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Abstract: We construct infinitely many knots, both hyperbolic and non-hyperbolic,
where each complement contains meridional essential surfaces of simultaneously un-
bounded genus and number of boundary components. In particular, we construct
examples of knot complements each of which having all possible compact surfaces
embedded as meridional essential surfaces.
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1. Introduction
Surfaces have a preeminent presence on the understanding of 3-manifold

topology. The prime decomposition theorem for 3-manifolds, by Kneser [13]
in 1929, might be the first remarkable example of such role played by surfaces.
Of similar statement, circa 1949, Schubert [22] proves the prime decompo-
sition theorem for knots in S3, and also introduces the concept of sattelite
knot. However, it wasn’t until the 1961 that the concept of incompressible
embedded surface in a 3-manifold was formally introduced by Haken [9],
with such manifolds being referred to since then as Haken manifolds. The
work of Waldhausen brings essential surfaces to the mainstream of 3-manifold
topology, as he solved several important questions for Haken manifolds: For
instance, Waldhausen [24] proved that Haken 3-manifolds are determined by
their fundamental groups. Confirming the importance of essential tori to
the study of 3-manifolds, Jaco and Shalen [11] and Johannson [12] proved,
independently, the JSJ decomposition of 3-manifolds, revealing itself as an
important tool to study 3-manifolds. In a similar tradition, it is also notewor-
thy that most of the support for the Geometrization conjecture came from
its proof by Thurston [23] for Haken manifolds.
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2 JOÃO M. NOGUEIRA

This paper concerns with the interesting phenomenon of certain knot comple-
ments having essential surfaces of arbitrarily large Euler characteristics. The
first examples of knots with this property were given by Lyon [15], where he
proves the existence of knot complements each of which with closed essential
surfaces of arbitrarily high genus. Other examples were later obtained, for
instance, by Oertel [20], and, more recently, by Li [14] or by Eudave-Muñoz
and Neumann-Coto [6]. Similarly, the author proved in [18] the existence
of knot complements such that each contains meridional essential surfaces
with two boundary components and arbitrarily high genus. On the other
hand, one might wonder if the unbounded Euler characteristics of essential
surfaces in a knot complement can be from the number of boundaries instead
of the genus. That is, if there is a knot complement with compact essential
surfaces with infinitely many boundary components. This is in fact the case,
as shown by the examples given by Eudave-Muñoz [5], with non-meridional
non-separating essential surfaces, and also by the author [19], with meridional
essential planar surfaces. The problem addressed in this paper is weather the
arbitrarily large Euler characteristic can be obtained from simultaneously un-
bounded genus and number of boundary components. Theorem 1 answers
affirmatively this question.

Theorem 1. There are infinitely many knots each of which having in its ex-
terior meridional essential surfaces of all genus and 2n boundary components
for all n ≥ 1. Moreover, the collection can be made of prime knots, naturally
excluding the existence of meriodional essential annuli in their exteriors.

In Theorem 2 we show that hyperbolic knots can also have a similar property.

Theorem 2. There are infinitely many hyperbolic knots each of which hav-
ing in its exterior meridional essential surfaces of simultaneously unbounded
genus and number of boundary components.

Each knot from Theorems 1 and 2 also has closed essential surfaces of un-
bounded genus. In fact, from [3], at least one swallow-follow surface obtained
from each meridional essential surface in Theorems 1 and 2 is of higher genus
and also essential in the exterior of the respective knot.
There are many examples of knots that don’t have the properties as in the
theorems above, with the most notorious among these being small or merid-
ionally small knots. Well known examples of classes of small knots are the
torus knots, the 2-bridge knots [8], Montesinos knots with lenght three [21],
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among other examples. One particularly interesting result, in contrast with
the theorems in this paper, is one by Menasco [16] stating that for a fixed
number of boundaries there are finitely many meridional essential surfaces in
the complement of a prime alternating link; in particular, for a fixed number
of boundaries there is a bound on the genus for meridional essential surfaces.
Hence, the knots from the Theorems 1 and 2 above are not alternating.
The paper is organized as follows: In section 2 of this paper we present a con-
struction of knots used along the paper and prove some of their properties.
For the construction we use sattelite knots together with handlebody-knots
of genus two. In section 3 we show a process to obtain knot complements
with meridional essential surfaces of arbitrarily many boundary components
as in Proposition 3, and use the knots from the main theorem of [18] to
prove Theorem 1. The main methods are classical in 3-manifold topology,
as innermost curve arguments and branched surface theory. In section 4 we
prove Theorem 2 using classical results in hyperbolic manifolds and degree-
one maps. Throughout the paper we work in the smooth category, all knots
are assumed to be in S3, unless otherwise stated, and all submanifolds are
assumed to be in general position.

