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Universidade de Coimbra
Preprint Number 16–24

CHARACTERIZATIONS OF CLASSICAL ORTHOGONAL
POLYNOMIALS ON QUADRATIC LATTICES

MARLYSE NJINKEU SANDJON, A. BRANQUINHO, MAMA FOUPOUAGNIGNI AND I.
AREA
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1. Introduction

Classical continuous orthogonal polynomial sequences can be character-
ized by different properties, using different approaches. Probably the first
results in this direction go back to Bochner [3], Favard [5] and Hahn [10].
Moreover, some recent characterizations can be found in [2, 6, 7], by using
either differential operators as Bochner or linear functionals as introduced
by Maroni [17, 16]. Recently a new characterization of classical continuous,
discrete and their q-analogues was given by Verde-Star [22, 23] by using a
matrix approach.

A general presentation of classical continuous orthogonal polynomials in
terms of solutions of certain differential equations have been done by Niki-
forov et al. [18, 19, 20]. In this direction, classical orthogonal polynomials
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are solution of the second order linear differential equation

σ(x)y′′(x) + τ(x)y′(x) − λy(x) = 0

where σ and τ are polynomials of at most second and first degree, respectively.
The above differential equation can be replaced by a difference equation,

giving rise to classical orthogonal polynomials of a discrete variable [18, Chap-
ter 2], if we consider a discretization with constant mesh, or classical orthogo-
nal polynomials on nonuniform lattices [18, Chapter 3] if we consider a class
of lattices with variable mesh µ(t). We would like to notice that divided-
difference operators associated with the special non-uniform lattices have
appeared in many studies of orthogonal polynomials of a discrete variable.
For example see the early studies by Hahn [9, 10, 11, 12], the foundational
work by Askey and Wilson [1] and the monograph of Nikiforov, Suslov and
Uvarov [18].

As indicated in [18, Theorem 1, page 59] some restrictions must be imposed
on the lattice µ(t) giving rise to the following classification of the lattices:

(1) Linear lattices if µ(t) = c2t+ c3 with c2 6= 0.
(2) Quadratic lattices if µ(t) = c1t

2 + c2t+ c3, with c1 6= 0.
(3) q-linear lattices if µ(t) = c5q

t + c6, with c5 6= 0.
(4) q-quadratic lattices if µ(t) = c4q

t + c5q
−t + c6 with c5c6 6= 0.

The characterization theorems of classical orthogonal polynomials in the
cases of linear and q-linear lattices by using matrix approach have been ob-
tained in [23]. We would like to emphasize that this approach has not yet
been used in the case of quadratic or q-quadratic lattices, despite the im-
portance in many applications of the families belonging to these classes (e.g.
Racah or Wilson orthogonal polynomials).

In a recent paper [6] the authors gave a characterization theorem for clas-
sical orthogonal polynomials on a lattice as described above by using the
Pearson-type equation. Moreover, in [7] and by using the functional ap-
proach, the authors stated and proved a characterization theorem for classical
orthogonal polynomials on non-uniform lattices including the Askey-Wilson
polynomials.

The main aim of this paper is to present a new characterization of classical
orthogonal polynomials on quadratic lattices, by using a matrix approach. In
doing so, we reinterpret in matrix form previous characterizations classical
orthogonal polynomials on quadratic lattices, showing that previous results
of [22, 23] on classical continuous orthogonal polynomials, discrete and their



ORTHOGONAL POLYNOMIALS ON QUADRATIC LATTICES 3

q-analogues, can be generalized to nonuniform lattices. In this way, we obtain
the Hahn, Geronimus, Tricomi, and Bochner type characterizations. More-
over, by using the method presented by Vicente Gonçalves, we explicitly
obtain the coefficients in the three-term recurrence relation satisfied by clas-
sical orthogonal polynomials on nonuniform lattices from the second order
linear divided-difference equation they satisfy.

This work is organized as follows: in section 2 we introduce the basic def-
initions and notations. In section 3 we reinterpret the Hahn, Geronimus,
Tricomi, and Bochner characterizations of classical orthogonal polynomials
on quadratic lattices by using a matrix approach and derive a new charac-
terization of these polynomials. Finally, in section 4 we extend the method
of Vicente Gonçalves to obtain the coefficients of the three-term recurrence
relation of classical orthogonal polynomials on quadratic lattices from the
second-order linear divided-difference equation they satisfy.

2. Basic definitions and notations

Let us consider the quadratic lattice

µ(t) = c1 t
2 + c2 t+ c3, (1)

where c1, c2, and c3 are constants and in what follows we shall assume that
c1 = 1, i.e. a pure quadratic lattice. Notice that the particular case c1 = 0,
i.e. linear lattices, have been considered in [23], and as mentioned before our
intention is to show that that matrix approach can be followed in the case of
nonuniform lattices. Let Pn(µ(t)) be a monic polynomial of degree n in the
lattice µ(t),

Pn(µ(t)) = Pn = pn,n+pn−1,nϑ1(t)+pn−2,nϑ2(t)+· · ·+p1,nϑn−1(t)+ϑn(t), (2)

where the basis
{

ϑn(t)
}

n≥0
is defined by [8, Equation (54), p. 416]

ϑn(t) = (−4)−n (2t+ 1/2 + c2)n (−2t+ 1/2 − c2)n, (3)

and (A)n = A(A+ 1) · · · (A+n− 1) with (A)0 = 1 denotes the Pochhammer
symbol. Let us further define

P =
[

P0 P1 P2 · · ·
]T

=
[

1 p1,1 + ϑ1(t) p2,2 + p1,2 ϑ1(t) + ϑ2(t) · · ·
]T

= A
[

1 ϑ1(t) ϑ2(t) · · ·
]T
,
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where

A =











1 0
p1,1 1 0

p2,2 p1,2 1 . . .
. . . . . . . . .











. (4)

The difference operators D and S [14, 15] are defined by

Df(t) =
f(t+ 1/2) − f(t− 1/2)

µ(t+ 1/2) − µ(t− 1/2)
and Sf(t) =

f(t+ 1/2) + f(t− 1/2)

2
.

Notice that the above divided-difference operators transform polynomials of
degree n in the lattice µ(t) defined in (1) into polynomials of respectively
degree n− 1 and n in the same variable µ(t). Since [8]

Dϑn(t) = nϑn−1(t), (5)

we have

P ′ =
[

DP1
1
2
DP2

1
3
DP3 · · ·

]T
=

[

1 p1,2 + ϑ1(t) · · ·
]T

= Ã
[

1 ϑ1(t) ϑ2(t) · · ·
]T
,

where
Ã = D̃ AD, (6)

with

D̃ =









0 1
0 1

2
0 1

3
. . . . . .









