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1. Introduction
Let Ω ⊂ Rd be a bounded, connected, open domain. Fix a vector function

m ∈ C1(Ω;RN) and a matrix function A ∈ C1(Ω;MN(R)). In this paper, we
contemplate the inequality∫

Ω

N∑
i=1

|fi|p dx ≤ C

∫
Ω

N∑
i=1

ui(|fi|p + |∇fi|p) dx, (1)

where u ∈ W 1
p (Ω;RN) is a vector function with non-negative components

ui ≥ 0, and f = f(u) = m− Au.
A quick glimpse suggests that (1) is trivial when all components of u

are bounded away from zero. On the other hand, given an index set I ⊂
{1, . . . , N} and a solution u to the linear system{

ui = 0 (i ∈ I)
fj = 0 (j /∈ I),

(2)

inequality (1) is clearly violated unless I = ∅. Under suitable structural
assumptions on A and m (roughly speaking, we need that (2) has a unique
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non-negative solution uI for any I), we will show that it is enough for a
function u to stay away from the solutions to (2) with I 6= ∅ in order to
comply with inequality (1). The only solution of (2) compatible with the
inequality is thus

u∞ := u∅ = A−1m.

In the case N = 1 the only solution of (2) with I 6= ∅ is u ≡ 0, thus
C in (1) is expected to blow up only as u = u1 approaches zero in some
sense. Indeed, we have recently proved in [8] that C can be chosen in the
form 1/Φ(

∫
Ω u1), where Φ is a strictly increasing continuous function with

Φ(0) = 0 (provided N = 1, m = m1(x) > 0 and A ≡ 1). The proof in [8]
uses a generalized Beckner inequality [1, Lemma 4], that is why we refer to
(1) as Poincaré-Beckner inequality. However, that proof completely fails in
the multicomponent case due to implicit cross-diffusion effects.

Our interest to (1) comes from the fact that in the case of symmetric
positive-definite matrix A(x) and p = 2 inequality (1) is equivalent to an
entropy-entropy production inequality corresponding to the gradient flow of
the geodesically non-convex entropy functional

E(u) =
1

2

∫
Ω

A(u− u∞) · (u− u∞) (3)

on the space of N -dimensional non-negative Radon measures on Ω equipped
with the unbalanced optimal transport distance and induced Riemannian
structure as recently introduced in [8] (see also [9, 3, 10, 2, 6]). This gradi-
ent flow coincides with a fitness-driven PDE system of population dynamics
involving degenerate cross-diffusion. Inequality (1) implies exponential con-
vergence of the trajectories of this gradient flow to the coexistence steady-
state u∞ which corresponds to the so-called ideal free distribution [5, 4] of
the populations. We refer to our companion paper [7] for the details of this
interpretation of (1) and its implications.

The proof of (1) which we carry out in this paper is non-standard, be-
ing based on a subtle analysis of suitable unions of super-level sets of the
components of f employing the coarea formula and the relative isoperimetric
inequality. Assuming that there exists a sequence violating the inequality,
either we conclude that it converges one of the degenerate states uI , or we
can detect a drop of fi that can be exploited to estimate the total variation
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of fi by means of the coarea formula. To apply this consideration to the term∫
Ω

N∑
i=1

ui|∇fi|p dx,

we must consider the variation of fi over the region where ui is not small.
However, due to the hidden cross-diffusion nature of the problem, this pro-
duces “holes” in the level sets of fi, and we cannot use the relative isoperi-
metric inequality to estimate the perimeter of the super-level sets. We patch
the holes by merging certain super- and sub-level sets of different fi. Since
we argue by contradiction, we are not able to quantify the constant C in (1).

The paper is organized as follows. In Section 2, we give our structural
conditions on A and m, and present the main results. In Section 3, we
state some algebraic and analytical properties of f(u) and related nonlinear
functions whose proofs may be found in the Appendix. In Section 4.1, we
derive the main estimates for the sequences allegedly violating (1). In Section
4.2, we identify three possible scenarios which are determined by behavior of
suitable combinations of super- and sub-level sets of fi. The first alternative
leads to the convergence to uI (Section 4.3). The second and the third are
the most involved ones, and employ the geometric ideas described above, see
Sections 4.4 and 4.5.

2. The main results
Let Ω ⊂ Rd be a bounded, connected, open domain. We assume that it

admits the relative isoperimetric inequality, cf. [11, Remark 12.39]:

P (A; Ω) ≥ cΩ|A|
d−1
d , A ⊂ Ω, |A| ≤ 1

2
|Ω|. (4)

Here P (A; Ω) denotes the relative perimeter of a Lebesgue measurable A of
locally finite perimeter with respect to Ω.

Suppose we are given a vector function m = (m1, . . . ,mN) ∈
C1(Ω;RN) and a matrix function A = (aij) ∈ C1(Ω;MN(R)). We assume
that there exists κ > 0 independent of x ∈ Ω such that

Assumption 1. We have pointwise

|aij| ≤
1

κ
(i, j = 1, . . . , N ; x ∈ Ω), (5)

mi ≤
1

κ
(i = 1, . . . , N ; x ∈ Ω). (6)
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Assumption 2. For any I = {i1, . . . , ir} ⊂ {1, . . . , N}, i1 < · · · < ir, we
have ∣∣∣∣∣∣

ai1i1 · · · ai1ir
... . . . ...

airi1 · · · airir

∣∣∣∣∣∣ ≥ κ. (7)

Assumption 3. For any I = {i1, . . . , ir} ⊂ {1, . . . , N}, i1 < · · · < ir, and
j /∈ I we have ∣∣∣∣∣∣∣∣

ai1i1 · · · ai1ir mi1
... . . . ...

...
airi1 · · · airir mir

aji1 · · · ajir mj

∣∣∣∣∣∣∣∣ ≥ κ. (8)

Remark 1. Letting I = ∅ in (8), we see that all the functions mj are neces-
sarily positive.

Remark 2. Assumptions 2 and 3 allow for a geometrical interpretation, see
Section 3.

Remark 3. For a symmetric matrix A, Assumption 2 is equivalent to uni-
form positive definiteness. However, we do not assume A to be necessarily
symmetric.

