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1. Introduction

Actions of a group B on a group X are classically defined as group ho-
momorphisms from B to the group Aut(X) of automorphisms of X. There
is a well known equivalence between group actions and split extensions, ob-
tained via the semidirect product construction. Monoid actions are defined
similarly: an action of a monoid B on a monoid X is a monoid homomor-
phism from B to the monoid End(X) of endomorphisms of X. It is not
difficult to see that these actions do not correspond to all split epimorphisms
of monoids; hence the question of what are the split extensions of monoids
that correspond to such actions arises naturally. Such split extensions were
identified in [11, 6]: they are the so-called Schreier split epimorphisms. A
split epimorphism

A
f

// B
s

oo
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of monoids is a Schreier split epimorphism if every element a ∈ A can be
decomposed uniquely as a = x · sf(a) for some x in the kernel of f .

It turns out that the class of Schreier split epimorphisms has a much bet-
ter behavior than the class of all split epimorphisms of monoids, in the sense
that several homological and algebraic properties of split epimorphisms of
groups are still valid for Schreier split epimorphisms, but not for all split
epimorphisms of monoids. A paradigmatic example is the Split Short Five
Lemma [2, Theorem 4.2]. Another important one is the fact that a Schreier
split epimorphism is the cokernel of its kernel [2, Proposition 2.6]. Other im-
portant properties of Schreier split epimorphisms have been studied in [1, 3],
and extended to other algebraic structures, like semirings and, more gener-
ally, monoids with operations [6].

Other interesting properties appear when we consider Schreier relations.
An internal reflexive relation (i.e. a reflexive relation which is compatible
with the monoid operations) on a monoid A is called a Schreier reflexive
relation [1, 2] if the split epimorphism given by the first projection and the
reflexivity morphism is a Schreier one (see Section 2 below for more details).
It happens that every Schreier reflexive relation is transitive, and it is sym-
metric if and only if the kernel of the first projection is a group [2, Theorem
5.5]. So, Schreier reflexive relations have a property which is typical of all
reflexive relations in Mal’tsev varieties [4].

The notions of Schreier reflexive relation and of Schreier congruence al-
lowed to introduce the one of special Schreier homomorphism [1]. A monoid
homomorphism f : A → B is special Schreier if its kernel congruence is a
Schreier one. A special Schreier homomorphism induces a partial division on
its domain: the division between two elements of A exists if they have the
same image under f (again, see Section 2 below). In particular, the kernel
of a special Schreier homomorphism is a group. Moreover, the Short Five
Lemma holds for special Schreier extensions, i.e. for special Schreier surjec-
tive homomorphisms [1, Proposition 7.2.1].

A special Schreier extension f : A → B with abelian kernel X determines
a monoid action of B on X, as it is explained at the beginning of Section 4.
Then it is a natural question whether there is an abelian group structure on
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the set SExt(B,X, ϕ) of isomorphic classes of special Schreier extensions of
a monoid B by an abelian group X inducing the action ϕ, which generalizes
the classical Baer sum of group extensions. The existence of the Baer sum
for monoids was deduced in [1] by using categorical arguments. An explicit
description of the Baer sum, in terms of factor sets, was then presented in
[7]. This gives an interpretation in terms of extensions of the low dimensional
cohomology theory for monoids described in [8, 9, 10], which was obtained by
generalizing to monoids the classical bar resolution used to compute group
cohomology.

In the present paper, we show that the Nine Lemma holds for special
Schreier extensions (Section 3). We will use this fact in Section 4 to describe a
push forward construction for special Schreier extensions with abelian kernel.
More specifically, given a special Schreier extension f : A → B with abelian
kernel X, inducing the action ϕ of B on X, and a morphism g : X → Y of
abelian groups which is equivariant with respect to the action ϕ and to a given
action ψ of B on Y , we build a special Schreier extension of B by Y which
induces the action ψ and which is universal with respect to all special Schreier
extensions of B (in a sense that will be explained in Theorem 4.1 below).
This will allow us to give, in Section 5, an alternative, functorial description
of the Baer sum of special Schreier extensions with abelian kernel. This new
description is important to give a description of cohomology of monoids which
is independent from the bar resolution. This cohomological interpretation is
material for a future work.

2. Schreier split epimorphisms and special Schreier ex-

tensions

The aim of this section is to recall from [6, 2, 1] the notions of Schreier
split epimorphism, Schreier congruence and special Schreier extension, that
will be used in the rest of the paper.

2.1. Schreier split epimorphisms.

Definition 2.1 ([6], Definition 2.6). A split epimorphism A
f

// B
s

oo of monoids

is said to be a Schreier split epimorphism when, for any a ∈ A, there exists
a unique x in the kernel Ker(f) of f such that a = x · sf(a).
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In other terms, a Schreier split epimorphism is a split epimorphism (A,B, f, s)
equipped with a unique set-theoretical map q : A 99K Ker(f), called the
Schreier retraction of (A,B, f, s), with the property that, for any a ∈ A, we
have:

a = q(a) · sf(a).

The definition of Schreier split epimorphism of monoids was first implicitly
considered in [11], in connection with the notion of Schreier internal category.
In [6] it was extended to a wider class of algebraic structures, called monoids
with operations. Later, in [5], the definition of Schreier split epimorphism was
considered in the wider context of Jónsson-Tarski varieties, i.e. varieties (in
the sense of universal algebra) whose corresponding theories contain a unique
constant 0 and a binary operation + satisfying the equalities 0+x = x+0 = x

for any x. In the present paper, we restrict our attention only to the case of
monoids.

Proposition 2.2 ([2], Proposition 2.4). A split epimorphism (A,B, f, s) is
a Schreier split epimorphism if and only if there exists a set-theoretical map
q : A 99K Ker(f) such that:

q(a) · sf(a) = a

q(x · s(b)) = x

for every a ∈ A, x ∈ Ker(f) and b ∈ B.

