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CROSS-DIFFUSION SYSTEMS FOR IMAGE PROCESSING:
II. THE NONLINEAR CASE

ADÉRITO ARAÚJO, SÍLVIA BARBEIRO, EDUARDO CUESTA AND ÁNGEL DURÁN

Abstract: In this paper the use of nonlinear cross-diffusion systems to model
image restoration is investigated, theoretically and numerically. In the first case,
well-posedness, scale-space properties and long time behaviour are analyzed. From
a numerical point of view, a computational study of the performance of the models
is carried out, suggesting their diversity and potentialities to treat image filtering
problems. The present paper is a continuation of a previous work of the same
authors, devoted to linear cross-diffusion models.

1. Introduction
This paper is concerned with the use of nonlinear cross-diffusion systems

for the mathematical modeling of image filtering. Here the grey-scale image
is represented by a vector field of two components u = (u, v)T . From an ini-
tial noisy image the filtering process for u will be governed by an evolution
problem, [6, 16] of nonlinear cross-diffusion type. The nonlinearity is iden-
tified by some cross-diffusion coefficient matrix satisfying certain properties
which will be analyzed along the text.

The paper is a continuation of a previous work devoted to the linear case,
[2]. There, those systems satisfying relevant scale-space properties were iden-
tified. The performance of the models was analyzed by numerical means in
terms of some features: the way how the information about the initial noisy
image is distributed between the components of the vector field, the role of
each of the components to control diffusion and the choice of some entries of
the convolution kernel.

The goal is to continue into this approach by incorporating nonlinearity
into the model. As in the linear case, a foregoing related proposal is the use
of complex diffusion problems, developed by Gilboa and collaborators, [14],
where the image is represented by a complex function which evolves according
to some complex diffusion process. The application of nonlinear complex
diffusion to image filtering and edge enhancing is discussed in [12, 13, 14].
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The interpretation of complex diffusion as a cross diffusion system moti-
vates the introduction of a more general set of equations and its study as a
mathematical model in image processing. As in the complex diffusion case,
the idea of dividing the information of the image in two components evolving
in a cross way is behind the approach. This may provide a relevant diversity
of the resulting models that can be used to adapt their performance to the
problem under study. This was shown for the complex diffusion, both in
the linear case when studying the role of the imaginary part as smoothed
Laplacian of the initial image (the so-called small theta approximation) and
in the nonlinear case when some complex shock filter models are proposed,
[14]. The present paper is concerned with the study of the nonlinear cross-
diffusion model for image restoration, following the same approach of the
previous work for the linear case, [2], leaving the study for edge-detection for
a future research.

The application of cross-diffusion systems for modeling, especially in popu-
lation dynamics, is well known (see e. g. [10, 11, 21] and references therein).
To our knowledge, the only reference concerning image processing with cross-
diffusion models is the unpublished manuscript [20], where the authors prove
the existence of global solution of a cross-diffusion problem, related to the
complex diffusion approach proposed by Gilboa and collaborators. This al-
ready represents an advance with respect to the ill-posed Perona-Malik for-
mulation, [17, 22]. The improvement is also confirmed by a numerical com-
parison in a restoration problem.

The main contribution of this paper is the formalization of nonlinear cross-
diffusion problems as mathematical models for image processing. Under
some hypothesis on the cross-diffusion matrix, well-posedness of the nonlin-
ear cross-diffusion initial boundary-value problem with Neumann boundary
conditions is stablished, along with the proof of some scale-space properties,
[3, 19], and the study of the behaviour of the solution at infinity. Some of the
arguments of [20] for the system under study will be used and generalized
here.

Additionally, the performance of the models are estimated by computa-
tional means in several examples. Specifically, three particular cases (one of
them corresponding to the complex diffusion case) are applied in a filtering
problem and the quality of restoration is measured and compared by using
some standard performance metrics. The numerical experiments presented
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here seek to be illustrative of the potential of these models to image filter-
ing. Rather than being exhaustive, this numerical study is a proof-of-concept
which aims to motivate future research in this direction.

The paper is structured as follows: In Section 2 an initial boundary-value
problem of cross-diffusion type with Neumann boundary conditions is intro-
duced. Using standard results, existence and uniqueness of solution of the
weak formulation is proved, the regularity is studied and a maximum princi-
ple is established. These make up the main body of well-posedness results.
The satisfaction of some scale-space properties, a discussion on the existence
of Lyapunov functions and the behaviour at infinity complete the theoretical
analysis of the model. In Section 3 some different versions of the system,
according to some choice of the cross-diffusion matrix, are compared, by nu-
merical means, in a standard problem of image restoration. The comparison
is focused on the computation of some quality indexes and the evolution of
the filtering process. Finally the main conclusions and some future research
are outlined in Section 4.

2. Nonlinear cross-diffusion model
The following initial boundary-value problem of cross-diffusion for u =

(u, v)T

∂u

∂t
(x, t) = div (D11(u(x, t))∇u(x, t)

+D12(u(x, t))∇v(x, t)) , (2.1)

∂v

∂t
(x, t) = div (D21(u(x, t))∇u(x, t)

+D22(u(x, t))∇v(x, t)) ,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

for (x, t) ∈ QT := Ω × (0, T ], with Neumann boundary conditions in ∂Ω ×
[0, T ]

〈D11(u)∇u+D12(u)∇v, n〉 = 0,

〈D21(u)∇u+D22(u)∇v, n〉 = 0, (2.2)

is considered. In (2.1), (2.2), Ω is a (squared) domain in R2 with boundary
∂Ω, n stands for the exterior normal vector to ∂Ω. From the Sobolev spaces
on Ω Hk(Ω), k ≥ 0 (with H0(Ω) = L2(Ω)) we define Xk := Hk(Ω) ×Hk(Ω)
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with norm, [1]

||u||Xk
=
(
||u||2Hk(Ω) + ||v||2Hk(Ω)

)1/2

, u = (u, v)T .