Given a vector function u = (u1, . . . , uN) : Ω→ RN , set

fi = mi −
N∑
i=1

aijuj : Ω→ R.

Theorem 1. Suppose that A and m satisfy Assumptions 1–3 and let p ≥ 1
and U ⊂ W 1

p (Ω;RN) be a set of functions such that
(i) u ≥ 0 for any u ∈ U;
(ii) no bounded with respect to the Lp norm sequence {un} ⊂ U admits a

nonempty index set I ⊂ {1, . . . , N} so that

uin −−−→
n→∞

0 (i ∈ I) in measure (9)

fkn −−−→
n→∞

0 (k /∈ I) in measure (10)

Then there exists C > 0 such that∫
Ω

N∑
i=1

|fi|p dx ≤ C

∫
Ω

N∑
i=1

ui(|fi|p + |∇fi|p) dx (u ∈ U). (11)
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Remark 4. The integrand in the right-hand side of (11) is nonnegative, and
the integral may be infinite.

Remark 5. For p > 1, by Vitali’s theorem, the convergence in measure in (9),
(10) can be replaced by the convergence in Lq, 1 ≤ q < p.

Condition (ii) of Theorem 1 means that the set U must be separated from
a finite number of specific points in the topology of convergence in measure.
Specifically, it follows from Assumption 2 that given I ⊂ {1, . . . , N}, the
linear system {

ui = 0 (i ∈ I)
fj = 0 (j /∈ I),

(12)

has a unique solution uI ∈ C1(Ω;RN). It is easy to see that (9) and (10) are
equivalent to

un → uI (n→∞) in measure. (13)

Theorem 1 admits the following stronger formulation.
Solving (12) by Cramer’s rule and recalling the assumptions, we see that

all the functions uI = (uI1, . . . , uIn) are bounded by a constant depending
only on κ. Let M = M(κ) be an arbitrary number such that

M > sup{uIi : I ⊂ {1, . . . , N}; i ∈ {1, . . . , N}}. (14)

Theorem 2. Let p ≥ 1, the set A ⊂ C1(Ω;MN(R) × RN), and the set
U ⊂ W 1

p (Ω;RN) be such that
(i) any (A,m) ∈ A satisfies Assumptions 1–3 with a constant κ = κ(A);
(ii) u ≥ 0 for any u ∈ U;
(iii) one cannot choose sequences {un} ⊂ U and {(An,mn)} ⊂ A such that
{un} is bounded in Lp, and (9) and (10) hold for an I 6= ∅.

Then there exists C(Ω, p, κ,A,U) > 0 such that∫
Ω

N∑
i=1

|fi|p dx ≤ C(Ω, p, κ,A,U)

∫
Ω

N∑
i=1

ũi(|fi|p + |∇fi|p) dx (15)

for all u = (u1, . . . , uN) ∈ U and (A,m) ∈ A, where

ũin(x) = min(uin(x),M). (16)
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3. Auxiliary functions
In this section we collect a few auxiliary results concerning systems of affine

functions on RN

fi(u1, . . . , uN) = mi −
N∑
j=1

aijuj (i = 1, . . . , N) (17)

with scalar coefficients. The proofs of the statements can be found in the
Appendix.

We say that the coefficients in (17) are admissible, if they satisfy Assump-
tions 1, 2, and 3 with a fixed κ > 0.

Given I = {i1, . . . , ir} ⊂ {1, . . . , N}, i1 < · · · < ir, and j ∈ {1, . . . , N},
denote the determinants in the right-hand sides of (7) and (8) by

∆I =

∣∣∣∣∣∣
ai1i1 · · · ai1ir

... . . . ...
airi1 · · · airir

∣∣∣∣∣∣ , ∆I,j =

∣∣∣∣∣∣∣∣
ai1i1 · · · ai1ir mi1

... . . . ...
...

airi1 · · · airir mir

aji1 · · · ajir mj

∣∣∣∣∣∣∣∣ .
Remark 6. If the determinants ∆I are nonzero, the systems (12) are exactly
determined. Denoting the solution of (12) by uI = (uI1, . . . , uIN) as before,
for any I we have

uCIi =
∆I\{i},i

∆I
, fj(uCI) =

∆I,j

∆I
, (18)

where CI = {1, . . . , N} \ I. Thus, in the case of admissible coefficients the
values of uI and of fj(uI) are nonnegative and bounded by a constant de-
pending only on κ, but not on the particular choice of coefficients. Moreover,
if j /∈ I, then uIj are bounded away from zero by a constant depending on
κ, but not on the coefficients. If i ∈ I, the same is true for fi(uI).

We want to geometrically interprete the positivity of ∆I and ∆I,j, involved
in Assumptions 2 and 3. To this end, consider the system of linear inequalities
in RN : {

fi ≥ 0 (i = 1, . . . , N),
ui ≥ 0 (i = 1, . . . , N).

(19)

Proposition 1. Suppose that ∆I 6= 0 for any I ⊂ {1, . . . , N}. Then ∆I > 0
and ∆I,j > 0 for any I ⊂ {1, . . . , N} and j /∈ I if and only if the solution
set of (19) is a polytope with vertices {uI : I ⊂ {1, . . . , N}} combinatorially
isomorphic to a cube.
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One corollary of Proposition 1 is that in the case of admissible coefficients
no vertex (and hence, no point whatsoever) of the polytope (19) satisfies any
of the the equations ui = 0 = fi. A strengthened version of this observation
stated in the following lemma plays a crucial role in our proof.

Lemma 1. There exists σ = σ(κ) such that if for some admissible coeffi-
cients, some index j, and some u = (u1, . . . , uN) ≥ 0 we have uj ≤ σ and
fj(u) ≤ σ, then

min
i
fi(u) ≤ −σ. (20)

Now we introduce a few auxiliary functions. Fix p ≥ 1 and set

g =
N∑
i=1

|fi|p,

v =

{
1
g

∑N
i=1 ui|fi|p if g 6= 0

whatever between mini ui and maxi ui if g = 0.