As shown in [6, 1], the Schreier split epimorphisms of monoids correspond
to the classical monoid actions: by an action of a monoid B on a monoid X
we mean a monoid homomorphism ϕ : B → End(X), where End(X) is the
monoid of endomorphisms of X. The equivalence is obtained in the following
way (we refer to Section 5.2 in [1] for more details). Given a Schreier split

epimorphism A
f

// B
s

oo with kernel X, the corresponding action ϕ : B →

End(X) is given by
ϕ(b)(x) = q(s(b) · x).

Conversely, given an action ϕ : B → End(X), we can build a Schreier split

epimorphism A
f

// B
s

oo where A is the semidirect product of B and X w.r.t.

ϕ. This is the cartesian product X×B, equipped with the monoid operation
given by:

(x1, b1) · (x2, b2) = (x1 · ϕ(b1)(x2), b1 · b2).
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Proposition 2.3 ([2], Proposition 3.4). Every split epimorphism (A,B, f, s)
such that B is a group is a Schreier split epimorphism.

Proof : It suffices to write any a ∈ A as a = (a · sf(a)−1) · sf(a).

2.2. Schreier internal relations. An internal relation on a monoid A is
a relation R which is compatible with the monoid operations. It can be
described equivalently as a submonoid of the product A×A. By considering
the homomorphic inclusion

R A× A

and by composing it with the two projections of the product, we get two
parallel homomorphisms

R
r1

//

r2
// A,

that are the first and the second projection of the relation. More explic-
itly, denoting an element of R by a pair (x, y), such that x and y belong to
A and are linked by the relationR, we have that r1(x, y) = x and r2(x, y) = y.

An internal relation is reflexive when r1 and r2 have a common section
σ : A→ R. In the notation above, we have that σ(a) = (a, a) for any a ∈ A.

Definition 2.4 ([2], Definition 5.1). An internal reflexive relation of monoids

R
r2

//

r1
//

Aσoo

is a Schreier reflexive relation if the split epimorphism (R,A, r1, σ) is a
Schreier one.

It is well known that, in a Malt’sev variety [4], every internal reflexive
relation is a congruence. This is false for the variety of monoids. However, a
partial version of this result can be recovered for Schreier reflexive relations:

Theorem 2.5 ([2], Theorem 5.5). Any Schreier reflexive relation is transi-
tive. It is a congruence if and only if Ker(r1) is a group.

We will call Schreier congruence a Schreier reflexive relation which is a con-
gruence. We will be particularly interested in a specific kind of congruences,
the so-called kernel congruences : given a monoid homomorphism f : A→ B,
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the corresponding kernel congruence Eq(f) is defined by: a1Eq(f)a2 if and
only if f(a1) = f(a2). Eq(f) can be represented by the following diagram:

Eq(f)
f2

//

f1
//
A,〈1,1〉oo

where 〈1, 1〉 is the diagonal of A: 〈1, 1〉(a) = (a, a). Thanks to the symmetry
of the relation, the split epimorphisms (f1, 〈1, 1〉) and (f2, 〈1, 1〉) are isomor-
phic. Hence, if one of the two is a Schreier split epimorphism, the other is
such, too.

2.3. Special Schreier homomorphisms. We recall from [1, 3] the follow-
ing notion:

Definition 2.6. A monoid homomorphism f : A → B is a special Schreier
homomorphism if the kernel congruence Eq(f) is a Schreier congruence.

In other terms, a monoid homomorphism f : A → B is a special Schreier
homomorphism if and only if the split epimorphism

X
〈k,0〉

// Eq(f)
f2

// A,
〈1,1〉
oo

where 〈k, 0〉 is the morphism sending x ∈ X to (x, 1), is a Schreier split
epimorphism.

As a consequence of Theorem 2.5, we have that the kernel of a special
Schreier homomorphism, which is isomorphic to the kernel of each of the
projections f1, f2 : Eq(f) → A, is a group. A Schreier split epimorphism is
not always a special Schreier homomorphism: it happens if and only if its
kernel is a group ([3], Proposition 6.9).

We are interested, in particular, in special Schreier surjective homomor-
phisms. We recall some relevant facts about them that will be used in the
rest of the paper.

Proposition 2.7 ([1], Proposition 7.1.3). Every special Schreier surjective
homomorphism f : A → B is the cokernel of its kernel. In other terms, the
following sequence is an extension of B by Ker(f):

Ker(f) � ,2
k

// A
f

// // B.
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Thanks to the previous proposition, a special Schreier surjective homomor-
phism can be called a special Schreier extension.

Lemma 2.8 ([7], Corollary 2.8). Let f : A → B be a special Schreier ex-
tension. Denote by X the kernel of f . Then there exists a (unique) map
q : Eq(f) 99K X which satisfies the following conditions, for every a ∈ A,
(a1, a2), (a

′
1, a

′
2) ∈ Eq(f) and x ∈ X:

(i) q(a1, a2) · a2 = a1;
(ii) q(x · a, a) = x;
(iii) q(a · x, a) · a = a · x;
(iv) q(a1 · a

′
1, a2 · a

′
2) = q(a1, a2) · q(a2 · q(a

′
1, a

′
2), a2).

We observe that Condition (i) in the previous lemma means that the map
q endows the monoid A with a partial division: the division between two
elements of A exists when they have the same image by the homomorphism
f . More precisely:

Corollary 2.9. A monoid homomorphism f : A → B is a special Schreier
homomorphism if and only if, for every a1, a2 ∈ A such that f(a1) = f(a2)
there exists a unique element x in the kernel of f such that a2 = x · a1.

Proposition 2.10 ([1], Proposition 7.2.1). The Short Five Lemma holds for
special Schreier extensions: given a commutative diagram

X

u
��

� ,2
k

// A
f

// //

v
��

B

w
��

X ′ � ,2

k′
// A′

f ′

// // B′

whose rows are special Schreier extensions, if u and w are isomorphisms,
then also v is.

