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TOWARDS THE Cp′-REGULARITY CONJECTURE
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Abstract: We establish a new oscillation estimate for solutions of nonlinear partial
differential equations of degenerate elliptic type, which yields a precise control on
the growth rate of solutions near their set of critical points. We then apply this
new tool in the investigation of a longstanding conjecture which inquires whether
solutions of the degenerate p-Poisson equation with a bounded source are locally of

class Cp′ = C
1, 1

p−1 .
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1. Introduction
In this paper we investigate sharp C1,α-regularity estimates for solutions of

the degenerate elliptic equation, with a bounded source,

−∆pu = f(x) ∈ L∞(B1), p > 2. (1.1)

Establishing optimal regularity estimates is quite often a delicate matter and,
in particular, f(x) ∈ L∞ is known to be a borderline condition for regularity.
In the linear, uniformly elliptic case p = 2, solutions of

−∆u = f(x) ∈ L∞(B1)

are locally in C1,α, for every α ∈ (0, 1), but may fail to be in C1,1. Obtaining
such an estimate in specific situations, like free boundary problems, often
involves a deep and fine analysis.

In the degenerate setting p > 2, the smoothing effects of the operator are
far less efficient. Nonetheless, it is well established, see for instance [4, 19],
that a weak solution to (1.1) is locally of class C1,β, for some exponent β > 0
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depending, in principle, on dimension and on p. If p′ denotes the conjugate
of p, i.e.,

1

p
+

1

p′
= 1,

the radial symmetric example

−∆p (cp|x|p′) = 1 (1.2)

sets the limits to the optimal regularity and gives rise to the following well
known open problem among experts in the field.

Conjecture (Cp′-regularity conjecture). Solutions to (1.1) are locally of

class C1, 1
p−1 = Cp′, and

‖u‖Cp′(B1/2) ≤Mp,d

{
‖f‖

1
p−1
L∞(B1) + ‖u‖L∞(B1)

}
,

for a constant Mp,d > 1 independent of u.

This problem touches very subtle issues in regularity theory. As mentioned
above, the conjecture is not true in the linear, uniformly elliptic setting,
p = 2, where merely C1,LogLip estimates are possible. Notice further that a
positive answer implies that |x|p′ — a function whose p-laplacian is constant
(real analytic) — is the least regular among all functions whose p-laplacian
is bounded. This is, at first sight, counterintuitive.

While a full answer to this question still seems out of reach, in this article
we provide a new oscillation estimate (Theorem 4.3) which reveals some
essential nuances of the puzzle. This novel tool, which has some other far-
reaching applications, gives a precise control on the oscillation of a solution
to (1.1) in terms of the magnitude of its gradient,

sup
Br

|u(x)− u(0)| . r1+γ + |∇u(0)|r, (1.3)

for a maximum exponent γ, to be better explained when time comes. Such
an estimate allows us to bypass one of the key difficulties in the analysis of
the Cp′-regularity conjecture, namely the fact that if u solves (1.1) and ` is
an affine function, then no PDE is a priori satisfied by (u − `). By means
of geometric iteration, estimate (1.3) yields an improved C1,α-regularity for
solutions to the p-Poisson equation (1.1) which is intimately related to the
Cp′-regularity conjecture.
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The general analysis we develop in this article confirms the conjecture in
a number of meaningful cases. In particular, we prove the conjecture is true
for the class of radially symmetric solutions of the p-Poisson equation. We
also show that if u is a solution of (1.1) with no saddle critical points, then
u is locally Cp′-smooth.

The paper is organized as follows. In section 2 we describe the mathe-
matical setup used in the paper and announce the main regularity theorem
to be proven, Theorem 2.2. In section 3 we introduce C1- small correctors
that link the regularity theory for (1.1) to that of p-harmonic functions. The
key, new oscillation estimate is delivered in section 4, and in section 5 we
conclude the proof of the main theorem. Applications of the general analysis
are discussed in section 6.

2. Mathematical setup
As usual, hereafter in this paper, d ≥ 1 denotes the dimension of the

Euclidian space Rd. Given a real number p > 2, we consider the functional
set

Ξ(p, d) :=
{
u ∈ W 1,p(B1/2)

∣∣ ∆pu = 0 in B1/2

}
,

where ∆p denotes the p-laplacian operator and the equation is interpreted in
the weak sense. In order to announce our main result, we need a definition.