Observe that g and v are nonnegative on RN
+ and

g = 0⇔ fi = 0 (i = 1, ..., N)⇔ u = u∅, (21)

v = 0⇔ u = uI (I 6= ∅). (22)

Also note the identity

vg =
N∑
i=1

ui|fi|p (23)

and the inequality

min
i
ui ≤ v ≤ max

i
ui. (24)

Developing observation (22), the following lemma and its corollaries state
that v(u) is small only in the neighbourhood of the set {uI : I 6= ∅}. This
allows to use the function v to prove convergence of the form (13) and (9)–
(10).

Lemma 2. We have

lim
v(u)→0
u∈RN+

min
I 6=∅
|u− uI | = 0, (25)

where the limit is uniform with respect to admissible coefficients.
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Corollary 1. There exists σ > 0 such that for any ε > 0 there exists δ =
δ(ε, κ) > 0 such that if u ≥ 0 and v(u) < δ for some admissible coefficients,
then there exists I 6= ∅ such that∑

i∈I

ui +
∑
j /∈I

|fj(u)| < ε, (26)

fi(u) > σ (i ∈ I). (27)

Corollary 2. We have

lim
v(u)→0
u∈RN+

min
I 6=∅

∑
i∈I

ui +
∑
j /∈I

|fj|

 = 0, (28)

where the limit is uniform with respect to admissible coefficients.

As v vanishes only at the points uI (I 6= ∅), it follows from Remark 6 that
v = 0 implies fi > 0 for some i. The following corollary of Lemma 2 extends
this observation to the case of small v.

Corollary 3. There exist ε0 > 0 and σ > 0 depending on κ, but not on
admissible coefficients, such that if v(u) < ε0, there exists i such that fi(u) >
σ.

4. Proof of the theorems
4.1. Preliminaries. We prove Theorem 2, and Theorem 1 follows.

Assume that the theorem is not true and there exist a sequence {εn}, se-
quences of coefficients {An} ⊂ C1(Ω;MN(R)) and {mn} ⊂ C1(Ω;RN) satis-
fying Assumptions 1–3 with some κ > 0 and a sequence {(u1n, . . . , uNn)} ⊂ U
such that εn → 0 and∫

Ω

N∑
i=1

ũin(|fin|p + |∇fin|p) dx ≤ ε2
n

∫
Ω

N∑
i=1

|fin|p dx, (29)

where fin corresponds to An and mn.
We claim that without loss of generality the functions {un} can be assumed

to be smooth. Indeed, we always can assume that U is open in the relative
topology of the cone of nonnegative functions in W 1

p , otherwise we can re-
place it by a small enlargement of U without affecting the hypothesis of the
theorem. Then by Meyers-Serrin theorem we can approximate un by smooth
functions from U such that (29) holds with ε2

n replaced by 2ε2
n.
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Denote

ṽn(x) =

{
1

gn(x)

∑N
i=1 ũin(x)|fin(x)|p if gn(x) 6= 0

vn(x) if gn(x) = 0.

It is obvious that

uin(x) ≤ εn if and only if ũin(x) ≤ εn.

It follows from Lemma 2 and (14) that there exists δ > 0 independent of
n and x such that if vn(x) < δ, then for any i we have uin(x) < M and,
consequently, uin(x) = ũin(x) and vn(x) = ṽ(x). In particular, there is no
loss of generality in assuming that

vn(x) ≤ εn if and only if ṽn(x) ≤ εn.

Write (29) in the form∫
Ω

ṽngn dx+

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≤ ε2
n

∫
Ω

gn dx,

whence∫
[vn≤εn]

ṽngn dx+ εn

∫
[vn>εn]

gn dx+

∫
Ω

N∑
i=1

ũin|∇fin|p dx

≤ ε2
n

(∫
[vn≤εn]

gn dx+

∫
[vn>εn]

gn dx

)
.

Dropping a nonnegative term on the left-hand side and dividing both sides
by εn, we obtain

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≤ −(1− εn)
∫

[vn>εn]

gn dx+ εn

∫
[vn≤εn]

gn dx. (30)

Lemma 2 implies that if v is bounded, so is u, so there exists M > 0 such
that g ≤M whenever v < 1. Without loss of generality, εn < 1, so from (30)
we conclude

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≤Mεn|[vn ≤ εn]|. (31)
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Moreover, it follows from (30) that the integral∫
[vn>εn]

gn dx

is bounded uniformly with respect to n. Hence the sequence {gn} is bounded
in L1 and {un} is bounded in Lp. It remains to show that {un} satisfies (9)
and (10) for some nonempty I in order to obtain a contradiction.

Lemma 3. Given a > 0,

lim
n→∞
|[vn > εn] ∩ [gn > a]| = 0. (32)

Proof : We have:

|[vn > εn] ∩ [gn > a]| ≤ 1

a

∫
[vn>εn]∩[gn>a]

gn dx ≤ 1

a

∫
[vn>εn]

gn dx. (33)

Inequality (30) implies

−(1− εn)
∫

[vn>εn]

gn dx+ εn

∫
[vn≤εn]

gn dx ≥ 0,

so we can estimate the last integral in (33) and obtain

|[vn > εn] ∩ [gn > a]| ≤ εn
a(1− εn)

∫
[vn≤εn]

gn dx

≤ Mεn|[vn ≤ εn]|
a(1− εn)

→ 0 (n→∞)

and (32) is proved.

Lemma 4. Given a, there exists Ca such that for large n,

|[gn > a]| ≤ Ca|[vn ≤ εn]|. (34)

Proof : Using the estimate

|[vn > εn] ∩ [gn > a]| ≤ Mεn|[vn ≤ εn]|
a(1− εn)

obtained in the proof of Lemma 3, we get

|[gn > a]| ≤ |[vn ≤ εn]|+ |[vn > εn] ∩ [gn > a]|

≤
(

1 +
Mεn

a(1− εn)

)
|[vn ≤ εn]|,
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and the lemma follows.

4.2. Limit behaviour of the sequences. Now we are ready to consider
the dynamics of un in detail.

We choose and fix ε0 ∈ (0, 1) and σ > 0 satisfying Corollary 3 and Lemma 1.
As those numbers do not depend on admissible coefficients, they satisfy

Condition 1. If vn(x) < ε0, there exists i such that |fin(x)| > σ.