3. The Nine Lemma

We prove now, separately, the three possible versions of the Nine Lemma
for special Schreier extensions (observe that they are independent from each
other). We start by recalling the following well-known lemma.
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Lemma 3.1. Given a commutative diagram of the form

A

t
��

� ,2
l

// B

h
��

g
// C

m
��

X
� ,2

k
// Y

f
// Z,

where l = Ker(g) and k = Ker(f), if m is a monomorphism, then the left
hand side square is a pullback.

Theorem 3.2 (the Lower Nine Lemma). Given a commutative diagram of
monoid homomorphisms

N
� ,2
η

//
_

��

l
��

H
_

��

r
��

λ
// // K

_

��

s
��

X
� ,2
σ

//

f
��
��

Y
ϕ

// //

g
��
��

Z

p
��
��

A α
// B

β
// C,

(1)

suppose that the three columns and the first two rows are special Schreier
extensions. Then the lower row also is.

Proof : We divide the proof in several steps:

(1) β is a surjective homomorphism, because βg = pϕ is.
(2) βα is the zero homomorphism, i.e. βα(a) = 1 for all a ∈ a. Indeed,

βαf = βgσ = pϕσ = 0 and this implies that βα = 0 since f is
surjective.

(3) α is a monomorphism. In order to prove this, let a1, a2 ∈ A be such
that α(a1) = α(a2). Since f is surjective, there exist xi ∈ X such that
f(xi) = ai. Then gσ(x1) = αf(x1) = αf(x2) = gσ(x2), which means
that (σ(x1), σ(x2)) ∈ Eq(g). Since g is a special Schreier homomor-
phism, there exists a unique h ∈ H such that σ(x2) = r(h) · σ(x1).
Being ϕσ = 0, we get that

1 = ϕσ(x2) = ϕ(r(h) · σ(x1)) = ϕr(h) · ϕσ(x1) = sλ(h) · 1 = sλ(h).

From the fact that s is a monomorphism we obtain that λ(h) = 1 or,
in other terms, that h belongs to the kernel of λ. Hence there exists
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a (unique) n ∈ N such that η(n) = h. So

σ(x2) = rη(n) · σ(x1) = σl(n) · σ(x1) = σ(l(n) · x1).

σ is a monomorphism, hence x2 = l(n) · x1. From fl = 0 we conclude
that

a2 = f(x2) = fl(n) · f(x1) = f(x1) = a1.

(4) A is the kernel of β. From points (2) and (3) we already know that A
is contained in the kernel of β. For the other inclusion, suppose that
β(b) = 1. Being g surjective, there exists y ∈ Y such that g(y) = b.
Since

pϕ(y) = βg(y) = β(b) = 1,

there exists a (unique) k ∈ K such that s(k) = ϕ(y). Let h ∈ H be
such that λ(h) = k. Then

ϕr(h) = sλ(h) = s(k) = ϕ(y).

But H is a group, because it is the kernel of a special Schreier homo-
morphism. Hence we get that ϕ(y · r(h)−1) = 1. So there is x ∈ X

such that σ(x) = y · r(h)−1. Call a = f(x). Then

α(a) = αf(x) = gσ(x) = g(y) · gr(h)−1 = g(y) = b

and hence Ker(β) ⊆ A.
(5) β is a special Schreier homomorphism. We have to prove that, for all

b1, b2 ∈ B such that β(b1) = β(b2) there exists a unique a ∈ A such
that b2 = α(a) ·b1. Let us first prove the existence of such an a. Given
b1 and b2 as above, let yi ∈ Y be such that g(yi) = bi. We have

pϕ(y1) = βg(y1) = β(b1) = β(b2) = βg(y2) = pϕ(y2),

hence (ϕ(y1), ϕ(y2)) ∈ Eq(p). From the fact that p is a special Schreier
homomorphism we deduce that there exists a unique k ∈ K such that
ϕ(y2) = s(k) · ϕ(y1). Choosing h ∈ H such that λ(h) = k, we get

ϕ(y2) = sλ(h) · ϕ(y1) = ϕr(h) · ϕ(y1) = ϕ(r(h) · y1),

and so (r(h) · y1, y2) ∈ Eq(ϕ). ϕ is a special Schreier homomorphism,
hence there exists a unique x ∈ X such that y2 = σ(x) · r(h) · y1. So
we obtain that

b2 = g(y2) = g(σ(x) · r(h) · y1) = gσ(x) · gr(h) · g(y1) =

= αf(x) · 1 · g(y1) = αf(x) · b1,
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hence a = f(x) is the element of A we were looking for. To conclude
the proof, we need to show that such an a is unique. Suppose that
ā ∈ A is such that b2 = α(ā) · b1. Let x̄ ∈ X be such that f(x̄) = ā;
moreover, let h ∈ H be such that ϕ(y2) = ϕr(h) · ϕ(y1) as above.
Then

g(σ(x̄) · r(h) · y1) = gσ(x̄) · gr(h) · g(y1) =

= αf(x̄) · b1 = α(ā) · b1 = b2 = g(y2),

so that (σ(x̄) · r(h) · y1, y2) ∈ Eq(g). Being g a special Schreier homo-
morphism, there exists a unique h̄ ∈ H such that y2 = r(h̄) · σ(x̄) ·
r(h) · y1. Observe now that, since H and X are normal subgroups
of the monoid Y , kernels of g and ϕ, respectively, then the element
r(h̄) · σ(x̄) · r(h̄)−1 · σ(x̄)−1 belongs to H ∩X. Indeed, it is immediate
to see that it belongs both to the kernels of g and ϕ. But the inter-
section H ∩X is N , because the upper left square in Diagram (1) is a
pullback (thanks to Lemma 3.1). This means that there exists n ∈ N

such that

σl(n) = r(h̄) · σ(x̄) · r(h̄)−1 · σ(x̄)−1

or, in other terms,

r(h̄) · σ(x̄) = σl(n) · σ(x̄) · r(h̄).

