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SPATIALLY ADAPTIVE TOTAL VARIATION DEBLURRING
WITH SPLIT BREGMAN TECHNIQUE

MAHDI DODANGEH, ISABEL NARRA FIGUEIREDO AND GIL GONÇALVES

Abstract: In this paper we describe a modified non-blind and blind deconvolution
model by introducing a regularization parameter that incorporates the spatial image
information. Indeed, we have used a weighted total variation (TV) term, where
the weight is a spatially adaptive parameter based on the image gradient. The
proposed models are solved by the split Bregman method. To handle adequately
the discrete convolution transform in a moderate time, fast Fourier transform is
used. Tests are conducted on several images, and for assessing the results we define
appropriate weighted versions of two standard image quality metrics. These new
weighted metrics clearly highlight the advantage of the spatially adaptive approach.

Keywords: Deblurring, Convolution, Split Bregman method, Fast Fourier trans-
form, Local quality measure.

1. Introduction
Deblurring is the process of reconstructing a sharp image from a given

blurred image that is also possibly deteriorated with noise. Deblurring occurs
frequently in a wide range of applications as remote sensing and medical
imagery processing, astrophysics, signal processing, statistical inference, and
optics. It is generally modeled as a convolution of the unknown true image
(to be recovered) with a linear and shift invariant blur operator (also called
the point spread function (PSF) or kernel), and therefore in this case the
blurring process reduces to convolution and deblurring becomes also called
deconvolution (see [8]).

There are three main types of deconvolution problems. (1) Blind decon-
volution, which includes the cases when both kernel and true image are un-
known. (2) Semi-blind deconvolution, in which the kernel belongs to a known
class of parametric functions. (3) Non-blind deconvolution where only the
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true image is unknown. The main challenge is that direct deconvolution is
unstable and disturbed by noise present in the input blurred image.

An effective deconvolution method requires a balance between frequency
recovery and noise suppression. A workaround to overcome this difficulty is
the use of regularization methods to stabilize the solution. Tikhonov reg-
ularization [29] is one of the popular regularization techniques, in which a
quadratic penalty is added to the objective function. Common choices for
this quadratic penalty involve the identity or a matrix approximating the
first or second order derivative operator [19, 20]. Total variation (TV) regu-
larization is a successful technique for achieving the aforementioned balance
in deblurring problems. In [27] TV is proposed for image denoising and then
in [28] it is also applied to deconvolution. Blind deconvolution was first in-
troduced by [10], and a lot of work has been carried out so far to improve the
models introduced in [1, 9, 23]. An excellent tutorial has been provided by
[21]. Despite a vast amount of research in the field (see [21] and references
therein), the design of a principled, stable and robust algorithm that can
handle real images remains a challenge.

We remark that by enforcing the TV regularization, one might lose some
precious information at the edge pixels since the TV regularization makes the
image smoother. In this paper to control this side effect, a spatially adaptive
deconvolution model is proposed. Here, we constrain the TV regularization
by the spatially adaptive information, by introducing a weighted TV term,
whose weight depends on the gradient of the image. In edge pixels, a weak
regularization strength is enforced to preserve detail, and in the homogeneous
areas, an active regularization strength is enforced to recover a sharper im-
age. Furthermore, we apply the split Bregman algorithm of Goldstein and
Osher [16] to approximate the solution of the proposed spatially adaptive
TV deconvolution problem.

We observe that the deconvolution problem belongs to a class of second
order cone programming and thus could be solved via interior-point meth-
ods [3]. However, interior-point methods are not suitable for deconvolution
since this latter involves non-sparse matrix data, which often prevents the
use and latent benefits of modern interior-point methods. Another issue is
that the minimization problem dimension can reach millions even for small
images. These facts inspire the exploration of simpler and fast algorithms
for deconvolution. In this paper, we use fast Fourier transform (FFT) to



SPATIALLY ADAPTIVE TV DEBLURRING WITH SPLIT BREGMAN TECHNIQUE 3

solve the corresponding different minimization problems that arise in the
split Bregman technique.

In order to evaluate the performance of the proposed methods we define
weighted versions of two standard quality metrics (the average gradient and
entropy) to act locally at the edge pixels. In addition we also compare the
results of the proposed spatially adaptive blind deblurring method with the
state-of-the-art method [26]. All the obtained results, evaluated with the
aforementioned weighted and standard quality metrics, indicate the advan-
tage of the spatially adaptive proposed methods.