Finally, D stands for a cross-diffusion matrix operator

u ∈ X1 7→ D(u) : QT → R4,

with, for (x, t) ∈ QT := Ω× [0, T ]

D(u(x, t)) =

(
D11(u(x, t)) D12(u(x, t))
D21(u(x, t)) D22(u(x, t))

)
,

and satisfying the following hypotheses:

(H1) There exists α > 0 such that for each u : QT → R2 with u(·, t) ∈
X1, t ∈ [0, T ]

ξTD(u(x, t))ξ ≥ α|ξ|2, ξ ∈ R2, (x, t) ∈ QT . (2.3)

(H2) There exists L > 0 such that for u,v : QT → R2 with u(·, t),v(·, t) ∈
X1, (x, t) ∈ QT , i, j = 1, 2

|Dij(v(x, t))−Dij(u(x, t))| ≤ L|v(x, t)− u(x, t)|.

(H3) There exists M > 0 such that for each u : QT → R2 with u(·, t) ∈
X1, t ∈ [0, T ]

|Dij(u(x, t))| ≤M, (x, t) ∈ QT , i, j = 1, 2.

Conditions (H1)-(H3) can also be complemented by some other assumptions
required by well-posedness or some scale-space properties (see Section 2.2).

As an example we have the case of complex diffusion, [14]. This can be for-
mulated as a cross-diffusion problem (2.2) for the real and imaginary parts of
the (complex) image function u+iv. In [14] the following diffusion coefficient
is used:

c = c(v) =
eiθ

1 +
(
v
κθ

)2 ,

where κ is a threshold parameter and θ is a phase angle parameter. In the
cross-diffusion formulation, this corresponds to the matrix

D(u, v) = g(v)

(
cos θ − sin θ
sin θ cos θ

)
, g(v) =

1

1 +
(
v
κθ

)2 . (2.4)
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In what follows the weak formulation of (2.1), (2.2) will be considered. This
consists of finding u = (u, v)T : [0, T ] −→ X1 satisfying, for any t ∈ [0, T ]∫

Ω

((∂tu)w1 + (∂tv)w2) dΩ

+

∫
Ω

(∇w1∇w2)D(u)(∇u∇v)TdΩ = 0, (2.5)

for all w = (w1, w2)
T ∈ X1. In (2.5), the integrand of the second term is

defined as

(∇w1∇w2)D(∇v1∇v2)
T = ∇wT

1 D11∇v1 +∇wT
1 D12∇v2

+∇wT
2 D21∇v1

+∇wT
2 D22∇v2,

where Dij = Dij(u), i, j = 1, 2, D = D(u) and

∇fDij∇g = fxDijgx + fyDijgy, i, j = 1, 2.

This implies that

(∇w1∇w2)D(∇v1∇v2)
T = (w1x, w2x)D

(
v1x

v2x

)
+(w1y, w2y)D

(
v1y

v2y

)
= wT

xDvx + wT
yDvy. (2.6)

Problem (2.1), (2.2) will be now studied when understood as an evolution
system for image processing. The analysis is concerned with well-posedness,
scale-space properties and long time behaviour.

2.1. Well-posedness. The goal of this section is to prove the existence,
uniqueness, regularity and continuous dependence on the initial data of the
solution for (2.5), which corresponds to the weak solution of the nonlinear
cross-diffusion initial boundary-value problem (2.1), (2.2). Some notation is
first introduced. We define

W (0, T ) = {w ∈ L2(0, T,H1(Ω)) :

dw

dt
∈ L2(0, T, (H1(Ω))′)},
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where (H1(Ω))′ stands for the dual space of H1(Ω), characterized as the
completion of L2(Ω) with respect to the norm, [1],

||v||−1,2 = sup
u∈H1(Ω),||u||=1

|〈u, v〉|, 〈u, v〉 =

∫
Ω

uvdΩ.

In W (0, T ) we consider the graph norm and we will also make use of the L∞

norm

||v||L∞(0,T,L2(Ω)) = ess sup
t∈[0,T ]

||u(t)||L2(Ω).

Finally (X1)
′ will stand for (H1(Ω))′ × (H1(Ω))′.

To prove the well-posedness of the problem, we follow the standard argu-
ments used in [9, 23] (see also [10] and references therein). We first consider a
related linear problem and we establish a maximum-minimum principle and
the estimates of the solution in different norms. These results are crucial
to prove the existence of the solution for the nonlinear case by using the
Schauder fixed-point theorem, [8]. The same arguments as in [9, 23] apply
to prove the uniqueness of solution, as well as its regularity and continuous
dependence on the initial data. Finally, the proof of the extremum principle
for the linear problem can be adapted to obtain the corresponding result for
(2.1), (2.2), finishing off the study of well-posedness.

Theorem 1. Under hypotheses (H1)-(H3), (2.5) admits a unique solution
u ∈ C(0, T,X0) ∩ L2(0, T,X1) that depends continuously on the initial data
and which is a strong solution of (2.1), (2.2) for u0 ∈ X1 when D is smooth
with u ∈ C∞((0, T ]× Ω). Furthermore, if

a1 = ess inf u0, a2 = ess inf v0,

b1 = ||u0||L∞(Ω), b2 = ||v0||L∞(Ω),

and u = (u, v)T then for all (x, t) ∈ QT

a1 ≤ u(x, t) ≤ b1, a2 ≤ v(x, t) ≤ b2.

2.1.1. Existence. In order to study the existence of solution of (2.5) the fol-
lowing linear initial-boundary-value problem is considered. Let U = (U, V )T ,
with

U, V ∈ W (0, T )
⋂

L∞(0, T, L2(Ω)),
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be given. In order to study the existence of solution of (2.5) the following
linear initial-boundary-value problem n QT is considered.

