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POLYNOMIAL INEQUALITIES AND THE

NONNEGATIVITY OF THE COEFFICIENTS

OF CERTAIN POWER SERIES

ALEXANDER KOVAČEC

Abstract: A natural and surprisingly often successful method to prove the pos-
itive semidefiniteness of multivariate polynomials p(x) ∈ R[x] = R[x1, . . . , xn] in
subsets of Rn of the form x1 ≥ x2 ≥ · · · ≥ xn ≥ r, is to introduce new variables
hi = xi − xi+1, i = 1, ..., n, xn+1 = r, then to express the xi via the hi, and to show
that the polynomial p in the hi has only nonnegative coefficients. We show how
such representations can be obtained systematically using partial derivatives. This
method frequently lessens computational complexity and enhances insight consid-
erably. It allows us to establish, for example, that for real nonnegative α1, . . . , αk

of sum ≤ 1, the coefficients of the tn, n ≥ 1, of (1−x1t)
α1(1−x2t)

α2 · · · (1−xkt)
αk ,

when developed into a power series, are nonpositive for nonnegative xi. Similar (at
the moment partial) results for power series coming from the harmonic mean of
1 − x1t, ..., 1 − xkt are established. These results were found by Laffey and Hol-
land via more problem specific treatment. They used them in connection with the
nonnegative inverse eigenvalue problem.
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0. Introduction

Assume p ∈ R[X1, ..., Xn] is a real polynomial for which we wish to establish
an inequality p(x) ≥ 0 for all x ∈ D, D a certain subset in Rn. An approach
frequently leading to success is to cover D by polyhedral cones of the form
Cπ = {x : xπ1 ≥ xπ2 ≥ · · · ≥ xπn ≥ rπ}, π a permutation of {1, 2, ..., n}, –
which for want of a better terminology will be called simply monotone cones

– and to prove the inequality on each such subset individually by introducing
hi = xπi−xπ(i+1), hn = xπn− rπ. Thus in effect one writes xπi =

∑n
l=i hi+ rπ,

and verifies that p, written in terms of the hi, is a polynomial having only
nonnegative coefficients. With a few apparent exceptions, we shall assume
all rπ = 0 and will say in such a case that p satisfies property pos on Cπ;
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2 A. KOVAČEC

and it satisfies −pos if −p is pos . Of course exploiting symmetries can often
considerably reduce the necessary computational effort. We shall say that p
satisfies pos if it satisfies pos on every cone Cπ.
As an example consider the symmetric polynomial

p(x, y, z) = x3 + y3 + z3 − 3xyz.

Introduce h1 = x− y, h2 = y − z, h3 = z, and verify that

p(x, y, z) = p(h1 + h2 + h3, h2 + h3, h1)

= h3
1 + 3h2

1h2 + 3h1h
2
2 + 2h3

2 + 3h2
1h3 + 3h1h2h3 + 3h2

2h3.

Since the coefficients are all nonnegative the inequality p(x, y, z) ≥ 0 is estab-
lished on Cid = {(x, y, z) : x ≥ y ≥ z ≥ 0}, and, by symmetry, everywhere
on R3

≥0.
The mentioned elementary approach is perhaps advisable if nothing but

an individual inequality with numerically known powers and coefficients is
to be established. To show the relative ubiquity of property pos , in Section
1 we give a number of examples where the mentioned approach leads to
success. We also give some codelines helpful for verifying property pos for
nonsymmetric inequalities of this type and inform of other methods to prove
individual polynomial inequalities.
The elementary method of substitution can be fearsome, though, if infinite

families of inequalities, defined by a number of parameters are to be estab-
lished. Even to prove the general arithmetic geometric (AG) mean inequality
∑n

i=1 x
n
i − n · x1x2 · · ·xn ≥ 0 for all n ∈ Z≥0 and x ∈ Rn

≥0 in this direct way
might make necessary some sophisticated combinatorial reasoning; more so
the results on power series in Section 3.
In Section 2 we present a method using partial differentiation which turns

such tasks often (not always) more manageable. It concentrates directly on
computing the coefficients of expansions of polynomials in h1, h2, ..., hn as
defined above.
In Section 3 we use the method to show that, given nonnegative αi of sum

≤ 1, the power series
∑

n≥0

un(x1, x2, ..., xk)t
n = (1− x1t)

α1(1− x2t)
α2 · · · (1− xkt)

αk

has polynomial coefficients un = un(x1, x2, ..., xk) for which for all x1, ..., xk ≥
0 there holds un(x1, ..., xk) ≤ 0 whenever n ≥ 1. In fact the nonconstant un

are all −pos.
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It was the special case α1 = · · · = αk = 1/k of this problem with which
Professor Laffey challenged the author. This led to the method here pro-
posed. Laffey himself had solved this problem in [L] and used it for getting
information about necessary or sufficient conditions in order that a list of
complex numbers represents the spectrum of a nonnegative matrix. Holland
[Hol] observed that Laffey was actually looking at the geometric mean of
(1−x1t), (1−x2t), · · · , (1−xkt), and decided to investigate - also having the
nonnegative inverse eigenvalue problem in sight - the coefficient polynomials
that are obtained by looking at the harmonic mean of these quantities, de-
veloped as a power series. Here he could use some ideas of Kaluza [Kal] from
the thirties. While we do not show Holland’s coefficient inequalities in all
generality we will see in Section 4 by means of examples that the proposed
method allows with good reason to conjecture the stronger property that
even nonsymmetric versions of these coefficient polynomials satisfy property
−pos. We conclude in Section 5 by reporting further work in some aspects
related to the present one and mentioning possible impact on determining
the sign of certain recurrently defined sequences.
Some of our formulas are lengthy. So concerning notation we had to strike a

balance between mnemonicity, precision, coherence, and lightness. We hope
to have found an acceptable compromise.

1. Useful code, examples of properties pos and not pos ,

and other methods for proving polynomial inequali-

ties.

By an individual polynomial we mean an expression that can be written
down in the language of first order logic with function symbols ·,+, and con-
stant symbols of usual interpretation in Q. Thus x2−2xy+5 is an individual
polynomial, but an informal claim like ‘we have the polynomial inequality
x2n + y2n ≥ 0’ is not a claim about an individual polynomial inequality but
it is a claim about all members of an infinite class of first order expressions
(one for each particular n).
In this section we give a few code lines which the reader might use to as-

certain the claims about property pos for individual polynomial inequalities.
We then inform briefly about other methods and theorems to establish such
inequalities.
Since there seems not to exist any special merit in using the theoretical

developments in Section 2 to base on them a code for automatization of this
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process, unless, perhaps, one wishes to examine extremely large polynomials,
we content ourselves here with simple suggestions. The experiments one can
make with this code indicate that the family of homogeneous polynomial
inequalities that have property pos on certain simplicial cones seems to be
quite large within the class of all homogeneous polynomial inequalities valid
on such cones.
If one wishes to test a single given polynomial p in x, y, z, on the region

y ≥ x ≥ z ≥ t, say, then a quick way is to input the polynomial; write y, x, z
as expressions in h1, h2, h3; and output p. A Mathematica line for this is:

p=...; {y,x,z}={h1+h2+h3+t,h2+h3+t,h3+t}; p .

If, however, one has many variables or has to test many regions because the
inequality has not much symmetry, after inputting p, one may with advantage
use the following lines.

0. vars=Variables[p]; n=Length[vars];

1. lsh = {};

For[j = 1, j <= n, j++, AppendTo[ lsh, Subscript[h, j] ] ];

2. ss=0;rpslsh={};

For[j=n,j>=1,j--,ss=ss+lsh[[j]];PrependTo[rpslsh, ss];];

rpslsh=rpslsh+t;

The meaning of line 0 is clear; line 1 produces the list of hs, lsh= {h1, h2, ..., hn};
line 2 produces from this the list of its ‘right partial sums plus t’, i.e.
rpslsh= {h1 + · · ·+ hn + t, ..., hn−1 + hn + t, hn + t}.
After this preprocessing one may conveniently work by executing the fol-

lowing lines.

