz if(<z< M and Héw(z) ::/ logéw(s)ds
log M else 1
for small ¢ > 0 (M > 0 is the same truncation level as before). Note that
0< Héw(z) < H(z):=zlogz—z+1

with monotone pointwise convergence HM(.) / H(.) as ¢ \, 0 and M oo
(the convergence is actually locally uniform). We stress at this point that all
the next estimates will be uniform in ¢, M, and all the constants C below will
depend on the data and 7" > 0 only (if §, > 0 are small and M > 0 is large).
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For fixed 0 < ( < M < oo the functions logéw , HQM are globally Lipschitz,

thus logéw(ui) € L*(0,T; H') is an admissible test function in (ZI0) and, using

the chain rule V logéw(ui) = %X[<<ui<M]a

d M M

Vui 2
/ Vfi-Vu; + /uifilogéw(ui)_é / | \U|‘ :

[(<u;<M] [(<u;<M]

Integrating from ¢ = 0 to ¢t = T', exploiting the monotonicity 0 < HCM < H,

applying Young’s inequality to (f;, logéw ;) 12(da,), and discarding the last non-
positive term, we get

o< [ HY(w(T)
§/QHé‘4(ui // Vi Vu; + //ulfllogg ;)

QrN[¢<u;<M]

/Q H(u / Vi Vuit

QrN[¢<u;<M]

//ftz'|fz'\2 + // U |10géw(ui)|2
< H(u // Vfi-Vu; + //ul|fz|2 //ul llog(u;)]

QrN[¢<u;<M]

IA

In the last line we also used \logg (z)| < |logz| for small ¢ and large M.
Controlling the subquadratic terms H(u;(0)), [[ u;|logu;|* by w;(0) € L*()
and ||| (0.7,r2) < Cr, and exploiting the dissipation estimate (L.I1]) we get

0< Cr+ / Vii-Vu;

QrN[¢<u;<M]
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for all ¢ = 1...N. This immediately passes to the limit ¢ \, 0, and recalling
that by definition f; = m; — (Au); we rewrite this limit as

//VAu VungTJr//sz Vu; — / Vfi - Vu;.

u>M

Summing over ¢’s, taking advantage of the coercivity A > A4, and suitably
applying Young’s inequality to the last two terms, this easily gives

//\vu\2<CT+OAZ// IV fi?

[u;>M]

and it is enough to show that the last term can be bounded uniformly in M, §.
To this end, observe by definition of 4; = min{w;, M} that the dissipation
estimate (A1) immediately yields

J[wse= [[svir < [[aiwse <aier <o
Qr

[u;>M] [u;>M]

if M > 1. This finally gives the desired gradient estimate

// ‘VUP S CT

In order to estimate the time derivative, let us recall that the weak formula-
tion of (A1) holds in duality with all C*(Q) (actually, even H') test functions.
Since [[ul| zo 0,7y z2)v) < Cr and we just proved that ||Vl z2g 7, z2yv<ay < Cr
we see that the products @;V f; and 4; f; are bounded respectively in L?(0, T'; L)
and L>(0,7T; L') uniformly in 6, M. We conclude by duality in (EI0) that
8{&2' = —le(fLZVfZ) + fblfz + 5Aul is bounded in LQ(O,T; (Cl(g)*)N) To
summarize, the solution u = lim u® of (AI0) has the regularity

uniformly in M, ¢§ > 0.

Hu/HLQ(O,T;(Cl(ﬁ) oy Flal o .ryzeyyy + allzeo @y < Cr (4.12)

uniformly in M, é.
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4.2. The limit M — oo. Here we want to pass to the limit M — 400 in

(E9) and [EI0) for fixed § > 0. B
Define the limit operator Q. : (H)™ — ((CH(Q))")Y by

(Qoo(u) Z/ (u; V fi - Vw; + u; fjw; — dVu,; - V) ,

w € CY(Q)N. By (£I2), the Banach-Alaoglu theorem and Aubin-Lions-Simon
lemma, there exists a sequence My — +oo (0 > 0 is fixed) such that, for the
corresponding solutions u**, we have

us — u weakly in L*(0,T; (HY)Y) and weakly-* in L>(0,T; L?),
uMs — u strongly in L*(0, T; (L*)™) and in C([0, T]; ((HY)*)™),
(uMe) — u’ weakly-* in L*(0,T; (C1(Q)")M)
with
10| 20 7.1 @y + N0l e,y + Nl p2o ey < Cr (4.13)
(uniformly in §). Because the truncation operator z +— 2z = min{z, M} is

1-Lipschitz uniformly in M and u;M’“ — wu; strongly in L?, one readily checks
that

2

aMr = min {ufw’“, Mk} — U in L*(0,T; L?).