After this introduction, the rest of the paper is organized as follows: Sec-
tions 2 and 3 describe the usual and the proposed (spatially adaptive) de-
blurring models (non-blind and blind cases). The solution of the spatially
adaptive models, using the split Bregman method, is reported in Section 4.
The obtained results of the experimental tests are described in Section 5
and finally in the last section we draw some conclusions and future research
directions.

2. Non-Blind and Blind Deblurring Models
A blurred image f (herein identified with a function f : Ω → IR, where

Ω ⊂ IR2 is the pixel domain) corrupted with additive Gaussian noise z can
be defined as

f = ϕ ∗ u+ z.

Here ϕ : Ω→ IR represents the blur operator (a linear shift invariant function,
known as the point spread function (PSF) or kernel), which is known in the
non-blind model and unknown in the blind model. The unknown sharp
image, to be recovered, is represented by u : Ω→ IR and finally ∗ stands for
the convolution operator.

As stated in [10] a variational formulation for the corresponding non-blind
deblurring problem is

min
u

(αu
2
‖ϕ ∗ u− f‖2

L2(Ω) + TV (u)
)
, (1)

and for the blind deblurring problem is

min
u,ϕ

(αu
2
‖ϕ ∗ u− f‖2

L2(Ω) + TV (u) + αϕTV (ϕ)
)
. (2)

Here L2(Ω) is the space of square integrable functions in Ω, with norm de-
noted by ‖.‖L2(Ω). The constants αu and αϕ are two positive parameters
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which balance the influence of the matching and regularizing terms in the
cost functions. The total variation of u, TV (u) (respectively TV (ϕ)), is
a semi-norm, that when u (respectively ϕ) is smooth is equivalent to the
integral of the gradient magnitude of u (respectively ϕ)

TV (u) =

∫
Ω

|∇u|dx = ‖∇u‖L1(Ω)

where L1(Ω) is the space of absolutely integrable functions in Ω, with norm
denoted by ‖.‖L1(Ω), and ∇ represents the gradient operator.

The TV regularization is an effective regularization approach for recovering
edges of an image and this is the main motivation, as explained in [10] for
using TV regularization in model (1), and also in model (2), since some PSF
can have edges (as for instance motion blur or out-of-focus blur that are
piecewise constant functions with discontinuities).

The blind deconvolution model (2) is not convex. However, with ϕ or u
fixed it becomes convex and consequently the non-blind model (1) is convex.
So a solution to problem (2) can be readily found by an iterative algorithm
that alternates between the estimation of the image u, given the kernel ϕ,
and the estimation of the kernel, given the image. This approach is called
alternating minimization (AM) [10]. In [10] it is suggested a variant of the
AM algorithm that employs a gradient descent scheme for each step. Then,
several well-known approaches in this area are applied to the model, as for
example the gradient projection method [12], the fixed-point continuation
method [18], the spectral projected gradient method [4], and the Bregman
iterative method [6, 7, 24, 25, 32]. The most recent schemes can be found in
[2, 11, 30, 31].

3. Modified Deblurring Models
Here we present a modification of the models (1) and (2) by introducing

a weighted TV, for the regularizing term in u, with a weight function wu(x)
(where x represents an arbitrary point in the pixel domain Ω), depending
on u, more precisely on the gradient of u. The modified deblurring models,
respectively non-blind and blind, are defined by (supposing hereafter that u
and ϕ are smooth)
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min
u

αu
2
‖ϕ ∗ u− f‖2

L2(Ω) + ‖wu∇u‖L1(Ω)︸ ︷︷ ︸
TVwu(u)

 ,

min
u,ϕ

αu
2
‖ϕ ∗ u− f‖2

L2(Ω) + ‖wu∇u‖L1(Ω)︸ ︷︷ ︸
TVwu(u)

+αϕ ‖∇ϕ‖L1(Ω)︸ ︷︷ ︸
TV (ϕ)

 .

The main idea is that in edges pixels, a weak regularization is enforced to
better preserve edges and in homogeneous regions a strong regularization is
enforced to recover a sharp image. The definition of this spatially adaptive
parameter wu(x), which controls the amount of regularization in u, is

wu(x) =
1

1 + ‖∇u(x)‖2/η
, with η = γstd(‖∇u‖2) (3)

where ‖.‖ is the Euclidean norm and η is a non-negative parameter, which
is set to a constant (γ) times the standard deviation std, of the gradient
of the exact image. Therefore the larger the gradient ‖∇u(x)‖ is, at pixel
x, the smaller the corresponding parameter wu(x), and consequently little
regularization is applied to preserve detail.