2. A construction of knots.
A common method to construct knots is through the process defining satel-

lite knots: We start considering a knot Kp in a solid torus T , that we refer
to as the pattern knot. The solid torus T is embedded in S3 by the map
σ : T → S3 where the core of σ(T ) has image a knot Kc that is called the
companion knot. The knot σ(Kp) is called a satellite knot of Kc with pat-
tern Kp. In this paper we consider the concept of satellite knot allowing the
companion to be a handlebody-knot. Let us first define a handlebody-knot:
A handlebody-knot of genus g in S3 is an embedded handlebody of genus g
in S3. A spine γ of a handlebody-knot Γ is a graph embedded in S3 with Γ
a regular neighborhood.
In this section, we describe a method to construct knots with meridional
essential surfaces of arbitrarily number of boundaries, that we will use to
prove Theorem 1. The method consist on defining a specific knot used as the
pattern on a sattelite operation function.

Let J be a prime knot as in the main theorem of [18], that is with merid-
ional essential surfaces of any positive genus and two boundary components.
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The knot J is obtained by identifying the boundaries of two particular solid
tori, say H1 and H2, attaching meridian to longitude, and by identifying the
boundaries of the respective essential arc each contains. Denote by X the
torus obtained from the identified boundaries of these solid tori and by O a
disk in X containing X ∩J . We isotope two copies of X −O slightly to each
side separated by X and denote by X1 and X2 the resulting copies of X.
The tori X1 and X2 intersect at O and each bounds a solid torus, ambient
isotopic to H1 and H2 respectively. The union of these solid tori along O
defines a genus two handlebody-knot H with spine as in Figure 1.

O

Figure 1: The spine of the handlebody-knot H, and the respective represen-
tation of O by a point.

Consider a ball B disjoint from O such that Bc intersects H at a cylin-
der containing O and J at two parallel trivial arcs. Note that the 2-string
tangle (B,B ∩ J) is essential, otherwise the punctured torus obtained from
X wouldn’t be essential in E(J). Denote by T the solid torus defined by
B ∪ (Bc∩H). Let J1 and J2 be two copies of J in the respective copies of T ,
say T1 and T2. We isotope the two arcs of Ji ∩ (Ti − Bi) into the boundary
of Ti, where Bi is the copy of B with respect to Ti. For each knot Ji, we
consider a segment of one of these arcs and a regular neighborhood Ri of it,
disjoint from Ji otherwise. We proceed with a connect sum of J1 and J2 by
removing the interior of R1 and attaching the exterior of R2, such that the
disks T1 ∩ ∂R1 and T2 ∩ ∂R2 are identified. Hence, the knot J1#J2 is in a
genus two handlebody G obtained by gluing T1 and T2 along a disk D in
their boundaries. (See Figure 2.)

As the tangle (B,B ∩ J) is essential and T ∩Bc is a regular neighborhood
of each arc of Bc ∩ J , we have that ∂T is essential in T − J . Moreover, from
the construction of T and J , each meridian of T intersects J at least twice.
Hence, ∂G is essential in G− J1#J2 and, similarly, each essential disk in G
intersects J1#J2 at two points.
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Figure 2: The handlebody G together with the knot J1#J2.

Let Γ be the genus 2 handlebody-knot 41, from the list in [10], with spine
γ as in Figure 3.