, and D =









0
1 0

2 0
. . . . . .









. (7)

Let us assume that {Pn}n≥0 is a sequence of monic orthogonal polynomials
on a quadratic lattice µ(t). Then, the three-term recurrence relation satisfied
by {Pn}n≥0 reads as

µ(t)Pn = Pn+1 + βnPn + γnPn−1, (8)

with initial conditions P0 = 1, P1 = µ(t) − β0.

Lemma 1. The three-term recurrence relation (8) can be written in matrix

form as

LA = AX1X1X1,

where

X1X1X1 := X + diag {f0, f1, . . .}, (9)
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with

L =











β0 1
γ1 β1 1

γ2 β2
. . .

. . . . . .











, X =









0 1
0 1

0 1
. . . . . .









, (10)

and the coefficients fn are defined as [8, Equation (34), p. 411]

µ(t)ϑn(t) = ϑn+1(t) + fn ϑn(t), n = 0, 1, . . . , (11)

and explicitly given by

fn = −
c22
4

+
1

16
(2n+ 1)2 + c3. (12)

Proof : Using (11) and the linear independence of {ϑn(t)}n≥0 we get

µ(t)
[

1 ϑ1(t) ϑ2(t) · · ·
]T

=
(

diag {f0, f1, . . .} +X
) [

1 ϑ1(t) ϑ2(t) · · ·
]T

=X1X1X1
[

1 ϑ1(t) ϑ2(t) · · ·
]T

;

and from LP = µ(t)P , the result follows.

Lemma 2. The following matrix relation holds true

ADÃ−1 = ADD̃A−1D = AJA−1D = D,

where

J =











0 0 0 0

0 1 0 0 . . .

0 0 1 0 . . .
. . . . . . . . . . . .











. (13)

Proof : The result follows from the definitions of the matrices A, D, Ã, D̃
and J .

3. Characterizations of classical orthogonal polynomials

on quadratic lattices

3.1. Hahn’s characterization. Let us assume that the sequence { 1
n
DPn =

P ′
n}n≥1 is also orthogonal (Hahn’s characterization). Then, the three-term

recurrence relation satisfied by {P ′
n}n≥1

P ′
1 = 1, P ′

2 = µ(t) − β ′
0, µ(t)P ′

n = P ′
n+1 + β ′

nP
′
n + γ ′nP

′
n−1, n ∈ N,
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can be written in matrix form as

M P ′ = µP ′, (14)

with

M =











β ′
0 1
γ ′1 β ′

1 1

γ ′2 β ′
2

. . .
. . . . . .











. (15)

Thus, by using the definition of P ′ it yields

M Ã = ÃX1X1X1. (16)

where X1X1X1 has been defined in (9).
As conclusion, we have the Hahn-type characterization of classical orthog-

onal polynomials on quadratic lattices by using the matrix approach

Theorem 1. The sequence {Pn}n≥0 is of classical orthogonal polynomials on

the quadratic lattice µ(t) defined in (1) if and only if (16) holds true, where

the matrices M , Ã and X1X1X1 are defined in (15), (6), and (9), respectively.

3.2. Geronimus’ characterization. Classical orthogonal polynomials on
quadratic lattices can be also characterized from the following algebraic re-
lation (Geronimus’ characterization)

SPn = P ′
n+1 + ℓ1n P

′
n + ℓ2n P

′
n−1,

i.e. each element of the sequence {SPn}n≥0 can be expressed as a linear
combination of three consecutive elements of the sequence {P ′

n}n≥1. By using
that [8, Equation (31), p. 410]

Sϑn(t) = ϑn(t) + gnϑn−1(t), gn =
n (2n− 1)

4
, (17)

the Geronimus characterization can be written in matrix form as

SP = U P ′, (18)

where

U =











1 0
ℓ11 1/2 0

ℓ22 ℓ12/2 1/3 . . .
. . . . . . . . .











, (19)
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and

SP = A









1
Sϑ1(t)
Sϑ2(t)

...









= A











1 0
g1 1 0

0 g2 1 . . .
. . . . . . . . .



















1
ϑ1

ϑ2
...









,

or

AG = U Ã , i.e. AGÃ−1 = U , (20)

where

G =











1 0
g1 1 0

0 g2 1 . . .
. . . . . . . . .











.

By applying the divided-difference operator D to the three-term recurrence
relation (8) satisfied by the sequence {Pn}n≥0, by using product rule of the
operator D, we obtain

SPn = DPn+1 + βn DPn + γn DPn−1 − Sµ(t) DPn,

which in matrix form can be expressed as

SP = LDP ′ −D Sµ(t)P ′,

with

Sµ(t) = µ(t) +
1

4
.

From the recurrence relation (14) for the sequence of divided-differences
{P ′

n}n≥1 we have SP = LDP ′ − D
(

M + 1
4
I
)

P ′, or, by (18) U P ′ =

LDP ′ −D
(

M + 1
4 I

)

P ′ , i.e.

U = LD −D
(

M +
1

4
I
)

. (21)

Therefore, we obtain the Geronimus-type characterization of classical or-
thogonal polynomials on quadratic lattices in matrix form as

Theorem 2. {Pn}n≥0 is a sequence of classical orthogonal polynomials on the

quadratic lattice µ(t) defined in (1) if and only if (21) holds true, where U ,

L, D, and M are defined in (19), (10), (7), and (15), respectively and I
denotes the identity matrix.



8 MARLYSE, BRANQUINHO, MAMA AND AREA

3.3. A new characterization of classical orthogonal polynomials

on quadratic lattices. Let us recall Lemma 2 as well as the following
properties

LU = L2D − LDM −
1

4
LD,

UM = LDM −DM2 −
1

4
DM,

AJA−1D = D, D̃D = I, and DD̃ = J,

where J has been defined in (13) and

G =











1 0
g1 1 0

0 g2 1 . . .
. . . . . . . . .











= I + E, E =











0 0
g1 0 0

0 g2 0 . . .
. . . . . . . . .











. (22)

We have

L2D − 2LDM +DM2 +
1

4
(DM − LD) = A

(

X1X1X1E − EX1X1X1
)

Ã−1 ,

with

X1X1X1E − EX1X1X1 =











g1 0 0 0

g1(f1 − f0) g2 − g1 0 0 . . .