4. Split Bregman Method for the Modified Deblurring
Models

Regularizaton of the deblurring model is an important procedure for the
obtention of a stable solution. The advantage of the L1-regularization over
the L2-regularization is that as opposed to the latter, the L1-regularization
is less sensitive to outliers. However, the L1-regularization makes the model
non-smooth. To benefit the advantage of the L1-regularization and for re-
ducing its inherent difficulties we have used the split Bregman scheme [16].
In this scheme, the goal is to separate entirely the L1-regularizing term and
the L2-matching term in each subproblem. Then we enforce these constraints
with the Bergman iteration process [5]. By doing so, we will have minimiza-
tion subproblems to solve at each alternating step.
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4.1. Modified Non-Blind Model. First an extra variable du is introduced
through the constraint

du = ∇u
with the goal of completely separating the L1 and L2 terms. This constraint
is enforced by the Bregman iteration process [5]. Therefore the following
sequence of minimization problems are considered: For k = 1, 2, . . . find
(uk+1, dk+1

u ) solution of
min
(u,du)

(αu
2
‖ϕ ∗ u− f‖2

L2(Ω) + ‖wudu‖L1(Ω)

+λu
2 ‖du −∇u− b

k
u‖
)

bk+1
u = bku − dk+1

u +∇uk+1,

(4)

where λu is the fixed penalty parameter resulting from the Bregman ap-
proach.

The minimization problem in (4) can be solved by an alternating minimiza-
tion algorithm, by minimizing with respect to u and d separately. Briefly,
the overall Split Bregman procedure can be summarized as follows:

Non-Blind Deblurring Algorithm (NBDA):

Input:
f and ϕ.

while max{|uk − uk−1|} > tol (with tol a pre-fixed tolerance) do

uk+1 = F−1

(
αuF(ϕ) · F(f)− λuF

(
div(dk − bk)

)
αu|F(ϕ)|2 − λu F(∆)

)

wuk+1(x) =
1

1 + ‖∇uk+1(x)‖2/η
,

η = γ std(‖∇uk+1‖2),

dk+1
u = shrink(∇uk+1 + bk,

wuk+1

λu
)

bk+1
u = bku − dk+1

u +∇uk+1.

end while

Output:
Recovered image uk+1.
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Here F denotes the fast Fourier transform, “.” the pointwise multiplication,
F(.) the complex conjugate of F(.), div the divergence operator and F(∆)
is the discrete Fourier transform (DFT) of the 5-point Laplacian (∆) filter.
The operator shrink is defined by shrink(z, v) = z

|z| ·max(|z| − v, 0), for any

z, v in IR.

4.2. Modified Blind Model. The Split Bregman technique for the mod-
ified blind model follows the same pattern as in the case of the modified
non-blind model. We first introduce two extra variables to separate the L1

and L2 terms, that is

du = ∇u, dϕ = ∇ϕ

and enforce these constraints by the Bregman iteration procedure, such
that the following sequence of minimization problems are obtained: for
k = 1, 2, . . . find (uk+1, dk+1

u , ϕk+1, dk+1
ϕ ) solution of

min
(u,du,ϕ,dϕ)

(αu
2
‖ϕ ∗ u− f‖2

L2(Ω) + ‖wudu‖L1(Ω)

+αϕ‖dϕ‖L1(Ω) + λu
2 ‖du −∇u− b

k
u‖

+
λϕ
2 ‖dϕ −∇ϕ− b

k
ϕ‖
)
,

bk+1
u = bku − dk+1

u +∇uk+1,

bk+1
ϕ = bkϕ − dk+1

ϕ +∇ϕk+1.

(5)

The solution of the minimization problem in (5) can be solved by minimiz-
ing iteratively and separately with respect to uk+1, dk+1

u , ϕk+1, dk+1
ϕ .

Similarly to [10], in order to obtain a physical solution we impose, during
the algorithmic procedure the following conditions on u and ϕ

‖ϕ‖L1(Ω) = 1, u(x), ϕ(x) ≥ 0

ϕ−(x) = ϕ(x) (ϕ is centre-symmetric),
(6)

where ϕ−(x) = ϕ(−x).

Summarizing, given the blurred image f , the size of the kernel [m,n], and
an initial guess u0 of the sharp image, the proposed spatially adaptive blind
deconvolution Split Bregman procedure is the following :
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Blind Deblurring Algorithm (BDA):

Input:
f , [m, n]=size of the kernel ϕ and u0.