∂u

∂t
(x, t) = div (D11(U(x, t))∇u(x, t)

+D12(U(x, t))∇v(x, t)) ,

∂v

∂t
(x, t) = div (D21(U(x, t))∇u(x, t)

+D22(U(x, t))∇v(x, t)) ,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (2.7)

with Neumann boundary conditions in ∂Ω× [0, T ]

〈D11(u)∇u+D12(u)∇v, n〉 = 0,

〈D21(u)∇u+D22(u)∇v, n〉 = 0. (2.8)

Since D(U) = D(U, V ) is uniformly positive definite (hypothesis (H1)),
then, [18], there is a unique weak solution of (2.7), (2.8), u(U, V ) =
(U1(U, V ), U2(U, V )), with

U1, U2 ∈ W (0, T )
⋂

L∞(0, T, L2(Ω)).

We now establish some estimates of this solution in different norms, [20].
Consider first the weak formulation of (2.7): find u(U, V ) =
(U1(U, V ), U2(U, V )) ∈ L2(0, T,X1) satisfying∫

Ω

((∂tU1)v1 + (∂tU2)v2) dΩ

+

∫
Ω

(∇v1∇v2)D(U, V )(∇U1∇U2)
TdΩ = 0, (2.9)

for every v = (v1, v2) ∈ X1 and all 0 ≤ t ≤ T . We take the test functions
v1 = (U1− b1)+, v2 = (U2− b2)+ for some b1, b2 > 0 that will be specified later
and where f+ = max{f, 0}, [20, 23]. Then (2.9) becomes

1

2

∫
Ω

(
∂t(U1 − b1)

2
+ + ∂t(U2 − b2)

2
+

)
dΩ

+

∫
U1>b1,U2>b2

(∇U1∇U2)D(U, V )(∇U1∇U2)
TdΩ = 0.
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By using (H1)

d

dt

∫
Ω

(
(U1 − b1)

2
+ + (U2 − b2)

2
+

)
dΩ ≤ 0.

Integrating we have, for any 0 ≤ t ≤ T ,∫
Ω

(
(U1(t)− b1)

2
+ + (U2(t)− b2)

2
+

)
dΩ

≤
∫

Ω

(
(U1(0)− b1)

2
+ + (U2(0)− b2)

2
+

)
dΩ. (2.10)

Now we can take b1, b2 such that the integral on the right hand side of (2.10)
becomes zero. For instance, if we assume U1(0), U2(0) ∈ L∞(Ω) and

b1 = ||U1(0)||L∞(Ω), b2 = ||U2(0)||L∞(Ω),

then (2.10) implies∫
Ω

(
(U1(t)− b1)

2
+ + (U2(t)− b2)

2
+

)
dΩ ≤ 0

and consequently (U1(t)− b1)+ = (U2(t)− b2)+ = 0 for all 0 ≤ t ≤ T , that is

U1(x, t) ≤ b1 = ||U1(0)||L∞(Ω),

U2(x, t) ≤ b2 = ||U2(0)||L∞(Ω). (2.11)

Formulas (2.11) can be understood as a maximum principle and will be
adapted to the nonlinear case below. On the other hand, taking v1 =
(U1 − a1)−, v2 = (U2 − a2)− for some a1, a2 > 0 and where f− = min{f, 0},
the same argument leads to∫

Ω

(
(U1(t)− a1)

2
− + (U2(t)− a2)

2
−
)
dΩ

≤
∫

Ω

(
(U1(0)− a1)

2
− + (U2(0)− a2)

2
−
)
dΩ.

If we now consider

a1 = ess inf U1(0), a2 = ess inf U2(0),

then ∫
Ω

(
(U1(t)− a1)

2
− + (U2(t)− a2)

2
−
)
dΩ ≤ 0
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and therefore (U1(t)− a1)− = (U2(t)− a2)− = 0 for all 0 ≤ t ≤ T , that is

U1(x, t) ≥ ess inf U1(0), U2(x, t) ≥ ess inf U2(0). (2.12)

In particular, if U1(0), U2(0) ≥ 0 then U1(x, t), U2(x, t) ≥ 0 for all (x, t) ∈ QT .

A second estimate on the solution of the linear problem (2.7) can be ob-
tained from the ‘energy’

EL(t) =
1

2

∫
Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ.

Note that if in the weak formulation (2.9) we take v = (U1, U2)
T then

d

dt
EL(t) +

∫
Ω

(∇U1∇U2)D(U, V )(∇U1∇U2)
TdΩ = 0,

which implies

d

dt
EL(t) ≤ 0,

that is EL(t) decreases. This leads to the L∞ estimates

||U1||L∞(0,T,L2(Ω)) ≤ ||U1(0)||L2(Ω),

||U2||L∞(0,T,L2(Ω)) ≤ ||U2(0)||L2(Ω). (2.13)

We now look for estimates of U1(t), U2(t) as functions in H1(Ω) (and also of
d

dt
U1(t),

d

dt
U2(t) as functions in (H1(Ω))′). Note first that from the previous

argument we have, for t ∈ [0, T ],∫
Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ

≤
∫

Ω

(
U1(x, 0)2 + U2(x, 0)2

)
dΩ,

and also

d

dt

1

2

∫
Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ

+α

∫
Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩ ≤ 0. (2.14)
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Then (2.14) implies that for any t ∈ [0, T ]

1

2

∫
Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ

+α

∫ t

0

∫
Ω

(
|∇U1(x, s)|2 + |∇U2(x, s)|2

)
dΩds

≤ 1

2

∫
Ω

(
U1(x, 0)2 + U2(x, 0)2

)
dΩ.

Therefore

∫ T

0

1

2

∫
Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩdt

+α

∫ T

0

∫
Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩdt

=

∫ T

0

EL(t)dt

+α

∫ T

0

∫
Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩdt

=

∫ T

0

EL(t)dt− EL(T ) + EL(T )

+α

∫ T

0

∫
Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩdt

≤
∫ T

0

EL(t)dt− EL(T ) + EL(0) ≤ (T + 1)EL(0).