Figure 3: The spine of the handlebody-knot γ, defined by two loops l1 and
l2 and the arc l.

Denote by e : G → S3 an embedding of G into S3 with image Γ, where
e(D) is an essential disk in a regular neighborhood L of l. That is e(D) is
a disk that separates from Γ two tori, L1 and L2, having cores l1 and l2,
respectively, with Γ = L ∪ L1 ∪ L2. (See Figure 3.) We refer to e(J1#J2)
by N . The handlebody knot Γ is embedded in a solid torus P with core a
trivial knot, such that there is a meridian disk of P that intersects γ at a
single point in l. In the next definition we describe the operation used to
prove Theorem 1.

Definition 1. Let K be the set of equivalence classes of knots in S3 up to
ambient isotopy. For a knot K ∈ K let hK : P → S3 be an embedding of S3

such that hK(P ) is a solid torus with coreK. We define the sattelite operation
function h : K→ K such that for each K ∈ K we have h(K) = hK(N).

Proposition 1. For every knot K the knot h(K) is prime.
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Proof : First observe that there is no local knot of J1#J2 in G: As the knot
Ji is prime and the tangle (Bi, Bi∩Ji) is essential, and (Bc

i , B
c
i ∩Ji) is defined

by two trivial arcs, we have necessarily that there is no local knot of Ji in Ti,
and consequently there is no local knot of J1#J2 in G.
Suppose h(K) is a composite knot and consider a decomposing sphere S for
h(K). If S is disjoint from ∂hK(Γ) then we obtain a contradiction with the
inexistence of local knots of J1#J2 in G. Then consider the intersection of S
with ∂hK(Γ) and assume that |S∩∂hK(Γ)| is minimal among all decomposing
spheres for h(K).
The sphere S intersects ∂hK(Γ) in a collection of simple closed curves. Let
O be an innermost disk bounded by an innermost curve of S ∩ ∂hK(Γ) in S.
We have two possibilities: there is an innermost disk O disjoint from h(K)
or an innermost disk O that intersects h(K) at a single point. If O is disjoint
from h(K), as ∂G is essential in G−J1#J2 and ∂Γ is essential in the exterior
of Γ, then ∂O bounds a disk in ∂hK(Γ). Using a ball bounded by this disk
and O we can isotope S through ∂hK(Γ) in E(h(K)) reducing |S ∩ ∂hK(Γ)|,
contradicting its minimality. If O intersects h(K) at a single point then
O is an essential disk in hK(Γ) intersecting h(K) at a single point, which
contradicts the fact that every essential disk of G intersects J1#J2 at least
in two points (as observed before). Therefore, the knot h(K) is prime.

Besides being prime, the knots h(K) can be decomposed into two essential
arcs by surfaces of genus higher than zero, keeping the properties of Theorem
1 in [?] used in their construction.

Proposition 2. For every knot K the exterior of h(K) has meridional es-
sential surfaces of any positive genus and two boundary components.

Proof : First we note that the meridional essential surfaces of any positive
genus and two boundary components Sg;2 in E(J) are in the solid torus T .
The surface Sg;2 intersects the cylinder Bc ∩T at g− 2 annuli parallel to one
string of Bc ∩ T ∩ J and g annuli parallel to the other string of Bc ∩ T ∩ J ,
with the latter denoted by s. For each copy of T , T1 and T2, denote the
respective copies of s by s1 and s2. We isotope the arc si into the boundary
of Ti, and consider a regular neighborhood Ri of this segment, disjoint from
Ji otherwise. We consider the surfaces Sg;2 in T1 and assume that the annuli
of Sg;2∩T1∩Bc

