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CROSS-DIFFUSION SYSTEMS FOR IMAGE PROCESSING:
I. THE LINEAR CASE

ADÉRITO ARAÚJO, SÍLVIA BARBEIRO, EDUARDO CUESTA AND ÁNGEL DURÁN

Abstract: The use of cross-diffusion systems as mathematical models of different
image processes is investigated. The present paper is concerned with linear filtering.
First, those systems satisfying the most important scale-space properties are iden-
tified. Then a numerical study on the effect of cross-diffusion in filtering problems
is presented.

1. Introduction
This paper takes part of a study on the application of cross-diffusion sys-

tems in image processing. It is devoted to linear filtering and will be contin-
ued by a second part concerning the nonlinear case.

The most common representation of a grey-scale image is given by a real
valued function u = u(x) ∈ L1(R2) (that is in the space of integrable func-
tions on the plane) where u(x) = u(x, y) stands for the grey-scale value of
the image at the pixel at position x = (x, y)T , [2, 12, 20]. The introduction,
from u, of two scalar fields may have the goal of distributing the features of
the image and governing the relations among them.

The use of cross-diffusion models is widespread in disciplines like, for in-
stance, population dynamics, (see [7, 8] and references therein) while their
application to image processing is to our knowledge less common. In this
sense, two references are relevant for us and motivate this and the subse-
quent work. The first one is the so-called complex diffusion, [11]. Here the
original, real image evolves according to a complex diffusion process which
implies some sharing out of the information between the real and the imag-
inary parts of the complex function representing the image. The effect of
this division has been analyzed in [9, 10, 11]. In particular, the linear case
reveals the key role of the imaginary part as edge detector, since it behaves
as a smoothed Laplacian scaled by time when the phase angle of the complex
diffusion coefficient is small (the so-called small theta approximation). This
also motivates the extension of complex diffusion to nonlinear models.
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Complex diffusion can indeed be rewritten as a cross-diffusion model for
the real and imaginary parts of the image function. This is used in the
second reference, [16], to analyze the existence of global solution of a related
cross-diffusion system and to compare this with Perona-Malik models, [19],
by computational means. In addition to the theoretical advantage of having
a global solution, the computational study shows a better performance of the
proposed cross-diffusion system.

The present paper aims to go deeply into this approach. Focused on the
linear case, when features of the image are distributed in two components
u = (u, v)T , the most general linear filtering will involve a matrix convolution

K ∗ u(x) =

(
k11 ∗ u(x) + k12 ∗ v(x)
k21 ∗ u(x) + k22 ∗ v(x)

)
, (1.1)

where

K =

(
k11 k12

k21 k22

)
,

is the matrix kernel. The entries kij can be chosen to control the filtering
process according to the information provided by each component of u as
well as other theoretical properties of the restoration. According to this, the
main contribution of the paper is two-fold:

• By defining the linear filtering processes in form of matrices convolu-
tions, those kernels satisfying the scale-space properties of recursivity,
grey-level shift, rotational and scale invariance are characterized. This
generalizes previous results for the scalar case, [17].
• We provide a computational study of the linear filters according, es-

sentially, to the choice of the initial data (that is, the way how the
information of the initial image is distributed) and on some parameters
of the convolution kernels. Our numerical experiments on one- and
two-dimensional signal restoration problems seek to reveal the flexi-
bility of the models and the performance through the computation of
some indexes to measure the quality of restoration.

The structure of the paper is as follows. In Section 2 the matrix convolution
(1.1) is formulated as a linear cross-diffusion model and some scale-space
properties are analyzed. Under some hypotheses, those kernels are charac-
terized in terms of the cross-diffusion matrix. A generalized version of the
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small theta approximation property (that is, the identification of a compo-
nent of the image as edge detector) is also studied. Section 3 is devoted to
some experiments of comparison among the models characterized in Section
2. Using one- and two-dimensional signals, the comparison is focused on the
influence of the parameters presented in the models and on the correspond-
ing goodness of filtering. Finally, the main conclusions and perspectives are
outlined in Section 4. The present paper will be followed by a second one,
on the inclusion of nonlinearity in the cross-diffusion models.

2. Linear cross-diffusion filtering
The linear filtering (1.1) can be formulated into a scaling process with a

family of convolution operators {Kt, t ≥ 0} such that

u(x, t) = Ktu0(x) = Kt ∗ u0(x), (2.1)

where from an original image u0(x) = (u0(x), v0(x))T , u(x, t) stands for
the grey-level value image at pixel x ∈ R2 at the scale t. In (2.1), Kt =
(kij(·, t))2

i,j=1 is a 2 × 2 matrix with convolution entries kij such that if u =

(u, v)T then (2.1) can be written as

u(x, t) = k11(·, t) ∗ u0(x) + k12(·, t) ∗ v0(x),

v(x, t) = k21(·, t) ∗ u0(x) + k22(·, t) ∗ v0(x). (2.2)

It is known, [18, 24] that under certain conditions (2.1) admits an equivalent
formulation as the initial-value problem

ut(x, t) = Du(x, t), t > 0, x ∈ R2,

u(x, 0) = u0(x), (2.3)

for some operator matrix D or infinitesimal generator

Df = lim
h→0+

Khf − f

h
. (2.4)

If D = (Dij)
2
i,j=1, system (2.3) can be written in terms of the Fourier symbols

D̂ij(ξ), i, j = 1, 2, as the evolution problem

d

dt

(
û(ξ, t)
v̂(ξ, t)

)
=

(
D̂11(ξ) D̂12(ξ)

D̂21(ξ) D̂22(ξ)

)(
û(ξ, t)
v̂(ξ, t)

)
,

ξ ∈ R2, t > 0, u = (u, v)T ,
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with û(ξ, 0) = û0(ξ), v̂(ξ, 0) = v̂0(ξ). Thus, formally,

K̂(ξ, t) = etD̂(ξ), (2.5)

where K̂t(ξ) := K̂(ξ, t) stands for the 2×2 matrix with entries k̂ij(ξ, t), i, j =
1, 2. The form of the kernels that is suitable for image processing can be
discussed by using the scale-space properties as a guide, in a similar way to
what is done in some other references for linear filters, [1, 15, 17, 21]. The
gradual satisfaction of scale-space properties for (2.1) will specify the types
of operators D in (2.3). In this sense, the conclusions will be similar to those
of other references, [17], extending these results to the case of cross-diffusion
systems. Because of their relevance in the discussion below, two examples
will be shown now. The first one is the linear complex filtering and the second
one is a generalization of it in the form of a linear cross-diffusion system.