Hence

y2 = σl(n) · σ(x̄) · r(h̄) · r(h) · y1 = σ(l(n) · x̄) · r(h̄ · h) · y1.

Applying ϕ to this last equality and using that ϕσ = 0 we get

ϕ(y2) = ϕσ(l(n) · x̄) · ϕr(h̄ · h) · ϕ(y1) =

= ϕr(h̄ · h) · ϕ(y1) = sλ(h̄ · h) · ϕ(y1).

But, being p a special Schreier homomorphism, we know that there
exists a unique k ∈ K such that ϕ(y2) = s(k) · ϕ(y1). We proved that
both λ(h) and λ(h̄ · h) satisfy this equation, and hence

λ(h̄) · λ(h) = λ(h̄ · h) = λ(h).

Since H is a group, this implies that λ(h̄) = 1. So there exists n̄ ∈ N

such that η(n̄) = h̄. From this we get

y2 = r(h̄) · σ(x̄) · r(h) · y1 =

= rη(n̄) · σ(x̄) · r(h) · y1 = σl(n̄ · x̄) · r(h) · y1.
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Using now the uniqueness of x as an element of X such that y2 =
σ(x) · r(h) · y1, we obtain that x = l(n̄) · x̄. Then

a = f(x) = fl(n̄) · f(x̄) = 1 · f(x̄) = f(x̄) = ā,

and this concludes the proof.

Theorem 3.3 (the Upper Nine Lemma). Given a commutative diagram of
monoid homomorphisms

N
η

//
_

��

l
��

H
_

��

r
��

λ
// K

_

��

s
��

X
� ,2
σ

//

f
��
��

Y
ϕ

// //

g
��
��

Z

p
��
��

A
� ,2
α

// B
β

// // C,

(2)

suppose that the three columns and the last two rows are special Schreier
extensions. Then the upper row also is.

Proof : (1) η is a monomorphism, because rη = σl is.
(2) λη is the zero homomorphism. Indeed,

sλη = ϕσl = 0

and this implies that λη = 0 since s is a monomorphism.
(3) λ is a surjective homomorphism. Indeed, consider k ∈ K. Since ϕ is

surjective, there exists y ∈ Y such that ϕ(y) = s(k). Then

βg(y) = pϕ(y) = ps(k) = 1,

hence there exists a ∈ A such that α(a) = g(y). Thanks to the
surjectivity of f , we find x ∈ X such that f(x) = a. From the
equality

gσ(x) = αf(x) = α(a) = g(y)

we obtain that (σ(x), y) ∈ Eq(g). Being g special Schreier, there exists
a unique h ∈ H such that y = r(h) · σ(x). X is a group, so the last
equality can be rewritten as r(h) = y · σ(x)−1. From this we get

sλ(h) = ϕr(h) = ϕ(y) · ϕσ(x)−1 = ϕ(y) = s(k).

s is a monomorphism, so we conclude that λ(h) = k.
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(4) N is the kernel of λ. From points (1) and (2) we already know thatN is
contained in the kernel of λ. Let then h ∈ H such that λ(h) = 1. Then
ϕr(h) = sλ(h) = 1, hence there exists x ∈ X such that σ(x) = r(h).
This means that σ(x) = r(h) belongs to the intersection of H and X,
which is N thanks to Lemma 3.1. Hence there exists n ∈ N such that
η(n) = h.

(5) Since N , H and K are groups (which is a consequence of the fact that
the three columns are special Schreier extensions), the fact that λ is a
surjective homomorphism and η is its kernel immediately implies that
the upper row of Diagram (2) is a special Schreier extension. Indeed,
it follows immediately from Proposition 2.3 that every extension of
groups is special Schreier.

We would like to stress the strong asymmetry between the proofs of the
Lower and the Upper Nine Lemma: the first is much more complicated than
the second. This happens because, since the columns are special Schreier
extensions, the upper row lies in the category of groups, in which every
surjective homomorphism is a special Schreier extension.

Theorem 3.4 (the Middle Nine Lemma). Given a commutative diagram of
monoid homomorphisms

N
� ,2
η

//
_

��

l
��

H
_

��

r
��

λ
// // K

_

��

s
��

X
σ

//

f
��
��

Y
ϕ

//

g
��
��

Z

p
��
��

A
� ,2
α

// B
β

// // C,

(3)

suppose that the three columns, the upper and the lower row are special
Schreier extensions. Suppose moreover that ϕσ = 0. Then the middle row is
a special Schreier extension, too.

Proof : (1) σ is a monomorphism. In order to prove this, let x1, x2 ∈ X

be such that σ(x1) = σ(x2). Then

αf(x1) = gσ(x1) = gσ(x2) = αf(x2).

Since α is a monomorphism, we get that (x1, x2) ∈ Eq(f). Being f
special Schreier, there exists a unique n ∈ N such that x2 = l(n) · x1
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and hence

σ(x1) = σ(x2) = σl(n) · σ(x1) = rη(n) · σ(x1).

Thanks to the fact that g is a special Schreier homomorphism, the
last equality forces rη(n) = 1, and so n = 1. Then x1 = x2.

(2) ϕ is surjective. Indeed, consider z ∈ Z. Being β surjective, there
exists b ∈ B such that β(b) = p(z). Choosing y ∈ Y with g(y) = b we
get

pϕ(y) = βg(y) = β(b) = p(z).

Using that p is special Schreier, we conclude that there exists a unique
k ∈ K such that z = s(k) · ϕ(y). Choosing h ∈ H such that λ(h) = k

we obtain that s(k) = sλ(h) = ϕr(h), hence z = ϕr(h) · ϕ(y) =
ϕ(r(h) · y). So ϕ is surjective.

(3) X is the kernel of ϕ. Thanks to point (1) and the hypothesis that
ϕσ = 0, we already know that X is contained in the kernel of ϕ.
Conversely, let y ∈ Y be such that ϕ(y) = 1. Then βg(y) = pϕ(y) = 1
and so there exists a ∈ A such that α(a) = g(y). Choosing x ∈ X

such that f(x) = a we get

gσ(x) = αf(x) = α(a) = g(y).