1 parallel to s1 are in R1. After the connected sum between J1

and J2, assumed along the arcs s1 and s2 as described before in this section,
we replace these annuli in R1 by g annuli in the exterior of R2 parallel to the
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resulting arc of J2 in T2 (that we also denote by J2). In this way, we define
a new surface S ′g;2, in the handlebody G, obtained from Sg;2 and also with
genus g and two boundary components.
As S ′g;2 ∩ T2 is a collection of annuli in T2, cutting a regular neighborhood
of J2 in T2, there is no compressing or boundary compressing disk for S ′g;2

in T2. As Sg;2 is essential in T1 − J1 there is no compressing or boundary
compressing disk of S ′g;2 in T1. Hence, if there is a compressing or boundary
compressing disk of S ′g;2 in G it intersects D. By an outermost disk type of
argument in the compressing disk with respect to its intersection with D we
obtain a contradiction with the essentiality of the annuli S ′g;2 ∩ T2 in T2 or
the essentiality of Sg;2 in T1 − J1. Hence, S ′g;2 is essential in the complement
of J1#J2 in G.
Let now Fg;2 be e(S ′g;2). We will show that Fg;2 is essential in E(N). Note that
N is, in particular, h(K) for K unknotted. Suppose there is a compressing
or boundary compressing disk Q for Fg;2 in E(N). If Q is disjoint from ∂Γ
we get a contradiction with S ′g;2 being essential in the exterior of J1#J2 in G.
Hence, Q intersects ∂Γ. Suppose |Q∩∂Γ| is minimal between all compressing
or boundary compressing disks of Fg;2 in E(N). As Fg;2 is disjoint from ∂Γ,
the disk Q intersects ∂Γ at simple closed curves. Denote by O an innermost
disk defined by the curves of Q∩ ∂Γ in D. As ∂Γ is irreducible in E(Γ), the
disk O cannot be essential in E(Γ). As J1#J2 is essential in G, the disk O
cannot be essential in Γ−N . Therefore, ∂O bounds a disk in ∂Γ which, after
an isotopy of O through this disk, contradicts the minimality of |Q ∩ ∂Γ|.
Then Fg;2 is essential in E(N).
For a given non-trivial knot K consider hK(P ) and the knot h(K). Denote
by F ′g;2 the surface hK(Fg;2) in hK(Γ). Assume there is a compressing or
boundary compressing disk Q′ for F ′g;2 in E(h(K)). In case Q′ is disjoint
from ∂hK(P ) we get a contradiction with Fg;2 being essential in E(N). Then,
Q′ intersects ∂hK(P ). Suppose that |Q′ ∩ ∂hK(P )| is minimal between all
compressing or boundary compressing disks of F ′g;2. Denote also by O′ an
innermost disk defined by Q′ ∩ ∂hK(P ) in Q′. As ∂hK(P ) is essential in
E(hK(P )), the disk O′ cannot be essential in E(hK(P )). As N is essential
in P (from the construction of P ), the disk O′ also cannot be essential in
P − h(K). Then, ∂O′ bounds a disk in ∂hK(P ) and, as before, we get a
contradiction with the minimality of |Q′ ∩ ∂hK(P )|.
In conclusion, for any knotK the knot h(K) has a meridional essential surface
of any positive genus and two boundary components.
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3. Proof of Theorem 1
In this section we use the sattelite operation described on Definition 1 and

the knots from the main theorem of [18] to prove Theorem 1. First, we
start with the following proposition where we show that for any knot with
a meridional essential surface in its exterior there is a knot with meridional
essential surfaces of the same genus and unlimited number of boundaries.

Proposition 3. Let K be a knot with a meridional essential surface of genus
g and n boundary components.
Then, the knot h(K) has a meridional essential surface of genus g and b
boundary components for all even b ≥ 2n.

Proof : Let S be a closed surface of genus g which K intersects at n points,
corresponding to a meridional essential surface of genus g and n boundary
components in E(K), as in the statement. With the association of hK(P )
with a regular neighborhood of K, we denote by S ′ the meridional essential
surface obatined from S in the complement of hK(P ). Each boundary com-
ponent of S ′ bounds a meridian disk in hK(P ). We consider two types of
meridian disks of hK(P ), with respect to hK(Γ), as it intersects hK(Γ) at one
separating disk or at two separating disks in hK(L). We refer to a meridian
disk of hK(P ) as type-a in case it intersects hK(Γ) at one disk, separating
hK(Γ) into two components. We refer to a meridian disk as of type-b in case
it intersects hK(Γ) at two disks, separating hK(Γ) into three components:
one being a cylinder in hK(L), and each of the other two containing either
hK(L1) or hK(L2).