0 g2(f2 − f1) g3 − g2 0 . . .
... . . . . . . . . .











.

Since

fn+1 − fn =
1

2
(n+ 1), fn+1 + fn =

1

2
(n+ 1)2 + 2(c3 +

1

16
−
c22
4

),

where fn are given in (12), as well as

gn+1 − gn =
1

4
(4n+ 1) =

1

2
(2n+ 1) −

1

4
,

we have

gn+1(fn+1−fn) =
1

2
(n+1)(fn+1+fn)−

1

4
(n+1)(fn+1−fn)−

(

c3+
1

16
−
c22
4

)

(n+1) .

Thus,

X1X1X1E −EX1X1X1 =
1

2
(X1X1X1D+DX1X1X1)−

1

4
(X1X1X1D−DX1X1X1)−

(

c3 +
1

16
−
c22
4

)

D, (23)
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and from (2) we obtain

AX1X1X1DÃ−1 = AX1X1X1A−1(ADÃ−1) = LD,

ADX1X1X1Ã−1 = (ADÃ−1)ÃX1X1X1Ã−1 = DM.

By using (23) we obtain

A(X1X1X1E − EX1X1X1)Ã−1 =
1

2
(LD +DM) −

1

4
(LD −DM) − (c3 +

1

16
−
c22
4

)D.

Therefore,

L2D − 2LDM +DM2 −
1

4
(LD −DM)

=
1

2
(LD +DM) −

1

4
(LD −DM) −

(

c3 +
1

16
−
c22
4

)

D.

We are now in conditions to state a new characterization of classical or-
thogonal polynomials on quadratic lattices, which is the extension of previous
works [22, 23]:

Theorem 3. {Pn}n≥0 is a sequence of classical orthogonal polynomials on

the quadratic lattice µ(t) defined in (1) if and only if

L2D − 2LDM +DM2 −
1

2
(LD +DM) +

(

c3 +
1

16
−
c22
4

)

D = 0,

holds true, where the matrices L, D, andM are defined in (10), (7), and (15),
respectively, and the quadratic lattice µ(t) depends on the constants c2 and c3.

3.4. Tricomi’s characterization. Classical orthogonal polynomials on
quadratic lattices can be also characterized in terms of a structure relation
of the form (Tricomi’s characterization) [21]

φDPn = g0
n SPn+1 + g1

n SPn + g2
n SPn−1,

where φ is a polynomial of at most degree 2 in the lattice µ(t), which can be
written in matrix form as

φP ′ = W SP ,

with

W =







g2
1 g1

1 g0
1 0

0 g2
2 g2

2 g0
2

. . .
. . . . . . . . . . . .






. (24)
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Thus, Ã φ(X + diag) := Ã φ(X1X1X1) = W AG . Notice that

(

X1X1X1
)2

=







f 2
0 f0 + f1 1 0

0 f 2
1 f1 + f2 1 . . .

. . . . . . . . . . . .






.

Therefore Ã φ(X1X1X1) = W AG . As AG = U Ã, multiplying the first equa-
tion by U (left) and using the second identity in (20) we have U W AG =
AGφ(X1X1X1) or equivalently U W = (AG)φ(X1X1X1) (AG)−1 , i.e.

U W = φ
(

(AG)X1X1X1 (AG)−1
)

. (25)

Multiplying now first by W (left) the second equation and applying the first
equation we obtain

W U Ã = Ã φ
(

X1X1X1
)

or W U = Ã φ
(

X1X1X1
)

Ã−1, and

W U = φ
(

ÃX1X1X1 Ã−1
)

. (26)

Thus, we can rewrite the Tricomi-type characterization of classical orthog-
onal polynomials on quadratic lattices by using the matrix approach as

Theorem 4. {Pn}n≥0 is a sequence of classical orthogonal polynomials on

the quadratic lattice µ(t) defined in (1) if and only if (25) and (26) hold

true, where the matrices W , U , Ã, and XXX1 are defined in (24), (19), (6),
and (9), respectively.

3.5. Bochner’s characterization. Classical orthogonal polynomials on
quadratic lattices are solution of a second-order divided-difference equation
(Bochner’s characterization) [7]

φD
2 Pn + ψ S DPn = λn Pn (27)

where

φ ≡ φ(µ(t)) = a0(µ(t))2 + a1µ(t) + a2, , ψ ≡ ψ(µ(t)) = b0µ(t) + b1 , (28)

are polynomials of at most degree 2 and 1 in the lattice µ(t). We can express
the above characterization in matrix form as

AD2 φ(X1X1X1) +ADGψ(X1X1X1) = ΛA ,

with

λn = n
(

(n− 1)a0 + b0
)

, Λ = diag{λ0, λ1, λ3, . . .} . (29)
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The Bochner equation can be written as an algebraic Sylvester equation
in A, namely

AD
(

Dφ(XXX1) +Gψ(XXX1)
)

= ΛA . (30)

Therefore, given φ and ψ the matrix A is determined if and only if the point
spectra of Λ and D2 φ(X1X1X1) + DGψ(X1X1X1) be disjoint i.e. the given matrices
do not have common eigenvalues.

As a conclusion, we have the following Bochner-type characterization of
classical orthogonal polynomials on quadratic lattices as

Theorem 5. {Pn}n≥0 is a sequence of classical orthogonal polynomials on the

quadratic lattice µ(t) defined in (1) if and only if (30) holds true, assuming

that λn 6= λm for any n,m = 0, 1, 2, . . . , n 6= m, where the matrices A, D,

XXX1, G, and Λ are defined in (4), (7), (9), (22), and (29), respectively.

4. Solving the Bochner-type equation

In 1942 and 1943 [4] Vicente Gonçalves published two papers [24, 25] about
classical orthogonal polynomials (Hermite, Jacobi, Laguerre and Bessel),
proving the following result. Let σ(x) = a0x

2 + a1x + a2, τ(x) = b0x + b1,
and λn = n((n− 1)a0 + b0). Assuming that for each n there exists a unique
monic polynomial solution of the the equation, each element of the monic
polynomial sequence {yn}n≥0 satisfies

σ(x)y′′(x) + τ(x)y′(x) − λny = 0, (n = 0, 1, 2, . . . )

then the monic polynomial sequence {yn}n≥0 satisfies the above equation if
and only if {yn}n≥0 satisfies a three-term recurrence relation

xyn = yn+1 + βnyn + γnyn−1, n ≥ 1,

where the two sequences of real numbers {βn}n≥0 and {γn}n≥1 are fully de-
termined by the constants a0, a1, a2, b0, and b1.