Using the fact that g is special Schreier we find a unique h ∈ H such
that y = r(h) · σ(x). Then

1 = ϕ(y) = ϕr(h) · ϕσ(x) = ϕr(h) = sλ(h).

Being s injective, we obtain that λ(h) = 1, so there is n ∈ N such
that h = η(n). But then

y = r(h) · σ(x) = rη(n) · σ(x) = σl(n) · σ(x) = σ(l(n) · x)

belongs to the image of X.
(4) ϕ is a special Schreier homomorphism. Let y1, y2 ∈ Y be such that

ϕ(y1) = ϕ(y2). We have to show that there exists a unique x ∈ X

such that y2 = σ(x) · y1. Observe that

βg(y1) = pϕ(y1) = pϕ(y2) = βg(y2),

so that (g(y1), g(y2)) ∈ Eq(β). Being β special Schreier, there exists a
unique a ∈ A such that

g(y2) = α(a) · g(y2).
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Choosing x ∈ X such that f(x) = a, we get that α(a) = αf(x) =
gσ(x), and so

g(y2) = gσ(x) · g(y1) = g(σ(x) · y1),

which means that (σ(x) · y1, y2) ∈ Eq(g). Then there exists a unique
h ∈ H such that

y2 = r(h) · σ(x) · y1.

Applying ϕ to this equality we obtain

ϕ(y2) = ϕr(h) · ϕσ(x) · ϕ(y1) = sλ(h) · ϕ(y1).

By assumption ϕ(y1) = ϕ(y2), hence we have that

ϕ(y1) = sλ(h) · ϕ(y1).

But the fact that p is special Schreier forces λ(h) = 1. Then there
exists n ∈ N such that η(n) = h. Hence we have that

y2 = r(h) · σ(x) · y1 = rη(n) · σ(x) · y1 =

= σl(n) · σ(x) · y1 = σ(l(n) · x) · y1,

so l(n) ·x is the element of X we were looking for. It remains to show
its uniqueness. For that, suppose there are x, x′ ∈ X such that

y2 = σ(x) · y1 = σ(x′) · y1.

Then

αf(x) · g(y1) = gσ(x) · g(y1) = g(y2) = gσ(x′) · g(y1) = αf(x′) · g(y1).

But A is a group, hence

g(y1) = α(f(x)−1 · f(x′)) · g(y1).

From the fact that g is special Schreier we conclude that f(x)−1 ·
f(x′) = 1, which means that f(x) = f(x′). Being f special Schreier,
there exists a unique n′ ∈ N such that x′ = l(n′) · x. We must show
that n′ = 1. From the equality

σ(x) · y1 = σ(x′) · y1 = σl(n′) · σ(x) · y1 = rη(n′) · σ(x) · y1,

and from the fact that g is special Schreier, we obtain rη(n′) = 1,
which means that n′ = 1 since r and η are monomorphisms. This
concludes the proof.
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4. The push forward construction

In this section we develop a push forward construction for special Schreier
extensions with abelian kernel. This construction will be used later to give a
description of the Baer sum of special Schreier extensions which is alternative
to the one we gave in [7].

First we need to recall from [1, 7] how to associate an action with a special
Schreier extension. Let

X
� ,2
k

// A
f

// // B (4)

be a special Schreier extension with abelian kernel. This means that the split
epimorphism

X
〈k,0〉

// Eq(f)
f2

// A
〈1,1〉
oo

is a Schreier split epimorphism. As we explained in Section 2, this split
epimorphism corresponds to a monoid action ψ : A → End(X) of A on X.
Putting then

ϕ(b)(x) = ψ(a)(x) = q((a, a) · (x, 1)) = q(a · x, a) (5)

for any a ∈ A such that f(a) = b, we obtain a monoid homomorphism
ϕ : B → End(X): it is well defined thanks to the fact that X is an abelian
group. Then we get an action of B on X. From now on, we will denote by
b ·ϕ x the element ϕ(b)(x).

Theorem 4.1. Consider the following situation:

X

g
��

� ,2
k

// A
f

// // B,

Y

(6)

where:

- f is a special Schreier extension with abelian kernel (with Schreier
retraction q : Eq(f) → X);

- ϕ : B → End(X) is the corresponding action of B on X, defined as in
(5);

- Y is an abelian group, equipped with an action ψ : B → End(Y ) of B
on it;
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- g is a morphism of abelian groups which is equivariant w.r.t. the
actions, which means that, for all b ∈ B and all x ∈ X,

g(b ·ϕ x) = b ·ψ g(x).

Then there exists a special Schreier extension f ′ with kernel Y and codomain
B, which induces the action ψ and is universal among all such extensions,
meaning that given any diagram of the form

X

u

��

g
��

� ,2
k

// A

v

��

f
// //

g′

��

B

Y
� ,2
k′

//

r
��

C
f ′

// //

α
��

B

Z
� ,2

l
// E p

// // B,

(7)

where p is a special Schreier extension with abelian kernel Z, r is an equi-
variant morphism, (u, v) is a morphism of extensions and u = rg, then there
exists a unique monoid homomorphism α such that v = αg′ and (r, α) is a
morphism of extensions.

Proof : The morphism f and the action ψ induce an action ζ of A on Y given
by ζ = ψf : A → End(Y ). In other terms, a ·ζ y = f(a) ·ψ y. We can then
build the semidirect product Y ⋊ζ A of Y and A w.r.t. ζ. Since Y is an
abelian group, this gives us a special Schreier extension with abelian kernel:

Y
� ,2
〈1,0〉

// Y ⋊ζ A
πA

// A.
〈0,1〉
oo

Consider now the map h : X → Y ⋊ζ A defined by

h(x) = (g(x)−1, k(x)).

