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Abstract: We state the formula for the critical number of vertices of a convex
lattice polygon that guarantees that the polygon contains at least one point of a
given sublattice and give a partial proof of the formula. We show that the proof
can be reduced to finding upper bounds on the number of vertices in certain classes
of polygons. To obtain these bounds, we establish inequalities relating the number
of edges of a broken line and the coordinates of its endpoints within a suitable class
of broken lines.
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1. Introduction
The study of lattice point in convex sets is a classical subject. The starting

point was Minkowski’s Convex Body Theorem, which became the foundation
of the geometry of numbers. The theorem states that if a compact set in Rd is
symmetric with respect to origin and has volume at least 2d, then it contains
a point of the integer lattice Zd. The constant 2d cannot be improved. This
theorem has quite a few modificatioins and generalisations, see e. g. the nice
short survey [22].

There are numerous results concerning lattice points in various regions,
see e. g. [6, 9, 10, 12]. The regions at issue can be either general convex
and nonconvex or polyhedral sets. Among more recent works we note the
following that are close to ours. The papers [2,5,16,17] deal with the largest
possible number of facets of maximal lattice-free polytopes. The papers
[3,14,15,19] study properties of lattice polytopes having a specified (positive)
number of interior lattice points such as upper bounds for the volume and
the number of sublattice points and a classification of such polytopes. The
papers [20, 21] deal with similar issues for polygons.
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Besides, there are other interesting results about lattice polygons, such
as [1, 22,23], not to mention the well-known Pick’s theorem.

In this paper we consider the natural problem of relating the existence of
sublattice points in a convex lattice polygon to the number of vertices (or
edges) of the polygon.

In higher dimensions, a large number of faces cannot guarantee that the
polytope contains a point of a given sublattice. For instance, there is no
upper bound for the number of vertices and facets of polytopes in R3 free of
points of (2Z)3.

Surprisingly, things are different in two dimensions. It was noticed in [7]
that any convex integer pentagon on the plain contains a point of the lattice
(2Z)2. In this paper we show that any convex integer polygon with many
enough vertices contains at least one point of a given sublattice (of maximal
rank) of Z2.

In the spirit of the Minkowski Convex Body Theorem, our main goal is
to explicitly find the critical number of vertices that ensures that the poly-
gon contains a point of a given sublattice. The Main Theorem stated in
Section 2.1 provides this formula.

To put it the other way around, the Main Theorem gives an optimal upper
bound on the number of vertices of a convex lattice polygon free of points of
a given sublattice. Clearly, convexity is essential for this bound to exist, but
we do not impose other requirements on the lattice polygons.

The proof of the Main Theorem can be naturally reduced to estimating the
number of vertices of integer polygons free of points of the lattice nZ2. This
can be broken up into two major steps.

First, we would like to obtain a feasible description of integer polygons
free of points of nZ2. A crucial property of such polygons is each of them
lies in a nZ2-slab of nZ2-width 3 (Proposition 2.8). Using this as basis, we
classify such polygons up to affine transformations preserving the lattice nZ2

into six types differing by imposed geometric constraints (Definition 2.11 and
Theorem 2.12).

The second step is to estimate the number of vertices for each type. This
requires a subtle geometric analysis and can be quite technical in terms of
estimates. In this paper we develop necessary tools in Section 3 and apply
them to one particular class of polygons, where the estimates can be derived
immediately. More technical cases are the subject of [8].
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The general idea is to break up the boundary of a polygon into several
broken lines and to translate geometrical constraints imposed on the poly-
gon into Diaphantine inequalities. Resulting inequalities relate the numbers
of edges of the broken lines and the coordinates of their endpoints, which
are also the overall dimensions of the polygon. The most valuable tools
are Theorem 3.7, Corollary 3.8, and Theorem 3.9. They are an important
contribution of this paper.

The rest of the paper is organised as follows.
Section 2 is devoted to the overview of the results, the Main Theorem

being stated in Section 2.1 and Section 2.3 containing a detailed synopsis of
the proof. For convenience, the statement of the Main Theorem is split into
Sub-Theorems A, B, and C.

In Section 3 we study a class of broken lines we call slopes. The first
two subsections contain definitions and statements estimating the number
of edges of a slope. Then we show how these estimates can be applied to
polygons and conclude the section by obtaining estimates for a particular
class of polygons.

We tried to keep to a minimum the number of proofs in Sections 2 and 3.
Rather, we collected technical proofs in subsequent sections.

In Section 4 we give fairly simple proofs of Sub-Theorems A and B that
make use of the so-called parity argument and Pick’s formula. An easy
particular case of Sub-Theorem C is also proved there.

In Section 5 we study certain properties of the lattice diameter of polygons
that allow us to prove Proposition 2.8 and Theorem 2.12.

Section 6 provides the proofs of theorems of Section 3.

2. Main theorem
2.1. Main theorem. Suppose the system of vectors a1, a2 ∈ R2 is linearly
independent; then the set

{u1a1 + u2a2 : u1, u2 ∈ Z}

is called a lattice spanned by a1, a2, and a1, a2 are called the basis of the
lattice.

Example 2.1. The vectors e1 = (1, 0), e2 = (0, 1) span the integer lattice
denoted by Z2. It is the set of points with both integral coordinates. Those
are called integer points.
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A lattice Γ is called a sublattice of a lattice Λ if Γ ⊂ Λ. If moreover
Γ 6= Λ, Γ is called a proper sublattice of Λ. In what follows we only consider
sublattices of the integer lattice.

A lattice Λ ⊂ Z2 is spanned by the columns of a matrix A = (aij) ∈ GL2(Z)
if and only if Λ = AZ2 = {Au : u ∈ Z2}. Given Λ, the matrix A is not
uniquely defined. However, the numbers

δ = gcd(aij), n = | detA|/δ
are independent of A. They are called invariant factors of Λ, and the pair
(δ, n) is the invariant factor sequence of Λ (see e. g. [18]).

Example 2.2. The lattice nZ2 = (nZ) × (nZ) = {(nu1, nu2) : u1, u2 ∈ Z},
where n is a positive integer, has invariant factor sequence (n, n).

Example 2.3. The lattice δZ × nZ2 = {(δu1, nu2) : u1, u2 ∈ Z2}, where δ
and n are positive integers and δ divides n, has invariant factor sequence
(δ, n).

The convex polygon is a two-dimensional polytope, i. e. the convex hull of
a finite set of points that has nonempty interior. In what follows we only
consider convex polygons, so we often drop the word ‘convex’. We assume
that the reader is familiar with basic terminology such as vertex and edge,
see [13,24] for details. A polygon with N vertices, N ≥ 3, is called an N -gon.
The vertices of an integer polygon belong to Z2. More generally, if all the
vertices of a polygon belong to a lattice Γ, it is called a Γ-polygon. Integer
polygons are also called lattice polygons, but to avoid misunderstanding, we
prefer the first term, since we consider Γ-polygons with different lattices Γ.

Given a sublattice Λ of Z2 with invariant factor sequence (δ, n), define

ν(Λ) = ν(δ, n) = 2n+ 2 min{δ, 3} − 3.