Next we reinterpret the above result for quadratic lattices. From (27) let
us introduce the Bochner-type operator

Ln = φD
2 + ψ S D − λn I, (31)

where φ and ψ are polynomials in the lattice µ(t) defined in (28). We shall
assume that Ln has for each nonnegative integer n a unique monic polynomial
solution of degree exactly n in the quadratic lattice µ(t), denoted by Pn ≡
Pn(µ(t)), i.e. Pn = ϑn(t)+p1,nϑn−1(t)+p2,nϑn−2(t)+ terms of lower degree and

Ln

(

Pn

)

= 0, n = 0, 1, . . . .



12 MARLYSE, BRANQUINHO, MAMA AND AREA

Notice that Ln acting on a polynomial g of degree n in the lattice µ(t) gives
a new polynomial of degree at most n in the lattice µ(t). Let us recall the
expression (2) of the polynomial Pn in terms of the basis {ϑn(t)}. First, we
state a result for the unicity of monic polynomial solution of the Bochner-type
equation (27).

Lemma 3. For each n, the unicity of monic polynomial solution of the

Bochner-type equation (27) is equivalent to

(1) λj = λn has j = n as unique solution in N;

(2) λk 6= 0, k = 0, 1, . . . , n− 1.

Proof : The result can be deduced as in the classical continuous case [18,
Chapter 1] by considering the polynomial solution given in terms of the
basis ϑn(t) defined in (3).

Lemma 4. There exists a sequence {βn}n∈N such that the polynomial

Un(µ(t)) = Ln+1

(

(µ(t) − βn)Pn

)

, (32)

has degree n− 1 in the lattice µ(t), for each n ∈ N. Moreover

βn = p1,n + fn +
k1,n+1

λn − λn+1
, (33)

and Un(µ(t)) = tn ϑn−1 + · · · where

tn = k2,n+1+(fn+p1,n−βn)k1,n+(p1,nfn−1+p2,n−βnp1,n)(λn−1−λn+1), (34)

and


















k0,j = a0j(j − 1) + b0j − λn,

k1,j = a0j(j − 1)(fj−1 + fj−2) + b0jfj−1 + a1j(j − 1) + b0jgj−1 + b1j,

k2,j = a0j(j − 1)f 2
j−2 + a1j(j − 1)fj−2 + b0jgj−1fj−2

+ a2j(j − 1) + b1jgj−1.

(35)

Proof : From (2) we have
(

µ(t) − βn

)

Pn(µ(t))

= ϑn+1(t) + (fn + p1,n − βn)ϑn(t) + (p1,nfn−1 + p2,n − βnp1,n)ϑn−1(t) + · · · .

By using (5) and (11),

Ln

(

ϑj(t)
)

= k0,j ϑj(t) + k1,j ϑj−1(t) + k2,j ϑj−2(t), (36)
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where ki,j are defined in (35). Therefore,

Ln+1

(

ϑn+1(t)
)

= [a0n(n+ 1) + b0(n+ 1) − λn+1]ϑn+1(t)

+ k1,n+1 ϑn(t) + k2,n+1 ϑn−1(t),

Ln+1

(

ϑn(t)
)

= [a0n(n− 1) + b0n− λn+1]ϑn(t) + k1,n ϑn−1(t) + k2,n ϑn−2(t),

Ln+1

(

ϑn−1(t)
)

= [a0(n− 1)(n− 2) + b0(n− 1) − λn+1]ϑn−1(t)

+ k1,n−1 ϑn−2(t) + k2,n−1 ϑn−3(t).

As a consequence,

Un =
[

a0n(n+ 1) + b0(n+ 1) − λn+1]ϑn+1(t)

+
[

k1,n+1 + (fn + p1,n − βn)(a0n(n− 1) + b0n− λn+1)
]

ϑn(t)

+
[

k2,n+1 + (fn + p1,n − βn)k1,n + (p1,nfn−1 + p2,n − βnp1,n)

× (a0(n− 1)(n− 2) + b0(n− 1) − λn+1)
]

ϑn−1(t) + · · · .

Thus, the coefficient in ϑn+1 is zero since λn+1 = a0n(n + 1) + b0(n + 1).
Moreover, in order that Un(µ(t)) in (32) be a polynomial of degree n − 1
in µ(t) we get (33) as well as λn+1 6= λn. Finally, we also obtain that the
coefficient in ϑn−1 in (32) is given by (34).

In order to continue with the method of Vicente Gonçalves for quadratic
lattices, and since the proofs are rather technical, we shall first state the
results, while the complete proofs are detailed later.

Lemma 5. For each natural number n we have Ln−1

(

Un(µ(t)
)

= 0 , where

Un(µ(t)) is defined in (32).

From the unicity of solution of Bochner’s equation, there exists a con-
stant tn such that

Un = tn Pn−1 . (37)

Lemma 6. Let Pn be the unique monic polynomial solution of degree n in

the quadratic lattice µ(t) of the Bochner equation (27). Then, there exist

sequences {βn}n≥0 and {γn}n≥1 such that the following three-term recurrence

relation holds

Pn+1 = (µ(t) − βn)Pn − γn Pn−1. (38)

More precisely, βn is given in (33) and

γn =
tn

λn−1 − λn+1
. (39)
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As a summary of the previous results we have

Theorem 6. Let Pn be the monic polynomial solution of degree n in the qua-

dratic lattice µ(t) of the second-order linear divided-difference equation (27),
where the polynomials φ and ψ are given in (28), respectively, and the eigen-

value λn is given in (29). Then, the coefficients βn and γn of the three-term

recurrence relation (38) satisfied by the sequence {Pn}n≥0 are given by

βn = p1,n − p1,n+1 + fn, (40)

γn = p1,n (fn−1 − βn) + p2,n − p2,n+1, (41)

where

p1,n = −
n (a(n− 1) (fn−2 + fn−1) + b(n− 1) + r (fn−1 + gn−1) + s)

λn−1 − λn

, (42)

p2,n = −
1

λn−2 − λn

{(n− 1) (p1,n (a(n− 2) (fn−3 + fn−2) + b(n− 2) (43)

+r (fn−2 + gn−2) + s) + n (fn−2 (afn−2 + b) + c)) + ngn−1 (rfn−2 + s)} ,

λn = n(a(n− 1) + r), (44)

and the coefficients fn and gn are given in (12) and (17), respectively.