Definition 2.1. Given a number 0 < α < 1 and t ∈ (0, 1/2), we define

ωα(t) := sup

{
|u(x)− [u(0) +∇u(0) · x]|

‖u‖L∞(B1) · t1+α

∣∣ x ∈ Bt and u ∈ Ξ(p, d)

}
.

Finally, we set

αM := sup
{
α ∈ (0, 1)

∣∣ inf
t
ωα(t) < 1

}
. (2.1)

Note that the above definition does not restrict the analysis to the origin; it
rather allows for a local inspection. It is well known, see for instance [20], that
there exists an exponent 0 < α(d, p) < 1, and a constant C = C(d, p) > 1,
such that

|u(x)− [u(0) +∇u(0) · x]| ≤ C · ‖u‖L∞(B1) · |x|1+α(d,p),

for any u ∈ Ξ(d, p) and all x ∈ B1/4. Hence, it follows easily that

αM ≥ α(d, p) > 0.
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The above setup, together with the new oscillation control to be proven in
section 4, fosters a friendly platform to treat common issues related to sharp
regularity estimates for the p-Poisson equation. In practical applications,
it so often happens that further information is known about the solution.
If such a property P is closed under the C1 topology, the analysis we shall
develop in this paper allows us to impose it to the tangential equation, re-
stricting henceforth the tangential space,

ΞP(p, d) :=
{
u ∈ W 1,p(B1/2)

∣∣ u satisfies P and ∆pu = 0
}
,

which ultimately increases the value of αM . This powerful insight will be
explored in section 6. If no further information is a priori known, our main
result reads as follows.

Theorem 2.2. Let u ∈ W 1,p(B1) be a weak solution of −∆pu = f(x), with
f ∈ L∞(B1) and γ ∈ (0, 1

p−1 ] ∩ (0, αM). Then u ∈ C1+γ(B1/2) and

‖u‖C1+γ(B1/2) ≤ Cd,p,γ

(
‖f‖

1
p−1
L∞(B1) + ‖u‖L∞(B1)

)
,

where, Cd,p,γ > 1 depends only on dimension, p and γ.

3. Existence of C1-small correctors
In this section, we show that if u is a normalized solution of

−∆pu = f(x),

and ‖f‖∞ � 1, then we can find a C1 corrector ξ, with ‖ξ‖C1 � 1, such that
u + ξ is p-harmonic. This will allow us to frame the Cp′ conjecture into the
formalism of the so called geometric tangential analysis, e.g. [5], [1, 2] and
[13, 14, 15, 16, 17, 18]. Here is the precise statement.

Lemma 3.1. Let u ∈ W 1,p(B1) be a weak solution of −∆pu = f in B1, with
‖u‖∞ ≤ 1. Given ε > 0, there exists δ = δ(p, d, ε) > 0 such that if ‖f‖∞ ≤ δ
then we can find a corrector ξ ∈ C1(B1/2), with

|ξ(x)| ≤ ε and |∇ξ(x)| ≤ ε, in B1/2 (3.1)

such that

−∆p(u+ ξ) = 0 in B1/2. (3.2)
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Proof : Suppose the result does not hold. We can then find ε0 > 0 and
sequences of functions (uj) and (fj) in W 1,p(B1) and L∞(B1), respectively,
such that

−∆puj = fj in B1; ‖uj‖∞ ≤ 1; ‖fj‖∞ ≤ 1/j

but, nonetheless, for every ξ ∈ C1(B1/2) such that

−∆p(uj + ξ) = 0 in B1/2,

we have either |ξ(x0)| > ε0 or |∇ξ(x0)| > ε0, for a certain x0 ∈ B1/2.
From classical estimates for the p-Poisson equation, we can extract a sub-

sequence, such that, upon relabelling,

uj −→ u∞

in C1(B1/2) as j →∞. Passing to the limit in the pde, we obtain

−∆pu∞ = 0 in B1/2, with ‖u∞‖∞ ≤ 1.

Now, let ξj := u∞ − uj. For j∗ � 1, we have

−∆p(uj∗ + ξj∗) = −∆pu∞ = 0 in B1/2

and

|ξj∗(x)| ≤ ε0 and |∇ξj∗(x)| ≤ ε0, ∀x ∈ B1/2,

thus reaching a contradiction.

