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Universidade de Coimbra
Preprint Number 16–12

SINGULARLY PERTURBED FULLY NONLINEAR
PARABOLIC PROBLEMS AND THEIR ASYMPTOTIC

FREE BOUNDARIES

GLEYDSON C. RICARTE, RAFAYEL TEYMURAZYAN AND JOSÉ MIGUEL URBANO
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1. Introduction
In this paper we study the following singular perturbation problem for a

fully nonlinear parabolic equation{
F (x, t,D2uε)− ∂tuε = βε(uε) + fε in ΩT

uε = ϕ on ∂pΩT ,
(Eε)

where F (x, t,M) is a fully nonlinear uniformly elliptic operator, the Dirichlet
data ϕ is nonnegative and the singularly perturbed potential βε(·) is a suit-
able approximation of a multiple of the Dirac mass δ0. The problem appears,
for example, in combustion theory and describes the propagation of curved,
premixed deflagration flames. It is derived (cf. [3]) in the framework of the
theory of equidiffusional premixed flames, analysed in the relevant limit of
right activation energy for Lewis number equal to one, and the unknown uε

represents the normalised temperature of the mixture.
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The study of the limit as ε→ 0 in (Eε) (the high activation energy analysis)
leads to a free boundary problem, and often provides an alternative way of
approaching questions related to the existence and the regularity of solutions
and the free boundary. For example, the one-phase elliptic problem{

∆u = 0 in {u > 0}
|∇u| = C on ∂{u > 0},

(1.1)

studied by Alt and Caffarelli in [1], can be approached by taking ε→ 0 in

∆uε = βε(uε).

In [1], it is shown that any minimiser u of the problem∫
Ω

|∇v|2 + χ{v>0} → min

is Lipschitz continuous and solves (1.1) with a nonnegative Dirichlet bound-
ary condition. Alt and Caffarelli also proved that the free boundary condition
holds in a weak sense, and that the free boundary ∂{u > 0} is a C1,α surface
except at a set of zero surface measure.

The idea of passing to the limit in a singular perturbation problem had
been proposed in [21] but would only be treated rigorously in [2], in the one-
phase case (that is, with u ≥ 0), for general linear operators. The results
in [2] include the Lipschitz continuity of the limit, the fact that it solves
the free boundary problem in a weak sense and some geometric measure
properties of particular level sets. The topic would become the object of
intense research and we highlight the contributions of [5, 6, 9, 12, 14, 15],
where, in particular, the two-phase problem (allowing u to change sign) was
treated. The parabolic case

∆uε − ∂tuε = βε(uε)

was studied in [7] for one phase and in [4, 5, 6] for the two-phase problem.
This alternative approach opens an avenue leading also to non-variational

free boundary problems. Recently, the singular perturbation problem

F (x,D2uε) = βε(uε),

which is the elliptic counterpart of (Eε), was studied in [16]; the authors
obtain Lipschitz estimates and study the limiting free boundary problem.
Our aim in this paper is to extend these results to the parabolic case. We
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consider a family of solutions of problem (Eε) and show that, under suitable
assumptions, the limit function u is a solution to the free boundary problem

{
F (x, t,D2u)− ∂tu = f in {u > 0}

u = ϕ on ∂pΩT
(1.2)

where f = lim fε. We do not impose a free boundary condition and thus the
limiting problem is not understood as overdetermined.

Unlike the elliptic case (see, for example, [16]), one can not apply the
Harnack inequality in order to prove the (uniform) regularity of solutions.
The reason is that we can only compare functions on parabolic boundaries,
not on the top of a cylinder; we are thus unable to pass from one level to
another. We overcome this difficulty by using a Bernstein type argument
(see the proof of Proposition 4.1). For the same reason, the study of the free
boundary of the limiting problem requires a totally different approach: in
the elliptic case, using a covering argument, one can prove the finiteness of
the (n − 1)-dimensional Hausdorff measure of the free boundary (see [16]).
In the parabolic case, what we are able to prove is that, at each time level,
the n-dimensional Lebesgue measure of the free boundary is zero because
it is porous. We prove this by obtaining a non-degeneracy result and by
controlling the growth rate of the solution near the free boundary.

The paper is organised as follows. We first prove the existence of solutions
to (Eε) using Perron’s method. We also show in Section 3 that solutions
are uniformly bounded (Theorem 3.2). In Section 4, using a Bernstein type
argument, we obtain a uniform gradient estimate for solutions (Proposition
4.1), which implies the uniform Hölder continuity in time with exponent 1/2
(Proposition 4.2), just as in the classical case of the heat equation. In Section
5, we pass to the limit in (Eε) as ε → 0. Invoking stability arguments,
we show that the limit function is a solution of a free boundary problem
(Theorem 5.1). The regularity of the free boundary is then studied in Section
6: we first prove the non-degeneracy of the solution of the limiting free
boundary problem (Lemma 6.1) and next establish the growth rate of the
solution near the free boundary (Lemma 6.3). These two results lead to the
porosity of the free boundary at each time level (Theorem 6.1).
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2. Mathematical set-up
Given a bounded domain Ω ⊂ Rn, with a smooth boundary ∂Ω, we define,

for T > 0, ΩT = Ω × (0, T ], its lateral boundary Σ = ∂Ω × (0, T ) and its
parabolic boundary ∂pΩT = Σ ∪ (Ω× {0}).