Initialize:

ϕ0 =
1

m× n
.

while max{|uk − uk−1|, |ϕk − ϕk−1|} > tol (with tol a pre-fixed tolerance)
do

Kernel part:

ϕk+1 = F−1

(
αuF(uk) · F(f)− λϕF(div(dku − bku))

αu|F(uk)|2 − λϕF(∆)

)

ϕk+1 =
ϕk+1 + ϕk+1−

2

ϕk+1 = max {ϕk+1, 0}

ϕk+1 =
ϕk+1

‖ϕk+1‖L1(Ω)

dk+1
ϕ = shrink(∇ϕk+1 + bkϕ, αϕ/λϕ)

bk+1
ϕ = bkϕ − dk+1

ϕ +∇ϕk+1

Image part:

uk+1 = F−1

(
αuF(ϕk+1) · F(f)− λu F(div(dku − bku))

αu|F(ϕk+1)|2 − λuF(∆)

)
uk+1 = max {uk+1, 0}

wuk+1(x) =
1

1 + ‖∇uk+1(x)‖2/η
,

η = γstd(‖∇uk+1‖2)

dk+1
u = shrink(∇uk+1 + bku, wuk+1/λu)

bk+1
u = bku − dk+1

u +∇uk+1

end while

Output:
Recovered image uk+1 and kernel ϕk+1.
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We remark that in all the experiments, either for the modified non-blind
or blind deblurring algorithms, in order to reduce artifacts at the boundary,
we extend the image to be zero at the boundary. More precisely, we intro-
duce four narrow strips around the boundary of the pixel domain with pixel
values equal to zero. We denote that extension by Eu. Then the discrete
convolution is implemented through the discrete Fourier transform (DFT) as

ϕ ∗ u = F−1 (F(ϕ) · F(Eu)) .

When the image u and the blur operator ϕ are even (an even function g
verifies g(x) = g(−x)), using cosine discrete transform (CDT) instead of
FFT will reduce the expense of each iteration (see [13, 22]).

Furthermore, for the modified blind deblurring algorithm, we realized ex-
perimentally that to recover a sharp image, αu should be relatively big, com-
pared to other parameters. But, a big αu usually destroys the quality of the
recovered kernel. To overcome this difficulty, we alternate between the blind
and non-blind procedures. After recovering a kernel in the BDA method, we
executed the NBDA using the previous recovered kernel to restore a sharp
image. Then, we passed the recovered image to the BDA procedure to obtain
a better kernel. Usually, we have observed that two or three times alternat-
ing is enough to recover both a sharp image and kernel. This alternating
process also prevents to stick around a local minimizer. Summarizing, in the
experiments reported in Section 5, we have implemented the following blind
deblurring algorithm.

Deblurring Algorithm (reformulation)

Input:
f and [m,n]=size of the kernel ϕ.

Initialize:
u0 = Ef .

for i = 0, 1, 2, . . . do
ϕi+1 is obtained with BDA (inputs - f , [m,n], ui)
ui+1 is obtained with NBDA (inputs - f , ϕi+1)

end for

Output:
Recovered image ui+1 and kernel ϕi+1.
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5. Experimental Tests
For the tests we have used four different images that are displayed in Figure

1. The two images in the first row represent a synthetic and a standard test
image. The second row shows, on the left, the grayscale version of a medical
image (MI) of the small bowel, acquired with the wireless capsule Pillcam
SB of the company Given Imaging. On the right it exhibits the grayscale
version of an EO (earth observation) image, obtained with an Unmanned
Aerial Vehicle (UAV) equipped with a consumer grade digital camera (Canon
IXUS 127 HS) and flying at an altitude of 143m above ground level.

Figure 1. Images used in the tests. First row: left - synthetic
image (256× 256 pixels); right - standard test image (256× 256
pixels). Second row: left - MI image (466 × 466 pixels); right -
EO image (466× 466 pixels).

We have done two types of tests. In the first type the goal is the evalua-
tion and comparison of the performance of the spatially adaptive and non-
adaptive approaches, for the non-blind deblurring algorithm. Here we only
report the results for the synthetic and standard test images exhibited in the
first row of Figure 1. The second tests consist in the evaluation and compar-
ison of the performance of the modified blind deblurring algorithm (spatially
adaptive) with a state-of-the-art method [26] (that is not spatially adaptive).
In these second tests we report the results with the two genuine and real-life
images, MI and EO, displayed in the second row of Figure 1.
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Figure 2. Left : Motion blur kernel with P = 7. Right : Out-
of-focus blur kernel with R = 4.