Thus, if U0 = (U1(0), U2(0)) there exists a constant C1 = C1(α, U0, T ) such
that

||U1||L2(0,T,H1(Ω)) ≤ C1,

||U2||L2(0,T,H1(Ω)) ≤ C1. (2.15)
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On the other hand, if ||v||L2(0,T,H1(Ω)) = 1, the weak formulation (2.9),
assumption (H3) and Cauchy-Schwarz inequality imply that∣∣∣∣∫ T

0

∫
Ω

((∂tU1)v1 + (∂tU2)v2) dΩdt

∣∣∣∣
=

∣∣∣∣∫ T

0

(∫
Ω

(∇v1∇v2)D(U, V )(∇U1∇U2)
TdΩ

)
dt

∣∣∣∣
≤
∫ T

0

M ||∇v(t)||X0
||∇u(t)||X0

dt

≤
∫ T

0

M ||v(t)||X1
||u(t)||X1

dt

≤M ||v||L2(0,T,X1)||u||L2(0,T,X1) = M ||u||L2(0,T,X1).

Therefore, this and (2.15) lead to

|| d
dt
u||L2(0,T,(X1)′) ≤M ||u||L2(0,T,X1) ≤MC1. (2.16)

2.1.2. Schauder fixed point theorem. Existence of solution. Estimates (2.13),
(2.15) and (2.16) will be used below to study the existence of solution of (2.5)
by using the Schauder fixed-point theorem, [8]. (Analogous arguments were
used in [9, 23].) We first assume u0 ∈ L2(Ω) × L2(Ω) in (2.1) and consider
the subset of
W (0, T )2 := W (0, T )×W (0, T ):

K = {w = (w1, w2) ∈ W (0, T )2 : w satisfies

(2.13), (2.15) and (2.16) with w(0) = u0},

and the mapping T : K −→ W (0, T )2 such that T (w) := u(w) is the (weak)
solution of (2.7) with (U, V ) = w.

It is not hard to see that K is a nonempty, convex subset of W (0, T )2. Our
goal is to apply the Schauder fixed point theorem to the operator T in the
weak topology. To this end, we need to prove that:

(1) T (K) ⊂ K.
(2) K is a weakly compact subset of W (0, T )2.
(3) T is weakly continuous.
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Observe that by construction (1) is satisfied. In order to prove (2), consider
a sequence {wn}n ⊂ K and t ∈ [0, T ]. Since K is a bounded set, then

{wn(t)}n, {
d

dt
wn(t)}n

are uniformly bounded in X1 which implies the existence of a subsequence
(which is denoted again by {wn(t)}n, { ddtwn(t)}n) and ϕ(t), ψ(t) ∈ X1 such
that

wn(t)→ ϕ(t),
d

dt
wn(t)→ ψ(t),

weakly inX1 and for any t. On the other hand, sinceW (0, T ) ⊂ L2(0, T, L2(Ω))
and the embedding is compact, [9], there exists w ∈ L2(0, T,X0) such that
||wn − w||L2(0,T,X0) → 0 for some subsequence {wn}n. Consequently w = ϕ ∈
L2(0, T,X1). Actually, ψ = d

dtϕ and then K is weakly compact in W (0, T )2.
Finally, consider a sequence {wn}n ⊂ K which converges weakly to some

w ∈ K. Let un = T (wn). In order to prove property (3), we have to see that
un converges weakly to u = T (w). Here the proof is similar to that of [9].
Previous arguments applied to un and property (2) establish the existence of
a subsequence {un}n and φ ∈ L2(0, T,X1) satisfying

(i) un → φ weakly in L2(0, T,X1).
(ii) d

dtun →
d
dtφ weakly in L2(0, T, (X1)

′).
(iii) un → φ in L2(0, T,X0) and almost everywhere on Ω× [0, T ], (e. g. [8],

Theorem 4.9).
(iv) wn → w in L2(0, T,X0) and almost everywhere on Ω× [0, T ].

These convergence properties imply two additional ones:

(v) un(0)→ φ(0) in (X1)
′.

(vi) ∇un → ∇φ weakly in L2(0, T,X0).

Now, note that due to (H2) and property (v) we have

D(wn)→ D(w)

in L2(0, T,X0). Then if we take limit in (2.9) we have φ = T (w). Finally,
since the whole sequence {un}n is bounded in K which is weakly compact,
then it converges weakly in W (0, T ). By uniqueness of solution of (2.9) the
whole sequence un = T (wn) must converge weakly to φ = T (w) and therefore
T is weakly continuous and (3) holds.

Thus, Schauder fixed point theorem proves the existence of solution u
of (2.5). The solution u is in K and therefore u ∈ L2(0, T,X1),

du
dt ∈
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L2(0, T, (X1)
′), it satisfies (2.13), (2.15) and (2.16). Furthermore, due to

the conditions (H1)-(H3) on D, at least u ∈ C(0, T,X0).

2.1.3. Regularity of solution. The same bootstrap argument as in [9, 23]
applies to obtain that u is a strong solution and u ∈ C∞((0, T ]× Ω) if (H2)
is substituted by the hypothesis that D is smooth enough.

2.1.4. Uniqueness of solution. Consider u(1) = (u(1), v(1))T ,u(2) = (u(2), v(2))T

solutions of (2.5) with the same initial condition. Then for all w = (w1, w2) ∈
X1 ∫

Ω

(
(∂t(u

(1) − u(2)))w1 + (∂t(v
(1) − v(2)))w2

)
dΩ

+

∫
Ω

(∇w1∇w2)D(u(1))(∇u(1)∇v(1))TdΩ

−
∫

Ω

(∇w1∇w2)D(u(2))(∇u(2)∇v(2))TdΩ = 0,

which can be written as∫
Ω

(
(∂t(u

(1) − u(2)))w1 + (∂t(v
(1) − v(2)))w2

)
dΩ

+

∫
Ω

(∇w1∇w2)D(u(1))

(
∇(u(1) − u(2))
∇(v(1) − v(2))

)
dΩ

+

∫
Ω

(∇w1∇w2)
(
D(u(1))−D(u(2))

)(∇u(2)

∇v(2)

)
dΩ = 0.