3. pi={...}; rules={};

4. For[j=1,j<=n,j++, AppendTo[rules,vars[[pi[[j]]]]->rpslsh[[j]]]];

5. p2=p/.rules//Expand

6. out=Apply[List,p2]/.{Subscript[h,_]->1}; Min[out]

In line 3, a user defining a permutation pi of the numbers 1, 2, ..., n,
orders the variables according to xπ1, xπ2, .... The list rules produced in
line 4 is used in line 5 to replace the variable xπj of p by hj + · · · + hn + t,
for j = 1, ..., n. Outputting this p yields the polynomial expanded in the hi.
This output may be too long for eye-examination of coefficients. One may
wish to suppress its printing (terminating line 5 with a ‘;’), and execute line
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6 instead: this produces from p the list of terms, puts all hj in it equal to
1 so that only the list of coefficients survives in out. If the the minimum of
these is nonnegative - this may depend on the value of t - one has the desired
certificate of positivity on the region xπ1 ≥ · · · ≥ xπn ≥ t.

Example 1.1. Let p=x*y^2 - x*z + 2y*z^2. Assume one wants some
information about whether this polynomial is positive for x, y, z ≥ 0.5 ? For
this run lines 4,5,6 for the various permutations of x, y, z, always with t = 0.5.
With pi={1,2,3} one gets a polynomial of form 0.125−0.25h1+ · · · without
monomials hk

1 for k ≥ 2. It shows that if h2 = h3 = 0, that is y = z = 0.5,
but x > 0.5 + (0.125/0.25) = 1, the polynomial will assume negative values.
At the other hand with pi={3,1,2}, one gets a polynomial in the hi with
only positive coefficients. Consequently, on the set z ≥ x ≥ y ≥ 0.5, the
polynomial assumes only positive values.

Examples 1.2. After putting them in into the standard form p(x1, . . . , xn) ≥
0, each of the following inequalities is confirmed by means of the above lines
within seconds since the associated polynomials all have the property pos (on
all nonnegative monotone cones).

i. For a, b, c ≥ 0: (a2b+ ab2 + a2c+ ac2 + b2c+ bc2) ≤ (a3 + b3 + c3 + 3abc).
ii. For x, y, z ≥ 0: 3xyz ≤ x2y + y2z + z2x.
iii. For a, b, c ≥ 0:

a6b3 + a3b6 − 2a5b2c2 − 2a2b5c2 + a6c3 + b6c3 − 2a2b2c5 + a3c6 + b3c6 ≥ 0.

This unwieldy but symmetric inequality comes from trying to prove

(

1 +
a

b

) (

1 +
b

c

) (

1 +
c

a

)

≥ 2

(

1 +
a+ b+ c

(a b c)
1

3

)

,

by putting everything over a common denominator (abc)4/3 and inspecting
the numerator of lhs-rhs, replacing a, b, c respectively by a3, b3, c3 and dividing
by abc.

iv. For a, b, c, d ≥ 0: abcd(a+ b+ c+ d) ≤ a4b+ b4c+ c4d+ d4a.

While the inequalities i and iii are symmetric under the group of permu-
tations of a, b, c, the inequality ii is only invariant under the group of cyclic
permutations of x, y, z and needs therefore be tested for orders x > y > z
and y > x > z, say. Inequality iv is only invariant under cyclic permutations
of a, b, c, d, and needs to be tested under the order a > b > c > d and, say,
the six reorderings obtained herefrom by interchanging b, c, d.
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v. For x, y ≥ 0: x5 + x4y − 2x3y2 − 2x2y3 + xy4 + y5 ≥ 0.

Now define the following polynomials all occurring with similar notation
(in capitals) in [CLR2].

d(x, y, z) = (x− y)2(y − z)2(z − x)2;
l(x, y, z) = xyz − (y + z − x)(z + x− y)(x+ y − z);
s(x, y, z) = l(x2, y2, z2).

2f(x, y, z) = (y + z − x)2(z + x− y)2(x+ y − z)2−
(y2 + z2 − x2)(z2 + x2 − y2)(x2 + y2 − z2),

g(x, y, z) = 2(x4(y − z)2 + y4(x− z)2 + z4(x− y)2)− d(x, y, z).

The following inequalities are then all valid since the associated standard
form polynomials are all pos on all nonnegative monotone cones.

vi. For x, y, z ≥ 0 : s(x, y, z) ≥ 8d(x, y, z).
vii. For x, y, z ≥ 0 : f(x, y, z) ≥ 4d(x, y, z).
viii. For x, y, z ≥ 0 : g(x, y, z) ≥ d(x, y, z).
ix. For x, y, z ≥ 0 :

x4(x− y)(x− z) + y4(y − x)(y − z) + z4(z − x)(z − y) ≥ 5d(x, y, z).

The inequality iii above is a special case of a well known inequality of
Muirhead which we will now show to follow from property pos of a suitable
polynomial. Given a real nonnegative decreasing n-tuple a, a1 ≥ a2 ≥ ... ≥
an, define as in [HLP] the symmetric polynomial

[a] = [a](x1, ..., xn) =
∑

σ∈Sn

xa1
σ1 · · ·xan

σn.

Muirhead’s inequality says that if two nonnegative decreasing real n-tuples
a, b are such that the left partial sums of a− b are nonnegative and the sum
of its entries is 0 - a fact usually expressed by writing a � b and saying that
a majorizes b - then one has for any x ∈ Rn

≥0 the inequality [a] − [b] ≥ 0.
Various proofs of Muirhead’s inequality are known. It is a direct consequence
of the following fact.

Theorem 1.1. If a, b as above are integer, then the (symmetric) Muirhead

polynomial [a]− [b] is pos .

Proof : We will show that substituting without loss of generality xi = hi +
· · · + hn, i = 1, ..., n, we transform [a]− [b] into a polynomial in the hi with
nonnegative coefficients. Parts of the proof follow closely ideas in Frenkel
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and Horvath [FH], where it is shown that under the conditions given, ([a]−
[b])(x2

1, · · · , x2
n) is a sum of squares (but we shall not use this fact as such).

We write a· ≻ b to say that there are indices k < l such that ak = 1 +
bk > bk ≥ bl > al = −1 + bl, while for all i 6= k, l, bi = ai. In [HLP]
it is shown that a ≻ b implies that there is a finite chain of decreasing
nonnegative n-tuples ai so that a = a0·≻ a1·≻ a2·≻ · · · ·≻ ak = b. Since
[a] − [b] =

∑k−1
i=0 ([ai] − [ai+1]), it is enough to show our claim under the

additional hypothesis a·≻ b. Also assume indices k, l be chosen like above.
Now consider for σ ∈ Sn the expression

∗1 : (xak
σkx

al
σl + xal

σkx
ak
σl − xbk

σkx
bl
σl − xbl

σkx
bk
σl)
∏

i 6=k,l

xei
σi,

where ei := bi = ai. Note that such an expression is symmetric w.r.t inter-
changing k and l and the sum of all such expressions as σ ranges over Sn

just gives 2([a]− [b]). Now to simplify notation, write x = xσl
, and assume,

without loss of generality, xσk
= x + h. Also let b′ = bk, b = bl. Then the

parenthesized expression is

(x+ h)b
′+1 xb−1 + (x+ h)b−1xb′+1 − (x+ h)b

′

xb − (x+ h)bxb′

= xb−1(x+ h)b−1 · h((x+ h)b
′−b+1 − xb′−b+1)

= xb−1(x+ h)b−1
∑

ν≥1

(
b′−b+1

ν

)
h1+νxb′−b+1−ν.

Now assume each xi as written at the beginning. Then in particular x =
xσl = hσl+h1+σl

+· · ·+hn, xσk = hσk+· · ·+hn, and h = hσk+· · ·+h1+σl. Thus
it is obvious that expression ∗1 above is a nonnegative linear combination in
the his; and so, hence, ([a]− [b])(x1, ..., xn) will be.

However, it is not surprising that we have:

Proposition 1.2. In the class of homogeneous polynomials, to possess the

property pos on some monotone cone is a genuinely stronger property than

to be merely nonnegative on the cone.