It is clearly injective, since k is. Moreover, it is a homomorphism, indeed:

h(x1) · h(x2) = (g(x1)
−1, k(x1)) · (g(x2)

−1, k(x2)) =

= (g(x1)
−1 · (k(x1) ·ζ g(x2)

−1), k(x1) · k(x2)) =

= (g(x1)
−1 · (fk(x1) ·ψ g(x2)

−1), k(x1) · k(x2)),

and since k is the kernel of f the last expression is equal to

(g(x1)
−1 · g(x2)

−1, k(x1) · k(x2)) = (g(x1 · x2)
−1, k(x1 · x2)) = h(x1 · x2),
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where the first equality holds because Y is an abelian group.

Let c : Y ⋊ζ A → C be the cokernel of h, i.e. the quotient w.r.t. the
congruence Rh on Y ⋊ζ A generated by h(X). We first observe that this
congruence Rh has a very simple description. Indeed, consider the following
relation on Y ⋊ζ A:

(y1, a1)R(y2, a2) if ∃ x ∈ X such that (8)

(y2, a2) = (g(x)−1, k(x)) · (y1, a1) = (g(x)−1 · y1, k(x) · a1),

where the last equality holds because the elements in the image of k act
trivially on A. This relation R is clearly an equivalence relation (symmetry
comes from the fact that X is a group). Let us show that it is a congruence,
i.e. that it is compatible with the operation in Y ⋊ζ A. Then it will be nec-
essarily the congruence Rh generated by h(X). In order to do this, suppose
that

(y1, a1)R(y2, a2) and (y′1, a
′
1)R(y

′
2, a

′
2),

so that there exist x, x′ ∈ X such that

(y2, a2) = (g(x)−1, k(x)) · (y1, a1) = (g(x)−1 · y1, k(x) · a1)

and
(y′2, a

′
2) = (g(x′)−1, k(x′)) · (y′1, a

′
1) = (g(x′)−1 · y′1, k(x

′) · a′1).

We want to prove that there exists x̄ ∈ X such that

(y2, a2) · (y
′
2, a

′
2) = (g(x̄)−1, k(x̄)) · (y1, a1) · (y

′
1, a

′
1). (9)

We have

(y2, a2) · (y
′
2, a

′
2) = (g(x)−1 · y1, k(x) · a1) · (g(x

′)−1 · y′1, k(x
′) · a′1) = (10)

= (g(x)−1 · y1 · (k(x) · a1) ·ζ (g(x
′)−1 · y′1), k(x) · a1 · k(x

′) · a′1).

Observe that (a1 · k(x
′), a1) ∈ Eq(f); hence, by Lemma 2.8, we have

kq(a1 · k(x
′), a1) · a1 = a1 · k(x

′)

and so
k(x) · a1 · k(x

′) · a′1 = k(x) · kq(a1 · k(x
′), a1) · a1 · a

′
1.

This gives us a candidate for the element x̄ we were looking for, namely
x̄ = x · q(a1 · k(x

′), a1). Replacing this expression in the right side of (9), we
get

(g(x · q(a1 · k(x
′), a1))

−1, k(x · q(a1 · k(x
′), a1))) · (y1, a1) · (y

′
1, a

′
1) =
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= (g(x)−1 · gq(a1 · k(x
′), a1)

−1, k(x) · kq(a1 · k(x
′), a1)) · (y1 · f(a1) ·ψ y

′
1, a1 · a

′
1)

and, using the fact that the elements of k(X) act trivially, this is equal to

(g(x)−1 · gq(a1 · k(x
′), a1)

−1 · y1 · f(a1) ·ψ y
′
1, k(x) · kq(a1 · k(x

′), a1) · a1 · a
′
1).

We already proved that the second component is the same as in (10). Let us
check that this is the case for the first component, too. Using the fact that
q(a1 · k(x

′), a1) = f(a1) ·ϕ x
′, the first component is equal to

g(x)−1 · g(f(a1) ·ϕ x
′)−1 · y1 · (f(a1) ·ψ y

′
1).

Using equivariance of g, this is equal to

g(x)−1 · (f(a1) ·ψ g(x
′))−1 · y1 · (f(a1) ·ψ y

′
1).

The first component in (10) is

g(x)−1 · y1 · (k(x) · a1) ·ζ (g(x
′)−1 · y′1) =

= g(x)−1 · y1 · (a1 ·ζ (g(x
′)−1 · y′1)) =

= g(x)−1 · y1 · (f(a1) ·ψ g(x
′))−1 · (f(a1) ·ψ y

′
1),

and the two expressions are the same because Y is an abelian group.

Knowing now that c : Y ⋊ζ A → C is the quotient w.r.t. the congruence
(8), it is immediate to see that h(X) is the kernel of c, i.e. the zero-class of
the relation Rh. Moreover, c is a special Schreier extension. Indeed, suppose
that c(y1, a1) = c(y2, a2). This means that (y1, a1)Rh(y2, a2), so that there
exists x ∈ X such that

(y2, a2) = (g(x)−1, k(x)) · (y1, a1) = (g(x)−1 · y1, k(x) · a1).

In particular, this says that a2 = k(x) · a1. But then (a2, a1) ∈ Eq(f), and
f is a special Schreier extension, so x is necessarily equal to q(a2, a1). Hence
there is a unique x ∈ X with the required property.
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Consider now the following commutative diagram:

1 //

��

X
_

��

h
��

X
_

��

k
��

Y
� ,2
〈1,0〉

// Y ⋊ζ A

c
��
��

πA
// // A

f
��
��

Y
k′

// C
f ′

// B,

where k′ = c〈1, 0〉 and f ′ is induced by the universal property of the cokernel
c. By hypothesis and by what we just proved, the three columns and the first
two rows are special Schreier extensions. The Lower Nine Lemma (Theorem
3.2) gives then that the lower row also is. This is the push forward of f along
g we were looking for.

