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Abstract: On a category C with a designated (well-behaved) classM of monomor-
phisms, a closure operator in the sense of D. Dikranjan and E. Giuli is a pointed
endofunctor ofM, seen as a full subcategory of the arrow-category C 2 whose objects
are morphisms from the class M, which “commutes” with the codomain functor
cod : M → C . In other words, a closure operator consists of a functor C : M → M
and a natural transformation c : 1M → C such that cod ·C = C and cod · c = 1cod.
In this paper we adapt this notion to the domain functor dom : E → C , where E is
a class of epimorphisms in C , and show that such closure operators can be used to
classify E-epireflective subcategories of C , provided E is closed under composition
and contains isomorphisms. Specializing to the case when E is the class of regular
epimorphisms in a regular category, we obtain known characterizations of regular-
epireflective subcategories of general and various special types of regular categories,
appearing in the works of the second author and his coauthors. These results show
the interest in investigating further the notion of a closure operator relative to an
arbitrary functor.
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Introduction

A classical result in the theory of abelian categories describes the corre-
spondence between the localizations of a locally finitely presentable abelian
category C and the universal closure operators on subobjects in C (see [3] for
instance). Several related investigations in non-abelian contexts have been
carried out during the last decade by several authors [5, 6, 8, 9, 10, 14, 15].
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In non-abelian algebraic contexts such as groups, rings, crossed modules and
topological groups, regular-epireflections are much more interesting than lo-
calizations: not only they occur more frequently but also they have strong
connections with non-abelian homological algebra and commutator theory
[14, 15, 16]. In particular, in the pointed context of homological categories
[4], the regular-epireflective subcategories were shown to bijectively corre-
spond to a special type of closure operators on normal subobjects [8]. An
analogous result was established later on in the non-pointed regular frame-
work using closure operators on effective equivalence relations [6].
By carefully examining these similar results, it appeared that the crucial

idea underlying the connection between regular-epireflective subcategories
and closure operators could be expressed via a suitable procedure of “closing
quotients”. Indeed, in the above mentioned situations, both normal sub-
objects and effective equivalence relations were “representations” of regular
quotients. The regularity of the base category was there to guarantee the
good behavior of quotients, and the additional exactness conditions only
provided the faithfulness of the representation of quotients by normal sub-
objects/effective equivalence relations. This led to the present article where
we generalize these results after introducing a general notion of a closure op-
erator which captures both procedures — “closing subobjects” and “closing
quotients”.
We now briefly describe the main content of the article. In the first section

we introduce an abstract notion of a closure operator on a functor that en-
ables us to give a common and simplified treatment of all the situations men-
tioned above. In the second section, we then prove our most general result,
Theorem 1, relating some closure operators on a specific (faithful) functor
with E-reflective subcategories, for a suitable class E of epimorphisms. In
the last section, we make use of the concept of a form [21, 22] to explain how
this work extends and refines the main results concerning closure operators
on normal subobjects and on effective equivalence relations.

1. The notion of a closure operator on a functor

Definition 1. A closure operator on a functor F : B → C is an endofunctor
C : B → B of B together with a natural transformation c : 1B → C such
that

FC = F and F · c = 1F .

A closure operator will be written as an ordered pair (C, c) of the data above.
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This notion is a straightforward generalization of the notion of a categorical
closure operator in the sense of D. Dikranjan and E. Giuli [11]. Let M be a
class of monomorphisms in a category C satisfying the conditions stated in
[11]. Viewing M as the full subcategory of the arrow-category C2, closure
operators on the codomain functor cod : M → C are precisely the Dikranjan-
Giuli closure operators. A similar statement is true for Dikranjan-Tholen
closure operators, as defined in [13], which generalize Dikranjan-Giuli closure
operators by simply relaxing conditions on the class M (see also [12] and [23]
for intermediate generalizations). For Dikranjan-Tholen closure operators,
the class M is an arbitrary class of morphisms containing isomorphisms and
being closed under composition with them; the closure operators are then
required to satisfy an additional assumption that each component of the
natural transformation c is given by a morphism from the class M — since
this requirement is not expressible for an abstract functor F , in our definition
of a closure operator we are forced to drop it.
Let us remark that every pointed endofunctor (C : B → B, c : 1B → C)