Therefore the products pass to the strong-weak limit as before,
&y’“VflM’“ — u;V f; and f&ZMkuMk — w;f; in LY0,T; LY), and u solves the
weak formulation

u' = Qx(u), ul==1uy

of
Ou; = —div(u;V fi) + ui fi + 0Au;, = € Q,
wi gl — 594 =, z € 09, (4.14)

u; (0, ) = ug;(x).
In other words, u solves

d

dt u W = Z/ UZVfZ vwz+uzfzwz 5vuz vwz)a

€ (C1(Q2))Y, in the sense of scalar distributions. Moreover, by the Lions-
Magenes lemma [35, Lemma 2.2.6] we see that

u € C, ([0, T]; (LH™),
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hence the initial condition is taken in C, ([0, T; (L?)™).

Before moving to the next limit 6 — 0, we need to show that the dissipation
estimate (Z.I1]) also passes to the limit M — oo . This is not straightforward
because of the cubic products @;(|V fi|*+| fi|?), as 4" does not a priori converge
uniformly and fiM’“ should not converge strongly in L*(0,T; H'). In order to
circumvent this technical difficulty we use a variant of the Banach-Alaoglu
theorem in varying L?(du*) spaces:

Lemma 4.1 (compactness of vector-fields). Let O C RP be an open set,
{1} >0 a sequence of finite non-negative Radon measures narrowly converging
to p1, and v a sequence of vector fields on O. If

HVkHB(O,duk) <C

then there exists v € L*(O,du) such that, up to extraction of some subse-
quence,

k—o00

V¢ €CX(0): lim Vk-Cd,ukz/V-Cd,u
O @
and

. k
IVl 20,400 < Tin i [ 0000

The proof of this fact by optimal transport techniques can be found in [2];
this lemma also follows from a variant of the Banach-Alaoglu theorem [I8]
Proposition 5.3]. We will apply this lemma component by component with
O = (to,t1) x Q € R™! for fixed 0 < ty < t; < T and the sequence of
measures du”(t, ) := @M (t, z)dxdt, which converges narrowly to du(t, z) =
u;(t, z)dzdt due to the strong L*(Qr) convergence @"* — u;. The vector-fields
of interest are of course the R%valued V fiM’“ and the scalar fZ-M’“. Indeed, for
fixed 0 <ty < t; < T we have by (EIT) that

tq

Extracting a subsequence if needed, we see that there is a vector-field v; €
L*(O,dpu) such that

2 L My (2
HVz‘HL2(0,du) < h]?_l)logf IV f; kHLQ((’),duk)a
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and we claim that v; = Vf; in L?(O, du). To see this, observe that from the
weak convergence in Lemma .1l there holds

t1
lim / VfM’“ C~M’“ / / v - Cu;
k—o00 to QO

for all ¢ € C°((to,t1) X Q;Rd). On the other hand we already proved that
~M — w; strongly in L?*(0,7T; L?) and VfM’“ — Vf; weakly in L*(0,T; L?),
thus uM’“V fM’“ — u;V f; weakly in L1(0,T; L'). Therefore

[ foren] [roo

for all ¢ € C((tg, t1) x Q;RY). By density of C>® we conclude that v; = V f;
in L?(O, du), which shows in particular that the limit is independent of #g, ¢,
and the subsequence. Whence

t1 t1
VO<ty<t: / /ui|VfZ-\2 < liminf/ /a;.’”k\vaMq?_
to JQ k=00 Jiy Ja

The argument is identical for the terms ”&fw’ﬂ fZ-M’“|2. In order to finally retrieve
the Entropy—Dissipation—lnequality, observe that u* — u in L2(0,T; (L*)V)
implies that £(uMr(t)) — E(u(t)) for almost every ¢ € (0,7). Taking the
lim inf in (£11]) we obtain

Mk%oo

i) + 3 / [ w92 + 152 < Eu) + To [Vm (4.15)

for almost every 0 <ty <t; <T.