We still have to prove that the action of B on Y determined by f ′ coincides
with ψ and that our construction is universal. Let us denote by [(y, a)] an
element of C, i.e. an equivalence class of the relation Rh. Then

f ′([(y, a)]) = f ′c(y, a) = fπA(y, a) = f(a).

Denoting by q′ the unique map Eq(f ′) → Y determined by the fact that f ′ is
special Schreier, we have that the action χ : B → End(Y ) of B on Y induced
by f ′ is given by

b ·χ y = q′([(ȳ, ā)] · [(y, 1)], [(ȳ, ā)]) for all ā ∈ A such that f(ā) = b.

Hence

b ·χ y = q′([(ȳ · (ā ·ζ y), ā)], [(ȳ, ā)]) = q′([(ȳ · (b ·ψ y), ā)], [(ȳ, ā)]).

By definition, q′([(ȳ · (b ·ψ y), ā)], [(ȳ, ā)]) is the unique element t ∈ Y such
that

c〈1, 0〉(t) · [(ȳ, ā)] = [(ȳ · (b ·ψ y), ā)].

But

c〈1, 0〉(t) · [(ȳ, ā)] = [(t, 1)] · [(ȳ, ā)] = [(t · ȳ, ā)].

The commutativity of Y and the uniqueness of t force then t = b ·ψ y. Hence
χ and ψ coincide.
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In order to prove the universality of our construction, consider Diagram
(7). Let us denote by τ : B → End(Z) the action determined by p. We first
define a map β : Y ⋊ζ A→ E by putting

β(y, a) = lr(y) · v(a).

It is a monoid homomorphism, indeed

β((y1, a1) · (y2, a2)) = β(y1 · (a1 ·ζ y2), a1 · a2) =

= lr(y1) · lr(a1 ·ζ y2) · v(a1) · v(a2) =

= lr(y1) · lr(f(a1) ·ψ y2) · v(a1) · v(a2) =

= lr(y1) · l(f(a1) ·τ r(y2)) · v(a1) · v(a2),

where the last equality holds because r is equivariant. Observe that

f(a1) ·τ r(y2) = pv(a1) ·τ r(y2) = qp(v(a1) · lr(y2), v(a1)),

where qp is the Schreier map associated with the special Schreier extension
p. Then

l(f(a1) ·τ r(y2)) · v(a1) = lqp(v(a1) · lr(y2), v(a1)) · v(a1) = v(a1) · lr(y2).

Hence

β((y1, a1) · (y2, a2)) = lr(y1) · v(a1) · lr(y2) · v(a2) = β(y1, a1) · β(y2, a2).

Moreover, we have that

βh(x) = β(g(x)−1, k(x)) = lrg(x)−1 · vk(x) = lu(x)−1 · lu(x) = 1

for all x ∈ X. Being c the cokernel of h, we conclude that there exists a
unique morphism α : C → E such that αc = β, and so

αg′ = αc〈0, 1〉 = β〈0, 1〉 = v.

Moreover, (r, α) is a morphism of extensions, indeed:

αk′(y) = αc(y, 1) = β(y, 1) = lr(y)

and

pα([(y, a)]) = pβ(y, a) = plr(y) · pv(a) = 1 · pv(a) = f(a) = f ′([(y, a)]).
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We conclude this section by mentioning that a similar push forward con-
struction has been obtained independently in [12] for a wider class of exten-
sions, whose kernels are commutative monoids but not necessarily abelian
groups. However, in [12] a weaker universality of the construction is proved:
the existence of a morphism α as in Diagram (7) was obtained only when r
is an identity.

5. The Baer sum of special Schreier extensions with abelian

kernel

We now show that the push forward construction described in the previous
section allows to define the Baer sum of special Schreier extensions with
abelian kernel. A construction of the Baer sum was already given in [7],
using factor sets as in the case of classical group extensions. We remark
that a similar construction was announced in [8]. We will show that the two
approaches give the same result. The advantage of the approach via the push
forward is that it is functorial, and this can be useful to give an interpretation
of cohomology of monoids in terms of special Schreier extensions. We start
by recalling briefly the construction given in [7].

Definition 5.1 ([7], Definition 3.1). Given a monoid B, an abelian group X
and an action ϕ : B → End(X) of B on X, a factor set is a map g : B×B →
X which satisfies, for all b, b1, b2, b3 ∈ B, the following conditions:

(i) g(b, 1) = g(1, b) = 1;
(ii) g(b1, b2) · g(b1 · b2, b3) = ϕ(b1)(g(b2, b3)) · g(b1, b2 · b3).

Given a special Schreier extension with abelian kernel

X
� ,2
k

// A
f

// // B, (11)

we can associate with it a factor set in the following way: let s : B → A be
a set-theoretical section of f (it exists, since f is surjective). Let us choose s
such that s(1) = 1. Then, for any b1, b2 ∈ B:

f(s(b1) · s(b2)) = b1 · b2 = f(s(b1 · b2)).

Hence the pair (s(b1) · s(b2), s(b1 · b2)) belongs to Eq(f). We define a map
g : B × B → X by putting:

g(b1, b2) = q(s(b1) · s(b2), s(b1 · b2)),
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where q is the Schreier map associated with f . Such a map g is a factor
set ([7], Proposition 3.3). Moreover, thanks to Proposition 3.4 in [7], the
extension (11) is isomorphic to an extension of the form

X
� ,2
〈1,0〉

// X × B
πB

// // B,

where the monoid operation on X ×B is defined by:

(x1, b1) · (x2, b2) = (x1 · ϕ(b1)(x2) · g(b1, b2), b1 · b2).

Choosing two different sections for f , the corresponding factor sets differ by
an inner factor set :

Definition 5.2. A factor set g is called inner factor set if it is of the form

g(b1, b2) = h(b1) · ϕ(b1)(h(b2)) · h(b1 · b2)
−1

for some map h : B → X such that h(1) = 1.