Condition 2. If fin(x) ≤ σ and uin(x) ≤ σ, then there exists j 6= i such that
fj ≤ −σ.

Given I ⊂ {1, . . . , N}, define

An(I) =

(⋂
i∈I

[fin > σ]

)
∩

⋂
j /∈I

[
|fjn| <

σ

2

] .

Lemma 5. We have
lim
n→∞

∑
I

|An(I)| = |Ω|. (35)

Proof : We prove the lemma by showing the inclusion

[vn ≤ εn] ∪ [gn ≤ a] ⊂
⋃
I

An(I) (36)

with suitable a and evoking Lemma 3.
Take a = (σ/2)p, then the inequality gn ≤ a clearly implies |fi| ≤ σ/2 for

any i, so

[gn ≤ a] ⊂
N⋂
i=1

[
|fin| ≤

σ

2

]
= An(∅). (37)

Now suppose that vn(x) ≤ εn for some x. Applying Corollary 1 with
ε = σ/2, we find I 6= ∅ such that

fin(x) > σ (i ∈ I)

and ∑
j /∈I

|fjn(x)| < σ

2

whenever εn < δ for some δ > 0 independent of n and x. Consequently,

x ∈ An(I)
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and we have the inclusion

[vn ≤ εn] ⊂
⋃
I 6=∅

An(I). (38)

Combining (37) and (38), we obtain (36).
By Lemma 3, the measure of the left-hand side of inclusion (36) converges

to |Ω|, and (35) follows.

We can assume that the limits

lim
k→∞

An(I)

exist. In view of Lemma 5 we face three logical possibilities:
(i) limn→∞An(I) = |Ω| for some I 6= ∅;
(ii) limn→∞An(∅) = |Ω|;
(iii) limn→∞An(Is) > 0 (s = 1, 2) with I1 6= I2.
We conclude the proof of Theorem 2 by examining the alternatives (i)–

(iii). It is fairly straightforward to demonstrate that (i) implies (9) and
(10). A more subtle analysis based on the coarea formula and the relative
isoperimetric inequality shows that (ii) and (iii) are in fact impossible.

Recall that the relative perimeter of a Lebesgue measurable set A of (lo-
cally) finite perimeter is defined as

P (A; Ω) = µA(Ω),

where µA is the total variation of the Gauss–Green measure of A (see [11]).
We need the following properties of the perimeters:

Lemma 6 ([11], Proposition 12.19 and Lemma 12.22). If A is a set of locally
finite perimeter in Rd, then

suppµA ⊂ ∂A;

if A and B are sets of (locally) finite perimeter in Rd, then A∪B is a set of
(locally) finite perimeter in Rd, and, for Ω ⊂ Rd open,

P (A ∪B; Ω) ≤ P (A; Ω) + P (B; Ω).

4.3. Convergence in case (i). Assume that (i) holds. We claim that (9)
and (10) are valid, i. e. for any ε > 0,

lim
k→∞

∣∣∣∣∣∣
∑
j∈I

uin +
∑
i/∈I

|fin| ≥ ε

∣∣∣∣∣∣ = 0. (39)
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By assumption, I 6= ∅, so for any x ∈ An(I) we have fin(x) > σ for at
least one i and thus gn(x) > σp. It follows from Lemma 3 that

lim
k→∞
|An(I) ∩ [vn > εn]| = 0

and consequently

lim
k→∞
|An(I) ∩ [vn ≤ εn]| = |Ω|. (40)

Take x ∈ An(I)∩ [vn ≤ εn]. By Corollary 1, there exists δ > 0 independent
of k and x such that for some Ik,x we have∑

j∈Ik,x

uin(x) +
∑
i/∈Ik,x

|fin(x)| < εn, (41)

fjn(x) > σ (j ∈ Ik,x), (42)

provided that vn(x) < δ, which holds without loss of generality. However,
(41) and (42) are only compatible with the definition of An(I) in the case
Ik,x = I. Thus,∑

j∈I

uin(x) +
∑
i/∈I

|fin(x)| < ε (x ∈ An(I) ∩ [vn ≤ εn]),

or, equivalently,

An(I) ∩ [vn ≤ εn] ⊂

∑
j∈I

uin +
∑
i/∈I

|fin| < ε

 .
Consequently,∣∣∣∣∣∣

∑
j∈I

uin +
∑
i/∈I

|fin| ≥ ε

∣∣∣∣∣∣ ≤ |Ω| − |An(I) ∩ [vn ≤ εn]|

and by (40), the limit (39) holds.

4.4. Impossibility of case (ii). We argue by contradiction that case (ii) is
impossible. Thus, we assume that

lim
n→∞

∣∣∣∣∣
N⋂
i=1

[
|fin| ≤

σ

2

]∣∣∣∣∣ = |Ω|. (43)
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Given t ∈ (σ/2, σ) define the set

An(t) =
N⋃
i=1

[|fin| > t].

For fixed n, An(t) decreases with respect to t. We need to establish several
properties of these sets.

Lemma 7. For fixed t,
lim
n→∞
|An(t)| = 0.

Proof : We have:

An(t) ⊂
N⋃
i=1

[
|fin| >

σ

2

]
= Ω \

N⋂
i=1

[
|fin| ≤

σ

2

]
,

so

|An(t)| ≤ |Ω| −

∣∣∣∣∣
N⋂
i=1

[|fin| ≤ σ]

∣∣∣∣∣→ 0 (n→∞)

according to (43).

Lemma 8. The following inclusion holds:

∂ΩAn(t) ⊂
N⋂
i=1

[uin > εn]. (44)

Proof : We take an x ∈ Ω such that ujn(x) ≤ εn for some j and show that x
is an interior point of An(t). There are two possibilities: either fjn(x) > t or
fjn(x) ≤ t. In the former case we see immediately that x is an interior point
of An(t). In the latter case we have fjn(x) ≤ σ, and applying Condition 2
we find fin such that fin(x) ≤ −σ < −t. But then |fin(x)| > t, and again x
is an interior point of An(t).