An operator F : ΩT × R× Sym(n) → R is uniformly elliptic if there exist
two positive constants λ ≤ Λ (the ellipticity constants) such that, for any
M ∈ Sym(n) and (x, t) ∈ ΩT ,

λ‖P‖ ≤ F (x, t,M + P )− F (x, t,M) ≤ Λ‖P‖, (2.1)

for every non-negative definite symmetric matrix P . Here, Sym(n) is the
space of real n× n symmetric matrices and ‖P‖ equals the maximum eigen-
value of P .

We let P−λ,Λ and P+
λ,Λ denote the minimal and maximal Pucci extremal

operators corresponding to λ,Λ, that is, for M ∈ Sym(n),

P−λ,Λ(M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei and P+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei,

where {ei = ei(M), 1 ≤ i ≤ n} is the set of eigenvalues of M . We recall also
that

P−λ,Λ(M) = inf
A∈Aλ,Λ

tr(AM) and P+
λ,Λ(M) = sup

A∈Aλ,Λ
tr(AM),

where Aλ,Λ =
{
A ∈ Sym(n) : λ|ξ|2 ≤ Aijξiξj ≤ Λ|ξ|2, ∀ ξ ∈ Rn

}
. Note that

uniform ellipticity implies that, for A,B ∈ Sym(n),

P−λ
n ,Λ

(A−B) ≤ F (x, t, A)− F (x, t, B) ≤ P+
λ
n ,Λ

(A−B). (2.2)

Any operator F which satisfies condition (2.1) will be referred to as a (λ,Λ)-
elliptic operator.

We now define, following [10, 18], the notion of viscosity solution for a fully
nonlinear parabolic equation.

Definition 2.1. A function u ∈ C(ΩT ) is a viscosity sub-solution (resp.
super-solution) of

F (x, t,D2u)− ∂tu = g(x, t, u) in ΩT

if, whenever φ ∈ C2(ΩT ) and u − φ has a local maximum (resp. minimum)
at (x0, t0) ∈ ΩT , there holds

F (x0, t0, D
2φ(x0, t0))− ∂tφ(x0, t0) ≥ g(x0, t0, φ(x0, t0)). (resp. ≤)
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A function u is a viscosity solution if it is both a viscosity sub-solution and
a viscosity super-solution.

We also define the class of functions, that will be useful in the sequel,

S(λ,Λ, f) := S(λ,Λ, f) ∩ S(λ,Λ, f).

where

S(λ,Λ, f) :=
{
u ∈ C(ΩT ) : P−(D2u)− ∂tu ≤ f in ΩT

}
S(λ,Λ, f) :=

{
u ∈ C(ΩT ) : P+(D2u)− ∂tu ≥ f in ΩT

}
,

the inequalities taken in the viscosity sense.

We need to clarify what is a Lipschitz function defined in a space-time
domain.

Definition 2.2. Let D ⊂ Rn × R. We say that v ∈ Liploc(1, 1/2)(D) if, for
every compact K b D, there exists a constant C = C(K) such that

|v(x, t)− v(y, s)| ≤ C
(
|x− y|+ |t− s|

1
2

)
,

for every (x, t), (y, s) ∈ K. If the constant C does not depend on the set K
we say v ∈ Lip(1, 1/2)(D).

We also define the Lip(1, 1/2)(D) seminorm in D

[v]Lip(1,1/2)(D) := sup
(x,t),(y,s)∈D

|v(x, t)− v(y, s)|
|x− y|+ |t− s|1/2

and the Lip(1, 1/2)(D) norm in D

‖v‖Lip(1,1/2)(D) := ‖v‖L∞(D) + [v]Lip(1,1/2)(D).

For future reference and further clarity, we gather next the set of assump-
tions concerning the data in (Eε).

Assumptions on the data for (Eε).

(A1): F = F (x, t,M) is uniformly elliptic, concave and of class C1,α in
M and of class C1,α

loc in (x, t), for some α > 0, and F (·, ·, 0) = 0.
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(A2): The singular reaction term βε : R+ → R+ satisfies

0 ≤ βε(s) ≤
1

ε
χ(0,ε)(s), ∀ s ∈ R+.

For example, it can be built as an approximation of unity

βε(s) :=
1

ε
β
(s
ε

)
,

where β is a nonnegative smooth real function with supp β = [0, 1],
such that

‖β‖∞ ≤ 1 and

∫
R
β(s) ds <∞.

Such a sequence of potentials converges, in the distributional sense,
to
∫
β times the Dirac measure δ0.

(A3): fε(x, t) ∈ C1,α(ΩT ), is non-increasing in t and satisfies

0 < c0 ≤ fε(x, t) ≤ c1 <∞ in ΩT

and

‖∇fε‖∞ ≤ C.

(A4): The Dirichlet data 0 ≤ ϕ(x, t) ∈ C1,α(∂pΩT ), is non-decreasing
in t and satisfies ϕ(x, 0) = 0.

Finally, we introduce some further notation.