In what follows we construct the surfaces used to prove the statement of
this proposition. We define Sn+i, i = 0, 1, . . . , n, as a surface obtained from S ′

by capping off its boundaries with i meridians of type-b and n−i meridians of
type-a. Hence, Sn+i has genus g and, in the exterior of hK(N), has 2×(n+ i)
boundary components.
To proceed, we consider the surface S2n, that intersects hK(P ) at n meridian
disks of type-b, D1, . . . , Dn, ordered by index, such that D1∪Dn cut a cylinder
from hK(P ) containing all the other disks Di. Let D be a meridian of type-a.
We assume that D ∪D1 cut a cylinder QL1

from hK(P ) containing hK(L1),
and Dn ∪ D cut a cylinder QL2

from hK(P ) containing hK(L2). Let ∂∗QL2

be the annulus of intersection of ∂QL2
with ∂hK(P ). Let O be the annulus

of intersection of QL1
with ∂hK(Γ) (the component that is disjoint from
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hK(L1)). Let A be the annulus obtained by the union of O with D∩E(hK(Γ))
with ∂∗QL2

. We define the surface S2n+j, j ≥ 1, as follows: Start with the
surface S2n. We consider j meridians of type-b in sequence after Dn and
denoted Dn+1, Dn+2, . . . , Dn+j. We consider also j copies of A in hK(P )
denoted, from the outside to the inside, by A1, A2, . . . , Aj. First we consider
the disk Op obtained by capping off the annulus Ap by the disk one of its
boundary components bounds in Dn+p, for all p = 1, . . . , j. We continue by
extending, parallely, the boundary of Op until it reaches Dp, and we surger
the disk by Op ∩Dp in Dp by Op. The resulting surface is the surface S2n+j,
which has genus g and 2× (2n+ j) boundary components.

Lemma 1. The surfaces Sn+i, for i ∈ {0, 1, . . . , n}, are essential in E(h(K)).

Proof of Lemma 1: Suppose a surface Sn+i, for some i ∈ {0, 1, . . . , n}, is not
essential and denote by D a compressing disk or boundary compressing disk
of Sn+i in E(h(K)). Assume that |D ∩ ∂hK(P )| is minimal between all
compressing and boundary compressing disks of Sn+i.
If D intersects ∂hK(P ) at some simple closed curve let δ be an innermost
one in D bounding an innermost disk ∆. As N is essential in P the disk
∆ cannot be essential in hK(P ). As a non-trivial knot complement in S3 is
boundary irreducible, the disk ∆ cannot be essential in the complement of
hK(P ). Hence, δ bounds a disk in ∂hK(P ) and by an isotopy of ∆ through
this disk we can reduce |D∩∂hK(P )|, contradicting its minimality. Then, D
doesn’t intersect ∂hK(P ) at simple closed curves.
Assume now that D intersects ∂hK(P ) at some arc. As h(K) is disjoint from
∂hK(P ) the arcs of D∩ ∂hK(P ) have both ends in D∩Sn+i, even when D is
a boundary compressing disk. Denote by δ an outermost arc of D ∩ ∂hK(P )
in D, cutting an outermost disk ∆ from D with boundary δ union with an
arc in D ∩ Sn+i. (This latter condition is not always true for all outermost
disks as ∆. In fact, when D is a boundary compressing disk, an outermost
disk ∆ might include in its boundary an arc in ∂E(h(K)); but an outermost
disk in its complement in D has the desired property.) If δ has both ends
in the same disk component Dj of hK(P ) ∩ Sn+i, by cutting and pasting
along the disk cut by δ and ∂Dj from ∂hK(P ), we can reduce |D ∩ ∂hK(P )|,
contradicting its minimality. Hence, δ has ends in different components of
hK(P )∩Sn+i. As hK(P )∩Sn+i is a collection of disks, ∆ cannot be in hK(P ).
Consequently, ∆ is in the complement of hK(P ) implying that S is boundary
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compressible in E(K), which contradicts its essentiality. Hence, the surfaces
Sn+i, for i ∈ {0, . . . , n}, are essential in E(h(K)).