Example 1. The linear complex diffusion filtering has the form

ut(x, t) = α∆u(x, t), t > 0, x ∈ R2,

u(x, 0) = u0(x), (2.6)

where α = αR + iαI and with ∆ the Laplace operator. The solution u =
uR + iuI of the initial-value problem for (2.6) is, [11]

u(x, t) = Hσ(t),β(t) ∗ u0(x),

σ(t) =
√
αRt, β(t) = αIt, (2.7)

which requires αR > 0, αI ∈ R and, for an image f = f(x), with

(Hσ,β ∗ f)(x) =

∫
R2

Hσ,β(x− y)f(y)dy,

where x = (x, y) and for σ > 0, β 6= 0

Hσ,β = Gσ ∗Kβ,

Gσ(x) =
1

2πσ2
e−

|x|2

2σ2 , Kβ(x) =
1

4πiβ
ei

|x|2
4β .

If we take |α| = 1 then the fundamental solution (2.7) can be rewritten in
the form displayed in [11] for the two dimensional case. As a cross-diffusion
system for u = (uR, uI)

T , (2.6) can be written as (2.3) with

D =

(
αR −αI
αI αR

)(
∆ 0
0 ∆

)
. (2.8)
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Example 2. The second example can be considered as a generalization of
(2.6) with a model of the form (2.3) where

D =

(
d11 d12

d21 d22

)(
∆ 0
0 ∆

)
,

for some 2× 2 real matrix d = (dij)
2
i,j=1. In this case (2.5) is of the form

K̂(ξ, t) = e−t|ξ|
2d.

We will assume that d is positive definite, but not necessarily symmetric.
(This means that xTdx > 0 for all x 6= 0 or, equivalently, if the symmetric
part (d + dT )/2 is positive definite.) This implies that the real part of each
eigenvalue is positive. In terms of the entries of d, positive definite character
requires two conditions

d11 > 0, 4d11d22 − (d12 + d21)
2 > 0, (2.9)

or equivalently, being

λ± =
1

2

(
d11 + d22 ±

√
(d11 − d22)2 + 4d12d21

)
, (2.10)

the eigenvalues of d, then Re(λ±) > 0. This may provide several possibilities
to choose the matrix d. A particular case consists of matrices of the form

d =

(
ν −µ1

µ2 ν

)
,

with ν > 0, µ1, µ2 > 0, |µ1 − µ2| < 2ν. The case µ1 = µ2 := µ corresponds to
the linear complex filtering with α = ν + iµ.

2.1. Scale-space properties. The image representation (2.1) can be inter-
preted as a scale-space, [1, 13, 14, 15, 21, 20, 22], and its structure in this
sense will be analyzed below.

2.1.1. Grey-level-shift invariance. We assume that the matrix kernel K(·, t)
is mass-preserving. In this context, this means K̂(0, t) = I where I is the
2× 2 identity matrix; in terms of the entries, we have

k̂ii(0, t) =

∫
R2

kii(x, t)dx = 1, i = 1, 2,

k̂ij(0, t) =

∫
R2

kij(x, t)dx = 0, i 6= j. (2.11)
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Then it looks clear that the filter Kt will not change constant signals:

Kt ∗ (f + C) = Kt ∗ f + C, C ∈ R2.

Conditions (2.11) can also be used to study the preservation by cross-diffusion
of some quantities that may be relevant in terms of the image. For u = (u, v)T

we consider the vector

M(u) = (m(u),m(v))T , m(u) =

(∫
R2

u(x)dx

)
. (2.12)

Note that for any f ∈ L1(R2) and i, j = 1, 2∫
R2

(kij(·, t) ∗ f) (x)dx =

∫
R2

∫
R2

kij(x− y, t)f(y)dydx

=

∫
R2

(∫
R2

kij(x− y, t)dx

)
f(y)dy

=

(∫
R2

kij(x, t)dx

)(∫
R2

f(x)dx

)
.

Then, (2.2) and (2.11) imply the preservation of (2.12) by cross-diffusion
evolution

M(u(·, t)) = M(u0), t ≥ 0, (2.13)

that is m(u(t)) = m(u0),m(v(t)) = m(v0), t ≥ 0. Some consequences of
(2.13), in terms of the image processing, can be derived from the choice of
the initial data u0. For example:

(i) If we start from a real image f and make any distribution u0(f) =
(u0(f), v0(f)) of grey-level values from it, we may define the average
grey-level as m(u0)+m(v0) and (2.13) implies the property of average
grey-level invariance by cross-diffusion. This includes the particular
case of u0 = f, v0 = 0 (the usual choice in complex diffusion).

(ii) The application of (2.13) may go further the case (i). This depends
on the potential meaning of the components of the initial data u0.