Example 1. As an example of application of the previous results, let us recall
that monic Racah polynomials can be defined in terms of hypergeometric
series as [13, page 190]

rn(α, β, γ, δ; t) = rn(t) =
(α+ 1)n (β + δ + 1)n (γ + 1)n

(n+ α + β + 1)n

× 4φ3

(

−n, n+ α + β + 1,−t, t+ γ + δ + 1
α + 1, β + δ + 1, γ + 1

∣

∣

∣
1; ,

)

n = 0, 1, . . . , N,

where rn(α, β, γ, δ; t) is a polynomial of degree n in the quadratic lattice
µ(t) = t(t + γ + δ + 1) . Racah polynomials satisfy a second-order linear
divided-difference equation which can be written as a Bochner-type equation
of the form (27) where φ is the polynomial of degree two in the lattice µ(t)
given by

φ(µ(t)) = −(µ(t))2 +
1

2
(−α(2β + δ + γ + 3) + β(δ − γ − 3)

− 2(δγ + δ + γ + 2))µ(t) −
1

2
(α+ 1)(γ + 1)(β + δ + 1)(δ + γ + 1),
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τ is the polynomial of degree one in the lattice µ(t) given by

τ(µ(t)) = −(α + β + 2)µ(t) − (α+ 1)(γ + 1)(β + δ + 1),

and the eigenvalues λn are given by λn = −n(α + β + n + 1) . If we apply
Theorem 6 we obtain exactly the coefficients of the three-term recurrence
relation [13, Eq. (9.2.4)]. In a similar way, Theorem 6 can be applied to
obtain the coefficients of the three-term recurrence relation satisfied by any
sequence of monic orthogonal polynomials solution of a Bochner-type equa-
tion on a quadratic lattice (27), assuming that the equation has a unique
monic polynomial solution for each positive integer n.

Proof of Lemma 5: We shall need the following relations

a) D[f g] = Sf Dg + Df Sg,
b) S[f g] = m2(t)Df Dg + Sf Sg, with m2(t) = µ(t) + δx,
c) S[µ(t)] = µ(t) + 1/4,
d) DSf = SDf +m1 D

2f , with m1 = 1/2,
e) S

2f = m1 SDf +m2(t) D
2f + f .

From the definition of the linear operator Ln and the polynomial Un(µ(t))
we have

Un = Ln+1

(

(µ(t) − βn)Pn

)

= φD
2
(

(µ(t) − βn)Pn

)

+ ψ S D
(

(µ(t) − βn)Pn

)

− λn+1

(

(µ(t) − βn)Pn

)

= φD
(

(µ(t)+
1

4
− βn)DPn + SPn

)

+ ψ S
(

µ(t)+
1

4
− βn)DPn + SPn

)

− λn+1

(

(µ(t) − βn)Pn

)

= φ
(

(µ(t) − βn + 1)D2Pn + 2S DPn

)

+ ψ
(

2(µ(t) + δx)D
2Pn

+ (µ(t) − βn + 1)S DPn + Pn

)

− λn+1

(

(µ(t) − βn)Pn

)

= (µ(t) − βn + 1)
(

φD
2Pn + ψS DPn

)

+ 2φS DPn

+ ψ
(

2(µ(t) + δx)D
2Pn + Pn

)

− λn+1

(

(µ(t) − βn)Pn

)

= (µ(t) − βn + 1)λnPn + 2φS DPn + ψ
(

2(µ(t) + δx)D
2Pn + Pn

)

− λn+1

(

(µ(t) − βn)Pn

)

= 2φS DPn + ψPn + (µ(t) − βn)λnPn − λn+1(µ(t) − βn)Pn

+ λnPn + 2ψ(µ(t) + δx)D
2Pn

= 2φS DPn + ψPn + (λn − λn+1)(µ(t) − βn)Pn + λnPn + 2ψ(µ(t) + δx)D
2Pn.
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As a consequence,

Ln−1

(

Un(µ(t)
)

= Ln−1

[

2φS DPn+ψPn+(λn−λn+1)(µ(t)−βn)Pn+λnPn+2m2(t)ψD
2Pn

]

.

We shall now obtain a number of properties which shall be used in the proof.
First,

Ln+1

[

(λn − λn+1)(µ(t) − βn)Pn

]

= 2(λn − λn+1)φS DPn + (λn − λn+1)(λn − λn−1)(µ(t) − βn)Pn

+ (λn − λn+1)ψPn + λn(λn − λn+1)Pn + 2(λn − λn+1)m2(t)ψD
2Pn. (45)

Moreover,

Ln−1

[

λnPn

]

= λn(λn − λn−1)Pn. (46)

We shall also need the following relations:

S
2
D

2Pn = m2(t)D
4Pn +m1 SD

3Pn + D
2Pn,

DSD
2Pn = SD

3Pn +m1 D
4Pn,

D
2
SDPn = DSD

2Pn +m1 D
4Pn = SD

3Pn + 2m1 D
4Pn,

SDSDPn = S
2
D

2Pn +m1 SD
3Pn = m2(t)D

4Pn + 2m1 SD
3Pn + D

2Pn,

DS
2
DPn = SDSDPn +m1 D

2
SDPn = (m2(t) + 2m2

1) D
4Pn + 3m1 SD

3Pn + D
2Pn,

S
3
DPn = m2(t) D

2
SDPn +m1 SDSDPn + SDPn

= (m2(t) + 2m2
1) SD

3Pn + 3m1m2(t) D
4Pn +m1D

2Pn + SDPn.