Lemma 2. The surfaces Sn+i, for i > n, are essential in E(h(K)).

Proof of Lemma 2: For the proof of this lemma we use branched surface the-
ory based on work of Oertel [20] and Floyd and Oertel [7] that we revise
concisely over the next paragraphs.
A branched surface B with generic branched locus in a 3-manifold M is a
compact space locally modeled on Figure 4(a).

(a) (b) (c)

∂ Nh

∂ Nv
w3 = w2 + w1

w1

w2w3

Figure 4: Local model for a branched surface, in (a), its regular neighbor-
hood, in (b), and branch equations, in (c).

We denote by N(B) a fibered regular neighborhood of B embedded in M ,
locally modelled on Figure 4(b). The boundary of N(B) is the union of
three compact surfaces ∂hN(B), ∂vN(B) and ∂M ∩ ∂N(B), where a fiber
of N(B) meets ∂hN(B) transversely at its endpoints and either is disjoint
from ∂vN(B) or meets ∂vN(B) in a closed interval in its interior. We say
that a surface S is carried by B if it can be isotoped into N(B) so that it is
transverse to the fibers. If we associate a weight wi ≥ 0 to each component
on the complement of the branch locus in B we say that we have an invariant
measure provided that the weights satisfy branch equations as in Figure 4(c).
Given an invariant measure on B we can define a surface carried by B, with
respect to the number of intersections between the fibers and surface. We
also note that if all weights are positive we say that S is carried with positive
weights by B, which is equivalent to S being transverse to all fibers of N(B).
A disk of contact is a disk D embedded in N(B) transverse to fibers and
with ∂D in ∂vN(B). A half-disk of contact is a disk D embedded in N(B)
transverse to fibers with ∂D being the union of an arc in ∂M ∩ ∂N(B) and
an arc in ∂vN(B). A monogon in the closure of M −N(B) is a disk D with
D ∩ ∂N(B) = ∂D which intersects ∂vN(B) in a single fiber. (See Figure 5.)

A branched surface B embedded in M is said incompressible if it satisfies
the following three properties:
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(a)

monogon

(b)

disk of
contact

Figure 5: Illustration of a monogon and a disk of contact on a branched surface.

(i) B has no disk of contact or half-disk of contact;
(ii) ∂hN(B) is incompressible and boundary incompressible in the closure

of M −N(B);
(iii) there are no monogons in the closure of M −N(B).

With following theorem, by Floyd and Oertel in [7], we can determine if a
surface carried by a branched surface is essential.

Theorem 3 (Floyd and Oertel, [7]). A surface carried with positive weights
by an incompressible branched surface is essential.

Now we prove that the surfaces Sn+i, for i > n, are essential in E(h(K))
by showing that these surfaces are carried with positive weights by an in-
compressible branched surface. Let us consider the surface S ′ and denote
by b1, b2, . . . , bn its boundary components in consecutive order in ∂hK(P ).
Denote by Qj the annulus component of ∂hK(P )− b1 ∪ · · · ∪ bn bounded by
bj ∪ bj+1. We consider the union of S ′, the annuli Qj, j = 1, . . . , n − 1, the
annulus A and a type-b meridian D1 of hK(P ) with boundary b1, and denote
the resulting space by B. We smooth the space B on the intersection of the
surface S ′, Qj, A and D1 as explained next. For each annulus Qj: isotope
the boundary in bj into the exterior of hK(P ) and smooth it towards bj; also,
smooth the boundary in bj+1 towards the exterior of hK(P ). We also smooth
the boundary of D1, that is b1, with S ′. With respect to the annulus A, we
smooth its boundary in D1 towards b1 and its boundary in bn we isotope it
into the exterior of hK(P ) and smooth it towards bn. In Figure 5 we have a
schematic representation of the branched surface B.