Lemma 9. If n is sufficiently large, the following inclusion holds:

An(t) ⊃ [vn ≤ εn]. (45)

Proof : By Condition 1, for large n we have

[vn ≤ εn] ⊂
N⋃
i=1

[|fin| > σ] ⊂ An(t).
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It follows from Lemma 7 that we can write the isoperimetric inequality

P (An(t); Ω) ≥ cΩ|An(t)|
d−1
d . (46)

Estimate the left-hand side of (31):

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥ 1

εn

N∑
i=1

∫
[gn>(σ2 )

p
]
ũin|∇fin|p dx

≥ 1

εn
∣∣[gn > (σ2)p]∣∣p−1

N∑
i=1

(∫
[gn>(σ2 )

p
]
ũ

1/p
in |∇fin| dx

)p

≥ 1

εnNp−1
∣∣[gn > (σ2)p]∣∣p−1

(
N∑
i=1

∫
[gn>(σ2 )

p
]
ũ

1/p
in |∇fin| dx

)p

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(
N∑
i=1

∫
[gn>(σ2 )

p
]∩[uin>εn]

|∇fin| dx

)p

.

Apply the coarea formula [11, Theorem 13.1, formula (13.10)] and Lemma 6:

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

×

(
N∑
i=1

∫ ∞
0

P
(

[fin > t];
[
gn >

(σ
2

)p]
∩ [uin > εn]

)
dt

+

∫ 0

−∞
P
(

[fin < t];
[
gn >

(σ
2

)p]
∩ [uin > εn]

)
dt

)p

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(
N∑
i=1

∫ σ

σ/2

(
P
(

[fin > t];
[
gn >

(σ
2

)p]
∩ [uin > εn]

)
+ P

(
[fin < −t];

[
gn >

(σ
2

)p]
∩ [uin > εn]

))
dt

)p

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1
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×

(
N∑
i=1

∫ σ

σ/2

P
(

[|fin| > t];
[
gn >

(σ
2

)p]
∩ [uin > εn]

)
dt

)p

=
1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

×

(
N∑
i=1

∫ σ

σ/2

µ[|fin|>t]

([
gn >

(σ
2

)p]
∩ [uin > εn]

)
dt

)p

Observe that for t ∈ (σ/2, σ) by Lemma 6 we have

suppµ[|fin|>t] ⊂ ∂[|fin| > t] ⊂ [|fin| = t] ⊂
[
gn >

(σ
2

)p]
,

so we can proceed as follows:

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

×

(
N∑
i=1

∫ σ

σ/2

µ[|fin|>t]([uin > εn]) dt

)p

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(
N∑
i=1

∫ σ

σ/2

µ[|fin|>t]

(
N⋂
i=1

[uin > εn]

)
dt

)p

=
1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(
N∑
i=1

∫ σ

σ/2

P

(
[|fin| > t];

(
N⋂
i=1

[uin > εn]

))
dt

)p

≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(∫ σ

σ/2

P

(
An(t);

(
N⋂
i=1

[uin > εn]

))
dt

)p

.

Now (44) implies that

suppµAn(t) ∩ Ω ⊂
N⋂
i=1

[uin > εn],
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so we can write

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥ 1

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(∫ σ

σ/2

P (An(t); Ω) dt

)p
.

Employing the isoperimetric inequality (46) to get

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥ cpΩ

Np−1
∣∣[gn > (σ2)p]∣∣p−1

(∫ σ

σ/2

|An(t)|
d−1
d dt

)p
.

Estimate |An(t)| using the inclusion (45) and Lemma 4:

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥ cpΩ(σ/2)p|[vn ≤ εn]|p(1−1/d)

C(σ/2)pNp−1|[vn ≤ εn]|p−1

=
cpΩ(σ/2)p

C(σ/2)pNp−1
|[vn ≤ εn]|1−

p
d .

Combining obtained estimate with (31), we get:

cpΩ(σ/2)p

C(σ/2)pNp−1
|[vn ≤ εn]|1−

p
d ≤Mεn|[vn ≤ εn]|,

whence
cpΩ(σ/2)p

C(σ/2)pNp−1
≤Mεn|[vn ≤ εn]|

p
d → 0 (n→∞),

contrary to the fact that the left-hand side is a positive constant independent
of n.

This contradiction means that at least assumption (43) is impossible.

4.5. Impossibility of case (iii). We complete the proof of Theorem 1 by
demonstrating that the case (iii) is also impossible. We argue by contradic-
tion. We assume that there exist I1 6= I2 such that

|An(Is)| ≥ µs > 0 (s = 1, 2). (47)

Without loss of generality, 1 ∈ I1 \ I2.
Given t ∈ (σ/2, σ), define the set

An(t) = [f1n > t] ∪

(
N⋃
i=1

[fin < −t]

)
. (48)

If n is fixed, the sets An(t) decrease with respect to t.
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Lemma 10. The relative perimeter of An(t) can be estimated as

P (An(t); Ω) ≥ p0, (49)

where p0 > 0 is independent of t and n.

Proof : First of all, observe the inclusions

An(I1) ⊂ An(t) ⊂ Ω \ An(I2). (50)

Indeed, if x ∈ An(I1), then f1n(x) > σ, so x belongs to the first set in the
right-hand side of (48), and the first inclusion in (50) holds. On the other
hand, if x ∈ An(t), then either f1n(x) > t > σ/2 or fin(x) < −t < −σ/2 for
some i. As 1 /∈ I2, it is clear that in both cases x /∈ An(I2), so the second
inclusion in (50) is also valid.

The isoperimetric inequality for An(t) reads

P (An(t); Ω) ≥ cΩ

(
min(|An(t)|, |Ω \ An(t)|)

)d−1
d

Estimating by means of (50), we have:

P (An(t); Ω) ≥ cΩ(min(µ1, 1− µ2))
d−1
d

and (49) follows.