Main Theorem. Let Λ be a proper sublattice of Z2. Then any convex integer
polygon with ν(Λ) vertices contains a point of Λ.

It is easily seen that the constant ν(Λ) in the Main Theorem is sharp, i. e.
if ν(Λ) > 3 for given Λ, then there exist (ν(Λ)−1)-gons containing no points
of Λ. This is very clear in case Λ = δZ×nZ (see Figure 1). The general case
follows from the fact that any lattice with invariant factor sequence (δ, n) is
the image of δZ × nZ under a linear transformation preserving the integer
lattice, see Section 2.2.

For a synopsis of the proof, see Section 2.3.
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δ ≥ 3: 2n+ 2 vertices

δ = 2: 2n vertices

δ = 1: 2n− 2 vertices

Figure 1. If δ ≥ 3, it is easy to construct a polygon lying in
the slab 0 ≤ x2 ≤ n and having two vertices on each of the lines
x2 = j, where j = 0, . . . , n, such that the vertices belonging to the
lines x2 = 0 and x2 = n lie between adjacent points of Λ. Clearly,
such a polygon is free from points of Λ and has 2n+2 = ν(δ, n)−1
vertices. If δ = 1, the construction is similar, only the polygon
should have one vertex on each of the lines x2 = 0 and x2 = n not
belonging to Λ. If δ = 0, it suffices to take any integer polygon
lying in the slab 1 ≤ x2 ≤ n − 1 having two vertices on each of
the lines x2 = j, where j = 1, . . . , n− 1.

2.2. Preliminaries. In this section we list a few familiar properties of lat-
tices. The proofs can be found in [6, 9, 11,12].

We always denote the vectors of the standard basis of R2 by e1 = (1, 0)
and e2 = (0, 1) and the standard coordinates in R2 by x1, x2.

Note that any lattice is a subgroup of the additive group of the linear space
R2 and a free abelian group of rank 2.
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A matrix A ∈M2(Z) is called unimodular, if detA = ±1.

Proposition 2.4. Let (f1, f2) be a basis of a lattice Λ; then the vectors ai1fj +
ai2f2, where i = 1, 2, form a basis of Λ if and only if the matrix (aij) is
unimodular.

For brevity, we write that Λ is a (δ, n)-lattice if it is a sublattice of Z2 with
invariant factor sequence (δ, n). The number δn is called the determinant
of Γ and denoted det Γ.

We use the term ‘Λ-point’ as a synonym of ‘point of Λ’.
A linear transformation of the plane is called a (linear) automorphism of

a lattice if it maps the lattice onto itself. It is easily seen that a linear
transformation is an automorphism of a lattice if and only if it maps some
(hence, any) basis of the lattice onto another basis. Consequently, given
a matrix A ∈ M2(R), the transformation x 7→ Ax is an automorphism of
Z2 if and only if the matrix A is unimodular. We call such transformation
unimodular. For any positive integer n, the automorphisms of nZ2 are exactly
unimodular transformations.

Clearly, linear automorphisms of a lattice form a group.
Let Λ be a lattice. A vector f ∈ Λ is called Λ-primitive, if any representa-

tion f = ug with g ∈ Λ and u ∈ Z implies u = ±1.

Proposition 2.5. Suppose that Λ is a lattice and f and g are Λ-primitive
vectors; then there exists an automorphism A of Λ such that Af = g.

If Λ is a sublattice of Z2 and A is a unimodular transformation, the image
AΛ is a lattice with the same invariant factors as Λ.

The following proposition is a fundamental result about unimodular trans-
formations. It is a geometric version of the Smith normal form of integral
matrices [18].

Proposition 2.6. For any sublattice of Z2 with invariant factors (δ, n) there
exists a unimodular transformation mapping it onto the lattice δZ× nZ.

An affine frame of a lattice Λ is a pair (o; f1, f2) consisting of a point o ∈ Λ
and a basis (f1, f2) of Λ. An integer frame is an affine frame of Z2.

An affine automorphism of a lattice Λ is an affine transformation of R2

mapping Λ onto itself. It is not hard to see that given A ∈M2(R) and b ∈ R2,
the mapping x 7→ Ax+b is an affine automorphism of Λ if and only if x 7→ Ax
is an automorphism of Λ and b ∈ Λ. In particular, affine automorphisms
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of nZ2, where n is a positive integer, are exactly the transformations of the
form x 7→ Ax + b, where A is unimodular and b ∈ nZ2.

Of course, if P is a convex integer N -gon and ϕ is an affine automorphism
of Z2, the image ϕ(P ) is still a convex integer N -gon. Obviously, is P is free
from points of a lattice Λ, then so is its image under any affine automorphism
of Λ.

We conclude with a nonstandard definition.
Let Λ be a sublattice of Z2 and (f1, f2) be a basis of Z2. Clearly, {u ∈

Z : uf1 ∈ Λ} is a subgroup of Z. It is generated by a positive integer, which
we call the large f1-step of Λ with respect to (f1, f2). Further, {u1 ∈ Z : ∃ u2 ∈
z, u1f1 + u2f2 ∈ Λ} is a subgroup of Z, too. We call its positive generator
the small f1-step of Λ. Alternatively, the small f1-step can be defined as the
largest s such that all the points of Λ lie on the lines {ksf1 + tf2}, k ∈ Z.
Obviously, the small step is smaller then the large step. We can define the
large and small f2-steps of Λ with respect to (f1, f2) in the same way.

In what follows we nearly always consider small and large steps of lattices
with respect to bases made up of the vectors ±e1, ±e2, and we usually omit
the reference to the basis when there is no ambiguity.

Proposition 2.7. Let Λ be a sublattice of Z2 and (f1, f2) be a basis of Z2.
Then the product of the small f1-step and the large f2-step of Λ equals det Λ.

The proof is left to the reader.
In what follows we use standard notations b·c for the floor function, d·e for

the ceiling function, + for the positive part, and | · | for the cardinality of a
finite set. By [a,b] we denote the segment with the endpoints a and b.

2.3. Synopsis of the proof. It turns out that the Main Theorem can be
fairly easily proved for (1, 2)- and (2, 2)-lattices.

In the case of the lattice Λ = Z× 2Z, the Main Theorem becomes

Sub-Theorem A. Any convex integer polygon contains a point with an even
ordinate.

Sub-Theorem A implies the Main Theorem for arbitrary (1, 2)-lattices Λ,
because if Λ is such a lattice and P is an integer polygon, we can find a
unimodular transformation A such that AΛ = Z × 2Z (Proposition 2.6);
Sub-Theorem A asserts that AP contains a AΛ-point, so P contains a point
of Λ.

In the case of the lattice 2Z2, the Main Theorem becomes
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Sub-Theorem B. Any convex integer pentagon contains a point of the lat-
tice 2Z2.

This statement was announced in [7].
We prove Sub-Theorems A and B in Section 4.
In proving the Main Theorem we adopt the strategy of estimating the

number of vertices (equivalently, of edges) of polygons not containing points
of given lattices. We will presently see that we can concentrate on integer
polygons free of nZ2-points. As we can always substitute such a polygon by
its image under an affine automorphism of nZ2, our first goal is to find out
how drastically we can reduce the set of polygons to consider applying such
automorphisms. We use the following proposition as our basis.