Proof : The Motzkin polynomial m(x, y, z) = x3 + y2z + yz2 − 3xyz is non-

negative on R≥0 - use the AG inequality for t1 =
3
√
x3, t2 =

3

√

y2z, t3 =
3

√

yz2,
to see this - but on the monotone cone {(x, y, z) ∈ R3

≥0 : z ≥ x ≥ y} it is not
pos . Rather, substituting z = h1 + h2 + h3, x = h2 + h3, y = h3, one gets
m = h3

2 + h2
1h3 − h1h2h3 + h2

2h3.

The Motzkin polynomial of 1967 is famous for the fact that m(x2, y2, z2)
has been the first explicit example of a polynomial with the property to be
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positive semidefinite but not a sum of squares. The above mentioned sextic
s(x, y, z), discovered by R.M. Robinson in 1969, was the first symmetric psd
form with this property [CLR1, p.561]. This shows that property pos is not
too closely connected to the property of being sos.
Apart of clever tricks and the standard methods of differential calculus for

minimization one has nowadays a number of other tools and theorems at
one’s disposal to prove individual polynomial inequalities.

• Whether an individual polynomial inequality holds on a semialgebraic set
(in particular our monotone cones) can, in principle, be decided by meth-
ods like Tarski quantifier elimination [CJ] or modifications of it which are
implemented in symbolic systems like Mathematica. Thus, strictly speak-
ing, whether an individual polynomial inequality holds is not anymore a
mathematical question, but a computational one. Because of its enormous
complexity, however, this method works only for a few variables and low
degree. Here are useful Mathematica c© packages or commands.

· The package Algebra‘AlgebraicInequalities‘ provides via
SemialgebraicComponents[{I1,...,In},{x1,...,xn}] the possibility to

find at least one point in each connected component of the open semialge-
braic set defined by inequalities {I1,...,In}. Both sides of each inequality
Ij should be polynomials in variables {x1,...,xm}with rational coefficients.
For example, typing
SemialgebraicComponents[{y^3-2x*y^2+(9/10)x^2y+x^3>0,x>0,y>0},{x,y}]

one gets after a split of a second the response {{1,1}} which means that
there is only one semialgebraic component and the polynomial has in the
component the same sign as in the point (1, 1), namely the +1.

· The package Algebra’InequalitySolve’ has the command
InequalitySolve[expr, {x1, ..., xn}]. This gives the solution set of
an expression containing logical connectives and linear equations and in-
equalities in the variables {x1, ..., xn}. Using the above example, typing
InequalitySolve[y^3-2x*y^2+(9/10)x^2y+x^3>0 && x>0 && y>0,{x,y}]

one gets immediately the answer x>0&&y>0 showing the truth of the inequal-
ity. Since the solution set sometimes leads to complicated logical descriptions
- use the weak inequality y3 − 2xy2 + (9/10)x2y+ x3 ≥ 0 to see this - it may
be better to type y3 − 2xy2 + (9/10)x2y + x3 < 0 getting the answer False.
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· Still another automated method is to use Mathematica’s standard command
FindInstance . For example
FindInstance[y^3-2x*y^2+(9/10)x^2y+x^3<0&&x>0&&y>0,{x,y},Reals]

returns the empty set. If FindInstance finds surely an instance that makes
the expression true if there is one, this yields another proof that the combina-
tion of inequalities inputted has no solutions. So we will have for x ≥ 0, y ≥ 0
always y3 − 2xy2 + (9/10)x2y + x3 ≥ 0. This polynomial satisfies pos for
x ≥ y > 0, but not for y ≥ x ≥ 0. The inequality can also be established by
classical methods or Polya’s theorem below.

• Finally there are a number of more or less well known general theorems.
Here is a selection. One of the older theorems along these lines is the follow-
ing:

Theorem (Rado [R]). Let G be a subgroup of the symmetric group on

{1, 2, ..., n}. Let a = (a1, . . . , an), b = (b1, . . . , bn) be elements of Rn so that

a ∈ conv{g.b : g ∈ G}, meaning the convex hull of the orbit of b under the

action of G. Then for any x = (x1, ..., xn) ∈ Rn
≥0 there holds

∑

g∈G
xa1
g(1)x

a2
g(2) · · · x

an
g(n) ≤

∑

g∈G
xb1
g(1)x

b2
g(2) · · ·x

bn
g(n).

Muirhead’s inequality is the special case of this theorem arising for the case
G = Sn. The inequality iv above can be shown as a special case of Rado’s
inequality (but not of Muirhead’s).

Theorem (Pólya [P]). Let p ∈ R[x] be a homogeneous polynomial that is

positive on ∆n = {x ∈ Rn
≥0 :

∑n
i=1 xi = 1}. Then there exists a positive

integer m such that the polynomial p · (x1 + · · ·+ xn)
m has only nonnegative

coefficients.

The polynomial we used to illustrate FindInstance, when multiplied with
(x + y)11, yields only positive coefficients. The exponent m = 11 is the
smallest possible for this to happen.
The theorem can also be found in Hardy, Littlewood, Polya [HLP], Delzell

and Prestel [DP], Polya [P2, paper 107] and, with a completely different
proof, due to Wörmann, in Marshall [M, p.45]. A quantified Pólya type result
was given by Reznick [Re]. He gives in dependency of the quotient formed
from minimum and maximum that p > 0 (everywhere on Rn) assumes on
the unit sphere an exponent m that guarantees p · (x2

1 + · · · + x2
n)

m is sum
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of squares. A difficulty in the application of the theorem is that it usually
will not work if the polynomial p assumes the value zero. In [CPR] Castle,
Powers and Reznick give the precise conditions in which one can expect that
for some m nonnegative coefficients will show up in a situation like Pólya’s
original theorem but with p possibly assuming 0 on ∆n.
Define sk(x) =

∑n
i=1 x

k
i . Then any symmetric homogeneous cubic f in n

variables can be written in the form f = as3+bs1s2+cs31. In the next section
we shall have occasion to refer to the following theorem.

Theorem (Choi, Lam, Reznick [CLR1, Theorem 3.7]. In order that f ≥ 0 on

Rn
≥0 it is necessary and sufficient that there holds the inequality a+bt+ct2 ≥ 0,

for t = 1, 2, ..., n.

To Timofte [T] we owe the following principle for symmetric polynomial
inequalities. It has received a particularly nice proof by Riener [Rie].
Denote by ei(x) the i-th elementary symmetric polynomials in x = x1:n =

(x1, · · · , xn), i = 1, ..., n, and, defining π(x) = (e1(x), ..., en(x)), combine
the ei(x) into an n-tuple. The well known fundamental theorem for sym-
metric functions says that the (symmetric) polynomials f ∈ R[x]Sn are pre-
cisely the polynomials for which there exists a (unique) polynomial g = gf ∈
R[z1, . . . , zn] so that f = g aπ. The proof of that theorem also shows that in g
only monomials zi11 · · · zinn can occur for which i1+2i2+ ...+nin ≤ d = deg f .
We shall call g here the associate to f. Let us say that f ∈ R[x]Sn satisfies
hypothesis g.s (s ∈ Z≥1) if its associate can be written in the form

g = g1 +

n∑

i=s+1

gizi with g1, gs+1, ..., gn ∈ R[z1:s].

Equivalent to this is saying that for i = s + 1, . . . , n, ∂g/∂zi ∈ R[z1:s].
Thus it is clear that s ≤ s′ and g.s implies g.s′. It is also easy to see that
g ∈ R[x]Sn

≤d (of degree d) implies that f satisfies g.⌊d/2⌋, and furthermore
then gd+1 = · · · = gn = 0. Let v(x) = #{x1, ..., xn} be the number of distinct
entries of x.

Theorem (Timofte [T], Riener [Rie]). Assume f ∈ R[x]Sn has an associate g
satisfying g.s, with some s ∈ {2, . . . , n}. If f(x) ≥ 0 whenever v(x) ≤ s, then
f ≥ 0 on Rn. An analogous claim holds with the symbols ‘≥’ here replaced

by ‘>’.