Also,

D
2
[

φS DPn

]

= D
2(φ) DPn+SD(φ) DS

2
DPn+DS(φ) SDSDPn+S

2(φ) D
2
SDPn

= D
2(φ)

[

(m2(t) + 2m2
1) SD

3Pn + 3m1m2(t) D
4Pn +m1D

2Pn + SDPn

]

+ SD(φ)
[

(m2(t) + 2m2
1) D

4Pn + 3m1 SD
3Pn + D

2Pn

]

+ DS(φ)
[

m2(t)D
4Pn + 2m1 SD

3Pn + D
2Pn

]

+ S
2(φ)

[

SD
3Pn + 2m1 D

4Pn

]

=
[

3m1m2(t) D
2(φ)+m2(t) SD(φ)+2m2

1SD(φ)+m2(t)DS(φ)+2m1S
2(φ)

]

D
4Pn

+
[

m2(t) D
2(φ) + 2m2

1 D
2(φ) + 3m1SD(φ) + 2m1DS(φ) + S

2(φ)
]

SD
3Pn

+
[

m1 D
2(φ) + SD(φ) + DS(φ)

]

D
2Pn + D

2(φ) SDPn.
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Note that

D
2
[

φD
2Pn

]

= D
2(φ) S

2
D

2Pn + SD(φ) DSD
2Pn + DS(φ) SD

3Pn + S
2(φ) D

4Pn

=
[

m2(t) D
2(φ) +m1 SD(φ) + S

2(φ)
]

D
4Pn

+
[

m1 D
2(φ) + SD(φ) + DS(φ)

]

SD
3Pn + D

2(φ) D
2Pn,

as well as

SD
[

φD
2Pn

]

= SD(φ) S
2
D

2Pn + S
2(φ) SD

3Pn +m2(t)
[

D
2(φ) DSD

2Pn

+ DS(φ) D
4Pn

]

=
[

m2(t) SD(φ) +m1m2(t) D
2(φ) +m2(t) DS(φ)

]

D
4Pn

+
[

m1 SD(φ) + S
2(φ) +m2(t) D

2(φ)
]

SD
3Pn + SD(φ) D

2Pn.

As a consequence,

D
2
[

φS DPn

]

= 2m1 D
2
[

φD
2Pn

]

+ SD
[

φD
2Pn

]

+
[

m1 D
2(φ)

+ SD(φ) + DS(φ)
]

D
2Pn + D

2(φ) SDPn − 2m1 D
2(φ) D

2Pn − SD(φ) D
2Pn

= 2m1 D
2
[

φD
2Pn

]

+ SD
[

φD
2Pn

]

+ SD(φ) D
2Pn + D

2(φ) SDPn.

Therefore,

D
2
[

2φS DPn

]

= 4m1 D
2
[

φD
2Pn

]

+ 2SD
[

φD
2Pn

]

+ 2SD(φ) D
2Pn + 2D

2(φ) SDPn. (47)

Furthermore,

D
2
[

ψm2(t) D
2Pn

]

= D
2
[

ψm2(t)
]

S
2
D

2Pn + SD
[

ψm2(t)
]

DSD
2Pn

+ DS
[

ψm2(t)
]

SD
3Pn + S

2
[

ψm2(t)
]

D
4Pn.

We have

D
2
[

ψm2(t)
]

= 4m1 SD(ψ),

SD
[

ψm2(t)
]

= m2(t) SD(ψ) + 2m2
1 SD(ψ) + 2m1 S

2(ψ),

DS
[

ψm2(t)
]

= m2(t) SD(ψ) + 6m2
1 SD(ψ) + 2m1 S

2(ψ),

S
2
[

ψm2(t)
]

= 4m1m2(t) SD(ψ) + 2m3
1 SD(ψ) + (2m2

1 +m2(t) S
2(ψ).
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Then,

D
2
[

ψm2(t) D
2Pn

]

= 4m1 SD(ψ)
[

m2(t)D
4Pn +m1 SD

3Pn + D
2Pn

]

+
[

m2(t) SD(ψ) + 2m2
1 SD(ψ) + 2m1 S

2(ψ)
][

SD
3Pn +m1 D

4Pn

]

+
[

m2(t) SD(ψ) + 6m2
1 SD(ψ) + 2m1 S

2(ψ)
]

SD
3Pn

+
[

4m1m2(t) SD(ψ) + 2m3
1 SD(ψ) + (2m2

1 +m2(t)) S
2(ψ)

]

D
4Pn

=
[

9m1m2(t) SD(ψ) + 4m3
1 SD(ψ) + 4m2

1 S
2(ψ) +m2(t) S

2(ψ)
]

D
4Pn

+
[

12m2
1 SD(ψ) + 2m2(t) SD(ψ) + 4m1 SD(ψ) + 4m1 S

2(ψ)
]

SD
3Pn

+ 4m1 SD(ψ) D
2Pn.

Notice that

D
2
[

ψ SDPn

]

= D
2(ψ) S

2
D

2Pn + SD(ψ) DS
2
DPn + DS(ψ) SDSDPn

+ S
2(ψ) D

2
SDPn = SD(ψ)

[

(m2(t) + 2m2
1) D

4Pn + 3m1 SD
3Pn + D

2Pn

]

+ DS(ψ)
[

m2(t)D
4Pn + 2m1 SD

3Pn + D
2Pn

]

+ S
2(ψ)

[

SD
3Pn + 2m1 D

4Pn

]

=
[

2m2(t) SD(ψ) + 2m2
1 SD(ψ) + 2m1 S

2(ψ)
]

D
4Pn

+
[

5m1 SD(ψ) + S
2(ψ)

]

SD
3Pn + 2SD(ψ) D

2Pn,

and

SD
[

ψ SDPn

]

= SD(ψ) S
3
DPn + S

2(ψ) SDSDPn

+m2(t)
[

D
2(ψ) DS

2
DPn + DS(ψ) D

2
SDPn

]

= SD(ψ)
[

(m2(t) + 2m2
1) SD

3Pn + 3m1m2(t) D
4Pn +m1D

2Pn + SDPn

]

+S
2(ψ)

[

m2(t) D
4Pn+2m1 SD

3Pn+D
2Pn

]

+m2(t) DS(ψ)
[

SD
3Pn+2m1 D

4Pn

]

=
[

5m1m2(t) SD(ψ) +m2(t) S
2(ψ)

]

D
4Pn

+
[

2m2(t) SD(ψ) + 2m2
1 SD(ψ) + 2m1 S

2(ψ)
]

SD
3Pn

+
[

m1 SD(ψ) + S
2(ψ)

]

D
2Pn + SD(ψ) SDPn.

Thus,

D
2
[

ψm2(t) D
2Pn

]

= 2m1 D
2
[

ψ SDPn

]

+ SD
[

ψ SDPn

]

−
[

m1 SD(ψ) D
2Pn + S

2(ψ) D
2Pn

]

− SD(ψ) SDPn.
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We also have D
2
[

ψ Pn

]

= 2SD(ψ) SDPn +
[

m1 SD(ψ) + S
2(ψ)

]

D
2Pn , and so

2D
2
[

ψm2(t) D
2Pn

]

+ D
2
[

ψ Pn

]

= 4m1 D
2
[

ψ SDPn

]

+ 2SD
[

ψ SDPn

]

−m1 SD(ψ) D
2Pn − S

2(ψ) D
2Pn. (48)

From (47) and (48) it yields

D
2
[

2φS DPn + 2ψm2(t) D
2Pn + ψ Pn

]

= 4m1 D
2
[

φD
2Pn

]

+ 2SD
[

φD
2Pn

]

+ 2SD(φ) D
2Pn + 2D

2(φ) SDPn + 4m1 D
2
[

ψ SDPn

]

+ 2SD
[

ψ SDPn

]

−m1 SD(ψ) D
2Pn−S

2(ψ) D
2Pn = 4m1 D

2
[

λnPn

]

+2SD
[

λnPn

]

+2SD(φ) D
2Pn

+ 2D
2(φ) SDPn −m1 SD(ψ) D

2Pn − S
2(ψ) D

2Pn.