For assessing the results we have used two standard quality measures as
well as appropriate weighted modified versions of these measures, to highlight
the advantage of the spatially adaptive model.

In all the tests the blurred images are distortions of the aforementioned
four images, shown in Figure 1. These distorted images are obtained by
using known blur operators. We have chosen two different types of blur
kernels (see Figure 2). One simulates motion blur, of length P pixels at an
angle ρ (in the experiments ρ = 0). The other simulates out-of-focus blur and
is characterized by a disk-shaped kernel, denoted by ϕ, of radius R pixels,
such that ϕ(x) = 1/πR2, if ‖x‖ < R and ϕ(x) = 0 otherwise.
Hereafter we always denote by P the number of pixels of a motion kernel
and by R the radius in pixels of an out-of-focus kernel. Large P or R will
lead to more blurred images.

5.1. Quality measures. For evaluating the quality of the results we have
used the following two measures: Signal-to-noise ratio (SNR) and Signal-to-
noise ratio of the Gradient (SNRG). SNR is defined in decibels as the ratio of
the average power of a signal Psignal (meaningful information) to the average

power of background noise Pnoise (unwanted signal) (see [17]):

SNR = 10 log10

(
Psignal

Pnoise

)
.

Generally, a large SNR indicates that the image reconstruction is of high
quality. Likewise we define now SNRG (in decibels) as the ratio of the average
power of gradient signal PGsignal (meaningful gradient) to the average power
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of background noise in gradient PGnoise (unwanted gradient):

SNRG = 10 log10

(
PGsignal

PGnoise

)
.

Generally, a large SNRG indicates that the image reconstruction is of high
quality.

To evaluate the quality of the reconstruction in the edges, we have modified
the aforementioned measures by giving more weight to the edge pixels. The
logic that we use here is similar to the one employed, for different purposes
and meaning, in image processing areas (see e.g. [14, 15]). To be more
precise, let β be a non-negative function such that ‖β‖L1(Ω) = 1, hereafter
referred as the weight. For a grayscale image u, we set the weight β to be
equal to βu where

βu(x) =
1

‖∇u‖2
∇u(x)> · ∇u(x), x ∈ Ω.

Clearly this weight privileges edge pixels and is almost zero in flat or homoge-
neous regions of the image. Then, the weighted SNR (WSNR) and weighted
SNRG (WSNRG), are defined by, respectively

WSNR = 10 log10

(
WPsignal

WPnoise

)
and

WSNRG = 10 log10

(
WPGsignal

WPGnoise

)
,

where in these fractions the weight β is involved.

5.2. Evaluation of the Modified Non-Blind Model. For these first
tests, we consider the two scalar images displayed in the first row of Figure
1. The goal is to compare the results obtained with the non-blind deblurring
algorithm NBDA, for the spatially adaptive case (when the parameter wu is
active and defined by (3)), and for the non-adaptive case (when wu = 1). The
results obtained for the top left and right images in Figure 1 are displayed
in Tables 1 and 2, respectively. The rows (in), (sa), and (na) correspond,
respectively, to the values of the measures for the input blurred image (in),
the recovered images obtained with the spatially adaptive (sa) non-blind al-
gorithm, and the non-adaptive (na) non-blind algorithm, respectively. These
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Motion Blur Out-of-Focus Blur
R=2 R=3 R=4 R=5 R=6 P=3 P=5 P=7 P=9 P=11

SNR
(in) 37.13 34.58 33.03 31.91 31.02 33.70 31.67 30.34 29.33 28.51
(sa) 82.30 74.12 70.56 64.94 69.60 58.79 48.16 43.32 40.45 35.58
(na) 81.25 73.44 70.05 64.72 69.12 58.09 47.63 42.87 40.00 35.40

SNRG
(in) 9.49 5.49 4.55 4.12 3.86 5.26 2.86 1.96 1.49 1.20
(sa) 52.25 45.32 43.82 37.34 41.55 26.01 15.22 10.50 7.68 2.80
(na) 51.18 44.65 43.26 37.09 41.00 25.35 14.75 10.10 7.32 2.76

WSNR
(in) 21.86 20.27 19.66 19.34 19.13 18.60 17.37 16.81 16.49 16.28
(sa) 79.26 72.00 66.39 63.31 66.57 51.18 41.91 36.55 32.91 30.28
(na) 77.96 70.83 65.39 62.50 65.11 50.27 41.22 35.75 32.04 29.36

WSNRG
(in) 12.43 7.38 5.88 5.14 4.70 7.52 4.50 3.19 2.46 2.00
(sa) 69.07 62.86 60.42 59.02 58.17 46.87 37.81 32.36 28.27 26.07
(na) 67.68 61.21 58.46 57.26 55.41 45.51 36.67 30.97 26.84 24.39

Table 1. Quality measure values for the top left image in Figure 1.