Notation. For x0 ∈ Rn, t0 ∈ R and τ > 0, we denote

Bτ(x0) := {x ∈ Rn : |x− x0| < τ} ,
Qτ(x0, t0) := Bτ(x0)× (t0 − τ 2, t0 + τ 2),

Q−τ (x0, t0) := Bτ(x0)× (t0 − τ 2, t0],

and, for a set K ⊂ Rn+1 and τ > 0,

Nτ(K) :=
⋃

(x0,t0)∈K

Qτ(x0, t0) and N−τ (K) :=
⋃

(x0,t0)∈K

Q−τ (x0, t0).
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3. Existence of viscosity solutions
Our first goal is to show that (Eε) has at least one viscosity solution.

Because of the lack of monotonicity of equation (Eε) with respect to the
variable u, the classical Perron’s method can not be applied directly. The
following result is a suitable adaptation, stated in a more general form, since
we feel it may be of independent interest.

Theorem 3.1. Let F satisfy (A1), g ∈ C0,1(R) ∩ L∞(R), f ∈ C(ΩT ) and
ϕ ∈ C(∂pΩT ). If u?, u

? are, correspondingly, a viscosity sub-solution and a
viscosity super-solution of

F (x, t,D2u)− ∂tu = g(u) + f in ΩT , (3.1)

with u? = u? = ϕ on ∂pΩT , then

u := inf
v∈S

v

is a viscosity solution of (3.1), where

S := {v ∈ C(ΩT ); u? ≤ v ≤ u? and v is a super-solution of (3.1)}.

Proof : Let µ > 0 be such that |g′| < µ/2 and let h(z) := µz − g(z), which is
then increasing. For ψ ∈ C0,1(ΩT ) we define the following (uniformly elliptic)
operator

Gψ[u] := Gψ(x, t, u,D2u) := F (x, t,D2u)− µu− f + ψ.

Next, set u0 := u? and let uk+1 be a solution of{
Gψk[u]− ∂tu = 0 in ΩT

u = ϕ on ∂pΩT ,
(3.2)

where ψk = h(uk). The existence of a solution to (3.2) is assured by the clas-
sical Perron’s method (see [8, 11]), since Gψ(x, t, r,M) is now non-increasing
in r. We claim that

u? = u0 ≤ u1 ≤ · · · ≤ uk ≤ uk+1 ≤ · · · ≤ u? in ΩT . (3.3)

Indeed, since u0 is a viscosity sub-solution of (3.1) and u1 solves (3.2) with
k = 0, we have

Gψ0
[u1]− ∂tu1 = 0 ≤ Gψ0

[u0]− ∂tu0

in the viscosity sense. Moreover, u1 = u0 = ϕ on ∂pΩT , so the comparison
principle (see [10]) gives u0 ≤ u1 in ΩT . Assume inductively that we have
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verified that uk−1 ≤ uk in ΩT . Since h is increasing, having in mind the
inductive assumption and the fact that uk+1 is a solution of (3.2), we conclude

Gψk[uk+1]− ∂tuk+1 = 0 ≤ Gψk[uk]− ∂tuk

in the viscosity sense. Also uk+1 = uk = ϕ on ∂pΩT . Applying once more
the comparison principle, we get uk ≤ uk+1. Analogously, one can also show
that uk ≤ u?, ∀k ≥ 0.

Using (3.3), we define the pointwise limit

u := lim
k→∞

uk.

For any Q b ΩT , there exists a constant C (depending only on µ, ‖u?‖L∞(Q),
‖u?‖L∞(Q) and ‖f‖L∞(Q)) such that

|F (x, t,D2uk)− ∂tuk| ≤ C in Q

in the viscosity sense, ∀k ≥ 0. Therefore, uk is locally uniformly Hölder
continuous (see [10]). By the Arzelà–Ascoli Theorem, it converges, up to
a subsequence, locally uniformly in ΩT . Invoking stability arguments (see
[10, 19]) and passing to the limit as k →∞, we conclude that u is a viscosity
solution of

F (x, t,D2u)− ∂tu = g(u) + f.

To conclude the proof, it remains to check that u = inf
v∈S

v. Obviously,

u ∈ S. Let v ∈ S; since

Gψk[uk+1]− ∂tuk+1 = 0 ≥ Gψk[v]− ∂tv

in the viscosity sense, arguing as above, we get v ≥ uk+1, ∀k ≥ 0. Passing to
the limit as k →∞ we conclude that u = inf

v∈S
v.

As a consequence of this result, we get the existence of solutions of (Eε).
The Alexandrov-Bakelman-Pucci (ABP) estimate then implies their uniform
boundedness.

Theorem 3.2. If (A1)-(A4) hold, then the problem (Eε) has a solution and

0 ≤ uε ≤ Υ in ΩT , (3.4)

where Υ = Υ(λ,Λ, n, ‖ϕ‖∞, c0).
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Proof : The existence of a solution follows from Theorem 3.1, with g = βε,
f = fε. To prove (3.4), let vε := uε − ‖ϕ‖∞. Note that vε ≤ 0 on ∂pΩT and
from (2.2) one has

P+
λ
n ,Λ

(D2vε)− ∂tvε ≥ F (x, t,D2vε)− ∂tvε = F (x, t,D2uε)− ∂tuε ≥ c0.