Now we take w = u(1) − u(2) and use (H1), (H2) to write

1

2

d

dt
||u(1)(t)− u(2)(t)||2X0

+ α||∇
(
u(1)(t)− u(2)(t)

)
||2X0

≤ L||u(1)(t)− u(2)(t)||X0
||∇u(2)(t)||X0

||∇
(
u(1)(t)− u(2)(t)

)
||X0

≤ 1

α
L2||u(1)(t)− u(2)(t)||2X0

||∇u(2)(t)||2X0

+
α

4
||∇u(1)(t)−∇u(2)(t)||2X0

.
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(In the last step the inequality ab ≤ a2/4ε2 + ε2b2 has been used, with ε2 =
α/4.) Therefore

d

dt
||u(1)(t)− u(2)(t)||2X0

≤ 2

α
L2||u(1)(t)− u(2)(t)||2X0

||∇u(2)(t)||2X0
.

Now, Gronwall’s lemma leads to

||u(1)(t)− u(2)(t)||2X0
(2.17)

≤ ||u(1)(0)− u(2)(0)||2X0
exp

(
C

∫ t

0

||∇u(2)(s)||2X0
ds

)
,

with C = 2
αL

2 and since u(1)(0) = u(2)(0) then uniqueness is proved.

2.1.5. Extremum principle. Note that the same argument as that of the
linear problem (2.7) can be adapted to the nonlinear case straightforwardly
to prove an extremum principle (2.11), (2.12) for (2.1).

2.1.6. Continuous dependence on initial data. Since u is bounded on QT ,
then ∇u is bounded and hypothesis (H1) on D implies∫ t

0

||∇u(·, s)||2X0
ds

≤
∫ T

0

||∇u(·, s)||2X0
ds =

1

α

∫ T

0

α||∇u(·, s)||2X0
ds

≤ 1

α

∣∣∣∣∫ T

0

∫
Ω

∇u(x, t)D(u(x, t))∇u(x, t)TdΩ

∣∣∣∣ ds
=

1

α

∣∣∣∣∫ T

0

∫
Ω

u(x, t)ut(x, t)dΩ

∣∣∣∣ ds
≤ 1

α

∫ T

0

||u(·, s)||X0
||ut(·, s)||X0

ds

≤ 1

α
||u||L2(0,T,X1)||ut||L2(0,T,(X1)′)

Now, let ε > 0 and take

δ := ε exp

(
−C
α
||u(s)||L2(0,T,X1)||ut||L2(0,T,(X1)′)

)
.
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If ||u(1)(0)− u(2)(0)||X0
< δ and using (2.17) then

||u(1)(t)− u(2)(t)||X0
< ε,

for all t ∈ [0, T ]. This proves the continuous dependence on the initial data,
cf. [23].

2.2. Scale-space properties. We now deal with scale-space properties for
(2.1). Let u(x, t) be the unique solution of (2.1) and consider the scale-space
operator

Tt : u0 7−→ Tt(u0) := u(·, t) = u(t), t ≥ 0.

2.2.1. Grey level shift invariance. It looks clear that Tt(0) = 0. If the
function

w(t) = Tt(u0) + C

C = (C1, C2)
T ∈ R2, satisfies (2.1) with initial condition u0 + C, by unique-

ness

Tt(u0 + C) = Tt(u0) + C, t ≥ 0. (2.18)

If we assume that the diffusion tensor is only a function of J(u) ,

J(u) =

(
ux uy
vx vy

)
,

then the property (2.18) is verified.

Remark 1. If grey level range is governed by one of the components, say u,
then (2.18) holds if D = D(v) and for any C = (C1, 0)T . This is related to
the role of small theta approximation in complex diffusion, [14].

2.2.2. Reverse contrast invariance. Property

Tt(−u0) = −Tt(u0), t ≥ 0,

holds ifD(−u) = D(u). (For instance, ifD depends only on |u| or |∇u|, |∇v|.)
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2.2.3. Average grey invariance. We consider the vector function

G(t) = (G1(t), G2(t))
T ,

G1(t) =

∫
Ω

u(x, t)dΩ, G2(t) =

∫
Ω

v(x, t)dΩ, t ≥ 0.

As in [23], we have, for i = 1, 2

|Gi(t)−Gi(0)| ≤ A(Ω)1/2||u(t)− u(0)||L2(Ω),

where A(Ω) stands for the area of Ω. Since at least u ∈ C(0, T, L2(Ω)×L2(Ω))
then G is continuous at t = 0. On the other hand, divergence theorem and
the boundary conditions imply that, for i = 1, 2

d

dt
Gi(t) =

∫
Ω

div(Di1(u)∇u+Di2(u)∇v)dΩ

=

∫
∂Ω

〈Di1(u)∇u+Di2(u)∇v), n〉dΓ = 0.

Then Gi(t) is constant for all t ≥ 0. Thus the quantity

Mu0 = (m(u0),m(v0))
T =

(
1

A(Ω)

∫
Ω u0(x)dΩ

1
A(Ω)

∫
Ω v0(x)dΩ

)
is preserved by cross-diffusion, that is

1

A(Ω)

∫
Ω

Tt(u0)(x)dΩ = Mu0, t ≥ 0. (2.19)

Remark 2. Actually, each component Gi(t), i = 1, 2 is preserved. This may
be used to establish a suitable definition of average grey level in this formu-
lation, using these two quantities, and its preservation by cross-diffusion; we
refer [2] for a discussion about this question.

2.2.4. Translational invariance. Consider a translational operator

τhf(x) = f(x + h), x,h ∈ R2.

Then it is clear that if D does not depend explicitly on x then

Tt(τhu0) = τh(Tt(u0)), t ≥ 0,

since both functions satisfy (2.1) with the same initial condition τhu0.
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2.3. Lyapunov functions and behaviour at infinity. The previous study
can be finished off by analyzing the existence of Lyapunov functionals and
the behaviour of the solution when t→∞, [23]. We already have a Lyapunov
functional given by

V (t) = Φ(u(t)) :=
1

2

∫
Ω

(
u(x, t)2 + v(x, t)2

)
dΩ, (2.20)

where u = (u, v)T is the solution of (2.1). In order to prove this, from the
weak formulation with w = u we obtain

d

dt
V (t) +

∫
Ω

(∇u∇v)D(u)(∇u∇v)TdΩ = 0,

which, due to (H1) and (2.6), implies

d

dt
V (t) ≤ 0, t ≥ 0.