It is interesting to observe that the theorem above for symmetric cubics
can also be stated as saying that f ≥ 0 on Rn iff f(1k, 0n−k) ≥ 0 holds for all
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k = 1, 2, ..., n. Here 1k = (1, 1, · · · , 1) ∈ Rk, and 0n−k is analogously defined.
Thus [CLR1] as well as other authors at around that time might have had
already inklings of the Timofte - Riener theorem.
Finally there are algorithms that decide whether a polynomial can be writ-

ten as a sum of squares. The algorithm in Powers and Wörmann [PW]
gives an easily accessible first idea; but at the end the question is reduced to
whether or not certain semialgebraic sets are empty or not; to decide ques-
tions is as we noted, notoriously hard. In polynomial optimization sum of
squares relaxations are used. These, by means of semidefinite programming
are fast.

2. The Main Theorem

For explanatory reasons, in this section we sometimes use capital letters
for variables.
Let p ∈ R[X1, X2, ..., Xn] and consider it as a polynomial in

R[X1, X2, ..., Xn, T ]

where Xn+1 = T is an additional indeterminate. Write ∂k
Xi
p for the k-th

derivative of p w.r.t. Xi.
We define the (first) derived family of p or, for short, the D-family of

p (w.r.t. the order X1, ..., Xn, T of variables) as the family of polynomials
D({p}) = {(∂i

X1
p)(X2, X2:n) : i = 0, 1, 2, ..., degX1

(p)}. If {p1, p2, ..., pk} ⊆
R[X1, X2, ..., Xn], then we define D({p1, p2, ..., pk}) =

⋃k
j=1D({pj}).

SoD({p}) is obtained by forming the derivatives of p of all orders≤ degX1
(p)

with respect to X1, and then replacing X1 by X2. It follows that

D({p}) ⊆ R[X2, ..., Xn] ⊆ R[X2, ..., Xn, T ].

By choosing above i = 0, we see p(X2, X2:n) ∈ D({p}); furthermore note that

in ∂
degX1

(p)

X1
(p) variable X1 does not occur.

We can repeat the D-process, forming successively

{p} = D0({p}),D1({p}) = D({p}), ...,Dk({p}) = D(Dk−1({p})), ...,Dn({p}).
Since Dk({p}) is a family of polynomials in Xk+1, ..., Xn, T (in which, for

k ≤ n− 1, T does not occur), we get that Dn({p}) is a family of polynomials
in T.

Theorem 2.1. Let p ∈ R[X1, X2, ..., Xn] ⊆ R[X1, X2, ..., Xn, T ]. Then:
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a. p can be written as a polynomial in the differences Xi −Xi+1, i = 1, ..., n,
Xn+1 = T, with coefficients that are nonnegative rational multiples of the

polynomials in Dn({p}) ⊆ R[T ].
b. If the polynomials in Dn({p}) all assume nonnegative values in the point

r then, whenever x1 ≥ x2 ≥ · · · ≥ xn = r, there holds p(x1, x2, ..., xn) ≥ 0.

Proof : a. We prove the claim by induction on n. So assume first n = 1.
Write X for X1. Let p = p(X) ∈ R[X], and let d = deg p = degX p. Then
D({p}) = {p(T ), p′(T ), ..., p(d)(T )}, where the primed p’s indicate derivatives
w.r.t. X. Since p is a polynomial, it is its own Taylor series around T, i.o.w.
we have

p(X) = p(T ) +
p′(T )

1!
(X − T ) + · · · + p(d)(T )

d!
(X − T )d.

This identity can be derived from the classical Taylor series of real analysis
by the ‘polynomial argument’: it is true for every real r in place of T , hence
it is true on the formal level; but more natural is to show it true for each
power X l with l ≤ d writing X l = (T + (X − T ))l and using the binomial
theorem; and then to extend this to arbitrary p ∈ R[X] of degree d, using
linearity of the derivative. The identity shows the claim for n = 1.
Now assume n ≥ 2 and the theorem already proved for less than n variables.

Write X for X1. By definition

D({p}) = {p(X2, X2:n), (∂Xp)(X2, X2:n), ..., (∂
d
Xp)(X2, X2:n)}.

Consequently, considering p as a polynomial in X of degree d, a formal
Taylor expansion around X2 yields

p(X,X2:n) = p(X2, X2:n) + 1!−1(∂Xp)(X2, X2:n)(X −X2) + · · ·+
+ d!−1(∂d

Xp)(X2, X2:n)(X − X2)
d.

Now the (∂i
Xp)(X2, X2:n) are evidently polynomials of n − 1 variables. Fur-

thermore, by definition,

Dn({p}) = Dn−1({p(X2, X2:n)}) ∪ · · · ∪ Dn−1({(∂d
Xp)(X2, X2:n)}).

By induction hypothesis, therefore, we can write for each i = 0, 1, 2, ..., d,
the (∂i

Xp)(X2, X2:n) as polynomials in X2 −X3, ..., Xn−1 −Xn, Xn − T, with
coefficients that are nonnegative rational multiples of polynomials in
Dn−1({(∂i

Xp)(X2, X2:n)}) ⊂ Dn({p}). Substituting these elements in the Tay-
lor series above we are done with part a.
b. Is an immediate consequence of part a.
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Let us indicate the transformation a polynomial q suffers by taking k times
the derivative with respect to Xi and then putting Xi+1 = Xi by

q
∂k
i ,Xi=Xi+1

−−−→ q̃,

where q̃ is the resulting polynomial. It will be also useful to observe that
Dn({p}) equals the family of all possible endpoints of chains

p
∂
i1
1 ,X1=X2

−−−→ ·
∂
i2
2 ,X2=X3

−−−→ · · · · ·
∂
in−1

n−1 ,Xn−1=Xn

−−−→ ·
∂in
n ,Xn=T

−−−→ p̃

Sometimes it is more convenient or natural to use the Hasse derivatives
·∂k = ∂k/k! instead of the simple operators ∂k. But be aware that ·∂k ·∂l 6= ·∂k+l.
One sees from the reasoning in the proof of the theorem, that the following
holds:

Corollary 2.2. The coefficient of

(X1 −X2)
i1(X2 −X3)

i2 · · · (Xn−1 −Xn)
in−1(Xn − T )in

in an expansion of p as proposed in part a of the Theorem 2.1 can be obtained

in either of the following two ways:

a. As p̃(T )/(i1!i2! · · · in!), where p̃ is the terminal polynomial in the chain

above using ordinary derivatives.

b. As the terminal polynomial itself, in such a chain if Hasse derivatives are

used instead.

It is easy to see that if i1 + i2 + · · · + in is greater than the total degree
of a polynomial, then p̃ = 0. This also will follow from Lemma 2.3 below,
recalling that binomial coefficients with negative upper index are 0.

Example 2.1. Here is a development of the AG polynomial for the case
n = 3. It was found using the corollary. For t = 0 and putting h1 = x−y, h2 =
y−z, h3 = z− t one recovers the development mentioned in the introduction.

x3 + y3 + z3 − 3xyz = 3t(y − z)2 + 3(y − z)2(z − t) + 2(y − z)3+

3t(x− y)(y − z) + 3(x− y)(y − z)(z − t)+

3(x− y)(y − z)2 + 3t(x− y)2 + 3(x− y)2(z − t)+

1(x− y)3 + 3(x− y)2(y − z).
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Lemma 2.3. Using the Hasse derivative, there holds

X l1
1 X

l2
2 · · ·X ln

n

·∂k1
1 ,X1=X2

−−−→ · · · · ·
·∂kn
n ,Xn=T
−−−→

(
l1
k1

)(
l1+l2−k1

k2

)
· · ·
(
l1+l2+···+ln−k1−k2−···−kn−1

kn

)
T l1+l2+···+ln−k1−k2−···−kn.

Proof : The proof is done via induction on the number of variables involved.
If n = 1, we note

·∂k1
1 X

l1
1 =

1

k1!
(l1 · (l1 − 1) · · · (l1 − k1 + 1))X l1−k1

1 =

(
l1
k1

)

X l1−k1
1 .