of B can be viewed as a closure operator on the functor B → 1 where 1 is
a single-morphism category.
In this paper we will be concerned with a different particular instance of

the notion of a closure operator, where instead of a class of monomorphisms,
we work with a class of epimorphisms, and instead of the codomain functor,
we work with the domain functor dom : E → C . Let us remark that these
are not the same as dual closure operators studied in [13]. In the latter case,
the functor to consider is the dual of the domain functor domop : Eop → C op.
There seems to be four fundamental types of functors on which closure

operators are of interest. Given a class A of morphisms in a category C ,
regarding A as the full subcategory of the arrow-category of C , these four
types of functors are the domain and the codomain functors and their duals:

A
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Aop

dom
op

��
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op

Aop
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dom
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Horizontally, we have categorical duality, i.e., dualizing the construction of
the functor gives the other functor in the same row. Vertically, we have
functorial duality : to get the other functor in the same column, simply take
the dual of the functor. The effects of closure of a morphism from the class
A in each of the above four cases are as follows:

•

C(a)

��

•

��

•

??~~~

a   @
@@

•

C(a) ??~~~

a   @
@@

• •

•

a
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??~~~
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  @

@@
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Note that the closure operators in the top row factorize a morphism a, while
those in the bottom row present it as part of a factorization. This gives a
principal difference between the categorical closure operators considered in
the literature (which are of the kind displayed in the top row) and those
that we consider in the present paper (which are of the kind displayed in the
bottom row). Let us also remark that a closure operator on a poset in the
classical sense can be viewed as a categorical closure operator of the bottom-
right type, when we take A to be the class of all morphisms in the poset (and
dually, the bottom-left type captures interior operators on a poset). For a
poset, the two types of closure operators in the top row become the same and
they give precisely the binary closure operators in the sense of A. Abdalla [1].
In a poset all morphisms are both monomorphisms and epimorphisms, and
it is interesting that in general, closure operators in the left column seem
to be of interest when A = M is a class of monomorphisms, and closure
operators in the right column seem to be of interest when A = E is a class
of epimorphisms. In both cases the functors down to the base category are
faithful. Note that another way to capture the classical notion of a closure
operator on a preorder is to say that it is just a closure operator on a faithful
functor B → 1.
Closure operators on a given functor F constitute a category in the obvious

way, where a morphism n : (C, c) → (C ′, c′) is a natural transformation
n : C → C ′ such that n ◦ c = c′ (and consequently F · n = 1F ; note that
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when F is a faithful functor, this last equality is equivalent to the former).
We will denote this category by Clo(F ).
For a faithful functor F : B → C from a category B to a category C , an

object A in a fibre F−1(X) of F will be represented by the display

A

X

and a morphism A → B which lifts a morphism f : X → Y by the display

A // B

X
f

// Y

Note that since the functor F is faithful, it is not necessary to label the top
arrow in the above display. We will also interpret this display as a statement
that the morphism f lifts to a morphism A → B. When it is not clear
which functor F do we have in mind, we will label the above square with the
relevant F , as shown below:

A //

F

B

X
f

// Y

We write A 6 B to mean

A // B

X
1X

// X

and A ≈ B when we also have B 6 A. In the latter case, we say that A

and B are fibre-isomorphic, since A ≈ B is equivalent to the existence of an
isomorphism A → B which lifts the identity morphism 1X . The relation of
fibre-isomorphism is an equivalence relation.
Given a faithful functor F : B → C and a morphism f : X → Y in C ,

we will write fA for the codomain of a cocartesian lifting of f at A, when it
exists. The universal property of the cocartesian lifting can be expressed as
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the law

A // fA // C

X
f

// Y g
// Z

⇔

A // C

X
gf

// Z

More precisely, a cocartesian lifting of f is the same as a lifting of f satisfying
the above equivalence. Dually, we write Cg for the domain of a cartesian
lifting of g at C, when it exists, and it is defined by the law