Lemma 11. The following inclusions hold:

∂ΩAn(t) ∩ ∂[f1n > t] ⊂ [u1n > εn] (51)

∂ΩAn(t) ∩ ∂[fin < −t] ⊂ [uin > εn] (52)

Proof : If u1n(x) ≤ εn and x ∈ ∂[f1n > t], then f1n(x) = t ≤ σ. If uin(x) ≤ εn
and x ∈ ∂[fin < −t], then fin(x) = −t ≤ σ. In both cases by Condition 2
there exists j such that fjn(x) ≤ −σ < −t, so x belongs to the interior of
An(t) and the lemma follows.

Estimate the left-hand side of (31):

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥
N∑
i=1

∫
[uin>εn]

|∇fin|p dx

≥
N∑
i=1

1

|[uin > εn]|p−1

(∫
[uin>εn]

|∇fin| dx
)p



POINCARÉ-BECKNER INEQUALITY 19

≥ 1

Np−1|Ω|p−1

(
N∑
i=1

∫
[uin>εn]

|∇fin| dx

)p

.

Now we apply the coarea formula:

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx

≥ 1

Np−1|Ω|p−1

( N∑
i=1

∫ ∞
0

P ([fin > t]; [uin > εn]) dt

+
N∑
i=1

∫ 0

−∞
P ([fin < t]; [uin > εn]) dt

)p
≥ 1

Np−1|Ω|p−1

×

(∫ σ

σ
2

(
P ([f1n > t]; [u1n > εn]) +

N∑
i=1

P ([fin < −t]; [uin > εn])

)
dt

)p

=
1

Np−1|Ω|p−1

(∫ σ

σ
2

(
µ[f1n>t]([u1n > εn]) +

N∑
i=1

µ[fin<−t]([uin > εn])

)
dt

)p

.

Using (51) and (52), we obtain

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥ 1

Np−1|Ω|p−1

(∫ σ

σ
2

(
µ[f1n>t](∂ΩAn(t) ∩ ∂[f1n > t])

+
N∑
i=1

µ[fin<−t](∂ΩAn(t) ∩ ∂[fin < −t])
)

dt

)p
.

Using the inclusions

suppµ[f1n>t] ⊂ ∂[f1n > t],

suppµ[fin<t] ⊂ ∂[fin < −t],
suppµAn(t) ∩ Ω ⊂ ∂ΩAn(t),

we get
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1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx

≥ 1

Np−1|Ω|p−1

(∫ σ

σ
2

(
µ[f1n>t](∂ΩAn(t)) +

N∑
i=1

µ[fin<−t](∂ΩAn(t))

)
dt

)p

=
1

Np−1|Ω|p−1

(∫ σ

σ
2

(
P ([f1n > t]; ∂ΩAn(t))

+
N∑
i=1

P ([fin < −t]; ∂ΩAn(t))

)
dt

)p
≥ 1

Np−1|Ω|p−1

(∫ σ

σ
2

P (An(t); ∂ΩAn(t))dt

)p

=
1

Np−1|Ω|p−1

(∫ σ

σ
2

P (An(t); Ω)dt

)p

.

Estimating the relative perimeter by Lemma 10, we conclude that

1

εn

∫
Ω

N∑
i=1

ũin|∇fin|p dx ≥ 1

Np−1|Ω|p−1

(σp0

2

)p
.

Now from (31) we get

1

Np−1|Ω|p−1

(σp0

2

)p
≤Mεn|[vn ≤ εn]|,

where the left-hand side is a positive constant, and the right-hand side goes
to 0 as n→∞, a contradiction.

Appendix
Proof of Proposition 1: Denote the solution set of (19) by P .

Step 1. Basis of the induction. We use induction over N . A direct verifi-
cation shows that the statement is true for N = 1.

Step 2. Positivity of the determinants ∆I implies that P is bounded. It is
well-known that the polyhedron P is bounded if and only if the homogeneous
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system 

a11u1 + · · ·+ a1NuN ≤ 0,
. . .

aN1u1 + · · ·+ aNNuN ≤ 0,
u1 ≥ 0,

. . .
uN ≥ 0,

(53)

admits only the trivial solution. Assume that contrary to the claim, sys-
tem (53) has a nontrivial solution. As the system has rank N , it has a
nontrivial solution b = (b1, . . . , bN) satisfying exactly N − 1 independent
inequalities with equality. If

bN = 0 = aN1b1 + · · ·+ aNNbN ,

then (b1, . . . , bN−1) is a nontrivial solution of

a11u1 + · · ·+ a1,N−1uN−1 ≤ 0,
. . .

aN−1,1u1 + · · ·+ aN−1,N−1uN−1 ≤ 0,
u1 ≥ 0,

. . .
uN−1 ≥ 0,

,

which contradicts the induction assumption. More generally, for no i can we
have

bi = 0 = ai1b1 + · · ·+ aiNbN .

Thus, without loss of generality we can assume that br+1 = · · · = bN = 0,
br = 1, while b1, . . . , br−1 are positive, solve a11u1 + · · ·+ a1,r−1ur−1 = −a1r,

. . .
ar−1,1u1 + · · ·+ ar−1,r−1uN−1 = −ar−1,r,

(54)

and satisfy

ar1b1 + · · ·+ ar,r−1bN−1 + arr < 0. (55)

Using Cramer’s rule to solve (54), we see that

br =
∆i

∆r
(i = 1, . . . , r − 1), (56)
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where ∆i is the r, i-cofactor of the matrixa11 . . . a1r
... . . . ...
ar1 . . . arr

 .
for i = 1, . . . , r. Plugging the representation (56) into (55) and applying the
Laplace formula, we obtain ∣∣∣∣∣∣

a11 . . . a1r
... . . . ...
ar1 . . . arr

∣∣∣∣∣∣∣∣∣∣∣∣
a11 . . . a1,r−1
... . . . ...

ar−1,1 . . . ar−1,r−1

∣∣∣∣∣∣
< 0,

which contradicts the positivity of all ∆I . Thus, P is bounded.
Step 3. Positivity of the determinants implies that the set of vertices of

P is {uI : I ⊂ {1, . . . , N}}. According to Remark 6, each uI solves (19).
Moreover, uI satisfies with equality the subsystem{

fj ≥ 0 (j /∈ I),
ui ≥ 0 (i ∈ I)

of (19) of rank N . Consequently, each uI is a vertex of P . We must prove
that P has no other vertices.