2.1.2. Rotational invariance. As in [17] the invariance of the image by rota-

tion is obtained if the kernels only depend on |x| =
√
x2 + y2:

kij(x) = κij(|x|), i, j = 1, 2, (2.14)
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for some function κij. In terms of the Fourier transform, (2.14) implies that

k̂ij(ξ), i, j = 1, 2, can be expressed as

k̂ij(ξ) = κ̃ij(|ξ|) =

∫ ∞
0

κij(ρ)J0(ρ|ξ|)dρ, (2.15)

where J0(z) is the zeroth order Bessel function, see [17]. Property (2.14) is

verified by the explicit form of K̂t in Example 2.

2.1.3. Regularity and flat kernel as t → ∞. In order to assume some regu-
larity hypotheses on the operators in (2.1), the literature for the scalar case
may serve as inspiration, [1, 3, 6, 15, 17, 23] . In these references, the condi-
tions are diverse and somehow depend on the requirements for the rest of the
scale-space properties. According to this, here we may assume the following
conditions:

(H1) Required by the semi-group property (see section 2.1.4) we will need
K0 = Id (the identity operator), that is K0 = I the 2 × 2 identity
matrix. In terms of the entries of Kt we have kii(·, 0) = 1, i = 1, 2 (or
kii(·, t) tends to Dirac’s delta distribution as t→ 0+, [23, 21]) while if
i 6= j, kij(·, 0) = 0 (or kij(·, t)→ 0 as t→ 0+).

(H2) In order to investigate specific forms of the kernels satisfying the
most natural scale-space properties, we assume, as in [17], that each
kij(·, t) ∈ L1(R2) (the space of integrable functions in R2) and is sep-
arately continuous in x and t.

(H3) Furthermore, for similar reasons as in (H2) (in particular for the linear
complex filtering case) we may follow [3] to assume that each kij(·, t)
is rapidly decreasing in |x|, vanishing at infinity faster than any power
of |x|.

Observe that mass preserving property (2.11) is actually a regularity require-
ment. In particular, it implies flat kernels as t→∞, that is

lim
t→∞

kij(·, t) = 0, i, j = 1, 2. (2.16)

For the meaning of (2.16) in terms of the image, see [21]. Note also that
(H1)-(H3) will be satisfied by the kernels of Example 2 (and therefore, the
one of Example 1).
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2.1.4. Recursivity (Semi-group property). We analyze here the form of the
matrices Kt to have the semi-group property

K0 = Id, Kt+s = KtKs, t, s ≥ 0,

that is

K0 = I, Kt+s = Kt ∗Ks, t, s ≥ 0, (2.17)

where the convolution of two matrices A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1 is

defined as C = A ∗B = (cij)
n
i,j=1 where

cij =
n∑
k=1

aik ∗ bkj, i, j = 1, . . . , n.

Note that as in [17] and in terms of the Fourier symbols, condition (2.17)
can be written as

K̂t+s(ξ) = K̂t(ξ)K̂s(ξ), t, s ≥ 0, ξ ∈ R2. (2.18)

The functional characterization in the matrix case shows that K̂t must be of
the form (2.5) for some matrix D̂ with D̂(ξ) = D̂(|ξ|), see (2.15). (For

simplicity the same notation D̂ is used.) Since kij(·, t) ∈ L1(R2) then

k̂ij(·, t) ∈ C0(R2) (the space of continuous functions vanishing at infinity);

therefore D̂(ξ) is continuous and

D̂(ξ)→ −∞, |ξ| → ∞.

Some other conditions on D̂ will be required to have regularity properties of
the resulting semi-group. This will be studied when treating the infinitesimal
generator in Section 2.1.6.

2.1.5. Scale invariance. The arguments of some references, [15, 17], can be
reviewed here to study the scale invariance property. This means, [1], that if
Dλf(x) = f(λx) then for any λ and t there is t′ = φ(t) such that

DλKφ(t) = KtDλ.

We introduce a scale parameter σ, related to the semigroup parameter t
by a transformation

t = ϕ(σ). (2.19)

In [15] it is argued that in the context of image processing the relation be-
tween t and the scale represented by the standard deviation σ in the Gaussian
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filtering (t = σ2/2) can be generalized and assumed to exist from the begin-
ning of the process, by establishing the existence of time (t) and scale (σ)
parameters and some connection (ϕ) between them. The semigroup condi-
tion in terms of σ now reads

K(·, σ1) ∗K(·, σ2) = K(·, ϕ−1(ϕ(σ1) + ϕ(σ2))). (2.20)

Condition K(·, 0) = I implies ϕ(0) = 0 and in order to preserve the quali-
tative requirement (which is one of the bases of the scale-space theory, [14])
that increasing values of the scale parameter should correspond to a repre-
sentation of the image at coarser scales, we must assume that ϕ : R+ → R+

is monotonically increasing (in particular, invertible). (In [17] this ϕ can be
identified as ψ−1 defined there.)

We now adapt the theory of [15] to the linear cross-diffusion filtering
through the following steps. Assume that in terms of the scale σ, (2.1)
is written in the matrix form

F(·, σ) = K(·, σ) ∗ f ,

where f = (f1, f2)
T ,F = (F1, F2)

T ; in Fourier representation

F̂(ξ, σ) = K̂(ξ, σ)f̂(ξ). (2.21)

We assume grey-level shift invariance, rotational invariance and semi-group
property (Sections 2.1.1, 2.1.2 and 2.1.4 respectively) and look for conditions
on K(·, σ) to ensure scale invariance. The arguments can follow similar steps
to those of [15]:

(A) Dimensional analysis. The application of the Pi-theorem (see e. g.
[15] and references therein) to (2.21) leads to dimensionless variables
Fi/fj, i, j = 1, 2 and σξ and dimension analysis provides the relations