We conclude this section by commenting that in order to prove Theorem
2.2 it is enough to establish it for normalized solutions with small RHS, i.e.,
with ‖f‖∞ ≤ δ0. Indeed, if u verifies −∆pu = f(x), with f ∈ L∞, then the
function

v(x) :=
u(θx)

‖u‖∞
is obviously normalized and

−∆pv =
θp

‖u‖p−1
∞

f(θx).

Thus, choosing

θ :=
p

√
δ0‖u‖p−1

∞

‖f‖∞
,

v satisfies (1.1), with small RHS. Once Theorem 2.2 is proven for v, it im-
mediately gives the corresponding estimate for u.
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4. Analysis on the critical set
In this section, based on an iterative reasoning, we establish a key tool that

allows us to prove the main result of this work.
Hereafter we fix a number

γ ∈
(

0,
1

p− 1

]
∩ (0, αM)

and denote by µγ the average between inf
t∈(0, 12 )

ωγ(t) and 1, that is:

µγ :=

1 + inf
t∈(0, 12 )

ωγ(t)

2
< 1. (4.1)

The following result is the first step in the iteration.

Lemma 4.1. There exists 0 < λ0 < 1/2 and δ0 > 0 such that if ‖f‖∞ ≤ δ0

and u ∈ W 1,p(B1) is a weak solution of −∆pu = f in B1, with ‖u‖∞ ≤ 1,
then

sup
x∈Bλ0

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ λ0

1+γ.

Proof : Take ε > 0 to be fixed later, apply the previous lemma to find δ0 and,
under the smallness assumption on f , a respective corrector ξ satisfying (3.1)
and (3.2). From construction, there exists λ0 < 1/2, such that ωγ(λ0) < µγ,
and, since (u+ ξ) is p-harmonic in B1/2, we can estimate

sup
Bλ0

|u+ ξ| ≤ µγ(1 + ε)λ1+γ
0 .

We further estimate in Bλ0:

|u(x)− [u(0) +∇u(0) · x]| ≤ |(u+ ξ)(x)− [(u+ ξ)(0) +∇(u+ ξ)(0) · x]|
+|ξ(x)|+ |ξ(0)|+ |∇ξ(0) · x|

≤ µγ(1 + ε)λ1+γ
0 + 3ε.

Finally, by continuity, we can choose ε universally small such that

µγ(1 + ε)λ1+γ
0 + 3ε = λ1+γ

0 ,

which determines the smallness assumption on ‖f‖∞ – the constant δ0 > 0
in the statement of the current lemma – through the conclusion of Lemma
3.1, and the proof is complete.
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The conclusion of Lemma 4.1 does not, per se, allow an iteration since no
obvious PDE is satisfied by u+ `, when ` is an affine function. Nonetheless,
it provides the following information on the oscillation of u in Bλ0.

Corollary 4.2. Under the assumptions of the previous lemma,

sup
x∈Bλ0

|u(x)− u(0)| ≤ λ0
1+γ + |∇u(0)|λ0.

Proof : This is an immediate application of the triangular inequality.

The idea is now to iterate Corollary 4.2 in dyadic balls, keeping a precise
track on the magnitude of the influence of |∇u(0)|.

Theorem 4.3. Under the same assumptions of Lemma 4.1, there exists a
constant C > 1, depending only on p and γ, such that

sup
x∈Br
|u(x)− u(0)| ≤ Cr1+γ

(
1 + |∇u(0)| r−γ

)
,

holds for all r > 0.

Proof : We proceed by geometric iteration. Consider the universal constants
λ0 and δ0 obtained in Lemma 4.1 and let

v(x) =
u(λ0x)− u(0)

λ0
1+γ + |∇u(0)|λ0

, x ∈ B1. (4.2)

We have ‖v‖∞ ≤ 1, v(0) = 0, and

∇v(0) =
λ0

λ0
1+γ + |∇u(0)|λ0

∇u(0).