Hence after the first step in the above chain we get
(
l1
k1

)
X l1+l2−k1

2 X l3
3 · · ·X ln

n .
Thus supposing the lemma proved for n− 1 variables, the proof is complete.

For illustration of these developments let us now prove the general AG
mean inequality. We use the notation χ(P ) = 1 or 0 according to whether or
not a certain property P holds. According to Lemma 2.3 we have with the
above chain (a.c.)

Xn
s = X0

1 · · ·Xn
s · · ·X0

n
a.c.→

(
0
k1

)(
0−k1
k2

)
· · ·
(
n−k1−k2−···−ks−1

ks

)
· · ·
(
n−k1−k2−···−kn−1

kn

)
T n−k1−···−kn.

The product of the leftmost s− 1 factors at the right is
(
0
k1

)(
0−k1
k2

)
· · ·
(
0−k1−k2−···−ks−2

ks−1

)
= χ(k1 = · · · = ks−1 = 0),

since
(
0
0

)
= 1 and binomial coefficients are zero whenever the lower entry

exceeds the upper - see Lemma 3.1. The product of the remaining factors
equals the multinomial coefficient

(
n−k1−···−ks−1

ks,··· ,kn
)
. We also have

X1 · · ·Xs · · ·Xn
a.c.→

(
1
k1

)(
2−k1
k2

)
· · ·
(
s−k1−k2−···−ks−1

ks

)
· · ·
(
n−k1−k2−···−kn−1

kn

)
T n−k1−···−kn.

Thus the AG-inequality, or more precisely the fact that Xn
1 + · · · + Xn

n −
nX1X2 · · ·Xn is pos will follow from the following lemma.

Lemma 2.4. Whenever k1, ..., kn ∈ Z≥0 are such that
∑n

i=1 ki = n, then
n∑

s=1

χ(ki = 0, i = 1, ..., s− 1)

(
n− k1 − · · · − ks−1

ks, . . . , kn

)

≥

≥ n

(
1

k1

)(
2− k1
k2

)

· · ·
(
s− k1 − · · · − ks−1

ks

)

· · ·
(
n− k1 − · · · − kn−1

kn

)

.
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Proof : After multiplication with k1!k2! · · · kn! the right hand side is

n ·
n∏

j=1

(j −
j−1
∑

l=1

kl)
kj .

This is a double product. Define sections of decreasing sequences of kj inte-
gers

Ij = {j−k1−· · ·−kj−1, j−k1−· · ·−kj−1−1, · · · , j+1−k1−· · ·−kj−1−kj}
and let P (Ij) denote the product of the integers in this interval. Then

P (Ij) = (j − k1 − · · · − kj−1)!
/
(j − k1 − · · · − kj−1 − kj)!.

Therefore
n∏

j=1

(j −
j−1
∑

l=1

kl)
kj =

n∏

j=1

P (Ij) =

= 1!
(1−k1)!

· (2−k1)!
(2−k1−k2)!

· (3−k1−k2)!
(3−k1−k2−k3)!

· · · (n−k1−k2−···−kn−1)!
(n−k1−k2−···−kn)!

=

= 1 · (2− k1)(3− k1 − k2) · · · (n− k1 − k2 − · · · − kn−1).

This product is evidently ≤ n! and in fact except in the case that k1 =
k2 = · · · = kn−1 = 0, it is even ≤ (n − 1)!. So in this case the right hand
side of the inequality is not larger than the first term of the sum at the left
alone,

(
n

k1,...,kn

)
, and the inequality therefore proved. If k1 = · · · = kn−1 = 0

then the rhs of the inequality is n, while the left hand side degenerates to
the sum

∑n
s=1 1 = n. Thus the inequality is true again.

While this proof of the AG-inequality is certainly not particularly simple,
it is probably simpler than its direct competitor that would consist of writing
Xi =

∑n
l=i hl, and then showing that Xn

1 + · · ·+Xn
n −nX1X2 · · ·Xn develops

into a sum of monomials in h1, ..., hn whose coefficients are all nonnegative.
The property pos of this polynomial can also be obtained as a consequence
of the proof Muirhead’s theorem, Theorem 1.1.

3. Laffey’s inequalities related to the geometric mean of

(1− x1t), ..., (1− xkt)
We apologize that in this and the next section the number of variables xi is

k; but to change notation in complicated formulae already carefully verified
is dangerous.
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It is clear by a Taylor series developments around 0, that there exists a
series representation

∑

n≥0

un(x1, x2, ..., xk)t
n = (1− x1t)

α1(1− x2t)
α2 · · · (1− xkt)

αk .

According to Professor Laffey it was discovered by computer that in the
case α1 = · · · = αk = 1/k, the coefficients of the power series around 0 are
nonpositive for n ≥ 1 if the xi are nonnegative. In his article [L] a proof
of this is given and in work [LLS], made together with Loewy and Šmigoc,
related results are shown for polynomials f(t) = det(A − tI) with A being
an entrywise positive square matrix A. In these cases there exists an N such
that the coefficients of t, t2, ... of the power series around t = 0 of f(t)1/N are
negative.
We shall show that in general if 0 ≤ αi ≤ 1, and α1 + · · · + αk ≤ 1, then

for n ≥ 1 and x1, · · · , xk ≥ 0, we have un(x1, · · · , xk) ≤ 0.
Using the binomial series (1 − xt)α =

∑

j≥0

(
α
j

)
(−xt)j and Cauchy multi-

plication, one sees un = (−1)nUn, where

Un = Un(x1, · · · , xk) =
∑

j1+···+jk=n

(
α1

j1

)(
α2

j2

)

· · ·
(
αk

jk

)

xj1
1 · · ·xjk

k .

At this point we should recall the general binomial coefficients [GKP, Chapter
5]. One defines for r ∈ R and k ∈ Z:

rk =







r(r − 1) · · · (r − k + 1) if k > 0
1 if k = 0
0 if k < 0

;

and based on this
(
r

k

)

=
rk

k!
.

The case k = 0 is actually a special case of the first case if one formulates the
latter with k ≥ 0 and understands as usual empty products as being 1. In
particular 0! = 1. Note that by virtue of these definitions we may - and will -
let the ji range over Z. The sum for un above is finite, so un is a polynomial.
It is now clear that u0 = 1 and u1 = −(α1x1 + α2x2 + · · · + αkxk). We

assume henceforth n ≥ 2. Recall the notation s+ = max{0, s}.

Lemma 3.1. Let r, s ∈ R, k, l, m, n ∈ Z. Then:
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(a) k

(
r

k

)

= r

(
r − 1

k − 1

)

;

(b) kl
(
r

k

)

= rl
(
r − l

k − l

)

;

(c)
∑

k

(
r

m+ k

)(
s

n− k

)

=

(
r + s

m+ n

)

.

(d) Let k ≥ 1. Then rk = 0 iff r ∈ {0, 1, 2, ..., k− 1}. For any r, r0 = 1.
(e) If k ≥ 1 and r 6∈ {0, 1, 2, ..., k− 1}, then

sign(rk) = sign

(
r

k

)

= (−1)(k−⌈r⌉+)+.

In particular, if r < 0, then sign(rk) = (−1)k.

Proof : (a) is direct, (b) is a consequence of (a). For the extended Van-
dermonde identity (c) see [GKP]. For (d) look at the definition of rk. For
(e) note that sign(rk) = (−1)neg, where neg=number of negative factors in
r(r − 1) · · · (r − k + 1). Since neg = #{l ∈ {0, 1, ..., k − 1} : r − l < 0} =
#{... : ⌈r⌉ ≤ l} = #{⌈r⌉+, ..., k − 1} = (k − ⌈r⌉+)+, the claim follows.

The essential step towards proving Theorem 3.3 is provided by the following
proposition. To keep the formulae in formulation and proof at manageable
size, allow for an n-tuple a = (a1, ..., an) and indices 1 ≤ i ≤ j ≤ n the
notations ai:j = (ai, ..., aj) and Sa = a1+a2+ · · ·+an; so Sai:j = ai+ · · ·+aj .
Also, put ∂i = ∂xi

.