πij = Fif
−1
j ξσ ≈ 1,

in such a way that (2.21) can be written in the form

F̂(ξ, σ) = K̃(ξσ)f̂(ξ),

for some matrix K̃ : R2 → R2 × R2 with K̃(0) = I (in order to have

F̂(ξ, 0) = f̂(ξ)). Actually, rotational invariance implies that we can

assume K̃(ξσ) = K̃(|ξσ|) and write (2.21) as

F̂(ξ, σ) = K̃(|ξσ|)f̂(ξ), (2.22)

for some K̃ : R→ R2 × R2 with K̃(0) = I.
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(B) Scale invariance. Now, semigroup condition (2.20) is, according to
(2.22), of the form

K̃(|ξσ1|)K̃(|ξσ2|) =

K̃(|ξϕ−1(ϕ(σ1) + ϕ(σ2))|), (2.23)

for σ1, σ2 ≥ 0. The same arguments as those in [15] can be used to
show that scale invariance implies that ϕ in (2.19) must be of the form

ϕ(σ) = Cσp,

for some constant C > 0 (which can be taken as C = 1) and p > 0.

(In [17], p is identified as α.) Hence if H(xp) ≡ K̃(x) then (2.23) reads

H(|ξσ1|p)H(|ξσ2|p) = H(|ξσ1|p + |ξσ2|p),

which is identified as the functional equation

Ψ(α1)Ψ(α1) = Ψ(α1 + α2)

characterizing the matrix exponential function. Therefore K̃ must be
of the form

K̃(|ξσ|) = H(|ξσ|p) = e|ξσ|
pA, p > 0

for some 2× 2 real matrix A. Under hypotheses (H2), (H3) of Section

2.1.3, K̃ must vanish at infinity (that is, each component of K̂ is in
C0); therefore

K̂(ξ, σ) = K̃(|ξσ|) = e−|ξσ|
pd,

for some positive definite matrix d. In terms of the original scale t,

K̂(ξ, t) = e−t|ξ|
pd, p > 0. (2.24)

Note that the case p = 2 corresponds to the kernel studied in the
example 2. In particular, example 1 appears when

d =

(
αR −αI
αI αR

)
, αR > 0, αI ∈ R.
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2.1.6. Infinitesimal generator. Semigroup property can also be analyzed
from the point of view of the infinitesimal generator. If u evolves like (2.3)
with Kt satisfying (2.17), then its character can be determined from the
spectrum and regularity of the infinitesimal generator (2.4), [18, 24]. The
following example will illustrate this.

Example 3. We may consider the linear complex filtering with D given by
(2.8) on X = H1(R2) ×H1(R2) and domain Dom(D) = H2(R2) ×H2(R2).
Consider the eigenvalue problem for D:

(λI −D)u = f , (2.25)

where I is the 2× 2 identity matrix, u = (u, v)T , f = (f, g)T . In terms of the
Fourier transform, (2.25) reads

(λ+ αR|ξ|2)û(ξ)− αI |ξ|2v̂(ξ) = f̂(ξ),

αI |ξ|2û(ξ) + (λ+ αR|ξ|2)v̂(ξ) = ĝ(ξ), (2.26)

with ξ = (ξ1, ξ2)
T , |ξ|2 = ξ2

1 + ξ2
2. Inverting (2.26) leads to

û(ξ) =
(λ+ αR|ξ|2)

m(ξ)
f̂(ξ) +

αI |ξ|2

m(ξ)
ĝ(ξ),

v̂(ξ) = −αI |ξ|
2

m(ξ)
f̂(ξ) +

(λ+ αR|ξ|2)
m(ξ)

ĝ(ξ),

m(ξ) = (λ+ αR|ξ|2)2 + (αI |ξ|2)2.

Note now that since αR > 0, for any λ > 0 we have

(λ+ αR|ξ|2)
m(ξ)

≤ 1

λ+ αR|ξ|2
≤ 1

λ
,

and also, since

|λ+ αR|ξ|2||αI |ξ|2| ≤
m(ξ)

2
,

then
|αI |ξ|2|
m(ξ)

≤ 1

2(λ+ αR|ξ|2)
≤ 1

2λ
.

Therefore, Hille-Yosida Theorem, [4], implies that D : X → X in (2.8) with
αR > 0 is the infinitesimal generator in X of a C0−semigroup of contractions
Kt, t ≥ 0. The argument is valid when defining D : Xk → Xk being Xk =
Hk(R2)×Hk(R2) and domain Dom(D) = Xk+1, k ≥ 1.
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This approach can be generalized to kernels of the form (2.24) under the

conditions of Section 2.1.5, where D̂(ξ) = −|ξ|pd, p > 0.

2.1.7. Locality. A semigroup of operators kt, t ≥ 0 satisfies the locality
condition if for all smooth f, g in its domain and all x

(ktf − ktg)(x) = o(t), t→ 0+,

whenever D(n)f(x) = D(n)g(x) for all n ≥ 0. This means that for small t the
value of ktf(x) is determined by the behaviour of f near x. Mathematically,
[1, 17], the locality property implies that the infinitesimal generator is a local
differential operator.

In terms of the Fourier transform and the matrix kernels satisfying (2.24)
we have

̂(
Khf − f

h

)
(ξ) =

(
e−h|ξ|

pd − I
h

)
f̂(ξ).

If h→ 0+ and inverting the Fourier transform, we would obtain a represen-
tation of the infinitesimal generator. Formally

e−h|ξ|
pd − I
h

=
∞∑
j=1

(−1)jhj−1|ξ|jp

j!
dj.

Therefore

lim
h→0+

e−h|ξ|
pd − I
h

= −|ξ|pd.

The limit would be the Fourier symbol of the operator, [18]

Df = −(−∆)p/2df , (2.27)

with ∆ the Laplace operator and where (−∆)p/2 is multiplying each entry of
d. Then (2.27) is local only for integer values of p/2 and the result obtained
in [17] can be extended to this cross-diffusion case.