This means that vε ∈ S(λn ,Λ, c0). The ABP estimate ([18, Theorem 3.14])
then implies

sup
ΩT

(vε)
+ ≤ C(λ,Λ, n, c0).

Thus, uε ≤ ‖ϕ‖∞ + C(λ,Λ, n, c0) =: Υ.
In order to prove the nonnegativity of uε we assume the contrary, i.e. that

Aε := {(x, t) ∈ ΩT : uε(x, t) < 0} 6= ∅. Since βε is supported in [0, ε], then

P−λ
n ,Λ

(D2uε)− ∂tuε ≤ F (x, t,D2uε)− ∂tuε = fε ≤ c1 in Aε,

which means that uε ∈ S(λn ,Λ, c1). Another application of the ABP estimate
provides that uε ≥ 0 in Aε, which is a contradiction.

4. Uniform Lipschitz regularity in space-time
In this section we show that the family {uε}ε>0 of solutions of (Eε) is

locally uniformly bounded in the Liploc(1, 1/2)-norm. As a consequence, we
show that the limit function u is a solution of the free boundary problem
(1.2). The main result of this section is the following theorem.

Theorem 4.1. Let {uε}ε>0 be a family of solutions of (Eε). Let K ⊂ ΩT be
compact and τ > 0 be such that N2τ(K) ⊂ ΩT . If (A1)-(A4) hold, then there
exists a constant L = L(τ, ‖ϕ‖∞) such that

‖uε‖Lip(1,1/2)(K) ≤ L.

Theorem 4.1 will be an immediate consequence of the following two results.
First, using a Bernstein type argument, we obtain the uniform boundedness
of the gradients of solutions (Proposition 4.1). Next, we show that uniform
spatial Lipschitz continuity implies uniform Hölder continuity in time with
exponent 1/2 (Proposition 4.2).

4.1. Uniform spatial regularity. We start with the uniform Lipschitz
regularity in the spatial variables.
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Proposition 4.1. If {uε}ε>0 is a family of solutions of (Eε), and (A1)-(A4)
hold, then there exists a constant L > 0, independent of ε ∈ (0, 1), such that

|∇uε(x, t)| ≤ L, ∀(x, t) ∈ ΩT .

Proof : Note that the regularity assumptions on F , fε and ϕ guarantee that
solutions are locally of class C3 ([20, Theorem 2]).

Now, since βε = 0 in {uε ≥ ε}, we conclude from up to the boundary
parabolic regularity theory (see [18, Theorem 4.19] and [19, Theorem 2.5])
that

|∇uε| ≤ C(‖uε‖∞ + ‖fε‖n+1 + ‖ϕ‖∞),

in this region, where C does not depend on ε. The result then follows from
(A3) and (3.4) with L = L(Υ, c1, C).

To prove the uniform Lipschitz regularity in {uε ≤ ε}, it is enough to show
that at the maximum point of

vε :=
1

2
|∇uε|2 +

Γ

2ε2
u2
ε,

where Γ > 0 is a constant (independent of ε) to be chosen later, |∇uε| can
be controlled by a universal constant C, since then one can write

|∇uε|2 ≤ 2vε ≤ C2 + Γ =: L2.

Let (x0, t0) be a maximum point of vε in {uε ≤ ε}. From the uniform gradient
estimate in {uε ≥ ε}, we may assume that it is an interior point. We drop
the subscript ε in vε, uε and fε for convenience. Direct computation shows
that

Div =
∑
k

DkuDiku+ Γε−2uDiu,

Dijv =
∑
k

(DkjuDkiu+DkuDijku) + Γε−2(DiuDju+ uDiju),

∂tv =
∑
k

DkuDk∂tu+ Γε−2u∂tu,

where Dku = ∂u/∂xk. Differentiating (Eε) in the k-th direction one gets∑
i,j

Fij(x, t,D
2u)Dijku−Dk∂tu = ε−2β′Dku+Dkf, (4.1)
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where Fij(·,M) := ∂F/∂mij, M = (mij). The uniform ellipticity of F implies
that Aij := Fij(x0, t0, D

2u(x0, t0)) is a positive matrix, therefore at (x0, t0)
we have

0 ≥
∑
i,j

AijDijv − ∂tv = tr(D2u(AijD
2u))

+
∑
k

Dku

(∑
i,j

AijDijku

)
+ Γε−2

∑
i,j

AijDiuDju

+ Γε−2u
∑
i,j

AijDiju−
∑
k

DkuDk∂tu− Γε−2u∂tu,

which, together with (4.1), provides

0 ≥ tr(D2u(AijD
2u)) +

∑
k

Dku

(∑
i,j

AijDijku

)
+ Γε−2

∑
i,j

AijDiuDju+ Γε−2u
∑
i,j

AijDiju

−
∑
k

DkuDk∂tu− Γε−2u∂tu

≥
∑
k

Dku
(
Dk∂tu+ ε−2β′Dku+Dkf

)
+ Γε−2λ|∇u|2

−
∑
k

DkuDk∂tu+ Γε−2u

(∑
i,j

AijDiju− ∂tu

)
≥ ε−2β′|∇u|2 +

∑
k

DkuDkf + Γε−2λ|∇u|2 − λ|u|ε−2ε−1β

= ε−2
(
β′|∇u|2 − ε2|∇u||∇f |+ Γλ|∇u|2 − Γε−1λ|u|β

)
.