Also, one easily estimates

|∆pv| =
λp0(

λ0
1+γ + |∇u(0)|λ0

)p−1 |f(λ0x)| ≤ λp0

λ0
(1+γ)(p−1)

|f(λ0x)| ≤ δ0,

which entitles v to Lemma 4.1. Thus

sup
x∈Bλ0

|v(x)− v(0)| ≤ λ0
1+γ + |∇v(0)|λ0,

which reads

sup
x∈Bλ0

∣∣∣∣ u(λ0x)− u(0)

λ0
1+γ + |∇u(0)|λ0

∣∣∣∣ ≤ λ0
1+γ +

∣∣∣∣ λ0

λ0
1+γ + |∇u(0)|λ0

∇u(0)

∣∣∣∣λ0,
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and hence

sup
x∈Bλ20

|u(x)− u(0)| ≤ λ0
1+γ
[
λ0

1+γ + |∇u(0)|λ0

]
+ |∇u(0)|λ2

0.

In the sequel, we define

ak := sup
x∈B

λk0

|u(x)− u(0)|,

and set

bk :=
ak

λ
k(1+γ)
0

.

Iterating the previous reasoning, we obtain the recurrence law

ak+1 ≤ λ0
1+γak + |∇u(0)|λk+1

0 .

Consequently, we estimate

bk+1 =
ak+1

λ
(k+1)(1+γ)
0

≤ λ0
1+γak + |∇u(0)|λk+1

0

λ
(k+1)(1+γ)
0

= bk + |∇u(0)|λ−(k+1)γ
0 .

Now, given 0 < r � λ0, let k ∈ N be such that λk+1
0 < r ≤ λk0. Then

sup
x∈Br

|u(x)− u(0)|
r1+γ

≤ sup
x∈B

λk0

|u(x)− u(0)|
(λk+1

0 )1+γ
=

bk

λ1+γ
0

≤
b0 + |∇u(0)|

k∑
i=1

λ−γi0

λ1+γ
0

=
a0 + |∇u(0)|λ−γ0

λ−γk0 −1

λ−γ0 −1

λ1+γ
0

≤ 2 + C(λ0, γ) |∇u(0)| r−γ

≤ C
(
1 + |∇u(0)| r−γ

)
,

as desired. Observe that, γ being fixed, the constant λ0 > 0 is universal.

In accordance to [15], Theorem 4.3 provides the aimed regularity along the
set of critical points of u, |∇u|−1(0). In fact, when |∇u(0)| ≤ rγ, Theorem
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4.3 gives

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ sup

x∈Br
|u(x)− u(0)|+ |∇u(0)| r

≤ (C + 1)r1+γ.

In the next section we show how Theorem 4.3 can be used in its full strength
to yield the aimed regularity at any point, regardless of the value of |∇u|; it
will be a softer analysis.

5. Analysis on the set of non-degenerate points
We now analyze the oscillation decay around points where the gradient is

large. Recall our ultimate goal is to show that

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ C r1+γ, ∀ 0 < r � 1.

For large values of |∇u|, the operator is uniformly elliptic and hence stronger
estimates are available. Assume then |∇u(0)| > rγ, define µ := |∇u(0)|1/γ
and take

w(x) :=
u(µx)− u(0)

µ1+γ
.

Clearly

w(0) = 0, |∇w(0)| = 1 and |∆pw| ≤ |f(µx)| .
Moreover, from Theorem 4.3, it follows that

sup
x∈B1

|w(x)| = sup
x∈Bµ

|u(x)− u(0)|
µ1+γ

≤ C,

since µγ = |∇u(0)|. From classical C1,β regularity estimates, there exists a
radius ρ0, depending only on the data, such that

|∇w(x)| ≥ 1

2
, ∀x ∈ Bρ0.

This implies that, in Bρ0, w solves a uniformly elliptic equation. In particular,
we have

w ∈ C1,β(Bρ0), for some γ ≤ β < 1.

As an immediate consequence,

sup
x∈Br

∣∣∣w(x)−∇w(0) · x
∣∣∣ ≤ C r1+β, ∀ 0 < r <

ρ0

2
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which, in terms of u, reads

sup
x∈Br

∣∣∣u(µx)− u(0)

µ1+γ
− µ−γ∇u(0) · x

∣∣∣ ≤ C r1+β.

Since γ ≤ β, we conclude

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ C r1+γ, ∀ 0 < r < µ

ρ0

2
.

Finally, for µρ02 ≤ r < µ, we have

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ sup

x∈Bµ

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣

≤ sup
x∈Bµ
|u(x)− u(0)|+ |∇u(0)|µ

≤ (C + 1)µ1+γ

≤ C

(
2r

ρ0

)1+γ

= Cr1+γ.