Proposition 2.8. Given a convex integer polygon P free of nZ2-points, where
n ∈ Z, n ≥ 2, there exists an automorphism ψ of nZ2 such that ψ(P ) lies in
the slab

−n+ 1 ≤ x1 ≤ 2n− 1.

The proposition is proved in Section 5.

Remark 2.9. The proof of Proposition 2.8 ensures that ψ can be chosen in
such a way that ψ(P ) contains a segment with `(P ) + 1 integer points lying
on a line of the form x1 = c with 0 ≤ c ≤ n, where `(P ) is the lattice
diameter of P (see Section 5). Moreover, ψ can be chosen in such a way that
if ψ(P ) has common points with the lines x1 = 0 and x1 = n, they lie on the
segments [0, (0, n)] and [(n, 0), (n, n)], respectively.

Remark 2.10. If Λ is a (δ, n)-lattice, it is not hard to prove that nZ2 ⊂ Λ.
Proposition 2.8 immediately implies that the number of vertices of a polygon
free of Λ-points cannot be greater than 2(3n− 2). Of course, in view of the
Main Theorem this fairly simple estimate is not optimal.

Proposition 2.8 allows for a classification of polygons free of points of Z2

into feasible classes.
We say that a line or a segment splits a polygon, if it divides the polygon

into two parts with nonempty interior.
Let P be an integer polygon free of points of nZ2 and n be an integer,

n ≥ 2.

Definition 2.11. We say that P is a
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Type II Type III Type IV

Type V Type VI

Figure 2. Definition 2.11 introduces the types of polygons in
terms of intersection with segments and lines. Here thick seg-
ments split polygons of the specified type, thin lines do not split
them, and dotted lines have no common points with them.

• type In polygon, if no line of the form x1 = jn or x2 = jn where j ∈ Z,
splits P , or, equivalently, if P lies in a slab of the form jn ≤ x1 ≤
(j + 1)n or jn ≤ x2 ≤ (j + 1)n, where j ∈ Z;
• type IIn polygon, if each of the segments [0, (n, 0)], [(n, 0), (n, n)],

[(0, n), (n, n)], and [0, (0, n)] splits P ;
• type IIIn polygon, if each of the segments [0, (n, 0)], [(n, 0), (n, n)], and

[(n, n), (0, n)] splits P , and the line x1 = 0 does not split P ;
• type IVn polygon, if each of the segments [0, (0, n)], [0, (n, 0)], [(n, 0), (n, n)],

and [(n, n), (2n, n)] splits P and P has no common points with the
lines x1 = −n and xn = 2n;
• type Vn polygon, if each of the segments [0, (−n, 0)] and [0, (0, n)], and

the lines x1 = −n and x2 = n do not split P ;
• type VIn polygon, if each of the segments [0, (−n, 0)], [0, (0, n)], and

[(0, n), (n, n)] split P , and the lines x1 = ±n do not split P .

The polygon types are illustrated on Figure 2.

Theorem 2.12. Suppose that an integer polygon P is free of points of the
lattice nZ2, where n ∈ Z, n ≥ 2; then there exists an affine automorphism ϕ
of nZ2 such that ϕ(P ) is a polygon of one of the types In–VIn.

Proof : Let ψ an automorphism as in Proposition 2.8 and Remark 2.9 and
P ′ = ψ(P ).



10 N. BLIZNYAKOV AND S. KONDRATYEV

I

I
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V

III
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Figure 3. The polygon P ′ obtained in the proof of Theo-
rem 2.12 has no common points with the lines x1 = −n and
x1 = 2n and may or may not be split by the eight segments. Two
configurations are ruled out by Lemma 5.5. For any remaining
combination of splitting segments (drawn as thick lines), P ′ can
be easily mapped onto a polygon of specified type.

As P ′ is free of nZ2-points, it is clear that P ′ may be split by at most one of
the three segments I1 = [0, (−n, 0)], I2 = [0, (n, 0)], and I3 = [(n, 0), (2n, 0)],
and at most one of the three segments J1 = [(−n, n), (0, n)], J2 = [(0, n), (n, n)],
and J3 = [(n, n), (2n, n)].

If the lines x1 = 0 and x1 = n do not split P ′, it is a type In polygon.
If exactly one of the lines x1 = 0 and x1 = n, then there is no loss of

generality in assuming it is the former, because otherwise we can replace P ′ by
its reflection about the line x1 = n/2, the reflection being an automorphism
of nZ2. Thus, the segment [0, (0, n)] splits P ′ and the segments I3 and J3

have no common points with P ′. Individually examining the possibilities
according to which of the segments I1,2 and J1,2 split P ′, we see that in
each case the polygon either is of one of the types In–VIn or can be trivially
mapped onto such a polygon by an automorphism of nZ2 (Figure 3).

If both lines x1 = 0 and x1 = n split P ′, we likewise consider the possibilities
according to which of the segments I1,2,3 and J1,2,3 split P ′ (Lemma 5.5 rules
out two of them) and draw the same conclusion (Figure 3).
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Now we recast the Main Theorem for lattices with the largest invariant
factor greater than 2 as follows:

Sub-Theorem C. Let P be a convex integer N-gon of one of the types In–
VIn, where n is an integer, n ≥ 3. Then:

(i) the following inequality holds:

N ≤ 2n+ 2;

(ii) if the vertices of P belong to a (1, n/2)-lattice, then

N ≤ 2n;

(iii) if the vertices of P belong to a (1, n)-lattice, then

N ≤ 2n− 2.

Let us make sure that having proved Sub-Theorem C, we in fact establish
the Main Theorem for (δ, n)-lattices Λ with n ≥ 3. Indeed, let Λ be such a
lattice and P be an integer N -gon with N ≥ ν(Λ). Suppose that contrary
to our expectations, P is free of points of Λ. Let A be a unimodular trans-
formation mapping Λ onto δZ × nZ and S be the scaling diag(n/δ, 1). The
superposition SA maps Λ onto nZ2 and P , onto an integer polygon P ′ free
of points of nZ2. Let ϕ be an affine automorphism of nZ2 mapping P ′ onto
a polygon P ′′ of one of the types In–VIn. Note that the vertices of P ′ belong
to SZ2 = (n/δ)Z×Z, so the vertices of P ′′ belong to a (1, n/δ)-lattice. Now
the assumption N ≥ ν(δ, n) contradicts Sub-Theorem C applied to P ′′.

Thus, the Main Theorem is the sum of Sub-Theorems A, B and C.
In the case of type I polygons the proof of Sub-Theorem C is a simple

combinatorial argument, see Section 4. However, the rest types require a
fine geometric analysis. In Section 3 we collect necessary tools and apply
them to type II polygons. The rest types require more technical treatment
carried out in [8].