A // Cg // C

X
f

// Y g
// Z

⇔

A // C

X
gf

// Z

We say fA is defined when a cocartesian lifting of f at A exists, and du-
ally, we say Cg is defined when the cartesian lifting of f at C exists (this
notation is taken from [21, 22]). When fA and Cg are used in an equa-
tion/diagram, we interpret this equation to subsume the statement that fA
and Cg, respectively, are defined.
Liftings of identity morphisms can be represented by vertical arrows: the

display

A′

A

OO

X

shows two objects A and A′ in the fibre F−1(X), and a morphism A → A′

which by F is mapped to the identity morphism 1X .
In the case of a faithful functor F , the natural transformation c in the

definition of a closure operator is unique, when it exists, so a closure operator
can be specified just by the functor C. In fact, it can even be given by a
family (CX)X∈C of maps

CX : F−1(X) → F−1(X), A 7→ A,
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such that for any morphism f : X → Y in C , we have the following law:

A // B

X
f

// Y

⇒

A // B

A //

OO

B

OO

X
f

// Y

When F is faithful, Clo(F ) is a preorder withC 6 C ′ whenever C(A) 6 C ′(A)
for all A ∈ B. Note that the underlying pointed endofunctor of a closure
operator on a faithful functor is always well-pointed, i.e., C · c = c · C. We
shall say that a closure operator on a faithful functor is idempotent when
the underlying pointed endofunctor is idempotent, i.e., C · c = c · C is an
isomorphism or, equivalently, CC ≈ C.

2. Closure operators for epireflective subcategories

Let E be a class of epimorphisms in a category C . We can view E as a
full subcategory of the category of morphisms in C (the so-called “arrow-
category”), where objects are morphisms belonging to the class E , and a
morphism is a commutative square

A
r // B

X
f

//

d

OO

Y

e

OO

where d ∈ E and e ∈ E are the domain and the codomain, respectively, of
the morphism. Since every morphism in the class E is an epimorphism, the
top morphism in the above square is uniquely determined by the rest of the
square. In other words, the domain functor E → C , which maps the above
square to its base, is faithful. We will use the above square to represent what
we would have written as

d // e

X
f

// Y

for this faithful functor. By an epi-closure operator we mean a closure oper-
ator on the domain functor E → C . Similarly, by a mono-closure operator
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we mean a closure operator defined on the codomain functor M → C , where
M is a class of monomorphisms in C . Depending on how well-behaved is
the class M, we get the notions of closure operators introduced and studied
in [11, 23]. The classical example of such a closure operator is the so-called
Kuratowski closure operator on the category of topological spaces, which
is given by defining the closure of an embedding m : M → X to be the
embedding of the topological closure of the image of m in X.
Let us assume that the class E is closed under composition and contains

identity morphisms. When f is in E , it is not difficult to see that a cartesian
lifting for

ef // e

X
f

// Y

under the domain functor E → C , can be given by the square

B
1B // B

X
f

//

ef

OO

Y

e

OO

so that our notation ef agrees with composition of morphisms. We call these
canonical cartesian liftings.

Theorem 1. Let E be a class of epimorphisms in a category C such that it
contains isomorphisms and is closed under composition. There is a bijection
between full E-reflective subcategories of C and closure operators C on the
domain functor E → C satisfying the following conditions:

(a) C is (strictly) idempotent, i.e., for every object e ∈ E we have C(C(e)) =
C(e) (equivalently, CC = C);

(b) C preserves canonical cartesian liftings of morphisms f from the class
E , i.e., we have

C(e)f = C(ef)

for arbitrary composable arrows e, f ∈ E .

Under this bijection, the subcategory corresponding to a closure operator con-
sists of those objects X for which 1X = C(1X), and for each object Y of C

the morphism C(1Y ) gives a reflection of Y in the subcategory.
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Proof : First, we show that the correspondence described at the end of the
theorem gives a bijection between the objects of the poset and the preorder
in question. Let X be a full E-reflective subcategory of C , with G denoting
the subcategory inclusion G : X → C . Consider a left adjoint L : C → X

of G, and the unit η of the adjunction. Since G is a subcategory inclusion,
each component of η is a morphism ηX : X → L(X). Without loss of
generality we may assume that the counit of the adjunction is an identity
natural transformation. Then, an object X of C belongs to the subcategory
X if and only if ηX = 1X . We have