Motion Blur Out-of-Focus Blur
R=2 R=3 R=4 R=5 R=6 P=3 P=5 P=7 P=9 P=11

SNR
(in) 26.72 23.12 21.06 19.57 18.38 23.71 21.45 19.92 18.69 17.65
(sa) 59.38 54.96 53.10 51.24 50.10 37.87 33.14 31.50 29.90 27.71
(na) 58.68 54.25 52.34 50.56 49.39 37.45 32.83 31.15 29.55 27.45

SNRG
(in) 7.48 3.62 2.34 1.72 1.38 4.12 2.50 1.83 1.44 1.16
(sa) 39.62 36.45 35.65 33.22 32.36 18.03 13.87 11.88 10.13 7.87
(na) 38.87 35.64 34.75 32.29 31.32 17.54 13.49 11.46 9.72 7.60

WSNR
(in) 17.60 14.96 13.77 13.03 12.51 15.34 13.85 13.08 12.54 12.10
(sa) 58.76 55.37 53.37 51.46 49.35 33.34 27.96 26.14 24.14 22.81
(na) 57.95 54.40 52.43 50.48 48.27 32.73 27.49 25.60 23.60 22.24

WSNRG
(in) 8.01 3.93 2.49 1.82 1.46 4.36 2.60 1.86 1.44 1.15
(sa) 50.08 47.66 46.20 43.72 42.04 24.25 19.44 17.41 15.26 13.64
(na) 49.16 46.40 44.90 42.26 40.40 23.44 18.72 16.57 14.38 12.71

Table 2. Quality measure values for the top right image in Fig-
ure 1.

results confirm that the spatially adaptive approach improves the quality of
the restored image.

Moreover, several quantities involving the weighted or non-weighted qual-
ity measures of Section 5.1, can be defined for comparing the values of the
weighted measures with those corresponding to the normal (i.e. non-weighted
or global) measures, and in this way to quantify the advantage of using a spa-
tially adaptive model. For example, one can compute

Mout −Min, (7)
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Figure 3. Comparison of the improvement of the reconstructed
synthetic image, in the edge pixels relatively to the reconstruction
in the whole domain, for the spatially adaptive method. The
curves represent the quantities defined by (8) on the left column
and by (9) on the right column (the blue color corresponds to the
quantities involving the weighted measures whereas the green one
to the normal measures).

where M is one of the quality measures SNR, SNRG, WSNR, or WSNRG
of Section 5.1. The lower subscripts indicate that the measure is taken from
the out ∈ {sa, na} (the non-blind spatially adaptive model (sa) and non-
adaptive one (na)) and the input blurred image (in). The bigger (7) is, the
better is the reconstructed image.

Figures 3 and 4 exhibit the curves obtained with the quantities (weighted,
denoted by W, and normal)

WSNRsa −WSNRin and SNRsa − SNRin (8)

and

WSNRGsa −WSNRGin and SNRGsa − SNRGin (9)

based on the results of Tables 1 and 2, respectively. The quantities (8) and
(9) compute the improvement of the spatially adaptive method in terms
of the weighted WSNR and WSNRG measures and those of the normal



SPATIALLY ADAPTIVE TV DEBLURRING WITH SPLIT BREGMAN TECHNIQUE 15

Figure 4. Comparison of the improvement of the reconstructed
standard test image, in the edge pixels relatively to the recon-
struction in the whole domain, for the spatially adaptive method.
The curves represent the quantities defined by (8) on the left col-
umn and by (9) on the right column (the green color corresponds
to the quantities involving the weighted measures whereas the
blue one to the normal measures)

(global) SNR and SNRG measures. The Figures 3 and 4 clearly show that
the weighted measure values are higher than the values of the normal mea-
sures. So the weighted metrics are appropriate to quantify the improvement
obtained with the spatially adaptive approach. Consequently this means
that at the edge pixels the image reconstruction is better with the spatially
adaptive approach.