Therefore,

(β′(u/ε) + Γλ)|∇u|2 − ε2|∇u||∇f | ≤ Γλ|u|ε−1β(u/ε). (4.2)

By choosing Γ := 2
λ max |β′|, from (4.2) we get

C1|∇u|2 − C2ε
2|∇u| ≤ C1|u|ε−1β(u/ε) ≤ C1C3,

with C1 = max |β′|, C2 = ‖∇f‖∞ and C3 = max |β|, which leads to

|∇u(x0, t0)| ≤ C,



12 RICARTE, TEYMURAZYAN AND URBANO

where C depends only on dimension, ellipticity, ‖β‖C1 and ‖∇f‖∞, thus
being independent of ε.

As an immediate consequence we have the following result.

Corollary 4.1. Let {uε}ε>0 be a family of solutions of (Eε). Let K ⊂ ΩT be
a compact set and τ > 0 be such that N−τ (K) ⊂ ΩT . If (A1)-(A4) hold, then
there exists a constant L = L(τ) such that

|∇uε(x, t)| ≤ L, ∀(x, t) ∈ K.

Proof : For (x0, t0) ∈ K, consider the function

wε,r(x, t) :=
1

r
uε(x0 + rx, t0 + r2t).

For r ∈ (0, τ) we have that wε,r is a solution of

Fr(x, t,D
2wε,r)− ∂twε,r = βε/r(wε,r) + rfε =: gε(x, t)

in B1× (−1, 0), where Fr(x, t,M) : = rF
(
x0 + rx, t0 + r2t, 1

rM
)
. The result

now follows from Proposition 4.1.

4.2. Uniform regularity in time. Next, as was mentioned above, using
the uniform Lipschitz continuity in the space variables, we obtain the uniform
Hölder continuity in time. First, we need the following lemma.

Lemma 4.1. Let u ∈ C(B1(0)× [0, 1/(4n+M0)]) be such that

|F (x, t,D2u)− ∂tu| ≤M0 in {u > 1},
for some M0 > 0, and |∇u| ≤ L, for some L > 0. Then there exists a
constant C = C(L) such that

|u(0, t)− u(0, 0)| ≤ C, if 0 ≤ t ≤ 1

4n+M0
.

Proof : Without loss of generality we may assume that L > 1. We divide the
proof into two steps.
Step 1. First we claim that, if

Qt0,t1 := B1(0)× (t0, t1) ⊂ {u > 1} for t1 − t0 ≤
1

4n+M0
,

then

|u(0, t1)− u(0, t0)| ≤ 2L.
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In fact, let

h±(x, t) := u(0, t0)± L±
2L

Λ
|x|2 ± (4nL+M0)(t− t0).

By (2.2) one has

∂th
+ − F (x, t,D2h+) ≥ ∂th

+ − P+
λ
n ,Λ

(D2h+)

= ∂th
+ −

(
Λ
∑
ei>0

ei +
λ

n

∑
ei<0

ei

)

= (4nL+M0)− Λ
4Ln

Λ
= M0,

and

∂th
− − F (x, t,D2h−) ≤ ∂th

− − P−λ
n ,Λ

(D2h−)

= ∂th
− −

(
λ

n

∑
ei>0

ei + Λ
∑
ei<0

ei

)

= −(4nL+M0)− Λ
−4Ln

Λ
= −M0.

Set

t2 := sup
t0≤t̄≤t1

{t̄ : |u(0, t)− u(0, t0)| ≤ 2L, ∀ t0 ≤ t ≤ t̄}.

So t0 < t2 ≤ t1 is such that

|u(0, t)− u(0, t0)| ≤ 2L, for t ∈ [t0, t2).

Moreover, from the Lipschitz continuity in space, one has

h− ≤ u ≤ h+ on ∂pQt0,t2.

On the other hand,

∂th
− − F (x, t,D2h−) ≤ −M0 ≤ ∂tu− F (x, t,D2u)

≤ M0 ≤ ∂th
+ − F (x, t,D2h+).

Therefore,

h− ≤ u ≤ h+ in Qt0,t2.

In particular, since t2 − t0 ≤ t1 − t0 ≤ 1
4n+M0

and L > 1 one has

|u(0, t2)− u(0, t0)| < 2L.
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Because of the strict inequality above, we may take t2 = t1 and therefore the
claim is proved.
Step 2. Let us consider now the cylinder Q0,t with 0 < t ≤ 1

4n+M0
.

If Q0,t ⊂ {u > 1}, we apply Step 1 to get

|u(0, t)− u(0, 0)| ≤ 2L.

If Q0,t * {u > 1}, let 0 ≤ t1 ≤ t2 ≤ t and x1, x2 ∈ B1(0) be such that

0 ≤ u(x1, t1) ≤ 1, 0 ≤ u(x2, t2) ≤ 1

and

(B1(0)× (0, t1)) ∪ (B1(0)× (t2, t)) ⊂ {u > 1}.
Then, Step 1 and the Lipschitz continuity in space provide

|u(0, t)− u(0, 0)| ≤ |u(0, t)− u(0, t2)|+ |u(0, t2)− u(x2, t2)|+ |u(x2, t2)|
+ |u(x1, t1)|+ |u(x1, t1)− u(0, t1)|+ |u(0, t1)− u(0, 0)|
≤ 2(2L+ L+ 1),

which completes the proof.