AOO
d

r // BOO
e

X
f

// Y

⇒

L(A)
L(r)

// L(B)

AOO
d

r //

ηA

OO

BOO
e

ηB

OO

X
f

// Y

and this means that we can define a closure operator on the domain functor
E → C by setting C(e) = ηcod(e)e. It is easy to see that both (a) and (b)
hold for such closure operator C. At the same time, the full subcategory X

of C can be recovered from the corresponding closure operator C as the full
subcategory of those objects X for which C(1X) = 1X .
Given a closure operator C on the domain functor E → C , satisfying (a)

and (b), we consider the full subcategory X of those objects X in C such
that C(1X) = 1X . Consider the composite L of the three functors

E
C // E

cod
��

C

I

OO

L
// C

where I maps every morphism f : X → Y in C to the morphism

X
f

// Y

X

1X

OO

f
// Y

1Y

OO
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in the category E , and cod is the codomain functor from E to C . We claim
that the values of L lie in the subcategory X . Indeed, we have

C(1L(X))C(1X)
(b)
= C(1L(X)C(1X)) = C(C(1X))

(a)
= C(1X) = 1L(X)C(1X)

and since C(1X) is an epimorphism, we get C(1L(X)) = 1L(X). So we can
consider L as a functor L : C → X . It follows from the construction that
this functor is a right inverse of the subcategory inclusion X → C . Since
each morphism C(1X) : X → L(X) is an epimorphism, it is easy to see that
L is a left adjoint of the subcategory inclusion X → C , with the C(1X)’s
being the components of the unit of adjunction.
To complete the proof of the bijection, it remains to show that C(e) =

C(1cod(e))e. This we have by (b).

In the case of the domain functors dom : E → C , where objects in E are
epimorphisms in C , including the identity morphisms, cocartesian lifts are
given by pushouts:

Y // Y +X Z

X g
//

f

OO

Z

gf

OO

Unlike in the case of cartesian liftings, there are in general no canonical
cocartesian liftings.

Theorem 2. Let C and E be the same as in Theorem 1. If for any two
morphisms f : X → Y and g : X → Z from the class E , their pushout
exists and the pushout injections belong to the class E , then the bijection of
Theorem 1 restricts to a bijection between:

(a) Full E-reflective subcategories X of C closed under E-quotients, i.e.,
those having the property that for any morphism f : X → Y in the
class E with X in X , the object Y also belongs to X .

(b) Closure operators as in Theorem 1 having the additional property that

fC(e) ≈ C(fe)

for any morphisms f : X → Y and e : X → E in the class E , and
moreover, when e = C(e) we have fe = C(fe).

Proof : Thanks to the bijection in Theorem 1, it suffices to show that for
a closure operator as in Theorem 1, and the corresponding full E-reflective
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subcategory X of C constructed in the proof of Theorem 1, the following
are equivalent:

(i) X is closed in C under E-quotients.
(ii) The property on the closure operator C given in (b).

Let L and η be the functor and the natural transformation that give the
reflection of C in X , as in the proof of Theorem 1. As before, we choose L

and η in such a way that an object X of C lies in X if and only if ηX = 1X .
(i)⇒(ii): Let f and e be as in (ii), and consider the morphism g arising in

a pushout giving a cocartesian lift of f at e, as displayed in the bottom left
square in the following diagram:

L(E) // L(E) +X (E +X Y )
h // L(E +X Y )

E
g

//

ηE

OO

E +X Y

gηE

OO

1E+XY

// E +X Y

ηE+
X

Y

OO

X
f

//

e

OO

Y

fe

OO

Since ηE+XY g = L(g)ηE, we get a morphism h making the above diagram
commute. The top left morphism in this diagram belongs to the class E ,
by the assumption on E given in the theorem, and so by (i), the object
L(E) +X (E +X Y ) belongs to the subcategory X . We can then use the
universal property of ηE+XY to deduce that h is an isomorphism. We then
get

fC(e) = f(ηEe) ≈ (gηE)(fe) ≈ ηE+XY (fe) = C(fe).

If C(e) = e, then E lies in X , and so E +X Y also lies in X by (i). Then
fe = C(fe).
For (ii)⇒(i), simply take e = 1X in (b).