In view of the reduction discussed at the end of section 3, the proof of
Theorem 2.2 is complete. �

6. Special scenarios
Theorem 2.2 is linked to the Cp′-regularity conjecture in the following way:

“if αM > 1
p−1 , then any function whose p-laplacian is bounded is of class

Cp′, and the conjecture is verified.” While it seems hard to verify that the
strict inequality holds in general, in this section we explore some particular
scenarios in which further information can be inferred.

6.1. Low dimensions. We start off by observing that p-harmonic functions
in the real line are affine functions, thus in 1d, αM = 1 and hence Theorem
2.2 provides a proof of the Cp′-regularity conjecture in the line — a result
that could perhaps be established by softer tools. In any case, for the sake
of completeness, we write this conclusion as a proposition.

Proposition 6.1. The Cp′-regularity conjecture holds true in the real line.
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Such result becomes more appealing when applied to the analysis of d-
dimensional problems which carry some sort of symmetry. By way of exam-
ple, we mention here the theory of (degenerate) phase transition problems,
namely entire solutions of

∆pu = (1− u2)p, (6.1)

satisfying ∂xdu > 0 and lim
xd→±∞

u(·, xd) = ±1. Clearly, by monotonicity in the

xd-variable, any solution to (6.1) is smooth; however, as no uniform lower
bound on ∂xdu is granted, such smoothness could deteriorate. Notwithstand-
ing, by a striking result from [12], if d ≤ 8 or {u = 0} has at most linear
growth at infinity, then level sets are hyperplanes and thus it follows by
the results established in the current paper that we can locally bound the
Cp′-norm of u uniformly, i.e., independently of the inf ∂xdu.

Next, for flatland problems, d = 2, more can be said about the underlying
regularity theory for the p-Poisson equation. It is well known, see [3], that
the complex gradient of a p-harmonic function in 2d is K-quasiregular, for

K = K(p) =
1

2

[
(p− 1) +

1

p− 1

]
.

In particular, if u is p-harmonic in the unit disk D1 ⊂ R2, there exists a
constant C = C(p) such that

‖u‖
C

1+ 1
p−1 (D1/2)

≤ C‖u‖L∞(D1).

Hence, in dimension two, αM ≥ 1
p−1 and thus a direct application of Theorem

2.2 yields an asymptotic version of the Cp′ regularity conjecture, namely a
solution to the p-Poisson equation (1.1) is locally of class Cp′− (i.e., belongs
to Cp′−ε, for every ε > 0). We write up this conclusion as a proposition –
compare with the result from [9] and see also [8].

Proposition 6.2. Let p > 2 and u ∈ W 1,p(D1) be a two-dimensional weak
solution of −∆pu = f(x), with f ∈ L∞(D1). Given any number 0 < γ < 1

p−1,

there exists a constant C = C(p, γ) > 1 such that

‖u‖C1+γ(D1/2) ≤ C

(
‖f‖

1
p−1
L∞(D1) + ‖u‖L∞(D1)

)
.

By means of a hodograph transformation, Iwaniec and Manfredi in [7]
give explicit estimates for the Hölder continuity exponent of the gradient
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of p-harmonic functions in the plane which are beyond the threshold 1
p−1 .

Unfortunately, the estimates in [7] are merely qualitative, i.e., no universal
control is provided through their analysis.

Still in the plane, Evans and Savin proved in [6] (see also [11]) that infinity
harmonic functions, i.e., viscosity solutions of

∆∞u := uxixjuxiuxj = 0,

are locally of class C1,γ for some 0 < γ < 1/3. This result also connects to
the Cp′-regularity conjecture. Indeed, within the framework setup in section
2, the Evans-Savin Theorem suggests the possibility of proving that αM is
bounded below, uniformly with respect to p. Once this is confirmed, the
Cp′-regularity conjecture is solved for p � 1. We plan to come back to this
issue in a forthcoming paper.

6.2. Problems with symmetry. Continuing our analysis, in view of the
extremal example mentioned in (1.2), it is only natural to inquire about
problems having radial symmetry. Taking full advantage of our general setup,
the key observation is that the functional set

Ξrad(p, d) :=
{
u ∈ W 1,p(B1/2)

∣∣ ∆pu = 0 and u is bounded and radial
}

contains only constants. Indeed, if u(x) = ϕ(r), then

∆pu = |ϕ′(r)|p−2

{
(p− 1)ϕ′′(r) +

d− 1

r
ϕ′(r)

}
.