So

D
2
[

2φS DPn + 2ψm2(t) D
2Pn + ψ Pn

]

= 4m1λn D
2Pn + 2λn SDPn

+ 2SD(φ) D
2Pn + 2D

2(φ) SDPn −m1 SD(ψ) D
2Pn − S

2(ψ) D
2Pn. (49)

Moreover, we successively get,

SD
[

φSDPn

]

= SD(φ) S
3
DPn + S

2(φ) SDSDPn +m2(t)
[

D
2(φ) DS

2
DPn + DS(φ)D2

SDPn

]

= SD(φ)
[

(m2(t) + 2m2
1) SD

3Pn + 3m1m2(t) D
4Pn +m1D

2Pn + SDPn

]

+S
2(φ)

[

m2(t)D
4Pn +2m1 SD

3Pn +D
2Pn

]

+m2(t) DS(φ)
[

SD
3Pn +2m1 D

4Pn

]

+m2(t) D
2(φ)

[

(m2(t) + 2m2
1) D

4Pn + 3m1 SD
3Pn + D

2Pn

]

=
[

3m1m2(t) SD(φ) +m2(t) S
2(φ) +m2

2(t) D
2(φ) + 2m2

1m2(t) D
2(φ)

+ 2m1m2(t) DS(φ)
]

D
4Pn +

[

m2(t) SD(φ) + 2m2
1 SD(φ) + 2m1 S

2(φ)

+3m1m2(t) D
2(φ)+m2(t) DS(φ)

]

SD
3Pn+

[

m1 SD(φ)+S
2(φ)+m2(t) D

2(φ)
]

D
2Pn

+ SD(φ) SDPn =
[

m2(t)
(

m1 SD(φ) +m2(t) D
2(φ) + S

2(φ)
)

+ 2m1

(

m2(t) SD(φ) +m1m2(t) D
2(φ) +m2(t) DS(φ)

)]

D
4Pn

+
[

m2(t)
(

SD(φ) + DS(φ) +m1 D
2(φ)

)

+ 2m1

(

m2(t) D
2(φ) +m1 SD(φ)

+ S
2(φ)

)]

SD
3Pn +

[

m1 SD(φ) + S
2(φ) +m2(t) D

2(φ)
]

D
2Pn + SD(φ) SDPn

= m2(t) D
2
[

φD
2Pn

]

+2m1 SD
[

φD
2Pn

]

−m2(t) D
2(φ) D

2Pn−2m1 SD(φ) D
2Pn

+
[

m1 SD(φ) + S
2(φ) +m2(t) D

2(φ)
]

D
2Pn + SD(φ) SDPn.
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Thus,

SD
[

φSDPn

]

= m2(t) D
2
[

φD
2Pn

]

+ 2m1 SD
[

φD
2Pn

]

+
[

m2(t) D
2(φ) + φ

]

D
2Pn + SD(φ) SDPn. (50)

Also,

SD
[

ψm2(t) D
2Pn

]

= SD(ψm2(t)) S
2
D

2Pn + S
2(ψm2(t)) SD

3Pn

+m2(t) D
2(ψm2(t)) DSD

2Pn +m2(t) DS(ψm2(t)) D
4Pn

=
[

m2(t) SD(ψ) + 2m2
1 SD(ψ) + 2m1 S

2(ψ)
][

m2(t)D
4Pn +m1 SD

3Pn + D
2Pn

]

+
[

4m1m2(t) SD(ψ) + 2m3
1 SD(ψ) + (2m2

1 +m2(t)) S
2(ψ)

]

SD
3Pn

+ 4m1m2(t) SD(ψ)
[

SD
3Pn +m1 D

4Pn

]

+m2(t)
[

m2(t) SD(ψ) + 6m2
1 SD(ψ) + 2m1 S

2(ψ)
]

D
4Pn

=
[

2m2
2(t) SD(ψ) + 12m2

1m2(t) SD(ψ) + 4m1m2(t) S
2(ψ)

]

D
4Pn

+
[

9m1m2(t) SD(ψ) + 4m3
1 SD(ψ) + 4m2

1 S
2(ψ) +m2(t) S

2(ψ)
]

SD
3Pn

+
[

m2(t) SD(ψ) + 2m2
1 SD(ψ) + 2m1 S

2(ψ)
]

D
2Pn,

and

SD
[

ψ Pn

]

= SD(ψ) S
2Pn + S

2(ψ) SDPn +m2(t) DS(ψ) D
2Pn

= 2m2(t) SD(ψ) D
2Pn +m1 SD(ψ) SDPn + S

2(ψ) SDPn + SD(ψ)Pn.

As a consequence,

SD
[

ψm2(t) D
2Pn

]

+ SD
[

ψ Pn

]

= m2(t) D
2
[

ψ SDPn

]

+ 2m1 SD
[

ψ SDPn

]

−m1 SD(ψ) SDPn +m2(t) SD(ψ)D2Pn + S
2(ψ) SDPn + SD(ψ)Pn.

Since S2(ψ) = m1 SD(ψ) + ψ, we have

2SD
[

ψm2(t) D
2Pn

]

+ SD
[

ψ Pn

]

= 2m2(t) D
2
[

ψ SDPn

]

+ 4m1 SD
[

ψ SDPn

]

− 2m1 SD(ψ) SDPn + ψ SDPn + SD(ψ)Pn. (51)
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From (50) and (51) it yields

SD
[

2φSDPn+2ψm2(t) D
2Pn+ψ Pn

]

= 2m2(t) D
2
[

φD
2Pn

]

+4m1 SD
[

φD
2Pn

]

+ 2
[

m2(t) D
2(φ) + φ

]

D
2Pn + 2SD(φ) SDPn + 2m2(t) D

2
[

ψ SDPn

]

+ 4m1 SD
[

ψ SDPn

]

− 2m1 SD(ψ) SDPn + ψ SDPn + SD(ψ)Pn

= 2m2(t) D
2
[

λnPn

]

+4m1 SD
[

λnPn

]

+2
[

m2(t) D
2(φ)+φ

]

D
2Pn+2SD(φ) SDPn

− 2m1 SD(ψ) SDPn + ψ SDPn + SD(ψ)Pn.