The next result shows how the preorder structure of closure operators is
carried over to full E-reflective subcategories, under the bijection given by
Theorem 1.

Theorem 3. Let E and C be as in Theorem 1. Consider two full E-reflective
subcategories X1 and X2 of C , and the closure operators C1 and C2 corre-
sponding to them under the bijection established in Theorem 1. Then C1 6 C2

if and only if every object in X2 is isomorphic to some object in X1.
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Proof : When C1 6 C2, for an object X of C such that 1X = C2(1X), we
have:

1X 6 C1(1X) 6 C2(1X) = 1X .

This implies that C1(1X) is an isomorphism, and since it is a reflection of
X in the subcategory X1, we have the morphism C1(1X) witnessing the fact
that X is isomorphic to an object in X1. Suppose now every object in X2

is isomorphic to some object in X1. Then, for any morphism e : X → E

from the class E , we have Ci(e) = Ci(1E)e, i ∈ {1, 2}, so to prove C1 6 C2, it
suffices to show that C1(1E) 6 C2(1E) for any object E in C . Since C2(1E)
is a reflection of E in X2, its codomain lies in X2 and subsequently, it is
isomorphic to an object lying in X1. Now, we can use the universal property
of the reflection C1(1E) of E in X1 to ensure C1(1E) 6 C2(1E).

Let us now look at how the axioms on closure operators appearing in
Theorems 1 and 2 are affected by isomorphism of closure operators:

Theorem 4. Let C and E be as in Theorem 1. For a closure operator D on
the domain functor dom : E → C , we have:

(i) D is isomorphic to a closure operator C satisfying 1(a) and 1(b) if and
only if DD ≈ D and D(e)f ≈ D(ef) for arbitrary composable arrows
e, f ∈ E (this last condition expresses preservation by D of cartesian
liftings of morphisms from the class E).

If further E satisfies the premise in Theorem 2, then we have:

(ii) D is isomorphic to a closure operator C satisfying the condition stated
in 2(b) if and only if D satisfies the conditions stated in the second
part of (i) and D preserves cocartesian liftings of morphisms from the
class E , i.e., fD(e) ≈ D(fe) for arbitrary morphisms f : X → Y and
e : X → E in the class E .

Proof : We first prove the only if part in each of (i) and in (ii). Suppose a
closure operator D is isomorphic to a closure operator C. If C satisfies 1(a),
then

D(D(e)) ≈ D(C(e)) ≈ C(C(e)) = C(e) ≈ D(e)

for any morphism e in the class E . If C satisfies 1(b), then

D(e)f ≈ C(e)f = C(ef) ≈ D(ef)
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for arbitrary composable arrows e, f ∈ E . Suppose now E satisfies the premise
in Theorem 2. If C satisfies the condition stated in 2(b), then

fD(e) ≈ fC(e) ≈ C(fe) ≈ D(fe),

for arbitrary morphisms f : X → Y and e : X → E in the class E .
We will now prove the “if” parts in (i) and (ii). Consider a closure operator

D on the domain functor dom : E → C . Suppose D satisfies the conditions
stated in the second part of (i). Then the values of the map defined by

C(e) =

{

e if D(1E) is an isomorphism,
D(1E)e otherwise.

are fibre-isomorphic to the values of D, so this gives a closure operator C

isomorphic to D. Furthermore, it is easy to see that we have

C(ef) = C(1E)ef = C(e)f,

as required in 1(b). Since

D(e′) ≈ D(D(e′)) ≈ D(1E′)D(e′),

for any morphism e′ ∈ E , where E ′ denotes the codomain ofD(e′), we get that
D(1E′) is an isomorphism. We will use this fact for e′ = 1E in what follows.
Let e ∈ E and let E be the codomain of e. Write E ′ for the codomain of
D(1E). If D(1E) is an isomorphism, then we trivially have C(C(e)) = C(e).
Suppose D(1E) is not an isomorphism. Since D(1E′) is an isomorphism, we
have

C(C(e)) = C(D(1E)e) = D(1E)e = C(e).