Solving the homogeneous ODE, we obtain

ϕ(r) =

{
a+ b · r

1−d
p−1+1 if p 6= d,

a+ b · ln r if p = d,

for constants a, b ∈ R. For d ≥ 2, ϕ is C1 at the origin if, and only if, b = 0.
As a consequence, when restricted to the set of radially symmetric functions,
one has

αrad
M = 1,

and therefore we are able to establish the following version of the Cp′-regu-
larity conjecture for radially symmetric functions.

Theorem 6.3. Let u ∈ W 1,p(B1) be a radially symmetric function whose
p-laplacian is bounded. Then u ∈ Cp′(B1/2), with universal estimates.
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Proof : We start off by revisiting the proof of the existence of C1-small correc-
tors, Lemma 3.1. If we add the extra information that u is radially symmetric
and carry out the compactness argument in the proof, we end up with the
existence of a radially symmetric corrector, ξrad, for which u + ξrad is p-
harmonic, and ‖ξrad‖C1 ≤ ε, provided ‖f‖∞ is small enough. As commented
above, u+ξrad must be constant. Next, we prove the radial version of Lemma
4.1.

Lemma 6.4. Let u ∈ W 1,p(B1) be a radially symmetric weak solution of
−∆pu = f in B1, with ‖u‖∞ ≤ 1. There exists δ0 > 0 such that if ‖f‖∞ ≤ δ0

then

sup
x∈B 1

7

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ (1

7

)p′
.

Proof : For ε > 0 to be fixed later, let ξrad be a radially symmetric corrector
for u with ‖ξrad‖C1 ≤ ε. Since (u+ ξrad) is constant, we can estimate in B1/7,

|u(x)− [u(0) +∇u(0) · x]| ≤ |(u+ ξrad)(x)− [(u+ ξrad)(0)

+∇(u+ ξrad)(0) · x]|
+|ξrad(x)|+ |ξrad(0)|+ |∇ξrad(0) · x|

≤ 3ε.

Finally, we choose ε = 1
3·7p′ , which determines δ0 > 0 – the smallness condition

on ‖f‖∞ –, and the proof is concluded.

We continue the proof of Theorem 6.3 under the assumptions of Lemma
6.4. Note that when u is radially symmetric, then so is

v(x) =
u(1

7x)− u(0)
1

7p′ + |∇u(0)|17
, x ∈ B1.

The triangular inequality applied to Lemma 6.4 assures |v| ≤ 1. As before,
one verifies that

|∆pv| ≤ δ0,

and thus v is also entitled to the conclusion of Lemma 6.4. In summary, we
can carry on with the proof of Theorem 4.3, which ultimately provides the
following oscillation control for u:

sup
x∈Br
|u(x)− u(0)| ≤ Crp′

(
1 + |∇u(0)| r

1
1−p

)
, ∀r > 0. (6.2)
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In particular, this key estimate implies the aimed Cp′ regularity estimate
at critical points and allows for the analysis carried out in section 5, which
finally completes the proof of Theorem 6.3.

6.3. Problems with controlled singular set. In many applications, the
aimed sharp estimate expected from the Cp′-regularity conjecture needs only
to be verified along the set of critical points. This is particularly meaningful
in the theory of free boundary problems. In this section we pursue a general
analysis which in particular gives pointwise Cp′ estimates at local maxima or
local minima of solutions of (1.1).

Definition 6.5. Given a positive number σ > 0, a function ϕ : B1 → R is
said to be a σ-cap at 0 if

sup
Br

|ϕ(x)− ϕ(0)| ≤ C|x|σ,

for a constant C > 0. The infimum among all constants is denoted by [ϕ]σ.

Theorem 6.6. Let u be a bounded solution of −∆pu = f(x) in B1, with
f ∈ L∞(B1). Let ξ0 be an interior point and suppose u can be touched from
below at ξ0 by a p′-cap ϕ. Then u is precisely Cp′ continuous at ξ0, that is,

|u(x)− u(ξ0)| ≤ C|x− ξ0|p′,
for a positive constant C > 0 that depends only on dimension, p, ‖u‖L∞(B1),
‖f‖L∞(B1) and [ϕ]p′.