Let us denote by Da
1 the disk bounded by D1 ∩A in D1 and by Db

1 the an-
nulus defined by D1−Da

1 . From the construction, the space B is a branched
surface with sections denoted naturally by S ′, Qj for j = 1, . . . , n− 1, A, Da

1

and Db
1, as illustrated in Figure 5. We denote a regular neighborhood of B by

N(B). The surface Sn+i is carried with positive weights by B together with
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B

D1

Q1 Q3 Qn−1

Q2

A

Γ

Figure 6: Schematic representation of the branched surface B.

the invariant measure on B defined by WS′ = 1, WQj
= n − j + i, WA = i,

WDa
1

= n and WDb
1

= n + i, on the sections S?, Qj, A, Da
1 , Db

1, respectively.
To prove that Sn+i, i > n, is essential in the complement of h(K) we show
that B is an incompressible branched surface and use Theorem 3.
The space N(B) decomposes E(h(K)) into three components: a component
cut from E(h(K)) by S ′ and the annuli Qj with odd index that we denote
by E1; a component cut from E(h(K)) by S ′, the annuli Qj with even index
and the annulus A that we denote by E2; a component cut from E(h(K)) by
S ′, Da

1 , Db
1 and the annuli Qj, j = 1, . . . , n−1, and A, that we denote by Ep.

As E1 is disjoint from ∂E(h(K)) there are boundary compressing disks for
∂hN(B) in E1. In ∂E1, the components of ∂vN(B) correspond to annuli
associated to the boundary of Qj in bj, for j odd. Hence, if ∂hN(B) has
a compressing disk in E1, as it is disjoint from ∂vN(B), we can isotope its
boundary into S ′, contradicting S ′ being essential in E(K). On the other
hand, a monogon disk in E1 would have boundary defined by an arc in some
Qj and an arc in S ′, being a boundary compressing disk for S ′ in E(K),
contradicting again S ′ being essential.
In ∂E2, the components of ∂vN(B) correspond to annuli associated to the
boundary of Qj in bj, for j even, and to the annulus associated to the bound-
ary of A in bn. As in the case for E1, if there is a compressing disk for
∂hN(B) in E2 then we get a contradiction with S ′ being essential in E(K).
If there is a monogon disk in E2 it would have boundary defined by an arc
in some Qj or in A and an arc in S ′, defining a boundary compressing disk
for S ′ in E(K), and contradicting again S ′ being essential in E(K). If there
is a boundary compressing disk for ∂hN(B) in E2 then an arc of such a disk
boundary can be assumed to be the arc s1 defined by hK(L1) ∩ h(K). The
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solid torus hK(L1) is in a ball in E2 intersecting Sn+i in D1, and s1 has the
isotopy type of the knotted arc J1 in this ball. The existence of a boundary
compressing disk of ∂hN(B) in E2 with s1 in the boundary contradicts J1

being a knotted arc. The component Ep defines together with Ep ∩ h(K) a
3-string tangle defined by a knotted arc s2, with the pattern of J2 in hK(L2)
and two parallel trivial arcs in hK(L), denoted by t1 and t2. There is only one
component of ∂vN(B) in ∂Ep and it corresponds to the boundary of A in D1,
denoted by a. The end points of each ti, i = 1, 2, in Ep are separated by a in
∂Ep, and the ends of s2 are in the same disk bounded by a in ∂Ep, say Da. We
denote the other disk bounded by a in ∂Ep by D′a. As a is separating in ∂Ep

there are no monogons of ∂N(B) in Ep, and a the boundary of a compressing
or boundary compressing disk for ∂hN(B) in Ep intersects ∂hN(B) only at
Da. If there is a boundary compressing disk then we can assume the arc s2

is on its boundary, contradicting s2 being knotted. If there is a compressing
disk then it separates s2 from t1 ∪ t2 implying that Γ is trivial in P , which
is a contradiction with Γ being knotted (more exactly, the handlebody knot
41 as in [10]). This finishes the proof that B is an incompressible branched
surface and, consequently, from Theorem 3 we also have that Sn+i is essential
in E(h(K)), for i > n.