2.2. Generalized small theta approximation. One of the arguments
to consider complex diffusion as an alternative for image processing is the
so-called small theta approximation, [11]. This means that for small values
of the imaginary part of the complex diffusion coefficient, the corresponding
imaginary part of the solution of the evolutionary diffusion problem behaves
in the limit as a scaled smoothed Gaussian derivative of the initial signal.
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This idea can also be discussed in the context of cross-diffusion systems (2.3),
where D is the infinitesimal generator (2.27), that is

u(x, t) = etDu0(x) = e−t(−∆)p/2du0(x). (2.28)

If we decompose

d = a+ b =

(
d11 0
0 d22

)
+

(
0 d12

d21 0

)
,

then note that a and b commute if and only if

d11 = d22. (2.29)

Assume first that (2.29) holds and denote ν = d11 = d22 > 0. We may
analyze the behaviour of (2.28) by using this property, since now we can
write

etD = e−ta(−∆)p/2e−tb(−∆)p/2

= e−tb(−∆)p/2

(
e−νt(−∆)p/2 0

0 e−νt(−∆)p/2

)
Then

u(x, t) = e−tb(−∆)p/2

(
e−νt(−∆)p/2u0(x)

e−νt(−∆)p/2v0(x)

)
. (2.30)

We now study the first matrix exponential. Due to the form of b we have

b2m = (d12d21)
mI, b2m+1 = (d12d21)

mb, m = 0, 1, . . . ,

where I stands for the 2×2 identity matrix. Therefore we can formally write,
[24]

e−tb(−∆)p/2 =
∞∑
m=0

(−t)2m

2m!
(−∆)

2mp
2 (d12d21)

mI (2.31)

+
∞∑
m=0

(−t)2m+1

(2m+ 1)!
(−∆)

(2m+1)p
2 (d12d21)

mb.

By defining the operator A := −(−∆)p/2 and according to the sign of d12d21,
the following cases hold:
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(1) d12d21 > 0. If µ :=
√
d12d21 then we can write (d12d21)

m = µ2m =
1
µµ

2m+1 and (2.31) becomes the formal matrix operator (see [18])

etbA =

(
cosh (tµA) d12

µ sinh (tµA)
d21
µ sinh (tµA) cosh (tµA)

)
,

where the hyperbolic cosine and sine of the operator are defined in
the standard way from the exponential, [24]. Then if µ is small

etbA ≈ I + tbA, (2.32)

and (2.30) can be approximated by

u(x, t) ≈ (I + tbA)

(
eνtAu0(x)
eνtAv0(x)

)
(2.33)

=

(
eνtAu0(x) + td12A

(
eνtAv0(x)

)
td21A

(
eνtAu0(x)

)
+ eνtAv0(x)

)
.

Formula (2.33) generalizes the small theta approximation emphasized
in [11] in the following sense. Given f ∈ L1(R2) if d21 is small we may
take u0 = (f, 0)T and then

u(x, t) =

(
u(x, t)
v(x, t)

)
≈
(

eνtAf(x)
td21A

(
eνtAf(x)

)) .
Thus v(x, t) satisfies

lim
d21→0

v(x, t)

d21
= tA

(
eνtAf(x)

)
.

If d12 is small, we may take u0 = (0, f)T and then

u(x, t) =

(
u(x, t)
v(x, t)

)
≈
(
td12A

(
eνtAf(x)

)
eνtAf(x)

)
.

Thus u(x, t) satisfies

lim
d12→0

f(x, t)

d12
= tA

(
eνtAf(x)

)
.

(2) The discussion of the cases d12 = 0, d21 6= 0 and d21 = 0, d21 6= 0 is
similar. In both the matrix b is triangular and b2 = 0; therefore (2.32)
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is actually an equality. Thus, (2.33) becomes

u(x, t) = (I + tbA)

(
eνtAu0(x)
eνtAv0(x)

)
=

(
eνtAu0(x)

td21A
(
eνtAu0(x)

)
+ eνtAv0(x)

)
,

in the first case and

u(x, t) = (I + tbA)

(
eνtAu0(x)
eνtAv0(x)

)
=

(
eνtAu0(x) + td12A

(
eνtAv0(x)

)
eνtAv0(x)

)
,

in the second one. Then a generalization of the small theta approxi-
mation property can also be derived as before.

(3) d12d21 < 0. If µ := ±
√
−d12d21 then we can write (d12d21)

m =

(−1)mµ2m = (−1)m

µ µ2m+1 and now (2.31) becomes

etbA =

(
cos (tµA) d12

µ sin (tµA)
d21
µ sin (tµA) cos (tµA)

)
,

where the cosine and sine functions are also defined from the expo-
nential function. Then again if µ is small (2.32) holds, and (2.30) can
be approximated as before, using (2.33), generalizing the small theta
approximation in a similar way. Actually, this small theta approxima-
tion appears as particular case when d12 = −d21 taking for instance
µ = |d21| sin θ for some θ ∈ (−π/2, π/2), [11].

The case d11 6= d22 cannot be treated as before since the matrices a and b
do not commute anymore. Instead, we may use the eigenvalues (2.10) of d,
written in the form

λ± =
1

2

(
ν ±
√
δ
)
,

ν = d11 + d22, δ = (d11 − d22)
2 + 4d12d21.

Similar conclusions to those above are obtained when discussing the be-
haviour of solutions (2.30) in terms of the sign of δ and using the refor-
mulation given by a basis of eigenvectors.
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3. Numerical experiments
This section is devoted to illustrate numerically the behaviour of linear

filters of cross-diffusion. Here the purpose is two-fold. First, the dependence
of the models on some parameters, such as the initial data u0, the matrix d
and the power p of (2.27), motivates a discussion, by computational means,
about their influence on the performance of the restoration process. The
second purpose is to compare this performance with different filters. Es-
pecial attention will be paid to this comparison when Gaussian smoothing
and linear complex diffusion, considered as particular cases of cross-diffusion
formulation, are involved.