This completes the proof of the if part in (i). For the if part in (ii) we
still use the same C. Suppose D satisfies the condition stated in the second
part of (ii). In view of Theorems 1 and 2, it suffices to prove that for any
morphism f : X → Y from the class E , if 1X = C(1X) then 1Y = C(1Y ).
Suppose 1X = C(1X). Then 1X ≈ D(1X) and since 1Y is the codomain of a
cocartesian lifting of f at 1X , we have

1Y ≈ fD(1X) ≈ D(1Y ),

which implies that D(1Y ) is an isomorphism. Then 1Y = C(1Y ).

Recall that a full subcategory X of a category C is said to be replete when
it contains all objects which are isomorphic to objects already contained in
X . Recall from Section 1 that a closure operator C is idempotent when
CC ≈ C. The work in this section leads to the following:
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Theorem 5. Let E be a class of epimorphisms in a category C such that it
contains isomorphisms and is closed under composition.

(a) There is a bijection between full E-reflective replete subcategories of
C and isomorphism classes of idempotent closure operators C on the
domain functor dom : E → C which preserve cartesian liftings of mor-
phisms from the class E .

(b) The bijection above is given by assigning to a closure operator C the
subcategory of C consisting of those objects X for which C(1X) is an
isomorphism, and C(1Y ) gives a reflection of each object Y from C

into the subcategory.
(c) When the class E is closed under pushouts, the bijection above restricts

to one where the subcategories are closed under E-quotients and the
closure operators also preserve cocartesian liftings of morphisms from
the class E .

(d) Each of the bijections above gives an equivalence between the (possibly
large) poset of subcategories in question, where the poset structure is
given by inclusion of subcategories, and the dual of the preorder of
closure operators in question.

3. Closure operators on forms

Recall that a functor is said to be amnestic when in each of its fibres, the
only isomorphisms are the identity morphisms. Faithful amnestic functors
were called forms in [22]. Any faithful functor gives rise to a form by identi-
fying in it the fibre-isomorphic objects. The original faithful functor F and
the corresponding form F ′ are related by a commutative triangle

B
Q

//

F   A
AA

AA
AA

A
B

′

F ′~~||
||

||
||

C

Writing [A]≈ for the equivalence class of an object A in B under the equiv-
alence relation of fibre-isomorphism, we have:

A //

F

B

X
f

// Y

⇔

[A]≈ //

F ′

[B]≈

X
f

// Y
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The functor Q is an equivalence of categories, which is surjective on objects.
The above display shows what the values of Q are: a morphism in B that
fits in the left hand side display above is mapped by Q to a morphism in B′

fitting the right hand side display. The fibres of a form are (possibly large)
posets, and so the the preorder of closure operators on a form is a poset. The
functor Q gives rise to an equivalence of categories

Clo(F ) ≈ Clo(F ′).

Under this equivalence, the closure operator C ′ on the form F ′ associated
to a closure operator C on F is obtained by setting C ′

X([B]≈) = [CX(B)]≈.
Notice that since Clo(F ′) is a poset, two closure operators on F correspond
to the same closure operator on the associated form F ′, under the above
equivalence, if and only if they are isomorphic.
Forms associated to the domain functors dom : E → C that we have been

considering in this paper, were called forms of E-quotients in [22]. Theorem 5
gives us the following:

Theorem 6. Let E be a class of epimorphisms in a category C such that it
contains isomorphisms and is closed under composition. There is an antitone
isomorphism between the poset of full E-reflective replete subcategories of C

and the poset of idempotent closure operators on the form of E-quotients
which preserve cartesian liftings of morphisms from the class E . It is given by
assigning to a closure operator the subcategory of C consisting of those objects
X of C for which the initial E-quotient is closed. When the class E is closed
under pushouts, this isomorphism restricts to one where the subcategories are
closed under E-quotients and the closure operators also preserve cocartesian
liftings of morphisms from the class E .