In the hyperplane uN = 0 consider the polyhedron P ′ being the solution
set of {

f̃i ≥ 0 (i = 1, . . . , N − 1),
ui ≥ 0 (i = 1, . . . , N − 1),

(57)

where f̃i is the restriction of fi to the hyperplane. By the induction assump-
tion, P ′ is an (N − 1)-dimensional polytope with vertices {uI : I 3 N}. We

claim that it is a facet of P . Indeed, let P̃ be the face of P on the hyperplane
{uN = 0}. On this hyperplane P̃ is given by{

f̃i ≥ 0 (i = 1, . . . , N),
ui ≥ 0 (i = 1, . . . , N − 1),

, (58)

and the inclusion P̃ ⊂ P is immediate. On the other hand, by the induction
assumption, any vertex of P ′ is one of the points uI lying in the hyperplane,
so it is a vertex of P and also of P̃ . Consequently, P ′ ⊂ P̃ . Thus, we have
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P ′ = P̃ , and P ′ is an (N − 1)-dimensional face of P . The vertex u∅ of P
does not belong to the hyperplane {uN = 0}, so P has dimension N , and P ′

is its facet.
Likewise, the interection of P with any hyperplane ui = 0 is a facet of P

having the vertices {uI : I 3 i}.
Let v = (v1, . . . , vN) be a vertex of P . Then v satisfies with equalities a

subsystem of (19) of rank N consisting of N inequalities. If this subsystem
is fi ≥ 0 (i = 1, . . . , N), then v = u∅. Otherwise, we have vi = 0 for some
i, so v lies in the hyperplane ui = 0 and by the above, coincides with one of
uI . Thus, the set of vertices of P is exactly {uI : I ⊂ {1, . . . , N}}.

Step 4. Positivity of the determinants implies that the facets of P are the
intersections of P with the hyperplanes ui = 0 and fi = 0, i = 1, . . . , N . As P
is given by (19), each facet of P is the intersection of P with a hyperplane of
the form ui = 0 or fi = 0. Conversely, each intersection of this form is a facet
of P . Indeed, we have already checked this in the case of the hyperplanes
ui = 0. Now let P ′ = P ∩ {f1 = 0}. The face P ′ contains, among others, the
vertices uI , where I 63 1 and I 3 N . By the induction assumption, these are
precisely the vertices of an (N − 2)-dimensional facet of P ′′ = P ∩{uN = 0}.
Thus, dimP ′ ≥ N − 2. On the other hand, P ′ contains u∅, which is affinely
independent of {uI : I 3 N}, so actually dimP ′ = N − 1, as claimed.

Step 5. Positivity of the determinants implies that P is combinatorially
isomorphic to a cube. Indeed, considering the cube as the solution set of{

1− ui ≥ 0 (i = 1, . . . , N),
ui ≥ 0 (i = 1, . . . , N),

,

we see that the mapping uI 7→ (α1, . . . , αN), where

αi =

{
0, if i ∈ I,
1 otherwise,

preserves facets.
Step 6. The geometric properties of P imply the positivity of the determi-

nants. Conversely, assume that solution set of (19) is a polytope with vertices
{uI : I ⊂ {1, . . . , N}} combinatorially isomorphic to a cube. Observe that
given i, the set of vertices of the facet P ∩ {ui = 0} is {uI : I 3 i}. Conse-
quently, if i ∈ I, the vertex uCI does not belong to this facet, so uCIi > 0
whenever i ∈ I. Likewise, fj(uCI) > 0 whenever j /∈ I. Now it follows
from (18) that all the determinants ∆I and ∆I,j have the same sign. As the
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facet P ′ = P ∩{uN = 0} enjoys analogous geometric properties, by induction
we see that the determinants are actually positive.

Proof of Lemma 1: We fix an admissible set of coefficients and j and prove
that

sup{min
i
fi(u) : u = (u1, . . . , uN) ≥ 0, uj ≤ σ, fj(u) ≤ σ} ≤ −σ (59)

with some σ independent of the coefficients. For definiteness, assume that
j = N .

As above, denote the polytope given by (19) by P .
It follows from Remark 6 that there exists c > 0 independent of the coeffi-

cients such that P has no vertices in the open slab {0 < uN < 2c}. In other
words, all the vertices of the polytope P2c := P ∩ {0 ≤ uN ≤ 2c} lie on the
hyperplanes uN = 0 and uN = 2c. It is easy to check that any point of P2c

belonging to the hyperplane uN = c is the midpoint of a line segment with
the endpoints on the facets P ′2c = P2c ∩ {uN = 0} and P ′′2c = P2c ∩ {uN = 2c}
of P , the former being also a facet of P .

By Remark 6, there exists c′ > 0 independent of the coefficients such that
fN ≥ 2c′ on each vertex of the facet P ∩ {uN = 0} = P ′2c, so fN ≥ 2c′ on
P ′2c. Also fN ≥ 0 on P ′′2c ⊂ P . Consequently, fN ≥ c′ on P2c ∩ {uN = c} =
P ∩ {uN = c}.

By the above, all the vertices of the polytope Pc = P ∩{0 ≤ uN ≤ c} lie in
the halfspace fN ≥ c′, therefore so does the polytope itself. In other words,
the polytope Pc is the solution set of fi ≥ 0 (i = 1, . . . , N − 1),

ui ≥ 0 (i = 1, . . . , N),
uN ≤ c,

and this system implies the inequality fN−c′ ≥ 0. By the Minkowski–Farkas
theorem, there exist nonnegative αi, βi, γ, and δ such that

fN − c′ =
N−1∑
i=1

αifi +
N∑
i=1

βiui + γ(c− uN) + δ. (60)
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Generally speaking, representation (60) is not unique, but we claim that
possible values of αi are uniformly bounded with respect to admissible coef-
ficients. Indeed, plugging the zero vertex into (60), we get

fN(0)− c′ =
N−1∑
i=1

αif̃i(0) + γc+ δ,

whence
N−1∑
i=1

αifi(0) ≤ fN(0)− c′.