Likewise, to analyze the outputs, and compare the improvement of the
spatially adaptive approach versus the non-adaptive one, we can also compute
the following quantity

(WMsa −WMin)− (WMna −WMin)

(Msa −Min)− (Mna −Min)
=

WMsa −WMna

Msa −Mna

,

where M is SNR or SNRG. More precisely

WSNRsa −WSNRna

SNRsa − SNRna
and

WSNRGsa −WSNRGna

SNRGsa − SNRGna
. (10)
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Figure 5. Evaluation of the modified non-blind deblurring
method: comparison of the relative improvement of the spatially
adaptive approach on the non-adaptive one. First and second
rows correspond to the synthetic image and the third and fourth
rows to the standard test image. Curves for the left quantity in
(10) are displayed in the first column, and the curves for the right
quantity displayed in (10) are shown in the second column.



SPATIALLY ADAPTIVE TV DEBLURRING WITH SPLIT BREGMAN TECHNIQUE 17

Similarly to (8) and (9), the quantities (10) evaluate the relative improvement
of the difference of the weighted measures, for the spatially adaptive and non-
adaptive methods, with respect to the difference of the global measures for
the spatially adaptive and non-adaptive methods.

The Figure 5 exhibits the results obtained with (10), and using the outputs
displayed in Tables 1 - 2. It demonstrates the advantage of the spatial ap-
proach (in fact in all the cases the curves are above the horizontal line which
means no improvement) and the suitability of the weighted measures. The
first and second rows in Figure 5 correspond to the results of Table 1 and
the third and fourth rows to those of Table 2. The first column in Figure 5
shows the curves for the left quantity in (10), the second column displays the
curves for the right quantity represented in (10).

5.3. Evaluation of the Modified Blind Model. In these second tests we
evaluate the blind deconvolution deblurring algorithm (BDA) by comparing
its performance with the method proposed by Perrone et al. [26]. We have
selected this state-of-the-art method because its affinities with our blind de-
blurring method, the differences with respect to the solving technique, and
because of the crucial difference (it is not spatially adaptive like the method
we are proposing in this paper), that is :

• It is also a blind deconvolution model regularized by total variation
(TV).
• Like our method, it exploits the benefit of alternating between non-

blind and blind procedures.
• It uses a steepest decent procedure, while our proposed model is based

on FFT (fast Fourier Transform).
• Unlike our method, it does not include any spatially adaptive param-

eter while our approach is spatially adaptive.

Figure 6 shows the results of our modified blind deblurring method (spatial
adaptive) applied to the medical image MI and the EO image, as well as
the results obtained with the method proposed by Perrone et al. [26], for
comparison. We have used the suggested parameters indicated in Perrone
et al. [26] as well as the implementation of a pyramid scheme (the image u
and the blur ϕ are down-sampled until the latter has the size 3 × 3 pixels;
then, for the lowest scale, the algorithm is executed, and the up-sampled (or
down-sampled) results are used as initializations for the following scale).
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Figure 6. First column (form top to bottom): MI image cor-
rupted by an out-of-focus blur with radius R=5 (right), the re-
covered image with the proposed BDA method (using αϕ = 10−5,
λϕ = 4 × 10−3, αu = 5 × 106, λu = 0.6) and with the method
by Perrone et al. [26]. Second column (form top to bottom): EO
image blurred by an out-of-focus blur with radius R=3, the re-
covered image by the proposed BDA method (using αϕ = 10−5,
λϕ = 4× 10−3, αu = 1.7× 106, λu = 1) and with the method by
Perrone et al. [26].

The results, corresponding to Figure 6, in terms of the previously defined
standard measures and modified weighted versions, are reported in Table 3,
where the columns are organized as follows: the first column exhibits the fig-
ure names, the second column the image names and the third to sixth columns
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SNR SNRG WSNR WSNRG

MI
Input 29.01 1.71 11.36 1.74
Proposed 37.68 8.70 26.54 19.50
Perrone et al. 33.60 4.44 15.28 8.70

EO
Input 22.11 1.32 16.53 1.66
Proposed 35.47 14.50 33.65 22.03
Perrone et al. 24.75 3.44 19.77 5.98

Table 3. Quality measures for MI and EO images

display the values of the quality (standard/global and weighted/local) mea-
sures: SNR, SNRG, WSNR and WSNRG.

UAV imagery is at an increasing use in remote sensing community due to its
high ground resolution and good spectral resolution. To achieve this UAVs
flew at low flight altitudes and are equipped with small height and high-
resolution cameras. However due to the camera movement during image
acquisition UAV imagery is often contaminated with motion blur. So in the
next experiments, we have considered the EO image, blurred it with several
motion blur kernels, such that P= 17, 15, 13, 11, 9 and 7 pixels. Then we
have applied the deblurring algorithm described at the end of Section 4.2.
We set the parameters to be

in the BDA Algorithm (first iterate)
αu = 100 λu = 4 αϕ = 10−5 λϕ = 4× 10−1,

in the NBDA Algorithm (first iterate)
αu = 2× 103 λu = 7,

in the BDA Algorithm (second iterate)
αu = 105 λu = 1 αϕ = 10−4 λϕ = 4× 10−1,

in the NBDA Algorithm (second iterate)
αu = 7× 104 λu = 6.