Note also that since r̃(z) = z2

2 is convex and (2.19) holds, then using Jensen
inequality implies that

Φ(Mu0) =

∫
Ω

(m(u0))
2 + (m(v0))

2

2
dΩ

=

∫
Ω

r̃(m(u0)) + r̃(m(v0))dΩ

=

∫
Ω

r̃(m(u(t))) + r̃(m(v(t)))dΩ

≤
∫

Ω

(
1

A(Ω)

∫
Ω

r̃(u(x, t))dΩ

+
1

A(Ω)

∫
Ω

r̃(v(x, t))dΩ

)
dΩ

=

∫
Ω

(r̃(u(x, t) + r̃(v(x, t)) dΩ = Φ(u(t)).

Therefore, (2.20) is a Lyapunov functional. These arguments can be gener-
alized by considering functionals of the form

Vr(t) = Φr(u(t)) =

∫
Ω

r(u(t), v(t))dΩ,
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where r is a C2 strongly convex function of parameter p ≥ 0, that is

〈∇r(x)−∇r(y),x− y〉 ≤ p||x− y||2, x,y ∈ R2,

(which implies that r is strictly convex). For instance, (2.20) corresponds to
taking

r(x, y) =
x2 + y2

2
.

Then, divergence theorem, boundary conditions (2.2) and (2.6) imply

V ′(t) =

∫
Ω

ru(u, v)ut + rv(u, v)vtdΩ

=

∫
Ω

(ru(u, v)div (D11(u)∇u+D12(u)∇v)

+ru(u, v)div (D21(u)∇u+D22(u)∇v)) dΩ

= −
∫

Ω

(
〈∇2r(u, v)

(
ux
vx

)
, D(u)

(
ux
vx

)
〉

+ 〈∇2r(u, v)

(
uy
vy

)
, D(u)

(
uy
vy

)
〉
)
dΩ,

where ∇2r(u, v) stands for the Hessian of r. Since r is strongly convex
of parameter p ≥ 0 then ∇2r(u, v) is positive semi-definite. Thus if we
assume that ∇2r(u, v) and D(u) commute, then ∇2r(u, v)D(u) is positive
semi-definite and therefore V ′(t) ≤ 0, t ≥ 0. Similarly, the application of a
generalized version of Jensen inequality, [24], and convexity of r imply

r(Mu) ≤ m(r(u)).

This and (2.19) lead to

Φr(Mu0) =

∫
Ω

r(Mu0)dΩ =

∫
Ω

r(Mu(t))dΩ

≤
∫

Ω

m(r(u(t)))dΩ

=

∫
Ω

1

A(Ω)

∫
Ω

r(u(t))dxdΩ =

∫
Ω

r(u(t))dx

= Φr(u(t)),

and Vr is a Lyapunov functional.
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As far as the behaviour at infinity is concerned, the arguments in [23] can
also be adapted here. We define w = u − Mu0, where u is the solution
of (2.1). If we assume If we assume grey level shift invariance then by the
grey level shift invariance (2.18) w satisfies the diffusion equation of (2.1).
By using the weak formulation (2.3), divergence theorem and the boundary
conditions, we have

1

2

d

dt

∫
Ω

(w2
1 + w2

2)dΩ = −
∫

Ω

[∇w1∇w2]D

[
∇w1

∇w2

]
dΩ.

Now, (H1) and (2.6) imply

[∇w1∇w2]D

[
∇w1

∇w2

]
≥ α

(
||∇w1||2L2 + ||∇w2||2L2

)
.

Therefore

d

dt
||w||2L2×L2 ≤ −2α||∇w||2L2×L2,

where

||w||2L2×L2 = ||w1||2L2 + ||w2||2L2,

||∇w||2L2×L2 = ||∇w1||2L2 + ||∇w2||2L2.

Now if we apply the Poincaré inequality to each wi, i = 1, 2, then there is
C0 > 0 such that

||w||2L2×L2 ≤ C0||∇w||2L2×L2.

This implies

d

dt
||w||2L2×L2 ≤ −2αC0||w||2L2×L2,

and by Gronwall’s lemma

||w(t)||2L2×L2 ≤ e−2αC0t||w(0)||2L2×L2.

Thus we obtain the asymptotic behaviour

lim
t→∞
||u(t)−Mu0||X0

= 0. (2.21)

3. Numerical experiments
The performance of (2.1), (2.2) for image restoration problems is numeri-

cally illustrated in this section.
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3.1. The numerical procedure. Some details of the implementation are
first given. Three models of the form (2.1) will be considered, with a cross-
diffusion matrix

D(u, v) = g(v)d, d =

(
d11 d12

d21 d22

)
, (3.1)

where

g(v) =
cos θ

1 +
(
v
kθ

)2 ,

(see (2.4)) with k, θ as parameters, [14], and d a positive definite matrix
which will take one of the three forms:

d =

(
ν −µ
µ ν

)
; d =

(
ν −µ
λ ν

)
; d =

(
ν µ
λ ν

)
, (3.2)

for λ, µ, ν ∈ R, λ 6= µ. The first one in (3.2) corresponds to complex diffu-
sion and will lead to a nonlinear complex diffusion filter (3.1), denoted by
(NCDF1), in a similar form considered in (2.4). The other two choices of d
in (3.2) will generate two different cross-diffusion matrices (3.1). The corre-
sponding models will be denoted by (NCDF2) and (NCDF3) respectively. In
order to simplify some of the parameters involved, the values λ = ν = 1 are
fixed and we take µ = tan(θ). It is not hard to see that for (3.1) conditions
(H1)-(H3) are satisfied.