Proposition 3.2. Let d1, . . . , dk be nonnegative integers and let r be a real.

Subjecting the polynomial Un(x1, . . . , xk) to the composition of maps

Un(x1, . . . , xk)
∂
d1
1 ,x1=x2

−−−→ ·
∂
d2
2 ,x2=x3

−−−→ · · · · ·
∂
dk−1

k−1
,xk−1=xk

−−−→ ·
∂
dk
k ,xk=r

−−−→ R,

as shown, results in the real number

R = Rn = Rn(r; d1, ..., dk) =
k∏

i=1

(Sα1:i − Sd1:i−1)
di

(
Sα1:k − Sd1:k
n− Sd1:k

)

rn−Sd1:k.

Proof : We have

Un(x1, . . . , xk) =
∑

Sj1:k=n

(
α1

j1

)(
α2

j2

)(
α3

j3

)

· · ·
(
αk

jk

)

xj1
1 · · ·xjk

k .
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Observe that ∑

Sj1:k=n

... =
∑

m

∑

j1+j2=m

∑

Sj3:k=n−m

...

Now applying ∂d1
1 , and then putting x1 = x2, the monomial xj1

1 x
j2
2 , trans-

forms into j
d1
1 xj1+j2−d1

2 . So, since by Lemma 3.1b, j
d1
1

(
α1

j1

)
= (α1)

d1
(
α1−d1
j1−d1

)
, the

polynomial transforms through these operations into

(α1)
d1
∑

m

∑

j1+j2=m

(
α1 − d1
j1 − d1

)(
α2

j2

)
∑

Sj3:k=n−m

(
α3

j3

)

· · ·
(
αk

jk

)

xm−d1
2 xj3

3 · · ·xjk
k ,

which by using Vandermonde’s identity of Lemma 2.1c in the middle sum-
mation yields

(∂d1
1 Un)(x2, x2:k) = (α1)

d1
∑

m

∑

Sj3:k=n−m

(
α1+α2−d1

m−d1

)(
α3

j3

)
· · ·
(
αk

jk

)
xm−d1
2 xj3

3 · · · xjk
k .

Assume we have carried out the operations ‘apply ∂di
i , then put xi = xi+1’,

for i = 1, 2, ..., t, in succession, beginning with Un, and arrived at a polynomial
t∏

i=1

(Sα1:i − Sd1:i−1)
di

︸ ︷︷ ︸

=:P

∑

m

∑

Sjt+2:k = n−m

(
Sα1:t+1−Sd1:t

m−Sd1:t

)(
αt+2

jt+2

)
· · ·
(
αk

jk

)
xm−Sd1:t
t+1 x

jt+2

t+2 · · ·xjk
k ,

of which evidently the expression before is the case t = 1. We show that
provided 1 ≤ t ≤ k − 3, the same holds for t+ 1 in place of t. Note that

∑

m

∑

Sjt+2:k = n−m

... =
∑

m′

∑

m+jt+2=m′

∑

Sjt+3:k=n−m′

...

Applying the operator ∂
dt+1

t+1 , and putting xt+1 = xt+2, we transform the mono-

mial xm−Sd1:t
t+1 x

jt+2

t+2 into (m − Sd1:t)
dt+1x

m−Sd1:t+1+jt+2

t+2 . Now again by Lemma
3.1b, and using Sd1:t + dt+1 = Sd1:t+1,

(m− Sd1:t)
dt+1

(
Sα1:t+1 − Sd1:t

m− Sd1:t

)

= (Sα1:t+1 − Sd1:t)
dt+1

(
Sα1:t+1 − Sd1:t+1

m− Sd1:t+1

)

.

Thus after the referred two operations, there results the polynomial

P · (Sα1:t+1 − Sd1:t)
dt+1

∑

m′

∑

m+jt+2=m′

(
Sα1:t+1 − Sd1:t+1

m− Sd1:t+1

)(
αt+2

jt+2

)

×

∑

Sjt+3:k=n−m′

(
αt+3

jt+3

)

· · ·
(
αk

jk

)

x
m′−Sd1:t+1

t+2 x
jt+3

t+3 · · ·xjk
k .
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By Vandermonde’s identity, the middle sum is
(
Sα1:t+2−Sd1:t+1

m′−Sd1:t+1

)
, and hence the

whole expression is

P ·(Sα1:t+1 − Sd1:t)
dt+1×

∑

m′

∑

Sjt+3:k=n−m′

(
Sα1:t+2 − Sd1:t+1

m′ − Sd1:t+1

)(
αt+3

jt+3

)

· · ·
(
αk

jk

)

x
m′−Sd1:t+1

t+2 x
jt+3

t+3 · · ·xjk
k ,

as was to show.
According to this result after performing the operations ‘apply ∂di

i , then
put xi = xi+1’ for i = 1, 2, ..., k− 2, we get

k−2∏

i=1

(Sα1:i − Sd1:i−1)
di

︸ ︷︷ ︸

=:P ′

∑

m

∑

Sjk=n−m

(
Sα1:k−1 − Sd1:k−2

m− Sd1:k−2

)(
αk

jk

)

x
m−Sd1:k−2

k−1 · xjk
k

= P ′
∑

m

(
Sα1:k−1 − Sd1:k−2

m− Sd1:k−2

)(
αk

n−m

)

x
m−Sd1:k−2

k−1 xn−m
k .

Now we apply ∂
dk−1

k−1 and put xk−1 = xk. This transforms the monomial into

(m−Sd1:k−2)
dk−1x

n−Sd1:k−1

k and so, for reasons we know already, the expression
above into

P ′ · (Sα1:k−1 − Sd1:k−2)
dk−1

∑

m

(
Sα1:k−1 − Sd1:k−1

m− Sd1:k−1

)(
αk

n−m

)

x
n−Sd1:k−1

k

=
k−1∏

i=1

(Sα1:i − Sd1:i−1)
di

(
Sα1:k − Sd1:k−1

n− Sd1:k−1

)

x
n−Sd1:k−1

k .

Now apply ∂dk
k to this, use

(n− Sd1:k−1)
dk

(
Sα1:k − Sd1:k−1

n− Sd1:k−1

)

= (Sα1:k − Sd1:k−1)
dk

(
Sα1:k − Sd1:k
n− Sd1:k

)

,

and put xk = r. You then see the proposition proved.

Now we get the desired result.

Theorem 3.3. Assume α1, α2, ..., αk are nonnegative reals of sum≤ 1. Then
the coefficients un(x1, x2, ..., xk), n ≥ 1 in the power series development

∑

n≥0

un(x1, x2, ..., xk)t
n = (1− x1t)

α1(1− x2t)
α2 · · · (1− xkt)

αk
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are homogeneous polynomials of degree n that are nonpositive on the nonneg-

ative orthant Rk
≥0 : For x1, x2, ..., xk ≥ 0, and n ≥ 1, un(x) ≤ 0; in fact these

un are −pos.

Proof : It is convenient to dispose off some easy cases first.

Case: k = 1. Then let x = x1. We are speaking of the series (1 − xt)α =
∑

j≥0

(
α
j

)
(−xt)j. So then un(x) = (−1)n

(
α
n

)
xn. If α = 0, then for all n ≥ 1,

un = 0. If α > 0, then by Lemma 3.1, sign
(
α
n

)
= (−1)(n−⌈α⌉+)+ = (−1)(n−1)+.

Thus if n ≥ 1, sign((−1)n
(
α
n

)
) = (−1)2n−1 = −1. Hence un is -pos , since xn

evidently is pos .

Case: Some αs are 0. Then the product at the right consists of less than k
factors (1− xit)

αi 6= 1, and the claim can be assumed true inducting on k.