3. Slopes
3.1. Slopes. Let (f1, f2) be a basis of R2, and let v0,v1, . . . ,vN (N ≥ 0) be
a finite sequence of points on the plane. If N ≥ 1, set

vi + vi−1 = ai = ai1f1 + ai2f2 (i = 1, . . . , N). (3.1)

If

ai1 > 0, ai2 < 0 (i = 1, . . . , N) (3.2)
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w1

v2

o

vi−1

vi

ai

v0 = v

vN = w

zf1

f2

Figure 4. The broken line is a slope with respect to the basis
(f1, f2). It is convex and the vectors associated with its edges
point down and to the right. The frame (o; f1, f2) splits the slope
and forms small angle with it, since there is a supporting line
passing through the point z and forming an angle ≤ π/4 with
the axis.

and ∣∣∣∣ai1 ai+1,1

ai2 ai+1,2

∣∣∣∣ > 0 (i = 1, . . . , N − 1), (3.3)

we say that the union Q of the segments [v0,v1], [v1,v2], . . . , [vN−1,vN ] is
a slope with respect to the basis (f1, f2). These segments are called the edges
of the slope, and the points v0, v1, . . . , vN , its vertices, v0 and vN being the
endpoints. If N = 1, we call the segment [v0,v1] a slope if (3.2) holds, and
if N = 0, we still call the one-point set {v0} a slope. If all the vertices of Q
belong to a lattice Γ, we call it a Γ-slope. A Z2-slope is called integer, and it
is the only kind of slopes we are interested in.

It is not hard to prove that the vertices and edges of a slope are uniquely
defined, and that the basis induces a unique ordering of vertices.

Figure 4 illustrates the concepts of a slope and of an affine frame splitting
a slope, to be considered below.

Remark 3.1. If Q is a slope with respect to a basis (f1, f2), then it is a slope
with respect to the basis (f2, f1), too.
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Although the following statement is simple, it provides some important
tools for estimating the number of edges of a slope. We are interesting in
comparing the doubled number of edges with the ‘width’ of the slope, i. e.
its projection on the axis spanned by f1. The general point is that the edges
with projection 1 contribute quadratic growth to the ‘height’ of the slope.

Proposition 3.2. Let (f1, f2) be a basis of Z2 and v and w be the endpoints
of an integer slope (with respect to (f1, f2)) having N edges. Let

w − v = b1f1 + b2f2.

Then there exists an integer s such that

2N ≤ |b1|+ s, (3.4)

|b2| ≥
s(s+ 1)

2
, (3.5)

0 ≤ s ≤ N. (3.6)

If the vertices of the slope belong to a lattice with small f1-step greater then 1,
one can take s = 0, so that

2N ≤ |b1|. (3.7)

If the vertices of the slope belong to a lattice having the basis (f1 − af2,mf2),
where 1 ≤ a ≤ m, then (3.5) can be replaced by

|b2| ≥
2a+ (s− 1)m

2
s. (3.8)

Proof : Let v0 = v, v1, . . . , vN = w be the vertices of the slope and assume
that (3.1)–(3.3) hold. It follows from (3.2) and (3.3) that ai 6= aj for i 6= j.
Set A = {ai : ai1 = 1} and s = |A|. Observe that s satisfies (3.6) and s = 0 if
the vertices of the slope belong to a lattice with small f1-step greater then 1.

Let us prove (3.4). If ai /∈ A, we have ai1 ≥ 2, so

|b1| =
N∑
i=1

ai1 =
N∑

a∈A
ai1 +

N∑
a/∈A

ai1 ≥ |S|+ 2(N − |S|) = 2N − s,

and (3.4) follows.
Let us prove (3.8) assuming that the slope satisfies correspondent hy-

pothesis. It is easily seen that the vectors belonging to A are of the form
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f1 − (a+ um)f2, where u ∈ Z, u ≥ 0. Thus,

|b2| =
N∑
i=1

(−ai1) ≥
∑
ai∈A

(−ai1)

≥ a+ (a+m) + · · ·+ (a+ (s− 1)m) =
2a+ (s− 1)m

2
s,

as claimed.
In the case of a generic integer slope, letting m = a = 1, we recover (3.5)

from (3.8).

3.2. Splitting frames. Let (o; f1, f2) be an integer frame and Q be a slope
with respect to (f1, f2).

Definition 3.3. We say that the frame (o; f1, f2) splits the slope Q if

(1) one endpoint v = o + v1f1 + v2f2 of Q satisfies

v1 < 0, v2 > 0, (3.9)

while the other endpoint w = o + w1f1 + w2f2 satisfies

w1 > 0, w2 < 0; (3.10)

(2) there exists a point on Q having both positive coordinates in the frame
(o; f1, f2).

Remark 3.4. Obviously, a frame can only split a slope if the slope has at least
one edge.

Remark 3.5. If an integer frame (o; f1, f2) splits a slope Q, it is obvious that Q
has no points in the quadrant {o + λ1f1 + λ2f2 : λ1, λ2 ≤ 0}.

Suppose that a frame (o; f1, f2) splits a slope Q and let z be the point
where Q meets the ray {o + λf1 : λ ≥ 0}. If there is a supporting line for Q
passing through z that forms an angle ≤ π/4 with the ray, we say that the
frame (o; f1, f2) forms small angle with the slope Q.

Proposition 3.6. Suppose that an integer frame (o; f1, f2) splits a slope Q;
then the frame (o; f2, f1) splits it as well, and at least one of the frames forms
small angle with Q. If there exists a point y = o + y1f1 + y2f2 ∈ Q such that
y2 > 0 and y1 + y2 ≤ 0, then (o; f1, f2) forms small angle with Q.
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The proof is left to the reader.
The following theorems provide much more sophisticated estimates of the

number of edges of a slope than those of Preposition 3.2. This time we are
comparing the doubled number of edges with the length of the projection of
the slope on the positive half-axes of the frame, where by the projection on
a half-axis we mean the intersection of the projection on the axis with the
half-axis. It turns out that the doubled number of edges is always less then
or equal to the total length of the projection.

Theorem 3.7. Suppose that an integer frame (o; f1, f2) splits an integer slope
Q having N edges and the endpoints v = o+v1f1+v2f2 and w = o+w1f1+w2f2

satisfying (3.9) and (3.10). Then there exist s ∈ Z and t ∈ Z such that

0 ≤ s ≤ t, (3.11)

v2 − s ≥ 0, (3.12)

−v1 < ts− s2 − s
2

+ (v2 − s)(t+ 1), (3.13)

2N ≤ v2 + w1 − t+ s. (3.14)

Moreover, if (o; f1, f2) forms small angle with Q, we have

2N ≤ v2 + w1 − t+ s−
⌈−w2

2

⌉
+ 1. (3.15)

Corollary 3.8. Under the hypotheses of Theorem 3.7,

2N ≤ v2 + w1,

and if (o; f1, f2) forms small angle with Q, then

2N ≤ v2 + w1 −
⌈−w2

2

⌉
+ 1.

Theorem 3.9. Under the hypotheses of Theorem 3.7, if the vertices of Q
belong to a proper sublattice of Z2, then

2N ≤ v2 + w1 − 1.