From Lemmas 1 and 2 we obtain the statement of the proposition as the
surfaces Sn+i, i ≥ 0, are essential in E(h(K)) and Sn+i has genus g and
2n+ 2i boundary components.

This proposition offers a base for the proof of Theorem 1 as follows.

Proof of Theorem 1: Consider an infinite collection of knots Ci, i ∈ N, as
in the main theorem in [18], that is each of which having in their exterior
a meridional essential surface Sg for every genus g ≥ 0 and two boundary
components. Using the sattelite operation defined in the previous section, for
each knot Ci we define the knot h(Ci) that we denote by Ki. Hence, each knot
Ki has in its exterior, from Proposition 2, a meridional essential surface of
any positive genus and two boundary components and, from Proposition 3, a
meridional essential surface Sg;2n of any genus g and 2n boundary components
for all n ≥ 2. From Proposition 1, the knots h(Ki) are prime, and together
with examples obtained after their connected sum with a non-trivial knot we
complete the proof of the statement of the theorem.
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4. Meridional essential surfaces on hyperbolic knot ex-
teriors

In this section we extend the work in the previous sections to hyperbolic
knots and prove Theorem 2.

Proof of Theorem 2: Consider a knot K as in the statement of Theorem 1.
That is, E(K) contains meridional essential surfaces Sg;b of any genus g and
(even) number b of boundary components. We will show that for K there is
a hyperbolic knot whose exterior contains meridional essential surfaces Fg;b

of genus and number of boundary components greater than or equal to g and
b, respectively, for each surface Sg;b.
From Myers [17], let J ⊂ E(K) be a null-homotopic knot with hyperbolic
complement. Consider E(J ∪ K) and do 1

r -Dehn filling on J to produce
a hyperbolic knot Kr ⊂ S3. As in the proof of Proposition 3.2 of [2] by
Boileau-Wang [2], there is a degree-one map f : E(Kr) → E(K). From the
construction of the degree-one map f , as on the proof of Proposition 3.2 on
[2], we can homotope f to be transverse to Sg;b by making the immersed
disk bounded by J in E(K), used to define f , transverse to Sg;b. After this
homotopy of f , if necessary, we have that Fg;b = f−1(Sg;b) is a 2-dimensional
submanifold of E(Kr). The restriction map f : Fg;b → Sg;b is a degree-one
map, by definition of degree-one map. Hence, by the work of Edmonds [4], it
is a pinch map: there is a compact connected submanifold F ⊂ Fg;b with no
more than one component of its boundary being a simple closed curve in the
interior of Fg;b, such that f , restricted to Fg;b, is homotopic to the quotient
map Fg;b → Fg;b/F . In particular, this means that the genus of Fg;b is higher
than the one of Sg;b. On top of this, as f is the identity near ∂E(K), the
number of boundary components of Fg;b is the same as Sg;b.
In case Fg;b is incompressible, we have completed the proof. Otherwise, let
D be a compressing disk of Fg;b in E(Kr). As f : Fg;b → Sg;b is a pinch
map as described above, f(D) is an immersed disk in E(K). In case ∂D is
in the pinched region of Fg;b by f , then ∂D is mapped to a point of Sg;b.
Hence, we can compress Fg;b by D obtaining a surface that is still mapped
by a degree-one map into Sg;b. We keep compressing until there are no more
compressing disks with boundary in the pinched region. In case the induced
homomorphism f∗ : π1(Fg;b)→ π1(Sg;b) takes the class of ∂D to the identity
of π1(Sg;b), we can homotope ∂D into the pinched region of Fg;b by f , and
repeat the previous argument. In case the class of ∂D is not in the kernel of
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f∗, from the commutativity of the diagram

π1(Fg;b)

j∗
��

f∗ // π1(Sg;b)

i∗
��

π1(E(Kr))
f∗ // π1(E(K))

the kernel of i∗ contains the class of f∗([∂D]) and is non-trivial. By the Loop
Theorem, there is a compressing disk of Sg;b in E(K), which is a contradic-
tion. Hence, Fg;b is essential in E(Kr).
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