The semi-implicit numerical method introduced and analyzed in [5] for the
complex diffusion case has been adapted here to approximate (2.1). (The
convergence of this method for cross-diffusion models, as well as that of the
implicit one also considered in [5] will be studied as future task elsewhere.)
We make a brief description. By using the notation introduced in Section 2,
we consider Ω = (0, N1− 1)× (0, N2− 1), where N1, N2 are positive integers,
and QT = Ω×(0, T ], with T > 0. Let us construct an equidistant rectangular
grid on QT . We define the space grid with mesh size h = 1 by

Ωh = {xij ∈ Ω : xij = (i, j), i = 0, ..., N1 − 1,

j = 0, ..., N2 − 1}.

For the temporal interval we consider the mesh

0 = t0 < t1 < · · · < tM−1 < tM = T,
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where M ≥ 1 is an integer and ∆tm = tm+1 − tm, m = 0, . . . ,M − 1.

We denote by Q
∆t
h the mesh in Q defined by the cartesian product of the

space grid Ωh and a grid in the temporal domain. Let Q∆t
h = Q

∆t
h ∩ Q

and Γ∆t
h = Q

∆t
h ∩ ∂Ω × [0, T ]. For a real-valued function u0 defined on Ωh,

representing the initial image, we define U 0 = u0(xij), xij ∈ Ωh, and V 0 as
the null matrix of the same dimension as U 0. The restored image Um+1,
m = 0, ...,M − 1, is obtained by the numerical method in Q∆t

h

Um+1 − Um

∆t
= ∇h · (g(V m)(d11∇hU

m + d12∇hV
m))

V m+1 − V m

∆t
= ∇h · (g(V m)(d21∇hU

m + d22∇hV
m))

where ∇h is the standard second order gradient approximation, completed
with discrete Neumann boundary conditions. We note that, for the complex
diffusion case, the stability condition is given by (see [4], [7])

∆t := max
0≤m≤M−1

∆tm ≤ cos θ

4

(
1 +

minm (V m)2

k2θ2

)
.

This condition implies that ∆t ≤ 0.2486 for θ = π
30 and ∆t ≤ 0.1858 for

θ = 7π
30 . This was taken into account here and ∆t = 0.05 was used in the

experiments below (with k = 10).

3.2. Numerical results. In order to study the quality of restoration of the
three models (NCDF1), (NCDF2) and (NCDF3), we have performed numer-
ical experiments by monitoring the corresponding approximate evolution of
(2.1), given by the semi-implicit method, from several initial, noisy images
and with different types of noise. The results shown here is a summary of
the computations. Following [15], we consider the input U 0 as composed
of the original image S and a Gaussian noise with zero mean and standard
deviation σ, given by the Matlab function randn:

U 0 = S + σ ∗ randn(size(U 0)). (3.3)

With V 0 = 0 our aim is then to find a restored image (Um, V m)T , m =
1, 2, ...,M , such that Um approximates the original signal S at time level tm.
Three quality indexes are used at that time:
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• Signal-to-Noise-Ratio (SNR):

SNR(S, Um) = 10 log10

(
var(S)

var(Um − S)

)
, (3.4)

where the variance (var) of an image U is defined by

var(U) =
1

N1N2
‖U − Ū‖2

F ,

‖ · ‖F stands for the Frobenius norm, Ū is an uniform image with
intensities equal to the mean value of the intensities of U , and N1×N2

is the dimension of U .
• Peak Signal-to-Noise-Ratio (PSNR):

PSNR(S, Um) = 20 log10

(
255

RMSE(S, Um)

)
, (3.5)

where the Root-Mean-Square-Error (RMSE) is defined as

RMSE(S, Um) =
1√
N1N2

‖S − Um‖2
F ;

• The correlation coefficient (CC) between the original and restored
images:

CC(S, Um) =

∑
i,j(Sij − S̄)(Um

ij − Ūm)

‖S − S̄‖F‖Um − Ūm‖F
.

The experiment is concerned with an image S of Lena with σ = 30 in (3.3).
In Table 1 the three quality indexes are computed at time T = 2.5 for
three values of θ (corresponding to, say, small, medium and large values of
µ). The results observed for the three indexes show a better performance
of (NCDF1) and (NCDF2) against (NCDF3). If we compare these first
two models, (NCDF1) looks more competitive for the smallest value of θ
(µ ≈ 1.051042 × 10−1); this illustrates the influence of the small theta ap-
proximation, explained in [14] for complex diffusion and generalized for linear
cross-diffusion in [2]. The results suggest that for (NCDF2) being competi-
tive at that time, smallest values of the non-diagonal entries of the associated
matrix d in (3.2) might be required. The performance of (NCDF2) improves
in a relevant way when θ = 7π/30 (µ ≈ 9.004040× 10−1) and is better than
that of (NCDF1) for θ = 10π/30 (µ ≈ 1.732051). This confirms the loss
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of efficiency of complex diffusion out of the small theta approximation, [14],
and for which models like (NCDF2) may appear as alternative.

The evolution of the filtering process is now analyzed. Figures 1-3 show
the evolution of the two components of the cross-diffusion equations for the
three models and from the initial noisy image, along with the corresponding
histograms of the intensities for both components, when θ = π/30. The
results suggest some delay of (NCDF2) and (NCDF3) in the filtering with
respect to (NCDF1). (Compare, for example, the first component of the
image and the histogram corresponding to (NCDF1) at T = 2.5 with those
of the other two at T = 25.) On the other hand, this has the advantage for
the last two models of a delay in the blurring effect in both components. In
the case of (NCDF2), this delay is less remarkable when θ increases, while
(NCDF3) shows a more accentuated attenuation of blurring, see Figures 4-
6. Finally, the images corresponding to θ = 10π/30 (Figures 7-9) confirm
the good behaviour of (NCDF2) suggested by Table 1 as well as the loss of
performance of (NCDF3).