Several numerical experiments for one- and two-dimensional signals are car-
ried out. In all of them, the computations are made with Fourier techniques,
[5]. Specifically, for the case in one dimension, an interval (−L,L) with large
L is defined and discretized by Fourier collocation points xj = −L+ jh, j =
0, . . . , N, with stepsize h and the signal is represented by the corresponding
interpolant trigonometric polynomial with the coefficients computed by the
DFT of the signal values at the collocation points. For experiments with
images, the implementation follows the corresponding Fourier techniques in
two dimensions, with discretized intervals (−Lx, Lx)×(−Ly, Ly), Lx, Ly large,
by Fourier collocation points (xj, yk), with xj = −Lx + jhx, j = 0, . . . , Nx,
yk = −Ly + khy, k = 0, . . . , Ny, and the image is represented by the inter-
polant trigonometric polynomial at the collocation points, computed with
the two-dimensional version of the DFT. In both cases, from the Fourier
representation, the convolution (1.1) is implemented in the Fourier space by
using (2.24).

3.1. Experiments in 1D. The evolution of a one-dimensional signal f (a
unit-step function), clean and noisy, with kernels of symbols (2.27) and initial
condition u0 = (f, 0)T is first studied. We start with the clean signal. The
main conclusions suggested by the numerical experiments (see Figures 1-8)
are the following:

(1) The first component is affected by a smoothing effect. This is stronger
as d11, d22 which, by (2.9), have to be positive, and |d12|, |d21| grow.

(2) Except in the Gaussian smoothing case (d12 = d21 = 0), the second
component develops a sort of small-amplitude Gaussian derivative-
type monopulse. Again, the height of the amplitude looks to depend
on how large (in absolute value) the elements of d are, with the larger
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the parameters the taller the wave is. In particular, this property may
illustrate the effect of the small theta approximation in complex dif-
fusion (Figure 2) and in more general cross-diffusion models (Figures
3-5). In this sense, no relevant differences appear to be observed when
considering different signs of d12 and d21.

(3) The influence of the values of p is illustrated in Figures 5-7. Note
that as p grows the first component develops small oscillations at the
points with less regularity. On the other hand, the second component
increases somehow the number of pulses. Figure 8 shows that the
maximum of the first component is growing with p.

The impression that the models are relatively equivalent as filters is enforced
when the unit step is affected by some noise and the evolution of the noisy
signal, taken as initial condition, is monitored. This is illustrated by the
following experiments, where a Gaussian-type white noise is taken. Some
points can be emphasized (see Figures 9-12):

(1) In all the cases considered, the evolution filters the signal in a process
that mainly depends on d11, d22. The blurring effect looks however at-
tenuated a bit when the small theta approximation (with linear com-
plex diffusion or more general cross-diffusion with small in magnitude
non-diagonal entries) is present.

(2) Table 1 displays several parameters to measure the noise of a sig-
nal and therefore they evaluate somehow the quality of denoising at
different times. They are:
• Root-Mean-Square-Error (RMSE):

RMSE(f, g) =
1√
l
||f − g||2.

• Signal-to-Noise-Ratio (SNR):

SNR(f, g) = 10 log10

(
var(g)

var(f − g)

)
. (3.1)

• Peak Signal-to-Noise-Ratio (PSNR):

PSNR(f, g) = 10 log10

(
l2

||f − g||22

)
= 20 log10

(
l

RMSE(f, g)

)
, (3.2)
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Figure 1. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = d21 = 0. Profiles of (a) u and (b) v at times t∗ =
0, 0.25, 2.5, 25, 250.

where f and g are, respectively, the original and restored signals,
l is their length and var(x) is the variance of the vector x.

The computations correspond to filter a noisy unit step pulse with
Gaussian white noise of standard deviation σ = 0.1. The choices of d
are as follows: in all the cases d11 = d22 = 1 and

(C1) d12 = d21 = 0 (Gaussian smoothing).
(C2) d12 = −µ, d21 = µ, µ = 0.1. (Linear complex diffusion.)
(C3) d12 = −µ, d21 = µ, µ = 1. (Linear complex diffusion.)
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Figure 2. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = −0.1, d21 = 0.1. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250.

(C4) d12 = 0.2, d21 = 0.1.
(C5) d12 = −0.9, d21 = 0.8.

Note that the best values at t∗ = 0.25 are given by (C3) while for longer times
(t∗ = 2.5, 25, the first one is not shown in the table) we need to make use of the
small theta approximation, with smaller values of d12, d21; thus (C4) behaves
better. (Since RMSE compares the original and the denoised signals, it
is measuring how close the signals are and, consequently, the smaller the
RMSE the better the filtering is. On the contrary, larger SNR and PSNR



20 A. ARAÚJO, S. BARBEIRO, E. CUESTA AND A. DURÁN
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Figure 3. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = 0.2, d21 = 0.1. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250.

values correspond to a smaller influence of the noise.) We finally note that
larger values of σ give similar results.

3.2. Experiments in 2D.

3.2.1. Choice of the initial data. The numerical experiments presented here
with two-dimensional images deal first with the choice of the components of
the initial vector image u0. To this end, we consider a matrix d satisfying
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Figure 4. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = 0.9, d21 = 0.9. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250.

Table 1. RMSE, SNR and PSNR values. Gaussian white
noise with σ = 0.1.

d t∗ = 0.25 t∗ = 25
RMSE SNR PSNR RMSE SNR PSNR

(C1) 5.38E−2 19.41 26.59 8.07E−2 15.58 22.09
(C2) 5.38E−2 19.41 26.59 8.08E−2 15.57 22.08
(C3) 5.28E−2 19.57 26.71 8.67E−2 14.74 21.24
(C4) 5.38E−2 19.40 26.58 8.05E−2 15.60 22.12
(C5) 5.29E−2 19.55 26.71 8.68E−2 14.93 21.43
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Figure 5. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = −0.9, d21 = 0.8. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250.

the required conditions (2.9), namely

d =

(
1 −0.1

0.01 1

)
.