The corresponding results are displayed in Table 4 and show that the pro-
posed method performs better than the Perrone et al. method [26]. The
organization of Table 4 is the same that was explained for Table 3, except
that now the first column refers to the value of the motion blur pixel P .

Finally, Figure 7 shows the improvement obtained with our blind deblurring
(spatially adaptive) model, for the EO image, by using appropriate quantities
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SNR SNRG WSNR WSNRG

P=17
Input 19.14 0.53 14.25 0.63
Proposed 26.63 8.85 24.00 14.32
Perrone et al. 23.37 3.22 17.75 5.01

P=15
Input 19.59 0.63 14.55 0.74
Proposed 28.90 10.35 26.08 15.81
Perrone et al. 24.42 4.08 19.26 6.28

P=13
Input 20.13 0.77 14.93 0.90
Proposed 30.15 11.15 27.50 17.26
Perrone et al. 24.89 4.41 19.15 6.84

P=11
Input 20.77 0.97 15.40 1.12
Proposed 33.26 13.28 30.76 19.49
Perrone et al. 25.69 5.05 19.99 7.78

P=9
Input 21.60 1.25 16.04 1.47
Proposed 33.47 13.59 30.68 19.10
Perrone et al. 27.01 6.31 22.34 9.83

P=7
Input 22.69 1.75 16.97 2.14
Proposed 37.49 16.49 35.96 24.03
Perrone et al. 24.59 3.96 16.35 7.38

Table 4. Evaluation measures for the EO image.

involving the weighted and normal measures, and based on the outputs shown
in Table 4. In Figure 7 these outputs are analysed by computing the quantity

Msa −Min

Mtv −Min
, (11)

where the quality measure M is SNR or WSNR, and the lower subscripts
indicate that the measure is taken from the output (of the proposed method
(sa) or Perrone et al. method (tv)) or from the input blurred image (in).
More exactly, in Figure 7 we use

WSNRsa −WSNRin

WSNRtv −WSNRin
and

SNRsa − SNRin

SNRtv − SNRin
. (12)

The quantities (12) (weighted and normal) evaluate the relative improvement
of the proposed blind deblurring (spatially adaptive) method with respect
to the Perrone et al. method [26]. From Figure 7, we conclude that the
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Figure 7. Evaluation of the modified blind deblurring model
for the EO image: comparison of the improvement with respect
to the Perrone et al. method [26], based on the outputs of Table
4 and using the quantities defined in (12).

proposed method recovers a better image compared to the image obtained
with Perrone et al. method [26] and with a significant improvement.

We remark that we have also done the assessment, of the performance of all
the results reported in this section, with other evaluation metrics different
from SNR and GNR. Namely, we have used PSNR (peak signal to noise
ratio) and PSNRG (peak signal to noise ratio of the gradient) and defined
the corresponding weighted measures, applying the same weight introduced
before for the weighted measures WSNR and WSNRG. However, the results
were more or less the same as the reported results. Finally, we also point out
that the numerical tests also show that the quality of the results depend on
the parameters involved in the definition of the model. For instance, αϕ and
λϕ should be relatively small compared to λu, and λϕ should be bigger than
αϕ. On the other hand the size of αu should be relatively big compared to
λu. Thus the choice of these parameter requires a careful decision. This is an
issue that we did not analyse in the present paper but we intend to address
as future work.

6. Conclusion
We have presented a modified version for non-blind and blind deblurring

models based on the local information. More precisely, in these new mod-
els, there is a weighted Total Variation (TV) regularization term, that is
constrained by the spatially adaptive information. The split Bregman op-
timization algorithm is employed to solve the proposed models. To speed
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up the discrete deconvolution process fast Fourier transform is used. The
numerical experiments demonstrate the good performance of the proposed
models, that is evaluated in terms of standard and appropriate weighted qual-
ity metrics. In particular the appropriate weighted metrics, proposed in this
paper, clearly demonstrate the superiority of the spatially adaptive deblur-
ring models. However, the proposed models depend on several parameters,
that are fixed manually. In the future, we intend to address these parameter
related issues and in particular to perform a deep study to find the optimal
parameters, in an automatic way.
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