4.3. The limit 6 — 0. We are now ready to pass to the last limit 6 — 0. By
(M.13) we can find a sequence d; — 0 such that, for the corresponding solutions

u’ to ([{I4), we have
u” — u weakly in L*(0,T; (H")™) and weakly-* in L>(0,T; (L*)V),
u’ — u strongly in LQ(O T; (L*") and in C([0,T7]; (H")")N),
(u) — u’ weakly-* in L*(0, T; (C1(Q)")™)
for every fixed T' > 0. Arguing as before for the products uf’“V f(s’“ and u‘s’c f(s’“

we can take the strong-weak limits, and the dAw; term in (d.I4]) goes Weakly
to zero due to the L?(0,T; H') bound. Similarly to the previous step, u €
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Cw([0,T]; (L?)™N), and we can pass to the limit in the initial condition. Thus
the limit u is a weak solution to the original problem (2I)). By standard
diagonal extraction arguments it is easy to see that u = lim u’ can be chosen
independent of the fixed time 7" > 0. Thus the above convergence holds locally
in time in [0, 00), the weak solution is global, and has the desired regularity in
any finite time interval.

As for the Entropy-Dissipation-Inequality, we can repeat the exact same ar-

gument as in the previous section and pass to the h(lsm i{)lf in (L15) (with the last
e

term TQ‘;—’“AHVmH%Lg)Nxd vanishing in any finite time interval) to obtain (2.3)).

5. Long-time convergence

This section is devoted to the proof of Theorem 2 and without further men-
tion we assume that for any I = {iy,...,4,} C{1,..., N}, iy <--+ < i, and
j ¢ I there holds

Qjyip * 0 Qg My,

() > K (5.1)
ai'r'ﬁ e a/iri'r mir
Ajiy - Qji, MYy

for some constant k = k(A, m) > 0.

Remark 5.1. Letting I = 0 in (5.1), we see that necessarily mj(x) > k> 0
for any 7 and x € €2, which means that there are only positive resources.

With this assumption, some elementary algebra shows in particular that the
ideal free distribution

u™(z) = A 'm(z) > ¢, >0

becomes now a biologically relevant (non-negative) coexistence steady state
of (1)) with f = 0. This particular distribution is clearly mathematically
significant given the definition of the entropy (Z2]), and we shall prove below
that it also attracts the long-time dynamics as in Theorem 2l However, (B.1])
also implies the existence of a finite number of non-negative partial extinction
steady states constructed as follows: given any I C {1,..., N} and recalling
that by definition f = m — Au, it is easy to see from (&.I]) that the linear

system
{uiz() (iel)
fi=0 G &),
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has a unique solution u!(z) satisfying u;(z) > ¢, > 0 for all j € I (thus
u’(z) > 0 componentwise). Note that those u’ are trivially steady states of
) with (ui)ier = 0 and (fj)j¢r = 0, and that the ideal free distribution
u™ = u’ is the unique coexistence state obtained by taking I = () < f = 0. In
fact our condition (5.0) is equivalent to the hypothesis that all the components
(ujl) je of those steady states are positive and uniformly bounded away from
zero, cf. [19] (by definition the other components (u!);c; vanish identically).

The partial extinction set is then the collection of all such stationary solutions
u’(z) for all possible choices of I C {1,..., N} with I # ), of which there is
a finite combinatorial number py = 2V — 1:

Uext — {uemt,1($)7 o uemt,pN(x)}

={u/(2): 0#Tc{l,...,N}}c H'(Q)".
The critical entropy E* > 0 appearing in Theorem [2 is then defined as the
minimal entropy among all the partial extinction states,

E* = min {Eu™) :  u”l € UMY, (5.2)

and depends only on A, m (and ).

Though biologically admissible, the partial extinction states are actually de-
generate points in our analysis: whenever u;(x) = 0, the formal Riemannian
structure from Section Bl degenerates since the i-th tangent plane T, M = {0}
becomes trivial, see in particular the definition of tangent norms (B1]) in terms
of ||.|[#1(au) norms. As a consequence we will need to stay away from those
points. This is particularly clear in the following functional inequality, which
will be the key to proving the long-time convergence below and follows from a
more general Poincaré-Beckner inequality established by us in [19]:

Theorem 3. Let U C HY(Q,RY) be a set of functions such that
(i) u >0 for any u € U;
(ii) no sequence {u*};>0 C U converges strongly in LY(Q)N to any of the
partial extinction states u®' € U for some q € [1,2).
Then there exists a constant Cy > 0 such that

N N
, 12 (1£12 12
VueU: /QZZ;VZ' d:chU/Q;uz(\fJ + |V fi|7) da. (5.3)

Remark 5.2. Apart from U, the constant Cy also depends on the upper bounds
for lm| and |A|, on A, and on k in (B.1)).
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Condition (ii) means that the U must be separated from the finite set of
partial extinction points U®!. Moreover, this Poincaré-type inequality can be
reinterpreted as an entropy-entropy production inequality, as is common in the
framework of gradient flows in Wasserstein spaces. Indeed from Section [3 and
the formal Riemannian structure the right-hand side is nothing but the dis-
sipation D(u) = || grady €(u)||7, vp+» and recalling E(u) < [[£]72 () from the
coercivity, the left hand side controls £(u) = £(u) — £(u™). Thus (B.3)) gives
the entropy-entropy dissipation control D(u) > C'(€(u) — £(u™)), which clas-
sically implies convergence in the entropy sense.