By Remark 6, the right-hand side is bounded, and the values of fi(0) in the
left-hand side are bounded away from 0. Consequently, there exists C > 0
independent of admissible coefficients such that

αi ≤ C

for any possible choice of αi, as claimed.
Now write (60) in the form

N−1∑
i=1

αifi = −c
′

2
+

(
fN −

c′

2

)
−

N∑
i=1

βiui − γ(c− un)− δ

and observe that whenever uN ≤ c and fN ≤ c′/2, we have

N−1∑
i=1

αifi ≤ −
c′

2
,

whence ∑
fi<0

fi ≤ −
c′

2C
.

There are at most N summands in the left-hand side, so for any u satisfying
said requirements there exists fi such that fi(u) ≤ −c′/(2CN). Thus, (59)
is valid with σ = min{c, c′/2, c′/(2CN)}, which is clearly independent of
particular choice of admissible coefficients.

The following lemma is the first step towards proving Lemma 2. It ensures
that v does not vanish at infinity.
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Lemma 12.

lim
|u|→∞
u∈RN+

v =∞ (61)

uniformly with respect to admissible coefficients.

Proof : Assume the contrary: there exist C > 0, a sequence of admissible
sets of coefficients {(An,mn)} and a sequence {un} ⊂ RN such that un ≥ 0,
un →∞, and 0 ≤ vn(un) ≤ C, where vn is corresponding to the coefficients
(An,mn). By fin denote the affine functions corresponding to (An,mn), and
by f ′in, associated linear functionals.

By Assumption 1, the sequence {(An,mn)} is bounded. Without loss of
generality, (An,mn)→ (A∗,m∗), the limiting coefficients also being admissi-
ble. Let fi∗ be the corresponding affine functions, and f ′i∗ be the associated
linear functions.

Without loss of generality,

uin = biτn + o(τn), (62)

where bi ≥ 0 is finite, b = (b1, . . . , bN) 6= 0, τn →∞. We have:

fin(un) = min + f ′in(un) = min + f ′in(b)τn + o(τn) = f ′in(b)τn + o(τn)

As f ′in → f ′i∗ and the sequences {min} are bounded, we obtain

fin(un) = f ′i∗(b)τn + o(τn). (63)

Plugging representations (62) and (63) into the right-hand side of (23), we
obtain:

N∑
i=1

uin|fin(un)|p =

(
N∑
i=1

bi|f ′i∗(b)|p
)
τ p+1
n + o(τ p+1

n ).

Here the leading coefficient does not vanish. If it did, we would have bi|f ′i∗| =
0 for any i, so b would solve the linear system{

f ′i∗(b) = 0 (i ∈ I),
bi = 0 (i /∈ I)

for some I ⊂ {1, . . . , N}. But due to Assumption 2 this system only has the
trivial solution.

Thus, the right-hand side of (23) grows as τ p+1
n . On the other hand, a trivial

verification shows that the left-hand side of (23) is O(τ pn), a contradiction.
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Proof of Lemma 2: Suppose, contrary to our claim, that there exist ε > 0,
a sequence {(An,mn)} of admissible coefficients, and a sequence {un =
(u1n, . . . , uNn)} ⊂ R+ such that

vn(un)→ 0

and

|un − uIn| ≥ ε (I 6= ∅), (64)

where vn and uIn corresponds to the coefficients (An,m). Due to Assump-
tions 1–3 (see also Remark 6) there is no loss of generality in assuming that
(An,m) → (A∗,m∗), where the limit is also admissible, and uIn → uI∗ for
each I 6= ∅, where the limit satisfies (12). Thus, if v∗ corresponds to the
limiting coefficients, we have v∗(u) = 0 if and only if u = uI∗ for some I 6= ∅.

Due to Lemma 12, {un} is bounded, and we can assume that un → u∗ =
(u1∗, . . . , uN∗) ∈ RN

+ . Passing to the limit in (64), we get

|u∗ − uI∗| ≥ ε (I 6= ∅). (65)

By (24),

min
i
ui∗ = lim

n→∞
min
i
uin ≤ lim

n→∞
vn(un) = 0,

so u∗ 6= u∅ (Remark 6). Thus, g∗(u∗) 6= 0 and we can pass to the limit:

v∗(u∗) = lim
n→∞

vn(un) = 0.

This and the fact that u∗ is nonnegative implies u∗ = uI∗ for some I, which
contradicts (65).

Proof of Corollary 1: Given I 6= ∅, consider the norm

|u|I =
∑
i∈I

|ui|+
∑
j /∈I

|f ′j(u)|,

which implicitly depends on the choice admissible coefficients. Observe that

C1|u| ≤ |u|I ≤ C2|u|, (66)
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where C1 and C2 depend on κ but not on admissible coefficients. Indeed,
letting for simplicity I = {1, . . . , r}, we have |u|I = |AIu|, where

AI =



1
. . . 0

1
−ar+1,r+1 . . . −arN

0
... . . . ...

−aN,r+1 . . . −aNN


and it follows from Assumptions 1 and 2 that the norms ‖AI‖ and ‖A−1

I ‖ are
bounded uniformly with respect to admissible coefficients.

By Assumption 1, there exits C depending on κ such that for any admissible
coefficients ‖f ′i‖ ≤ C for any i, where ‖ · ‖ is the norm of a linear functional
on RN .

Take ε > 0. By Lemma 2 there exists δ > 0 independent of admissible
coefficients such that whenever v(u) < δ, we have

min
I 6=∅
|u− uI | <

ε

C + C2
.

Take I 6= ∅ such that

|u− uI | <
ε

C + C2
,

then (26) holds.
By Remark 6, for any i ∈ I we have fi(uI) ≥ c with c independent of

admissible coefficients, so

fi(u) = fi(uI) + f ′i(u− uI) ≥ c− ε.
Without loss of generality, ε < c/2, so (27) holds with σ = c/2.
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[10] M. Liero, A. Mielke, and G. Savaré. Optimal transport in competition with reaction: the
Hellinger-Kantorovich distance and geodesic curves. arXiv preprint arXiv:1509.00068, 2015.

[11] F. Maggi. Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to
Geometric Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 2012.

Stanislav Kondratyev
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address: kondratyev@mat.uc.pt
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