The delay mentioned above motivates Table 2, where the maximum values
of the indexes and the time where they occur are displayed, for an evolution
of the models up to T = 25. The effect of this delay looks remarkable in the
case of θ = π/30, where (NCDF2) and (NCDF3) improve their SNR value up
to be comparable to that of (NCDF1) and overcome the PSNR value of this
last one. The results confirm the best behaviour of (NCDF2) for θ = 10π/30
and a relevant improvement of the performance of (NCDF3) for θ = 7π/30 is
also observed. Figures 10-12 show, for the three models, the time evolution
up to T = 25 of the first two quality indexes with θ = π/30, 7π/30, 10π/30.

4. Concluding remarks
In the present paper nonlinear cross-diffusion models for image filtering are

studied. This is a continuation of a previous work, [2], devoted to the linear
case. Here the nonlinear character is introduced by a cross-diffusion matrix
satisfying some hypotheses. In the first part of the paper well-posedness is
proved, as well as several scale-space properties and the limiting behaviour
to the constant average grey value of the image at infinity. The second part
is devoted to some numerical comparisons on the performance of the filtering
process from some noisy images using three models distinguished by different
choices of the cross-diffusion matrix. The numerical study does not intent



24 A. ARAÚJO, S. BARBEIRO, E. CUESTA AND A. DURÁN

to be exhaustive and instead aims to suggest and anticipate some prelimi-
nary conclusions that may motivate further research about cross-diffusion as
mathematical models for image processing. As in the linear case, the systems
incorporate some degrees of freedom providing diversity and adaptability in
the search for the best one for the restoration problem under study. This
diversity is mainly represented by the choice of the cross-diffusion matrix and
the decomposition of the initial noisy image into two components. While the
numerical study shown here is focused on a specific type of cross-diffusion
(with the goal of taking the known case of complex diffusion as a guide for
comparison) this choice is the first point to be analyzed in a more detailed
way in the future. Additionally, the decomposition of initial noisy image
into two components shows, according to the theoretical properties of the
models and the results concerning the linear case, a second point of anal-
ysis. Thirdly, although the numerical experiments performed to elaborate
this paper implemented restoration problems with different types of noise
and they did not show different information, some degree of adaptability of
the models according to the noise involved cannot be dismissed and should
be a thorough aspect of research. Finally, comparisons with existing models,
especially of Perona-Malik type, are mandatory, [20].

On the other hand, the experiments evaluate in some sense the general
philosophy of the decomposition of the information of the image in two
components, one of the motivations to introduce these models. This was
here explored for a restoration problem and is expected to be studied in
edge-detection problems in a future research, with the presentation of cross-
diffusion shock filters. A final task to be made in the future concerns the
corresponding semi-discrete and fully discrete models that may be formu-
lated. They are expected to be studied in similar terms, including addition-
ally the convergence analysis when considered as schemes of approximation
to a continuous problem.
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Table 1. Lena: Signal-to-Noise Ratio, Peek-Signal-to-Noise Ra-
tio and the Correlation Coefficient at T = 2.5.

NCDF1 NCDF2 NCDF3
SNR PSNR CC SNR PSNR CC SNR PSNR CC

θ = π/30 13.58 28.11 0.9782 8.96 23.49 0.9397 8.74 23.27 0.9368
θ = 7π/30 13.47 28.00 0.9775 13.51 28.04 0.9776 10.08 24.61 0.9514
θ = 10π/30 13.03 27.57 0.9749 13.23 27.77 0.9761 3.96 18.50 0.8381

Table 2. Lena: Maximum values of Signal-to-Noise Ratio,
Peek-Signal-to-Noise Ratio and the Correlation Coefficient.

NCDF1
SNR PSNR CC

θ = π/30 14.08 (t = 1.5) 28.62 (t = 1.5) 0.9804 (t = 1.55)
θ = 7π/30 13.98 (t = 1.5) 28.51 (t = 1.5) 0.9798 (t = 1.5)
θ = 10π/30 13.20 (t = 1.9) 27.73 (t = 1.9) 0.9758 (t = 1.95)

NCDF2
SNR PSNR CC

θ = π/30 13.55 (t = 16.4) 28.08 (t = 16.4) 0.9778 (t = 16.65)
θ = 7π/30 13.96 (t = 1.55) 28.49 (t = 1.55) 0.9797 (t = 1.6)
θ = 10π/30 13.61 (t = 1.6) 28.14 (t = 1.6) 0.9780 (t = 1.6)

NCDF3
SNR PSNR CC

θ = π/30 13.52 (t = 19.7) 28.05 (t = 19.7) 0.9777 (t = 20)
θ = 7π/30 12.47 (t = 20.9) 27.01 (t = 20.9) 0.9726 (t = 23.6)
θ = 10π/30 6.65 (t = 0.5) 21.18 (t = 0.5) 0.9040 (t = 0.45)
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Figure 1. Original and restored images for (NCDF1) with θ =
π/30 (top) and their histograms of intensities (bottom).
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Figure 2. Original and restored images for (NCDF2) with θ =
π/30 (top) and their histograms of intensities (bottom).
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Figure 3. Original and restored images for (NCDF3) with θ =
π/30 (top) and their histograms of intensities (bottom).
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Figure 4. Original and restored images for (NCDF1) with θ =
7π/30 (top) and their histograms of intensities (bottom).
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Figure 5. Original and restored images for (NCDF2) with θ =
7π/30 (top) and their histograms of intensities (bottom).
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Figure 6. Original and restored images for (NCDF3) with θ =
7π/30 (top) and their histograms of intensities (bottom).
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Figure 7. Original and restored images for (NCDF1) with θ =
10π/30 (top) and their histograms of intensities (bottom).
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Figure 8. Original and restored images for (NCDF2) with θ =
10π/30 (top) and their histograms of intensities (bottom).
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Figure 9. Original and restored images for (NCDF3) with θ =
10π/30 (top) and their histograms of intensities (bottom).
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Figure 10. Time evolution of quality indexes for the restored
images with the three models for θ = π/30.

Figure 11. Time evolution of quality indexes for the restored
images with the three models for θ = 7π/30.
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Figure 12. Time evolution of quality indexes for the restored
images with the three models for θ = 10π/30.
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