Since −m1 SD(ψ) = ψ − S2(ψ), we have

SD
[

2φSDPn + 2ψm2(t) D
2Pn + ψ Pn

]

= 2m2(t)λn D
2Pn + 4m1 λn SDPn + 2m2(t) D

2(φ) D
2Pn + 2λn Pn

+ 2SD(φ) SDPn −m1 SD(ψ) SDPn − S
2(ψ) SDPn + SD(ψ)Pn. (52)

From (49) and (52) it yields

φD
2
[

2φS DPn+2ψm2(t) D
2Pn+ψ Pn

]

+ψ SD
[

2φSDPn+2ψm2(t) D
2Pn+ψ Pn

]

= 4m1λnφD
2Pn+2λnφSDPn+2φSD(φ) D

2Pn+2φD
2(φ) SDPn−m1φSD(ψ) D

2Pn

− φS
2(ψ) D

2Pn + 2m2(t)λnψD
2Pn + 4m1λnψ SDPn + 2m2(t)ψD

2(φ) D
2Pn

+2λnψ Pn+2ψ SD(φ) SDPn−m1ψ SD(ψ) SDPn−ψ S
2(ψ) SDPn+ψ SD(ψ)Pn

= 4m1λn

[

φD
2Pn + ψ SDPn

]

+ 2λnφSDPn + 2SD(φ)
[

φD
2Pn + ψ SDPn

]

+ 2φD
2(φ) SDPn −m1SD(ψ)

[

φD
2Pn + ψ SDPn

]

− S
2(ψ)

[

φD
2Pn + ψ SDPn

]

+ 2m2(t)λnψD
2Pn + 2λnψ Pn + 2m2(t)ψD

2(φ) D
2Pn + ψ SD(ψ)Pn

=
[

4m1 λ
2
n + 2λn SD(φ) −m1 λn SD(ψ) − λn S

2(ψ) + 2λn ψ + ψ SD(ψ)
]

Pn

+
[

2λn + 2D
2(φ)

]

φSDPn + 2
[

λn + D
2(φ)

]

m2(t)ψD
2Pn.

So,

Ln−1

[

2φS DPn + 2ψm2(t) D
2Pn + ψ Pn

]

=
[

4m1 λ
2
n+2λn SD(φ)−m1 λn SD(ψ)−λn S

2(ψ)+2λn ψ+ψ SD(ψ)−λn−1 ψ
]

Pn

+
[

2λn + 2D
2(φ) − 2λn−1

]

φSDPn +
[

2λn + 2D
2(φ) − 2λn−1

]

m2(t)ψD
2Pn.
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From (45) and (46) we have

Ln−1

(

Un(µ(t)
)

=
[

4m1 λ
2
n + 2λn SD(φ) −m1 λn SD(ψ) − λn S

2(ψ) + 2λn ψ

+ ψ SD(ψ) − λn−1 ψ + λn(λn − λn−1) + (λn − λn+1)(λn − λn−1)(µ(t) − βn)

+ (λn − λn+1)ψ
]

Pn +
[

2λn + 2D
2(φ) − 2λn−1 + 2(λn − λn+1)

]

φSDPn

+
[

2λn + 2D
2(φ) − 2λn−1 + 2(λn − λn+1)

]

m2(t)ψD
2Pn.

Since λn+1 = (n + 1)(a0n + b0) , we have λn − λn−1 = 2a0n − 2a0 + b0 ,
λn − λn+1 = −2a0n − b0 , and λn + D2(φ) − λn−1 + λn − λn+1 = 0 . As a
consequence,

Ln−1

(

Un(µ(t)
)

=
[

4m1 λ
2
n + 2λn SD(φ) −m1 λn SD(ψ) − λn S

2(ψ)

+2λn ψ+ψ SD(ψ)−λn−1 ψ+λn(λn−λn−1)+(λn−λn+1)(λn−λn−1)(µ(t)−βn)

+ (λn − λn+1)ψ
]

Pn,

i.e. we have that that Ln−1

(

Un(µ(t)
)

is a polynomial of degree at least n.
Since Un is a polynomial of degree n − 1 and the operator Ln−1 keeps the
degree of the polynomials, Ln−1

(

Un(µ(t)
)

= 0.

Proof of Lemma 6: The action of Ln+1 on (38) gives

0 = Ln+1

(

Pn+1

)

= Un(µ(t)) − Ln+1(γnPn−1).

Then, as

Ln+1

(

Pn−1

)

=
(

λn−1 − λn+1

)

Pn−1,

and by (37), we get (39).

Proof of theorem 6: In order to determine the coefficients βn and γn in the
three-term recurrence relation (8) in terms of the coefficients a0, a1, a2, b0,
and b1 of the polynomials φ and ψ given in (28) of the divided-difference
operator Ln given in (31), by using (36) and (35) we have

Ln

(

Pn(µ(t))
)

= Ln

(

ϑn(t)
)

+ p1,n Ln

(

ϑn−1(t)
)

+ p2,n Ln

(

ϑn−2(t)
)

+ · · ·

=
[

k0,n ϑn(t) + k1,n ϑn−1(t) + k2,n ϑn−2(t)
]

+ p1,n

[

k0,n−1 ϑn−1(t) + k1,n−1 ϑn−2(t) + k2,n−1 ϑn−3(t)
]

+ p2,n

[

k0,n−2 ϑn−2(t) + k1,n−2 ϑn−3(t) + k2,n−2 ϑn−4(t)
]

+ · · ·

= k0,n ϑn(t)+
[

k1,n+p1,nk0,n−1

]

ϑn−1(t)+
[

k2,n+p1,nk1,n−1+p2,nk0,n−2

]

ϑn−2(t)+· · · .



ORTHOGONAL POLYNOMIALS ON QUADRATIC LATTICES 23

Since

k1,n + p1,nk0,n−1 = 0, k2,n + p1,nk1,n−1 + p2,nk0,n−2 = 0,

we obtain (40) and (41). Moreover, from the second-order linear divided-
difference equation we derive (42), (43), and (44), which completes the proof.
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