Theorem 6.6 has an analogous version for points that one can touch from
above by a p′-cap. An immediate consequence is that solutions to p-Poisson
equations are Cp′-regular at any local extremal point, where in fact one can
touch u by a hyperplane. The proof of Theorem 6.6 is based on a flattening
argument, which goes along the lines of the arguments developed in section
4.

Lemma 6.7. Given η > 0, there exists δ > 0, depending only on η and
universal parameters, such that if |v| ≤ 1 in B1 and −∆pv = f(x) in B1,
then

‖f‖L∞(B1) +

(
v(0)− inf

B1

v

)
≤ δ,

implies
osc
B1/2

v ≤ η.
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Proof : Suppose, for the sake of contradiction, that the thesis of the lemma
fails to hold. This means we can find η0 > 0, a sequence of positive numbers
κj → 0, and sequences of functions (vj)j∈N, (fj)j∈N satisfying

a) |vj| ≤ 1, and ‖fj‖L∞(B1) +

(
vj(0)− inf

B1

vj

)
≤ κj;

b) −∆pvj = fj(x) in B1;
c) osc

B1/2

vj ≥ η0.

By compactness, vj converges in the C1-topology to a function v∞ in B1/2

and from stability we conclude that v∞ solves the homogeneous equation

−∆pv∞ = 0, in B1/2.

From a) we immediately conclude v∞ attains its minimum value at 0, and
hence, by the strong maximum principle of Vázquez ([21]), we conclude that
v∞ ≡ v∞(0). This gives a contradiction with c) if we take j � 1. The lemma
is proven.

Proof of Theorem 6.6. With no loss of generality, we can assume ξ0 is the
origin and u(0) = 0. Let ϕ(x) be the p′-cap touching u at 0 from below.
Define v(x) = u(λx). One simply checks that v verifies

−∆pv(x) = λpf(λx).

Owing to Lemma 6.7, we choose λ > 0 such that

2λp‖f‖L∞(B1) ≤ δ?, (6.3)

where δ? > 0 is the closeness number given by Lemma 6.7 when one takes
η = 2−p′. From uniform Lipchitz continuity,

|v(x)| = |u(λx)− u(0)| ≤ C(‖u‖L∞(B1), ‖f‖L∞(B1))λ.

Hence, selecting a smaller λ > 0 if necessary, we can assume |v| ≤ 1, for all
x ∈ B1. Yet by uniform continuity,(

v(0)− inf
B1

v

)
= − inf

Bλ
u

≤ δ?
2
,
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if λ > 0 is once more diminished, if necessary. Finally, v is touched from
below by the p′-cap ϕ̃(x) := ϕ(λx). We can estimate

sup
Br

ϕ̃ ≤ [ϕ]p′λ
p′ · rp′.

Thus, if we take λ > 0 even smaller, if necessary, we can further assume

[ϕ̃]p′ ≤
δ?
2
.

Now, we aim to prove that for any j ∈ N, there holds

osc
B2−j

v(x) ≤ 2−jp′. (6.4)

We argue by finite induction. By our previous selections, Lemma 6.7 gives
the first step in the induction process. Suppose we have verified (6.4) for
j = 1, 2, · · · , k. Define

vk+1(x) := 2kp′ · v(2−kx).

Initially, from the induction process we readily verify that vk+1(0) = 0,
|vk+1| ≤ 1 and

|∆pvk+1| ≤ λp
∣∣f(2−kλx)

∣∣
≤ δ?

2
,

(6.5)

by the decision made in (6.3). Also, from the p′-cap control from below, we
can estimate (

vk+1(0)− inf
B1

vk+1

)
= −2kp′ inf

B2−k
v

≤ −2kp′ inf
B2−k

ϕ

≤ δ?
2
.

We can now apply Lemma 6.7 to vk+1, which yields

osc
B1/2

vk+1(x) = 2kp′ osc
B2−k

v(x) ≤ 2−p′, (6.6)

and the induction chain is complete. Finally, given any 0 < r � 1, let k ∈ N
be such that

2−k−1 < r ≤ 2−k.
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We estimate, defining ρ = λr,

osc
Bρ
u = osc

Br
v

≤ osc
B2−k

v

≤ 2−kp′

≤
(r

2

)p′
≤ 1

(2λ)p′
· ρp′,

and the theorem is proven.
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