We are now in position of proving the long-time convergence:

Proof of Theorem [2 Recalling the definition of the critical entropy (5.2) and
given a subcritical initial data

(") < E¥,
we introduce the set
U:={u=(u,...,un): u; >0, w €H(Q), E)<E’)}

(depending only on u’, A, m, and ). From the EDI (23)) we see that we have
Invariance

u0)=u'eU = ut)eUforaa t>0

along the time-evolution, and we claim that U meets the assumptions of
Theorem Bl To see this, assume by contradiction that there is a sequence
u” € U such that u* — u®! strongly in L4(Q) for some partial extinction state
u € U and some ¢ € [1,2). Since &2||u* — uOOH%Q(Q) < E(uf) < E(Y)
we see that {u”*} is bounded in L?(2), and up to extraction of a subsequence
we can therefore assume that u* — u weakly in L? for some limit u. By
uniqueness of the limit we see that u = u®?, and by lower semi-continuity
£(u") < liminf £(u*) < £(0°) < E*.
k—o00
This is impossible by the definition (B.2) of £E*, which entails the claim.
From (Z2)) and the coercivity A > A4 we recall that

E(u) < CA/Q\fP.
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We can therefore apply Theorem B in the EDI (Z3) and conclude that there
is v = vy > 0, depending only on &£(u") and the data, such that for a.e.
t >ty > 0 there holds

E(u(t)) +’y/ E(u(s))ds

to

¢
<)+ 3 [ [ (VA + 1P < Eulia).
i to
Hence t — E(u(t)) +7 fg £(u(s))ds is monotone non-increasing, and therefore

d€
= <
0 +vE <0

in the sense of scalar distributions D’(0, 0c0). This immediately implies the ex-
ponential decay (2.4]) for a.e t by a standard Gronwall argument. Finally, since
u € C,([0,00); LA(Q)Y), the function t — E(u(t)) is lower semicontinuous,
and (2.4)) extends to all t > 0. |

Remark 5.3. From the biological perspective, the distributions u! (I # ()
describe scenarios when some of the species (u;)ier have died out, and the
survivors (uj);e; compose a (lower-dimensional) ideal free distribution. It is
important to point out that these partial ideal free distributions (which we need
to avoid to secure the entropy-entropy production inequality) are unstable and
repulsive: if a small L> density of any of the extinct populations (w;)ier s
reintroduced, its fitness f; will be positive and bounded away from zero (see
[19] ), therefore the environment is favorable to that species and it will unlikely
go extinct again. That is why we conjecture that (Z4) holds for any u® > 0
(unless some component of u’ is identically zero).

Appendix

Assume that X C Y are two Hilbert spaces, with continuous embedding
operator ¢ : X — Y, and that i(X) is dense in Y. The adjoint operator
i Y* — X* is continuous and, since i(X) is dense in Y, one-to-one. Since
i is one-to-one, i*(Y*) is dense in X*, and one may identify Y* with a dense
subspace of X*. Due to the Riesz representation theorem, one may also identify
Y with Y*. We arrive at the chain of inclusions:

XCcY=vy"cXx* (5.4)
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with dense and continuous embeddings. Observe that in this situation, for
f €Y ue X, their scalar product in Y coincides with the < X*, X > duality

(fsw)y = (fiu)xx. (5.5)

Such triples (X, Y, X*) are called Hilbert triples (sometimes also referred to as
Gelfand or Lions triples), see, e.g., [31], B5] for more details.

Lemma 5.1. Let
XcYcXr

be a Hilbert triple. Let A : X — X* be a linear continuous operator such that
(Au,u) > allullk
for all w € X and some common o« > 0. Let V' be a Banach space such that

Xcvcy

where the first embedding s compact and the second is continuous. Assume
that both X and V' are separable. Let

Q:V - X~
be a continuous operator. Assume that
1Q(u)|lx- < C(L+ [Jullv) (5.6)
for alluw € X. Then the Cauchy problem
u'(t) + Au(t) = Q(u(t)), uli—o = uo, (5.7)
has a solution in the class
L*0,T; X)N HY0,7; X YN C([0,T];Y) (5.8)

for every ug € Y.

We omit the proof since a more general statement is proven in [30], cf. also
[35], Section 6.3|, [34], Section 4].
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