The proofs of Theorems 3.7 and 3.9 are rather technical. We give them in
Section 6.
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W E
S

N

Q1
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Q3
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Q2

Q4

x1

x2

0

Figure 5. The edges of a polygon not belonging to the bounding
box form four maximal slopes Qk. These slopes may degenerate
into a point, as is the case for the triangle on the right, which
has only two nontrivial maximal slopes.

3.3. The boundary of a convex polygon. Let P be a convex integer
polygon. Define

N = max{x2 : (x1, x2) ∈ P},
N− = min{x1 : (x1,N ) ∈ P},
N+ = max{x1 : (x1,N ) ∈ P},

S = min{x2 : (x1, x2) ∈ P},
S− = min{x1 : (x1,S) ∈ P},
S+ = max{x2 : (x2,S) ∈ P},

W = min{x1 : (x1, x2) ∈ P},
W− = min{x2 : (W , x2) ∈ P},
W+ = max{x2 : (W , x2) ∈ P},

E = max{x1 : (x1, x2) ∈ P},
E− = min{x2 : (E , x2) ∈ P},
E+ = max{x2 : (E , x2) ∈ P}.

All these are integers. Note that (S−,S), (S+,S), (N−,N ), (N+,N ), (W ,W−),
(W ,W+), (E , E−), and (E , E+) are (not necessarily distinct) vertices of P .

There are four slopes naturally associated with a given polygon P .
Let us enumerate the vertices of P starting from v0 = (W ,W−) and going

in the positive direction until we come to vN4
= (S−,S). Clearly, the sequence

v0, . . . , vN4
gives rise to a slope with respect to the basis (e1, e2). We denote

it by Q4. Obviously, Q4 is an inclusion-wise maximal slope with respect to
(e1, e2) contained in the boundary of P . Likewise, we define the slope Q1

with respect to (e2,−e1) having the endpoints (S+,S) and (E , E−), the slope
Q2 with respect to (−e1,−e2) having the endpoints (E , E+) and (N+,N ),
and the slope Q3 with respect to (−e2, e1) having the endpoints (N−,N )
and (W ,W+). We call those maximal slopes of the polygon P and denote
by Nk the number of edges of Qk.
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Remark 3.10. For each of the mentioned bases, the boundary of the polygon
contains single-point maximal slopes apart from correspondent Qk. However,
we single Qk out by explicitly indicating its endpoints. For a given polygon,
some of the maximal slopes Qk may have but one vertex.

Define

M1 =

{
0, if S− = S+,

1, otherwise;
M2 =

{
0, if E− = E+,

1, otherwise;

M3 =

{
0, if N− = N+,

1, otherwise;
M4 =

{
0, if W− =W+,

1, otherwise.

Proposition 3.11. Let P be an N-gon; then each edge of P either lies on
a horizontal or a vertical line or it is the edge of exactly one of the maximal
slopes of P ; thus,

N =
4∑

k=1

Nk +
4∑

k=1

Mk.

The point of Proposition 3.11 is that if we want to estimate the number
of edges of a polygon, we can do so by considering its maximal slopes and
applying the techniques presented above. The following statement is a helpful
sufficient condition for a frame to split a maximal slope.

Proposition 3.12. Let P be a convex integer polygon and (o; f1, f2) be an
integer frame such that f1, f2 ∈ {±e1,±e2}. Suppose that o does not belong
to P and the rays {c + λfj : λ ≥ 0} (j = 1, 2) split P ; then (o; f1, f2) splits
Qk, where

k =


1, if (f1, f2) = (−e1, e2) or (f1, f2) = (e2,−e1),
2, if (f1, f2) = (−e2,−e1) or (f1, f2) = (−e1,−e2),
3, if (f1, f2) = (e1,−e2) or (f1, f2) = (−e2, e1),
4, if (f1, f2) = (e2, e1) or (f1, f2) = (e1, e2).

The following simple statement also proves useful.

Proposition 3.13. Let P be a Γ-polygon, S1 be the large e1-step of Γ, and
S2 be the large e2-step of Γ. Then

S+ − S− ≥ S1M1, E+ − E− ≥ S2M2,

N+ −N− ≥ S1M3, W+ −W− ≥ S2M4.

The proofs of Propositions 3.11, 3.12, and 3.13 are left to the reader.
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3.4. Application to type II polygons. In this section we present a demon-
stration of the tools developed above by proving Sub-Theorem C for type II
polygons.

Lemma 3.14. Suppose that n ≥ 3 is an integer and P is a type IIn polygon;
then

(i) ((n, 0);−e1, e2) splits Q1;
(ii) ((n, n);−e1,−e2) splits Q2;

(iii) ((0, n); e1,−e2) splits Q3;
(iv) (0; e1, e2) splits Q4;
(v) if all the vertices of P belong to a (1, n)-lattice Γ, then the large e1-step

and large e2-step of Γ are greater then or equal to 2.

Proof : Statements (i)–(iv) immediately follow from the definition of a type IIn
polygon and Proposition 3.12. To prove (v), note that the det Γ = n, so by
Proposition 2.7 it suffices to show that the small e1- and e2-steps of Γ are
less then n. Obviously, the vertex (S−,S) of P lies in the slab 0 < x1 < n
(this follows, for example, from (i) and (ii)) and belongs to Γ, so the small
e1-step of Γ is indeed less than n. Likewise, the vertex (W ,W−) lies in the
slab 0 < x2 < n, so the small e2-step of Γ is less than n as well.

Proof of Sub-Theorem C for type IIn polygons : Assume that P is a type IIn
N -gon whose vertices belong to Γ, where either Γ = Z2, or Γ is a (1, n/2)-
lattice (which is only possible if n is even), or a (1, n)-lattice. Define b as
follows:

b =


0, if Γ = Z2,

1, if Γ is a (1, n/2)-lattice,

2, if Γ is a (1, n)-lattice.

It suffices to show that

N ≤ 2n+ 2− 2b. (3.16)

We begin by translating the geometrical constraints on P into inequalities.
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Evoking Corollary 3.8 and Theorem 3.9 for the maximal slopes of P and
correspondent frames indicated in Lemma 3.14, we obtain:

2N1 ≤ −S+ + E− + n+
b2 − 3b

2
,

2N2 ≤ −N+ − E+ + 2n+
b2 − 3b

2
,

2N3 ≤ N− −W+ + n+
b2 − 3b

2
,

2N4 ≤ S− +W− +
b2 − 3b

2
,

where the term (b2 − 3b)/2 is chosen in such a way that it vanishes at b = 0
and equals −1 at b = 1 and b = 2. Further, by Proposition 3.13 we obtain

S+ − S− ≥
b2 − b+ 2

2
M1,

E+ − E− ≥
b2 − b+ 2

2
M2,

N+ −N− ≥
b2 − b+ 2

2
M3,

W+ −W− ≥
b2 − b+ 2

2
M4,

since if b = 0 or b = 1, the large e1- and e2-steps of Γ are at least 1, and if
b = 2, by Lemma 3.14 we have that those steps are at least 2.
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Using the above inequalities, we obtain:

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk ≤
(
−S+ + E− + n+

b2 − 3b

2

)
+

(
−N+ − E+ + 2n+

b2 − 3b

2

)
+

(
N− −W+ + n+

b2 − 3b

2

)
+

(
S− +W− +

b2 − 3b

2

)
+ 2M1 + 2M2 + 2M3 + 2M4 = 4n+ 2b2 − 6b

+

(
b2 − b+ 2

2
M1 − (S+ − S−)

)
+

(
b2 − b+ 2

2
M2 − (E+ − E−)

)
+

(
b2 − b+ 2

2
M3 − (N+ −N−)

)
+

(
b2 − b+ 2

2
M4 − (W+ −W−)

)
+
−b2 + b+ 2

2
(M1 +M2 +M3 +M4)

≤ 4n+ 2b2 − 6b+
−b2 + b+ 2

2
(M1 +M2 +M3 +M4).