We are now ready to prove uniform Hölder continuity of solutions in time.

Proposition 4.2. Let {uε}ε>0 be a family of solutions of (Eε). Let K ⊂ ΩT

be compact and τ > 0 be such that N2τ(K) ⊂ ΩT . If (A1)-(A4) hold, then
there exists a constant C > 0, independent of ε, such that

|uε(x, t+ ∆t)− uε(x, t)| ≤ C|∆t|1/2, for (x, t), (x, t+ ∆t) ∈ K.

Proof : Let r ∈ (0, τ), (x0, t0) ∈ K and wε,r(x, t), gε(x, t) be as in the proof
of Corollary 4.1. From (A2) and (A3) we get, in the set {wε,r > 1},

0 ≤ gε(x, t) ≤ (1 + rc1) ≤ (1 + τc1) =: C?.

Also |∇wε,r(x, t)| ≤ L. Therefore, we may apply Lemma 4.1, with M0 = C?,
to obtain

|wε,r(0, t)− wε,r(0, 0)| ≤ C, for 0 ≤ t ≤ 1

4n+ C?
,

or in other terms

|uε(x0, t0 + r2t)− uε(x0, t0)| ≤ Cr, for 0 ≤ t ≤ 1

4n+ C?
.



SINGULARLY PERTURBED FULLY NONLINEAR PARABOLIC PROBLEMS 15

In particular, for r ∈ (0, τ), one has∣∣∣∣uε(x0, t0 +
r2

4n+ C?

)
− uε(x0, t0)

∣∣∣∣ ≤ Cr. (4.3)

Now if (x0, t0 + ∆t) ∈ K and 0 < ∆t < r2

4n+C?
, taking r = ∆t1/2

√
4n+ C? in

(4.3) leads to

|uε(x0, t0 + ∆t)− uε(x0, t0)| ≤ C
√

4n+ C?∆t
1/2.

On the order hand, if ∆t ≥ r2

4n+C?
, from (3.4) we get

|uε(x0, t0 + ∆t)− uε(x0, t0)| ≤ 2Υ ≤ 2Υ

τ

√
4n+ C?∆t

1/2,

which completes the proof.

5. The limiting free boundary problem
We start this section by letting ε→ 0 in (Eε). Recalling Theorem 4.1, we

know that up to a subsequence, there exists a limiting function u, obtained
as the uniform limit of uε as ε → 0. We now show that u is a viscosity
solution of (1.2), where f is the uniform limit of fε.

Theorem 5.1. Let {uε}ε>0 be a family of solution of (Eε). If (A1)-(A4)
hold then, up to a subsequence,

(1) uε → u locally uniformly in ΩT and u ∈ Liploc(1, 1/2)(ΩT );
(2) u is a solution of (1.2), where f is the uniform limit of fε;
(3) the function t 7→ u(x, t) is non-decreasing in time.

Proof : Parts (1) and (2) follow from Theorem 4.1 and the Arzelà–Ascoli
Theorem. In fact, since uε ∈ Liploc(1, 1/2)(ΩT ), with a uniform estimate, we
can pass to the limit (up to a subsequence) and obtain a function

u(x, t) = lim
ε→0

uε(x, t),

with the convergence being uniform on compact subsets of ΩT . Hence, u ∈
Liploc(1, 1/2)(ΩT ). Moreover, u is a viscosity solution of (1.2). Indeed, if
u(x0, t0) = c > 0, then using the uniform convergence uε → u and the
equicontinuity of uε, we conclude that for every small ε one has, in a small
neighbourhood of (x0, t0), that uε ≥ c

2 > ε. So βε(uε) = 0. Since fε → f ,
invoking stability arguments ([10, 19]) and passing to the limit in (Eε), we
conclude that u is a solution of (1.2).
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In order to check (3), we define, for t > 0 and h > 0,

uh(·, t) := u(·, t+ h); fh(·, t) := f(·, t+ h); ϕh(·, t) := ϕ(·, t+ h)

and Fh(·, t, ·) := F (·, t + h, ·). Set also ϕh(x, 0) := ϕ(x, 0) = 0. Since u is
a solution of (1.2), then uh is a solution of the same problem with F = Fh,
f = fh and ϕ = ϕh. From (A4) we know that ϕ is non-decreasing in t
and ϕ(x, 0) = 0, therefore uh ≥ u on ∂pΩT . Observe that (A3) provides
fh(x, t) ≤ f(x, t). Since also u ≥ 0, we can apply a comparison argument to
verify that uh ≥ u in ΩT , so the function t 7→ u(x, t) is non-decreasing.

6. Porosity of the free boundary
In this section we establish the exact growth of the solution near the free

boundary, from which we deduce the porosity of its time level sets.

Definition 6.1. A set E ⊂ Rn is called porous with porosity δ > 0, if there
exists R > 0 such that

∀x ∈ E, ∀r ∈ (0, R), ∃y ∈ Rn such that Bδr(y) ⊂ Br(x) \ E.