The set F(B,X, ϕ) of all the factor sets corresponding to a given action
ϕ : B → End(X) is a subgroup of the abelian group XB×B, where the group
operation is the pointwise multiplication. Its subset IF(B,X, ϕ) of inner fac-
tor sets is a normal subgroup of F(B,X, ϕ). Let us denote by SExt(B,X, ϕ)
the set of isomorphic classes of special Schreier extensions of a monoid B by
an abelian group X inducing the action ϕ : B → End(X). Since the Short
Five Lemma holds for special Schreier extensions ([1], Proposition 7.2.1), two
special Schreier extensions of B by X are isomorphic as soon as there exists
a morphism of extensions between them. We have the following

Theorem 5.3 ([7], Theorem 3.7). The set SExt(B,X, ϕ) of isomorphic classes
of special Schreier extensions of a monoid B by an abelian group X inducing
the action ϕ : B → End(X) is in bijection with the factor abelian group

F(B,X, ϕ)

IF(B,X, ϕ)
.

By means of this bijection, we can endow SExt(B,X, ϕ) with an abelian
group structure, which we call the Baer sum. The unit of this abelian group
is the isomorphic class of the split extension obtained by taking the semidi-
rect product of X and B with respect to the action ϕ.
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We propose now an alternative description of the Baer sum. Given two
special Schreier extensions

X
� ,2
k1

// A1
f1

// // B and X
� ,2
k2

// A2
f2

// // B

with abelian kernel X which induce the same action ϕ : B → End(X), let us
first consider their direct product:

X ×X
� ,2
k1×k2

// A1 × A2
f1×f2

// // B ×B

and pull it back along the diagonal morphism ∆B : B → B × B defined by
∆B(b) = (b, b):

X ×X
� ,2
〈k1,k2〉

// P

��

f̄
// // B

∆B

��

X ×X
� ,2

k1×k2

// A1 × A2
f1×f2

// // B × B.

Special Schreier extensions are stable under pullback along any morphism
([1], Proposition 7.1.4), hence f̄ is a special Schreier extension. Moreover, it
is easy to check that the corresponding action ϕ̄ : B → End(X ×X) is given
by

b ·ϕ̄ (x1, x2) = (b ·ϕ x1, b ·ϕ x2).

Since X is an abelian group, its multiplication m : X ×X → X is a homo-
morphism, and it is equivariant w.r.t. the actions ϕ̄ and ϕ, since

(b ·ϕ x1) · (b ·ϕ x2) = b ·ϕ̄ (x1, x2).

We can then take the push forward of f̄ along m:

X ×X

m
��

� ,2
〈k1,k2〉

// P

c
��

f̄
// // B

X
� ,2

k′
// C

f ′

// // B,

thus obtaining a special Schreier extension f ′ which induces the same action
ϕ. We now show that such an extension is the same that we would obtain
by taking the Baer sum of f1 and f2 defined by means of factor sets.
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Let us choose two sections s1 and s2 of f1 and f2, respectively, with the
property that si(1) = 1. The corresponding factor sets are then given by

g1(b, b
′) = q1(s1(b) · s1(b

′), s1(b · b
′)),

g2(b, b
′) = q2(s2(b) · s2(b

′), s2(b · b
′)),

where q1 and q2 are the Schreier maps associated with f1 and f2. We observe
that the pullback P is the set

P = { (a1, a2) ∈ A1 × A2 | f1(a1) = f2(a2) }.

The monoid C is then a quotient of the semidirect product X ⋊ P . We can
then consider the section s′ of f ′ defined by

s′(b) = [(1, s1(b), s2(b))].

The corresponding factor set is

g′(b, b′) = q′(s′(b) · s′(b′), s′(b · b′)),

where q′ is the Schreier retraction associated with f ′. We want to prove that

g′(b, b′) = g1(b, b
′) · g2(b, b

′).

Thanks to the properties of q′, it suffices to prove that the element g1(b, b
′) ·

g2(b, b
′) of X is such that

k′(g1(b, b
′) · g2(b, b

′)) · [(1, s1(b · b
′), s2(b · b

′))] = [(1, s1(b) · s1(b
′), s2(b) · s2(b

′))].

But

k′(g1(b, b
′) · g2(b, b

′)) = [(g1(b, b
′) · g2(b, b

′), 1, 1)],

so we have to show that

[(g1(b, b
′)·g2(b, b

′), 1, 1)]·[(1, s1(b·b
′), s2(b·b

′))] = [(1, s1(b)·s1(b
′), s2(b)·s2(b

′))]

or, in other terms,

[(g1(b, b
′) · g2(b, b

′), s1(b · b
′), s2(b · b

′))] = [(1, s1(b) · s1(b
′), s2(b) · s2(b

′))].

The two equivalence classes coincide if and only if there is a pair (x1, x2) ∈
X ×X such that

(1, s1(b) · s1(b
′), s2(b) · s2(b

′)) = h(x1, x2) · (g1(b, b
′) · g2(b, b

′), s1(b · b
′), s2(b · b

′)),

where h : X ×X → X ⋊ P is the monomorphism given by

h(x1, x2) = ((x1 · x2)
−1, k1(x1), k2(x2)).
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If we choose xi = gi(b, b
′), we get:

h(x1, x2) · (g1(b, b
′) · g2(b, b

′), s1(b · b
′), s2(b · b

′)) =

= ((g1(b, b
′)·g2(b, b

′))−1, k1g1(b, b
′), k2g2(b, b

′))·(g1(b, b
′)·g2(b, b

′), s1(b·b
′), s2(b·b

′)).

Since the elements of P of the form (k1(x1), k2(x2)) act trivially onX (because
f̄(k1(x1), k2(x2)) = 1), the last expression is equal to

((g1(b, b
′)·g2(b, b

′))−1·g1(b, b
′)·g2(b, b

′), k1g1(b, b
′)·s1(b, b

′), k2g2(b, b
′)·s2(b, b

′)) =

= (1, s1(b) · s1(b
′), s2(b) · s2(b

′))

and the proof is completed.
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