Observe that (−b2 + b+2)/2 ≥ 0 for b = 0, 1, 2, so we can proceed as follows:

2N ≤ 4n+ 2b2 − 6b+
−b2 + b+ 2

2
· 4 = 4n+ 4− 4b,

which yields (3.16).

4. Proof of Sub-Theorems A and B and of Sub-Theorem C
for type I polygons

Proof of Sub-Theorem A: Assume that, contrary to our claim, there exists
an integer polygon containing no integer points with even ordinates. Let
T ⊂ P be an integer triangle having no integer points apart from its vertices
a = (a1, a2), b = (b1, b2), and c = (c1, c2). The choice of P ensures that the
numbers a2, b2, and c2 are odd. Consequently, the area of T is an integer
number, as up to sign it equals

1

2

∣∣∣∣b1 − a1 b2 − a2

c1 − a1 c2 − a2

∣∣∣∣ =

∣∣∣∣b1 − a1 (b2 − a2)/2
c1 − a1 (c2 − a2)/2

∣∣∣∣ .
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a′ x1

x2

a′ + 2e2

Figure 6. The convex hull of the point a′ = (1, 0), any point
satisfying x1 < 0 and x2 ≤ 0, and any point of the segment
[(0, 0), (0, 2)] contains the point (0, 0). Likewise, the convex hull
of the point a′ + 2e2 = (1, 2), any point satisfying x1 < 0 and
x2 ≥ 2, and any point of the segment [(0, 0), (0, 2)] contains the
point (0, 2). Thus, if a polygon is free of 2Z2-points, contains
(1, 0) and (1, 2) and has common points with [0, (0, 2)], it can-
not contain any point from the left half-plane not belonging to
the hatched slab. Consequently, all the integer points of such a
polygon belonging to the left half-plane lie on the line x2 = 1.

However, by Pick’s theorem the area of T equals i + b/2 − 1 = 1/2, where
i = 0 is the number of integer points belonging to the interior of T and b = 3
is the number of integer points on the boundary; a contradiction.

Proof of Sub-Theorem B : Conversely, suppose that P is an integer pentagon
free of 2Z2-points. We use the so-called parity argument based on the fact
that the index of 2Z2 in Z2 is 4. This implies that the pentagon has two
(distinct) vertices a ≡ b (mod 2Z2). Consequently, b − a = uf , where f
is a Z2-primitive vector, and u ≥ 2 is an integer. Therefore, the segment
[a,b] contains at least three integer points. By Proposition 2.5, there exists
a unimodular transformation A such that Af = e2, then the segment A[a,b]
lies on a line x1 = c, where c ∈ Z. Observe that c is odd, since otherwise
every second integer point of the line would belong to 2Z2, and thus the
segment would contain a point of this lattice.

Let T be the translation by the vector (1 − c, 0) ∈ 2Z2, then the points
a′ = TAa and b′ = TAb lie on the line x1 = 1. They are vertices of the
pentagon P ′ = TAP , which is still free of 2Z2-points. Clearly, one of the
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half-planes x1 < 1 and x1 > 1 (for definitiveness, the former) contains at
least two vertices of P ′. These are integer points, so actually they lie in
the half-plane x1 ≤ 0. Consequently, P ′ has common points with the line
x1 = 0, all lying between a pair of adjacent 2Z2-points, say, on the segment
I = [(0, 2m), (0, 2m + 2)], where m is an integer. We can certainly assume
that m = 0, for if not, we replace P ′ by P ′− (0, 2m). Moreover, without loss
of generality, a′ = (1, 0), because if a′ = (1, a′2), we can replace P ′ by BP ′,
where

B =

(
1 0
−a′2 1

)
(note that B preserves the first component of the vectors, so applying it
we do not break previous assumptions). To sum up, there is no loss of
generality in assuming that the polygon P ′ contains the points a′ = (1, 0),
and a′ + 2e2 = (1, 2), has common points with the segment [0, (0, 2)] and
has two vertices satisfying x1 ≤ 0. However, this is impossible, since the
vertices of P ′ belonging to the said half-plane must lie on the line x2 = 1 (see
Figure 6).

Proof of Sub-Theorem C for type In polygons : For simplicity, assume that P
lies in the slab 0 ≤ x1 ≤ n.

All the integer points of the slab lie on n+ 1 lines, so N ≤ 2(n+ 1).
If the vertices of P belong to a lattice having small e1-step s ≥ 2, we have

N ≤ 2
(n
s

+ 1
)
≤ 2

(⌊n
2

⌋
+ 1
)
≤ 2n− 2.

Now assume that P is a Γ-polygon, where Γ is a lattice with small e1-step 1.
If Γ is a (1, n)-lattice, by Proposition 2.7 the large e2-step of Γ is n. Con-

sequently, all the points of Γ lying on the lines x1 = 0 and x1 = n belong to
nZ2. Thus, all the vertices of P lie on the n− 1 lines

x1 = j (j = 1, . . . , n− 1), (4.1)

whence N ≤ 2(n− 1).
If Γ is a (1, n/2)-lattice, then the large e2-step of Γ is n/2. This implies that

on the lines x1 = 0 and x1 = n there is a single point of Γ between adjacent
points of nZ2. Thus, P has at most 1 vertex on each of these lines and at
most 2 vertices on each of the lines (4.1), totalling at most 2(n− 1) + 2 = 2n
vertices.
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5. Lattice diameter and lattice width
In this section we study the properties of integer polygons free of nZ2-

points related to their lattice diameter and lattice width. Our aim is to prove
Proposition 2.8 and supply what is necesary for the proof of Theorem 2.12.

Following [4], let us introduce

Definition 5.1. The lattice diameter of an integer polygon P is

`(P ) = max{|P ∩ Z2 ∩ L| − 1}, (5.1)

where the maximum is taken over all the straight lines L in the plane.

Clearly, `(P ) + 1 is the greatest possible length of a string of integer points
in a line contained in P .

Affine automorphisms of Z2 preserve the lattice diameter of polygons.
The following lemma provides a simple estimate of the lattice width of

a an integer polygon P in terms of its lattice diameter. For the sake of
completeness, we include the proof, even though it is implied by the reasoning
used in the proof of Theorem 2 of [4].

Lemma 5.2. Suppose that the convex integer polygon P contains the points 0
and (0, `(P )). Then P lies in the slab

|x1| ≤ `(P ) + 2.

Moreover, no integer point lying on the lines x1 = ±(`(P ) + 1) belongs to P .