A porous set of porosity δ has Hausdorff dimension not exceeding n− cδn,
where c = c(n) > 0 is a constant depending only on n. In particular, a
porous set has Lebesgue measure zero.

The following theorem is the main result of this section.

Theorem 6.1. Let u be a solution of (1.2). If (A1) holds and f satisfies
(A3) then, for every compact set K ⊂ ΩT and every t0 ∈ (0, T ), the set

∂{u > 0} ∩K ∩ {t = t0}

is porous in Rn, with porosity depending only on Υ and dist(K, ∂pΩT ).

To prove the theorem we need to prove some auxiliary results.

6.1. Non-degeneracy. We start by proving a non-degeneracy result. Let
us remark that, without loss of generality, we may consider in what follows
the domain Q1 = Q1(0, 0) instead of Q1(z, s).

Lemma 6.1. Let u ∈ C(Q1) be a solution of

F (x, t,D2u)− ∂tu = f in {u > 0},
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with f satisfying the lower bound in (A3). Then for every (z, s) ∈ {u > 0}
and r > 0 with Qr(z, s) ⊂ Q1 we have

sup
(x,t)∈∂pQ−r (z,s)

u(x, t) ≥ µ0r
2 + u(z, s),

where µ0 = min
(
c0
2 ,

c0
4nΛ

)
.

Proof : Suppose that (z, s) ∈ {u > 0}, and, for small δ > 0, set

ωδ(x, t) := u(x, t)− (1− δ)u(z, s) and ψ(x, t) :=
c0

4nΛ
|x− z|2 − c0

2
(t− s).

Since Dijψ = c0
2nΛδij then, from (2.2), one has

F (x, t,D2ψ)− ∂tψ ≤ P+
λ
n ,Λ

(D2ψ)− ∂tψ

= Λ
∑
ei>0

ei +
λ

n

∑
ei<0

ei +
c0

2

= Λ
nc0

2nΛ
+
c0

2
= c0

≤ f(x, t) = F (x, t,D2u)− ∂tu
= F (x, t,D2ωδ)− ∂tωδ.

Moreover, ωδ ≤ ψ on ∂{u > 0} ∩Q−r (z, s). Note that we can not have

ωδ ≤ ψ on ∂pQ
−
r (z, s) ∩ {u > 0},

because otherwise we could apply the comparison principle to obtain

ωδ ≤ ψ in Q−r (z, s) ∩ {u > 0},

which contradicts the fact that ωδ(z, s) = δu(z, s) > 0 = ψ(z, s). Hence, for
(y, τ) ∈ ∂pQ−r (z, s) we must have

ωδ(y, τ) > ψ(y, τ) = µ0r
2.

Letting δ → 0 in the last inequality we conclude the proof.

6.2. A class of functions in the unit cylinder. Next, we establish the
growth rate of the solution near the free boundary, which is known for p-
parabolic variational problems (see [17]) but is new in the fully nonlinear
framework. We start by introducing a class of functions.
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Definition 6.2. We say that a function u ∈ C(Q1) is in the class Θ if
0 ≤ u ≤ 1 in Q1, ‖F (x, t,D2u) − ∂tu‖∞ ≤ 1 in Q1, in the viscosity sense
and, moreover, ∂tu ≥ 0 and u(0, 0) = 0.

Note that the last two conditions make sense due to the regularity of u
guaranteed by the first two ([18, 19]).

In order to proceed, we need to introduce some notation. Set

S(r, u, z, s) := sup
Q−r (z,s)

u.

For u ∈ Θ, we define

H(u, z, s) :=
{
j ∈ N ∪ {0} : S(2−j, u, z, s) ≤MS(2−j−1, u, z, s)

}
,

where M := 4 max(1, 1
µ0

), with µ0 as in Lemma 6.1. When (z, s) is the origin,
we suppress the point dependence.

The following lemma is the main step towards the growth control of the
solution near the free boundary.

Lemma 6.2. If u ∈ Θ, then there is a constant C1 = C1(n, c1) > 0 such that

S(2−j−1, u) ≤ C12
−2j, ∀j ∈ H(u).

Proof : First, note that H(u) 6= ∅ because 0 ∈ H(u). Indeed, using Lemma
6.1, we have

S(1, u) ≤ 1 = 4

(
1

µ0

)
µ02

−2 ≤ 4

(
1

µ0

)
S(2−1, u) ≤MS(2−1, u).

Next, suppose the conclusion of the lemma fails. Then, for every k ∈ N,
there is uk ∈ Θ and jk ∈ H(uk) such that

S(2−jk−1, uk) ≥ k2−2jk.

Define vk : Q1 → R by

vk(x, t) :=
u(2−jkx, 2−2jkt)

S(2−jk−1, uk)
.