We also fix p = 2 and a suitable final time t∗ which depends on the degra-
dation of the image due to noise. We first take four noisy images from
an ideal one by adding Gaussian white noise with standard deviation σ =
15, 25, 35, 45. For several choices of u0 the evolved image u at t∗ is computed
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Figure 6. Cross-diffusion with p = 3 and for d11 = d22 =
1, d12 = −0.9, d21 = 0.8. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250.

by using (2.1). For each u0 and all the noisy images, the corresponding SNR
and PSNR values are calculated and compared to those given by the original
image. In this case the computations formulas (3.1) and (3.2) are applied,
where in this case f and g are, respectively, the original and restored image,
l = 255 and the Euclidean norm in (3.2) is substituted by the Frobenius
norm (divided by the corresponding factor of the dimension of the matrices).
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Figure 7. Cross-diffusion with p = 4 and for d11 = d22 =
1, d12 = −0.9, d21 = 0.8. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250.

The results are shown in Table 2. The values of u0 for the experiments are

u
(1)
0 = (f, 0)T ,u

(2)
0 = (f,∆f)T ,

u
(3)
0 = (f, |∇f |)T ,u(4)

0 = (f,−|∇f |∆f)T .

The final time is t∗ = 1. The restored images corresponding to σ = 35 are
displayed in Figures 13, 14. In view of Table 2, it may be worth mentioning

the slightly better behaviour of u
(4)
0 . Both SNR and PSNR values also vary

with the final time t∗ where the process stops at. By way of illustration,
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Figure 8. Cross-diffusion for d11 = d22 = 1, d12 = −0.9, d21 =
0.8. Maximum of u vs. p at time t∗ = 2.5.

Table 2. SNR (top) and PSNR (bottom) values at t∗ = 1.

σ 15 25 35 45

u
(1)
0 11.02 10.63 10.01 9.27

u
(2)
0 10.87 10.52 9.97 9.22

u
(3)
0 11.01 10.60 10.04 9.28

u
(4)
0 11.32 10.84 10.15 9.43

σ 15 25 35 45

u
(1)
0 25.66 25.21 24.58 23.87

u
(2)
0 25.50 25.09 24.50 23.82

u
(3)
0 25.67 25.20 24.57 23.87

u
(4)
0 25.99 25.41 24.70 23.94

Figure 15 shows the evolution of the SNR (Figure (a)) and PSNR (Figure

(b)) parameters with t∗ when considering u
(1)
0 and u

(4)
0 as initial data and

from an additive Gaussian noise with σ = 30. Both parameters attain a
maximum value from which the quality of restoration is deteriorated by the

blurring effect. These maximum values are larger in the case of u
(1)
0 but from

u
(4)
0 the time evolution looks to behave better. This relative equivalence

of results using different initial decomposition of the noisy image was also
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Figure 9. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = d21 = 0. Profiles of (a) u and (b) v at times t∗ =
0, 0.25, 2.5, 25, 250. The initial data is a step pulse with Gaussian
white noise of standard deviation σ = 0.1.

checked by taking a different type of noise, namely a uniformly distributed
white noise with the same values of σ as above.

3.2.2. Choice of p. A second point is related to the influence of the local
character of the infinitesimal generator (2.27) on the quality of filtering. This
is studied by comparing the SNR and PSNR indexes obtained with several
values of p from a noisy image and at final time t∗ = 2. Figure 16 shows
that the SNR and PSNR values increase with p. In this sense, locality does
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Figure 10. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = −0.1, d21 = 0.1. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250. The initial data is a step pulse with
Gaussian white noise of standard deviation σ = 0.1.

not look to make influence in the quality of restoration. This behaviour with
respect to p was also observed when using the rest of the computed initial
data.

3.2.3. Some comparisons with linear real and complex diffusion. A final
experiment attempts to compare the blurring effect of some examples of linear
cross-diffusion systems with those given by the particular cases of Gaussian
smoothing (obtained with d12 = d21 = 0, d11 = d22 = ν > 0 and u0 = (f, 0)T )
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Figure 11. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = 0.2, d21 = 0.1. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250. The initial data is a step pulse with
Gaussian white noise of standard deviation σ = 0.1.

and linear complex diffusion (d21 = −d12 = µ, d11 = d22 = ν > 0,u0 =
(f, 0)T ). To this end, an original image f was taken in the initial condition
u0 = (f, 0)T in (2.3); this evolved according to (2.28) with different matrices d
and using p = 2. (The results with other values of p have also been compared
but will not be shown here.) The evolved image u = (u, v)T is computed at
values t = 0.25, 2.5, 25, as well as the corresponding correlation coefficient
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Figure 12. Cross-diffusion with p = 2 and for d11 = d22 =
1, d12 = −0.9, d21 = 0.8. Profiles of (a) u and (b) v at times
t∗ = 0, 0.25, 2.5, 25, 250. The initial data is a step pulse with
Gaussian white noise of standard deviation σ = 0.1.

between the original S and the restored U images, computed as

r(S, U) =

∑
i,j(Sij − S̄)(Uij − Ū)

‖S − S̄‖F‖U − Ū‖F
, (3.3)
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Figure 13. (a) Noisy image with σ = 35; (b)-(e) Restored image

at t∗ with (1.1) and u0 = u
(j)
0 , j = 1, 2.
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Figure 14. (a) Noisy image with σ = 35; (b)-(e) Restored image

at t∗ with (1.1) and u0 = u
(j)
0 , j = 3, 4.
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Figure 15. (a) SNR vs. t∗ and (b) PSNR vs. t∗ for a filter