Proof : Set ` = `(P ) and b = (0, `). By convexity, P contains the segment
[0,b] having the integer points 0, (0, 1), . . . , (0, `).

Let us show that no integer point of the lines x1 = ±(`+ 1) belongs to P .
Consider the point z = (ε(` + 1), z), where ε = ±1 and z is an arbitrary
integer. Let

z = (`+ 1)q + r, q, r ∈ Z, 0 ≤ r ≤ `.

If the point z belonged to P , by convexity the polygon would contain the
segment [re2, z] having ` + 2 integer points re2 + j(εe1 + qe2), where j =
0, . . . , ` + 1, which contradicts the definition of the lattice diameter. Conse-
quently, z /∈ P , as claimed.

Let us show that P is contained in the half-plane x1 ≤ `+ 2.
Let v = (v1, v2) ∈ Z2 be the rightmost vertex of P . There is no loss of

generality in assuming that 0 ≤ v1 < v2, for otherwise we could replace P
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by its image under a suitable unimodular transformation having a lower-
triangular matrix (the line x1 = 0 is invariant under such transformations,
so the hypotheses of the theorem persist).

We must prove that v1 ≤ ` + 2. If v1 ≤ ` + 1, there is nothing to prove,
so assume that v1 ≥ ` + 2. By convexity, P contains the triangle T having
the vertices 0, b, and v. The line x1 = `+ 1 intersects T by a segment I of
length

d =
`(v1 − `− 1)

v1
.

First, suppose that ` ≥ 2. If d ≥ 1, I necessarily contains at least one integer
point of the line x1 = `+ 1, which is impossible by the above. Consequently,
we have

`(v1 − `− 1)

v1
< 1.

The numerator and the denominator are positive integers, so we get

`(v1 − `− 1) ≤ v1 − 1,

whence

v1 ≤ `+ 2 +
1

`− 1
. (5.2)

As v1 is an integer, this yields the desired inclusion provided that ` ≥ 3.
If ` = 2, inequality (5.2) becomes v1 ≤ 5. However, setting v1 = 5 and

checking possible values v2 = 0, 1, . . . , 4, we see that T invariably contains
an integer point lying on the line x1 = ` + 1 (Figure 7). This is impossible,
so actually v1 ≤ 4, as claimed.

For the case ` = 1, see Figure 7.
To prove that P is contained in the half-plane x1 ≥ −` − 2, it suffices

to reflect P about the line x1 = 0 and apply the established part of the
theorem.

Lemma 5.3. Suppose that an integer polygon P is free of nZ2-points, where
n ∈ Z, n ≥ 2, and that P has an integer segment with `(P )+1 integer points
lying on the line x1 = c, where

0 ≤ c ≤ n; (5.3)

then P is contained in the slab

−n+ 1 ≤ x1 ≤ 2n− 1.
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0

x2 − x1/2 = 0

x2 − x1/2 = 1

x1 = 0

x1 = 1

0
ℓ(P ) = 2 ℓ(P ) = 1

Figure 7. Proof of Lemma 5.2. Assuming that `(P ) = 2 and
v1 = 5, we consider all possible cases for v and see that the
triangle T invariably contains an integer point lying on the line
x1 = 3, which is impossible. Now assume that `(P ) = 1. As
the common points of T and the line x1 = 2 must lie between
adjacent integer points, we see that v must lie either in the slab
0 < x2 < 1 or in the slab 0 < x2 − x1/2 < 1. The former case is
clearly impossible. In the latter case, because T cannot contain
a segment with more than two integer points, we see that v1 ≤ 3,
as claimed.

Proof : Set ` = `(P ) and let a = (c, a) and b = (c, a+ `) be the endpoints of
the segment mentioned in the hypothesis of the lemma.

Applying Lemma 5.2 to the polygon P − a, we see that P lies in the slab
|x1−c| ≤ `+2 and has no common integer points with the lines x1 = c±(`+1).

Let us show that P lies in the half-plane x1 ≤ 2n−1. Assume the converse.
Then the rightmost vertex v = (v1, v2) of P satisfies

2n ≤ v1 ≤ c+ `+ 2, v1 6= c+ `+ 1. (5.4)

Consequently, the lines x1 = n and x1 = 2n intersect P . Clearly, the in-
tersections must lie between pairs of adjacent points of nZ2 belonging to
respective lines, i. e. on some segments I1 = [(n, u1n), (n, (u1 + 1)n)] and
I2 = [(2n, u2n), (2n, (u2 + 1)n)], where u1, u2 ∈ Z. There is no loss of gen-
erality in assuming that I1 = [(n, 0), (n, n)] and I2 = [(2n, 0), (2n, n)], since
otherwise we could replace P by its image under the affine automorphism ϕ
of nZ2 given by

ϕ(x1, x2) = (x1, (u1 − u2)x1 + x2 + (u2 − 2u1)n),

which does not affect the first coordinate and maps I1 onto [(n, 0), (n, n)] and
I2 onto [(2n, 0), (2n, n)].
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Let us show the inequality

v1 ≤ 2n+ 1. (5.5)

The intersection of the line x1 = n with the triangle with the vertices a,
b, and v is a segment J ⊂ I1. We have:

`(v1 − n)

v1 − c
< n, (5.6)

where the left-hand side is the length of J .
Assuming that (5.5) is not valid, we have v1 ≥ 2n + 2. By (5.4), we have

v1 − c ≤ `+ 2 and ` ≥ v1 − c− 2 ≥ n; thus,

`(v1 − n)

v1 − c
≥ `(n+ 2)

`+ 2

=

(
1− 2

`+ 2

)
(n+ 2) ≥

(
1− 2

n+ 2

)
(n+ 2) = n,

contrary to (5.6), and (5.5) is proved.
In view of (5.4) and (5.5) we have only two possible values for v1: v1 = 2n

and v1 = 2n+ 1.
Further, (5.6) gives

` <
n

v1 − n
(v1 − c) ≤ v1 − c,

whence

` ≤ v1 − c− 1.

Comparing this with (5.4), we see that necessarily

` = v1 − c− 2. (5.7)

Let us estimate v2 and a. It is easily seen (see Figure 8) that the coordinates
of v, a, and b satisfy

−v1 + 2n < v2 < v1 − n, (5.8)

a > c− n, (5.9)

a+ ` < −c+ 2n. (5.10)

From (5.8) we get

1 ≤ v2 ≤ n− 1 if v1 = 2n,
0 ≤ v2 ≤ n if v1 = 2n+ 1,

}
(5.11)
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x1

x2

x 2
=
x 1
− n

x
2 = −

x
1 +

2n

I1 I2

0

Figure 8. Proof of Lemma 5.3. The lines passing through a and
v and through b and v belong to the set of lines joining interior
points of I1 with interior points of I2, so the a and b belong to
the hatched region on the left and v belongs to the one on the
right.

whereas from (5.9) and (5.10) we obtain

a+ ` ≥ c− n+ `+ 1, (5.12)

a ≤ −c+ 2n− `− 1. (5.13)

Assume that v1 = 2n. According to (5.7), we have

` = 2n− c− 2,

so (5.12) and (5.13) yield

a ≤ 1, a+ ` ≥ n− 1.