As in [22], we call the form corresponding to the codomain functorM → C ,
where M is a class of monomorphisms in a category C , the form of M-
subobjects. A normal category in the sense of [20] is a regular category [2]
which is pointed and in which every regular epimorphism is a normal epimor-
phism. In a normal category, for the class E of normal epimorphisms and the
class M of normal monomorphisms, the form of E-quotients is isomorphic
to the form of M-subobjects, via the usual kernel-cokernel correspondence
between normal quotients and normal subobjects. Theorem 6 then gives:

Theorem 7. There is an antitone isomorphism between the poset of full
normal-epi-reflective replete subcategories of a normal category C and the
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poset of idempotent closure operators on the form of normal subobjects which
preserve cartesian liftings of normal epimorphisms. It is given by assigning
to a closure operator the subcategory of C consisting of those objects X of
C for which the null subobject of X is closed. Furthermore, when pushouts
of normal epimorphisms along normal epimorphisms exist, this isomorphism
restricts to one where the subcategories are closed under normal quotients
and the closure operators also preserve cocartesian liftings of normal epimor-
phisms.

This recovers Theorem 2.4 and Proposition 3.4 from [8], and moreover,
slightly generalizes and refines them. Let us explain this in more detail.
First of all, we remark that an idempotent closure operator on kernels de-
fined in [8] is the same as an idempotent closure operator in the sense of the
present paper, on the form of normal subobjects. The context in which these
closure operators are considered in [8] is that of a homological category [4],
which is the same as a pointed regular protomodular category [7]. Theorem
2.4 in [8] establishes, for a homological category, a bijection between such
closure operators and normal-epi-reflective subcategories (which in [8] are
simply called epi-reflective subcategories). This bijection is precisely the one
established by the first half of Theorem 7 above. As this theorem shows, the
bijection is there more generally for any normal category (a homological cate-
gory is in particular a normal category, but the converse is not true). The last
part of Theorem 7 similarly captures Proposition 3.4 from [8] characterizing
Birkhoff subcategories [17] of a semi-abelian category. Once again, it reveals
a more general context where the result can be stated, and namely that of
a normal category with pushouts of normal epimorphisms along normal epi-
morphisms in the place of a semi-abelian category [18]. Thus, in particular,
the characterization remains valid in any ideal determined category [19].
For a category C , consider the full subcategory B of the category of parallel

pairs of morphisms in C , consisting with those parallel pairs of morphisms
which arise as kernel pairs of a morphism f (i.e., projections in a pullback of
f with itself). Thus, a morphism in B is a diagram

R
g

//

r2
��

r1
��

S

s2
��

s1
��

X
f

// Y
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where (R, r1, r2) and (S, s1, s2) are kernel pairs, and we have

f ◦ r1 = s1 ◦ g and f ◦ r2 = s2 ◦ g.

Assigning to the above diagram the base morphism f defines a (faithful)
functor B → C . The form corresponding to the functor will be called the
congruence form of C (when C is a variety of universal algebras, its fibres
are isomorphic to congruence lattices of algebras). For a regular category,
the congruence form is isomorphic to the form of regular quotients, and
Theorem 6 can be rephrased as follows:

Theorem 8. There is an antitone isomorphism between the poset of full
regular-epi-reflective replete subcategories of a regular category C and the
poset of idempotent closure operators on the congruence form which preserve
cartesian liftings of regular epimorphisms. It is given by assigning to a closure
operator the subcategory of C consisting of those objects X of C for which the
smallest congruence on X is closed. Furthermore, when pushouts of regular
epimorphisms along regular epimorphisms exist, this isomorphism restricts to
one where the subcategories are closed under regular quotients and the closure
operators also preserve cocartesian liftings of regular epimorphisms.

The first part of the theorem above recovers Theorem 2.3 from [6]. Idem-
potent closure operators on the congruence form of a regular category are
the same as idempotent closure operators on effective equivalence relations in
the sense of [6]. The condition of preservation of cartesian liftings of regular
epimorphisms defines precisely the effective closure operators in the sense of
[6]. The last part of the above theorem includes Proposition 3.6 from [6] as
a particular case.
Finally, let us remark that Theorem 7 can be deduced already from Theo-

rem 8, since for a normal category the form of normal subobjects is isomor-
phic to the congruence form.
Applying Theorem 8 in the case when C is a variety of universal algebras,

the first part of the theorem gives a characterization of quasi-varieties of
algebras in the variety, and the second part — subvarieties of the variety.
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