One easily verifies that

0 ≤ vk ≤ 1 in Q−1 ; ‖Fk(x, t,D2vk)− ∂tvk‖∞ ≤
c1

k
;

sup
Q−1/2

vk = 1; vk(0, 0) = 0; ∂tvk ≥ 0 in Q−1 ,
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where

Fk(x, t,M) :=
2−2jk

S(2−jk−1, uk)
F

(
2−jkx, (2−jk)2t,

S(2−jk−1, uk)

2−2jk
M

)
is a uniform (λ,Λ)-elliptic operator. Using compactness arguments (see [18,
19]), we infer that there is a subsequence of vk converging locally uniformly
in Q−1 to a function v. Moreover,

F(x, t,D2v)− ∂tv = 0, v(0, 0) = 0, v ≥ 0, ∂tv ≥ 0

in Q−1 for some (λ,Λ)-elliptic operator F . The strong maximum principle
(see [13]) then implies that v ≡ 0, which contradicts the fact that

sup
Q−1/2

v = 1.

We are now ready to prove the growth control of the solution near the free
boundary.

Lemma 6.3. If u ∈ Θ, then there is a constant C0 = C0(n, L, c1) > 0 such
that

|u(x, t)| ≤ C0(d(x, t))2, ∀ (x, t) ∈ Q1/2,

where

d(x, t) :=

{
sup {r : Qr(x, t) ⊂ {u > 0}} , if (x, t) ∈ {u > 0}
0, otherwise.

Proof : It suffices to show that

S(2−j, u) ≤ 4C12
−2j, ∀j ∈ N. (6.1)

In fact, for a fixed r ∈ (0, 1), by choosing j ∈ N such that 2−j−1 ≤ r ≤ 2−j,
one has

sup
Q−r (0,0)

u ≤ sup
Q−

2−j

u ≤ 4C12
−2j = 16C12

−2j−2 ≤ 16C1r
2. (6.2)

In order to prove (6.1), let us take the first j for which it fails (if there is no
such j, we are done). Then

S(2−(j−1), u) ≤ 4C12
−2(j−1) < 4S(2−j, u) ≤MS(2−j, u),

so j − 1 ∈ H(u), and we can apply Lemma 6.2 to reach the contradiction

S(2−j, u) ≤ C12
−2(j−1) = 4C12

−2j.
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To obtain a similar estimate for u over the whole cylinder (and not only
over its lower half) we use a barrier from above. Set

ω(x, t) := A1|x|2 + A2t,

where A2 = 2ΛnA1 and A1 > 0. Then in Q+
1 = B1(0)× (0, 1) one gets from

(2.2) that

F (x, t,D2ω)− ∂tω ≤ P+
λ
n ,Λ

(D2ω)− ∂tω

= Λ
∑
ei>0

ei +
λ

n

∑
ei<0

ei − A2

= 2nΛA1 − A2 = 0 ≤ F (x, t,D2u)− ∂tu.
If A1 is large enough, then ω ≥ u on ∂pQ

+
1 , where for the estimate on {t = 0}

we used S(r, u) ≤ 16C1r
2 from (6.2). Hence, by the comparison principle one

has ω ≥ u in Q+
1 . Therefore

sup
Qr(0,0)

u ≤ C0r
2,

for a constant C0 > 0.

6.3. Porosity of the free boundary in time levels. We close the paper
by proving Theorem 6.1.

Proof : Without loss of generality, we assume that K is the closed unit cylin-
der Q1, and Q2 ⊂ ΩT . For (x, t) ∈ {u > 0} ∩Q1, let d(x, t) be as in Lemma
6.3 and take (x0, t0) ∈ ∂{u > 0} ∩ Q1 to be the point where the distance is
attained. Define

v(y, s) := u(x0 + y, t0 + s), for (y, s) ∈ Q1.

We have

‖F (x, t,D2v)− ∂tv‖∞ ≤ c1, 0 ≤ v ≤ Υ, v(0, 0) = 0,

hence, if κ = max{1, c1,Υ}, then (1/κ)v(y, s) ∈ Θ. Lemma 6.3 then provides

u(x, t) = v(x− x0, t− t0) ≤ κC0(d(x, t))2. (6.3)

Now if (z, τ) ∈ ∂{u > 0} ∩Q1, then for r ∈ (0, 1), using Lemma 6.1, and the
fact that ∂tu ≥ 0 in Q1, one concludes that there exists x1 ∈ ∂Br(z), such
that

u(x1, τ) ≥ µ0r
2.
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Together with (6.3), we have

µ0r
2 ≤ u(x1, τ) ≤ κC0(d(x1, τ))2,

which implies that

d(x1, τ) ≥ δr, δ =

√
µ0

κC0

and hence
Bδr(x1) ⊂ Bd(x1,τ)(x1) ⊂ {u > 0}.

Note that δ ≤ 1. We claim now that there is a ball

B δ
2r

(y) ⊂ Bδr(x1) ∩Br(z) ⊂ Br(z) \ ∂{u > 0}, (6.4)

which means that the set ∂{u > 0} ∩ {t = τ} ∩ B1 is porous with porosity
constant δ/2.

To check (6.4) we choose y ∈ [z, x1] such that |y − x1| = δr/2. For each
ξ ∈ B δ

2r
(y) one has

|ξ − x1| ≤ |ξ − y|+ |y − x1| ≤
δ

2
r +

δ

2
r = δr

and, since x1 ∈ ∂Br(z), also

|ξ − z| ≤ |ξ − y|+ |z − x1| − |y − x1| ≤
δ

2
r + r − δ

2
r = r,

and therefore (6.4) is true.
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