Case: Some α is 1. Then all other αs are 0 and the right hand side reduces
to (1 − xit) for some i. So for n ≥ 1, un(x1, ..., xk) = −δnixi, showing the
claim.
So we assume in what follows that k ≥ 2 and 0 < αi < 1 holds for

i = 1, ..., k.
Putting r = 0 in the Proposition 3.2, we have R(r) = Rn(r; d1, .., dk) = 0

except possibly in cases where n = d1 + d2 + · · · + dk = Sd1:k which we
assume from now on. Then the last two factors in R(0) are

(
Sα1:k−n

0

)
= 1 and

xn−Sd1:k
k = x0

k = 1, and we have to compute

sign(R(0)) =
k∏

i=1

sign((Sα1:i − Sd1:i−1)
di).

Note that we have for i = 1, ..., k− 1, 0 < Sα1:i < 1, and 0 < Sα1:k ≤ 1. Now
define s (possibly 1) by d1 = · · · = ds−1 = 0 < 1 ≤ ds. Then Sd1:i−1 = 0 for
i = 1, ..., s, and so

sign(R(0)) =

s−1∏

i=1

sign((Sα1:i)
0) · sign((Sα1:s)

ds) ·

·
k−1∏

i=s+1

sign((Sα1:i − Sd1:i−1)
di) · sign((Sα1:k − Sd1:k−1)

dk).

This product has four factors separated by the multiplication point ‘·’. By
Lemma 3.1, parts d and e, the first factor is 1, the second is (−1)ds−1; fur-
thermore, since for i ∈ {s + 1, ..., k − 1}, Sα1:i − Sd1:i−1 < 0, the third
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factor is
∏k−1

i=s+1(−1)di. Concerning the fourth factor, we usually will have

Sα1:k − Sd1:k−1 < 0, and then that factor is (−1)dk so that signR(0) =
(−1)ds−1 · (−1)Sds+1:k−1 · (−1)dk = (−1)Sd−1 = (−1)n−1. The other possible
case for the last factor is Sα1:k−Sd1:k−1 = 0. But then Sd1:k−1 = 1, dk = n−1,
and R(0) = 0 follows directly from Proposition 3.2.
Now Dk({Un}) is evidently the set of all possible endpoints Rn(0) =

R(0; d1, ..., dk) of compositions like in the Proposition 3.2, as d1, ..., dk vary
over the elements in Zk

≥0. As we saw, each such endpoint is 0 or has sign
(−1)n−1. By the linearity of the operations in Proposition 3.2, if we ap-
plied them to un, the result would be that the endpoints are 0 or of sign
(−1)n(−1)n−1 = −1. Thus whenever x1 ≥ x2 ≥ · · · ≥ xk ≥ 0 we get
un(x) ≥ 0. Since the hypothesis of the theorem is invariant under permu-
tations of the indices i in the xi and the αi, un(x) ≤ 0 must hold for any
x ∈ Rk

≥0 and by Corollary 2.2 the un are for n ≥ 1 -pos on every Cπ

Remark 3.4. The fact that the polynomials un(x) are −pos is (for the case
all αi = 1/k) equivalent to Laffey’s Remark 2.1 in [L]. Note, however, that
in the general case these polynomials are not symmetric. Therefore, who
wants −pos-representations of a given un has to deal usually with various
permutations π.

4. Holland’s inequalities related to the harmonic mean

of (1− x1t), ..., (1− xkt)

F. Holland proved another interesting theorem in the line of Theorem 3.3.
In [Hol] he recalls that when approached by Laffey to prove Theorem 3.3,
he decided to follow Pólya’s advice to first solve a somewhat similar, but
possibly simpler problem. He noted one can formulate Theorem 3.3 for the
original case αi = 1/n case as saying that the geometric mean of expressions
1− x1t, 1− x2t, ..., 1− xkt is a power series all whose coefficients pertaining
to powers tn, n ≥ 1 are nonpositive and asked whether a similar claim holds
for the harmonic mean of them.
As in Section 3, let us generalize the question to the weighted version. So

with nonnegative reals p1, ..., pk of sum equal to 1, we consider the weighted
l-th power sum of x1, x2, ..., xk. This is sl = sl(p, x) =

∑k
i=1 pix

l
i.

By definition, the referred harmonic mean is

(p1(1−x1t)
−1+p2(1−x2t)

−1+· · ·+pk(1−xkt)
−1)−1 =

(
∑k

i=1 pi
∑

l≥0(xit)
l
)−1
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=
(

1 +
∑k

i=1 pi
∑

l≥1 x
l
it
l
)−1

=
(

1 +
∑

l≥1(
∑k

i=1 pix
l
i)t

l
)−1

=
(
1 +

∑

l≥1 sl(p, x)t
l
)−1

=
(
1−

∑

l≥1 sl(p, x)t
l + (

∑

l≥1 sl(p, x)t
l)2 − (

∑

l≥1 sl(p, x)t
l)3 + · · ·

)
.

From this follows that the coefficient of tl is,

ql(p, x) = −sl(p, x) +
∑

l1+l2=l

sl1(p, x)sl2(p, x)

−
∑

l1+l2+l3=l

sl1(p, x)sl2(p, x)sl3(p, x) + · · ·+ (−1)ls1(p, x)
l,

where it is assumed that the li ∈ Z≥1. It is clear that ql is a homogeneous,
polynomial of degree l in x1, ..., xk.
Holland considered the case p = 1

k1k and proved that for any x ∈ Rk
≥0,

q( 1k1k, x) ≤ 0. He showed that the sequence of power sums s1, s2, ... is log-
convex and noticed with Kaluza [Kal] that the si and ql are related by means
of a convolution. From this by an induction he gets that the ql are ≤ 0.
As follows from this description, Holland’s respective Proposition 2.2 has a
non-algebraic proof and perhaps is not easily generalizable to an arbitrary
probability vector p; in fact upon entering Section 4, the author specializes

his considerations to the case p = 1
k1k.

While we cannot presently give a general proof of this result, we give in
this section hints that polynomials ql(

1
k1k, x) are not only nonnegative, but

in fact the polynomials ql(p, x) are −pos.
We prove this for degree 3 and any number k of variables in detail and

then relate similar results for degree 4. So we wish now to consider

q3(p, x) = −s3(p, x) + 2s1(p, x)s2(p, x)− s1(p, x)
3,

and to show that any chain of differential operators of the form mentioned
before Corollary 2.2 with i1 + i2 + i3 = 3, leads to a nonpositive real. To
see this, a notation better adapted to many variables and low degree seems
to be convenient. In such a situation, in many successive of the elementary

operations ‘∂
iν
ν ,xν=xν+1→ ’ introduced in Section 2 we might actually find that

iν = 0, that is, the partial differentiation is not active. This means that a
number of successive variables are mapped to the same variable. So we will

write simply ‘ to i→’ for saying that we map the current variables of index ≤ i
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to xi. For example,

s3(p, x) to i→ p1x
3
i + · · ·+ pix

3
i + pi+1x

3
i+1 + · · ·+ pkx

3
k

= Sp1:ix
3
i +

k∑

l=i+1

plx
3
l = Sp1:ix

3
i + s3(1 + i : k),

where for reasons of space, as in Section 3, we write Sp1:i for p1 + · · · + pi
and use additionally the notation s3(i : k) for

∑k
l=i pixi.

Assume now 1 ≤ i ≤ j ≤ m ≤ k(=number of variables). We examine

the effect of applying the operator · to i,∂i,to j,∂j ,to m,∂m→ · to polynomials
s3(p, x), s1(p, x)s2(p, x), and s1(p, x)

3, respectively. We get

s3(p, x) to i→ Sp1:ix
3
i + s3(p, xi+1:k) ∂i→ 3Sp1:ix

2
i
to j→ 3Sp1:ix

2
j

∂j→ 6Sp1:ixj

to m→ 6Sp1:ixm
∂m→ 6Sp1:i.

s1(p, x)s2(p, x) to i→ (Sp1:ixi + s1(i+ 1 : k))(Sp1:ix
2
i + s2(i+ 1 : k))

∂i→ Sp1:i(Sp1:ix
2
i + s2(i+ 1 : k)) + (Sp1:ixi + s1(i+ 1 : k))2Sp1:ixi

to j→ Sp1:i(Sp1:jx
2
j + s2(j + 1 : k)) + (Sp1:jxj + s1(j + 1 : k))2Sp1:ixj

∂j→ 2Sp1:iSp1:jxj + Sp1:j · 2Sp1:ixj + (Sp1:jxj + s1(1 + j : k))2Sp1:i

to m→ 2Sp1:iSp1:jxm + Sp1:j · 2Sp1:ixm + (Sp1:mxm + s1(1 +m : k))2Sp1:i
∂m→ 4Sp1:iSp1:j + 2Sp1:iSp1:m

s1(p, x)
3 to i→ (Sp1:ixi + s1(i+ 1 : k))3 ∂i→ 3(Sp1:ixi + s1(i+ 1 : k))2Sp1:i

to j→ 3(Sp1:jxj + s1(j + 1 : k))2Sp1:i
∂j→ 6(Sp1:jxj + s1(j + 1 : k))1Sp1:iSp1:j

to m→ 6(Sp1:mxm + s1(m+ 1 : k))1Sp1:iSp1:j
∂m→ 6Sp1:iSp1:jSp1:m.