(2.1) with u
(1)
0 = (f, 0)T (solid line) and u

(4)
0 = (f,−|∇f |∆f)T

(dashed line) where f is a noisy image affected by additive Gauss-
ian white noise with σ = 30.

where S̄, Ū are uniform images with intensities given by the average of in-
tensities of S and U respectively. The matrices for the comparisons are:

d1 =

(
ν 0
0 ν

)
, d2 =

(
ν −µ
µ ν

)
,

d3 =

(
ν −µ
1 ν

)
, d4 =

(
ν µ
1 ν

)
.
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Figure 16. (a) SNR vs. t and (b) PSNR vs. p for a filter (2.1)

at t∗ = 2 with u
(1)
0 = (f, 0)T where f is the initial noisy image

affected by additive Gaussian white noise with σ = 30.

Note that d1 corresponds to Gaussian smoothing, d2 represents linear com-
plex diffusion filtering with c = ν + iµ, ν, µ > 0, while matrices d3 and d4

are other examples of cross-diffusion, where in d3 ν, µ > 0, µ 6= 1 and in d4

ν, µ > 0. In the experiments and for simplicity we fix ν = 1, while the values
of µ have been taken in connection with the values of θ considered in [11]
(although c = ν + iµ does not necessarily have modulus equals one). Thus
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Table 3. Correlation coefficient (2.33) for θ = π/30 (µ ≈ 1.051042E−1).

t 0.25 2.5 25
d1 9.993763E−1 9.839088E−1 9.205253E−1
d2 9.993746E−1 9.838169E−1 9.202350E−1
d3 9.993602E−1 9.830421E−1 9.178705E−1
d4 9.993921E−1 9.847935E−1 9.234387E−1

Table 4. Correlation coefficient (2.33) for θ = 7π/30 (µ ≈ 9.004040E−1).

t 0.25 2.5 25
d2 9.992472E−1 9.776378E−1 9.043447E−1
d3 9.992323E−1 9.769974E−1 9.029858E−1
d4 9.995045E−1 9.920391E−1 9.662403E−1

Table 5. Correlation coefficient (2.33) for θ = 10π/30 (µ ≈ 1.732051).

t 0.25 2.5 25
d2 9.988481E−1 9.643425E−1 8.812152E−1
d3 9.990874E−1 9.714847E−1 8.925748E−1
d4 9.996072E−1 9.901388E−1 1.162159E−3

we have used µ = tan(θ), for θ = π/30, 7π/30, 10π/30, leading to the approx-
imate values of µ = 1.051042 × 10−1, 9.004040 × 10−1, 1.732051. It is worth
noticing that for the last µ, d4 fails to be positive definite. The corresponding
values of the correlation coefficient (3.3) at several times t∗ = 0.25, 2.5, 25 for
the three cases of µ and the four matrices are given in Tables 3-5. (d1 does
not depend on µ, thus it gives the same results in the three tables.) The
evolution of the blurring effect is illustrated in Figures 17-20, which display
the two components u, v of u at t∗.

For the case θ = π/30 (small µ) Gaussian smoothing and complex diffu-
sion give very similar correlation coefficient. The results are a little worse for
d2 and d3 (although the cross-diffusion model incorporates the small theta
approximation, as in the complex diffusion case d2, see the evolution of v in
the figures) and better in the case of d4. As θ increases (larger µ) this be-
haviour persists; compared to Gaussian smoothing, linear complex diffusion
and cross-diffusion with d3 get worse and worse results, while as long as d4
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(a)

(b)

Figure 17. Cross-diffusion with p = 2 and for θ = π/30 (µ ≈
1.051042E−1). Evolution of components u (top) and v (bottom)
at times t∗ = 0, 0.25, 2.5, 25. (a) d1 (Gaussian smoothing); (b) d2

(complex diffusion).
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(a)

(b)

Figure 18. Cross-diffusion with p = 2 and for θ = π/30 (µ ≈
1.051042E−1). Evolution of components u (top) and v (bottom)
at times t∗ = 0, 0.25, 2.5, 25. (a) d3; (b) d4.
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(a)

(b)

Figure 19. Cross-diffusion with p = 2 and for θ = 10π/30
(µ ≈ 1.732051). Evolution of components u (top) and v (bottom)
at times t∗ = 0, 0.25, 2.5, 25. (a) d2 (complex diffusion); (b) d3.
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Figure 20. Cross-diffusion with p = 2 and for θ = 10π/30
(µ ≈ 1.732051). Evolution of components u (top) and v (bottom)
at times t∗ = 0, 0.25, 2.5, 25 with d4.

is positive definite (observe the final image in Figure 20) this cross-diffusion
case gives the best correlation coefficient with the original image.

4. Conclusions and perspectives
In the present paper linear cross-diffusion systems for image processing

are analyzed. Viewed as convolution processes, those kernels satisfying fun-
damental scale-space properties are characterized, generalizing the results
presented in the literature for the scalar case, [15]. This generalization is
also extended to the property of small theta approximation, introduced in
the case of the linear complex diffusion, [11], which is identified in terms of
the entries of the corresponding matrix convolution.

In a second part, a numerical study of comparison with kernels is made.
The numerical experiments, performed for one- and two-dimensional signals,
show the influence of the choice of the initial distribution of the image in
a vector of two components, as well as of the matrix of the kernel on the
behaviour of the restoration process by cross-diffusion. The models present,
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according to the results, a relevant degree of adaptability which enables them
as an alternative for linear filtering.

The present paper will be continued in a natural way by the introduction
of nonlinear cross-diffusion models and the study of their behaviour in image
restoration.
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