Now recall that p is a probability vector and that 1 ≤ i ≤ j ≤ m ≤ k. So
we get with a = Sp1:i, b = Sp1:j, c = Sp1:m, that 0 ≤ a ≤ b ≤ c ≤ 1. From
this and the formula for q3(p, x) above it follows that

q3(p, x)
to i,∂i,to j,∂j ,to m,∂m→ −6a+8ab+4ac− 6abc = 2a(−3+ 4b+2c− 3bc).

Assume−3+4b+2c−3bc = −3+2c+b(4−3c) is positive for some admissible
a, b, c. Then necessarily 4 − 3c > 0. Hence by choosing b = c we again get a
positive expression. It is −3+6c−3c2 = −3(1−c)2 ≤ 0, a contradiction. This
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proves that in a development of q in the sense of Corollary 2.2, the coefficient
of any monomial product (xi−xi+1)(xj−xj+1)(xm−xm+1) is nonpositive; in
other words, q3 is −pos. This proves Holland’s inequality for degree 3 and any
number of variables. The reader can also derive the symmetric case of the
inequality we just proved via the theorem of Choi, Lam, Reznick mentioned
in Section 1.
One can similarly investigate

q4(p, x) = −s4 + (2s1s3 + s22)− 3s21s2 + s41.

Upon applying the operator

to i,∂i,to j, ∂j , to m, ∂m, to l, ∂l→
and introducing a, b, c as above, and d = Sp1:l, one will find that s4 →
24a, s3s1 → 12ab + 6ac + 6ad, s2s

2
1 → 12abc + 8abd + 4acd, s22 → 16ab +

8ac, s41 → 24abcd, from where it follows that

q4 → −24a+ (40ab+ 20ac+ 12ad)− (36abc+ 24abd+ 12acd) + 24abcd.

Again one can prove for the admissible 0 ≤ a ≤ b ≤ c ≤ d ≤ 1 that the
expression on the right cannot be positive; hence q4 is −pos.
As of the closing date we had to impose on ourselves for this pre-print,

we had made quite a number of manual computations of the above type –
we do not know a good way to automatize them – and on base of these, we
think to be now in the possession of a method that permits us to compute
the reduction of sn(p, x)sk(p, x) with relatively much less effort than the first
few initial ones. In particular – dependent still on verification – we know
some explicit formulae. For example, sns3 reduces to

3n!(2n(n+1)a1a2+n(n+1)a1a3+(n2−3n+4)a1a4+
n+1∑

l=5

(n−l+3)(n−l+2)a1al),

where ai = Sp1:i, for l = 1, ..., n, if n ≥ 4, and for smaller n if suitably
truncated. The number of variables in a general weighted version can be
choosen larger than the degree since the weights of unwanted variables can
be choosen to be 0. However, we have not yet attacked the general reduction
of products with three or more factors si; nor of course do we yet know to
what expression the ql(p, x) in general reduce. With some luck these things
will be the object of somebody’s future publication.
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5. Final Remarks

This paper is a contribution to the general problem to write a polynomial
nonnegative on a certain region of Rn in a way that turns its nonnegativ-
ity manifest. The most well-known contributions of this type are of course
those that deal with sum-of-squares representations of everywhere nonnega-
tive rational functions. More closely related to the results here proved, are
the author’s unpublished thesis and a publication of Handelman [H].
In the thesis a quite different, combinatorial, way to deal with questions of

above sort is given. It works by noting that, given a real m× n matrix A =
(aij) = [a∗,1, a∗,2, ..., a∗,n], where a∗,j is the j-th column of A and a function
like τ(A) =

∑n
j=1

∏m
i=1 aij, then one can use iteratively the inequality

τ(A) ≤ τ([a∗,1, ..., a∗,j ∧ a∗,j+1, a∗,j ∨ a∗,j+1, ..., a∗,n])

to achieve a stepwise transformation of a left hand side of an inequality to
the right (larger side) of the same inequality. Here a ∧ a′ and a ∨ a′ means
to form the entrywise minimum and maximum of columns a, a′ respectively.
Section 2 of [K] provides a glimpse of the method.
The main result in [H] is this:

Theorem (Handelman [H]) Let p ∈ R[x1, ..., xn] and let g1, g2, ..., gm(x) be

linear polynomials which define a (bounded) polytope K = {x ∈ Rn : g1(x) ≥
0, · · · , gm(x) ≥ 0}. If p > 0 on K then p can be written in the form

p =
∑

β∈Nm

cβ

m∏

j=1

g
βj

j .

In our case the polynomials gi would be gi(x) = xi− xi+1; but these define
only a non-compact polyhedron. Also note that in Handelman’s theorem,
p > 0 is required. Our example for Motzkin’s polynomial shows that one
cannot hope for a Handelman-like-theorem if one relaxes the conditions above
to ‘p ≥ 0 and K polyhedron’: representations via the hi = xi − xi+1 are of
course unique. Handelman’s paper of course has further examples showing
inadmissibility of certain relaxations on K and positivity necessary for his
theorem to hold.
Investigations into the signs of the coefficients of another type of power

series have apparent origin in a question of Friedrich’s and Lewy on the wave
equation and a result of Szegö according to which there holds positivity of
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the numerical coefficients aklm of the power series

((1− x)(1− y) + (1− x)(1− z) + (1− y)(1− z))−1 =
∑

k,l,m≥0

ak,l,mx
kylzm.

A very impressive paper that deals with power series of this type is the
paper of Scott and Sokal [SS] who show that expressions of the above type
can be viewed as inverses of TG(1 − x1, ..., 1 − xn) where TG is a spanning
tree polynomial of a graph G on n vertices. With their methods Scott and
Sokal solve questions that have been open for decades. It might pay to see
whether there is a connection between these lines of investigation and our
type of power series, but to the present author they are not apparent.
When we began working on Laffey’s problem, we looked into what is known

about taking roots of power series and discovered the paper by Gould [G].
This paper formulates and proves the following

Theorem. A power series f(t) =
∑

j≥0 ajt
j with a0 6= 0 is related to its p-th

power f p =
∑

j≥0 bjt
j by the recursion

n∑

k=0

(k(p+ 1)− n)akbn−k = 0.

If we start with the fact that, e.g. f(t) = ((1−x1t)(1−x2t)(1−x3t))
1/3 is a

power series in t, whose third power is evidently 1−e1(x)t+e2(x)t
2−e3(x)t

3,
where x = x1:3 and ei(x) is the i-th elementary symmetric polynomial in
x, then this theorem implies that the coefficient polynomials un(x) can be
computed by the recursion

unegative = 0, u0 = 1, un = (1− 4

3n
)e1un−1 + (

8

3n
− 1)e2un−2 + (1− 4

n
)e3.

We originally hoped to use this recursion to prove that for all n ≥ 1, x ≥ 0,
un(x) ≤ 0, but now we see instead that results as in Section 2 prove at the
same time results about positivity or negativity of certain recursively defined
sequences.

Acknowledgement: Professors Thomas Laffey and Alan Sokal have shown
interest in a 2012 version of this work and thereby rekindled my own one.
This led to the present extension.
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