These inequalities and (5.11) imply that the integer point (c, v2) belongs
to [a,b]. But then P contains the integer segment [(c, v2),v] having v1− c+
1 = `+ 3 integer points (according to (5.7)). This contradicts the definition
of the lattice diameter.

Now assume v1 = 2n+ 1. From (5.7) we get

` = 2n− c− 1,

and from (5.12) and (5.13) it follows that

a ≤ 0, a+ ` ≥ n.
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These inequalities and (5.11) imply a contradiction exactly as in the case
v1 = 2n.

The contradictions show that in fact P lies in the half-plane x1 ≤ 2n− 1.
To show that it lies in the half-plane x1 ≥ −n + 1 as well, it suffices to
apply the established part of the lemma to the reflection of P about the line
x1 = n/2.

Proof of Proposition 2.8: Let [a,b] ∈ P be a segment containing `(P ) + 1 in-
teger points. By Proposition 2.5, there exists a unimodular transformation A
such that A(b − a) = te2, then the segment A[a,b] lies on a line x1 = m,
where m is an integer. Let m = nq + c, where q, c ∈ Z and 0 ≤ c ≤ n − 1
and let T be the translation by the vector −nqe1 ∈ nZ2. Then the segment
TA[a,b] contains `(P ) + 1 = `(TAP ) + 1 integer points and lies on the line
x1 = c. In view of Lemma 5.3, ψ = TAP is the required automorphism.

Remark 5.4. Let P be an integer polygon free of nZ2-points and let ψ be an
automorphism of nZ2 constructed in the proof of Proposition 2.8. As the
polygon ψ(P ) does not contain points of the lattice nZ2, its intersection with
the line x1 = 0 lies between two adjacent points of nZ2, i. e. it is a subset
of a segment I1 = [(0, u1n), (0, u1n+ n)], where u1 ∈ Z (if the intersection is
empty, u1 can be chosen arbitrarily). Likewise, the intersection of ψ(P ) with
the line x1 = n is a subset of a segment I2 = [(n, u2n), (n, u2n + n)], where
u2 ∈ Z. Define the affine automorphism of nZ2 by

ψ̃(x1, x2) = (x1, x2 + (u1 − u2)x1 − u1n).

Since it preserves the first coordinate and maps I1 onto [0, (0, n)] and I2

onto [(n, 0), (n, n)], it is easily seen that the automorphism ψ̃ψ satisfies the
requirements of Proposition 2.8 and Remark 2.9.

The following lemma is used in the proof of Theorem 2.12.

Lemma 5.5. Under the hypotheses of Lemma 5.3, the segments [(0, n), (−n, n)]
and [(n, 0), (2n, 0)] cannot simultaneously split P . The same is true about the
pair of segments [0, (−n, 0)] and [(n, n), (2n, n)].

Proof : By symmetry, it suffices to consider only the first pair of segments.
To obtain a contradiction, we assume that both segments split P . Then we
see that P has vertices v = (v1, v2) and w = (w1, w2) satisfying

v1 ≤ −1, v2 ≥ n+ 1; (5.14)

w1 ≥ n+ 1, w2 ≤ −1 (5.15)
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Figure 9. Lemma 5.5

(see Figure 9).
Let a = (c, a) and b = (c, b) be the endpoints of the segment mentioned in

the hypothesis, so that b− a = `(P ). Observe that

a ≥ 1, b ≤ n− 1. (5.16)

Indeed, P cannot have common points with the segments [0, (n, 0)] and
[(n, 0), (n, n)], for otherwise it would contain an nZ2-point. These segments
are the sides of the square that clearly has common points with P . Then the
segment [a,b] must lie in the slab 0 < x2 < n, whence (5.16).

By Lemma 5.2 applied to the polygon P − a, we have

v1 ≥ c− b+ a− 2, (5.17)

w1 ≤ c+ b− a+ 2. (5.18)

It follows from (5.17), (5.14), and (5.16) that the the coordinates of a
satisfy a + c ≤ n, i. e. a cannot lie above the line x1 + x2 = n. In the same
way, it follows from (5.18), (5.15), and (5.16) that b cannot lie below this
line. As a consequence, v must lie below this line, for else P would have a
common point with the segment [(0, n), (n, n)]; likewise, w must lie above
this line.

Let p = (c, p), where p = v1 + v2 − c, be the projection of v on the line
x1 = c along the vector e1 − e2. As v lies below the line x1 + x2 = n, so
does p, and therefore p lies below b. Moreover, p cannot lie below a, since
using (5.14) and (5.17) and then (5.16), we have

p = v1 + v2 − c ≥ a− b+ n− 1 ≥ a.
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Thus, p lies on the segment [a,b].
The points a, b, and w are the vertices of a triangle T . The line l passing

through v and p intersects the side [a,b] of T , so it intersects another side
as well. The line l is parallel to the line x1 + x2 = n and lies below it; on the
contrary, neither b nor w lie below the latter line, so l has no common points
with the segment [b,w]. Consequently, l intersects the side [a,w] of T at a
possibly non-integer point z = (z1, z2). The segment [p, z] is contained in T ,
so the whole segment [v, z] is contained in P .

The slope of the line passing through a and w is negative (this can be seen
by e. g. comparing the coordinates of those points using (5.15)), so z2 ≤ a.
Using (5.14) and (5.16), we can estimage the number of integer points lying
on the segment [v, z] as follows:

|[v, z] ∩ Z2| = bv2 − z2c+ 1 ≥ n− a+ 2 ≥ b− a+ 3 = `(P ) + 3,

which contradicts the definition of the lattice diameter. The contradiction
proves the lemma.

6. Properties of slopes
In this section we prove Theorems 3.7 and 3.9.

6.1. Preliminaries. Throughout this section (o; f1, f2) is an integer frame
splitting an integer slope Q. Let v0 = v, v1, . . . , vN = w be the vertices of Q.
We define ai by (3.1) and assume that (3.2) and (3.3) hold. By εi = [vi−1,vi]
(i = 1, . . . , N) denote the edges of Q and by E, the set of edges. Set

vi − o = vi1f1 + vi2f2 (i = 0, . . . , N).

Note that vij and aij are integers.
Further, set

k = min{i : vi2 < 0}, α = −ak1

ak2
, t = dαe − 1,

S = {εi ∈ E : i < k, ai2 = −1}, s = |S|.
All these are well-defined.

Remark 6.1. It is easily seen that (o; f1, f2) forms small angle with Q if and
only if α ≥ 1.

Remark 6.2. Let us define α̃ = −ak̃2/ak̃1, where k̃ = min{i : vk1 ≥ 0}. The
coefficient α̃ is related to the frame (o; f2, f1) in the same way as α is to
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(o; f1, f2). The statement of Proposition 3.6 saying that at least one of those
frames forms small angle with Q can be equivalently expressed in the form
of the inequality

min{α, α̃} ≥ 1.

Moreover, it is not hard to prove that equality holds if and only if α = α̃ = 1,
in which case k = k̃, and consequently vk−1,1 < 0 and vk−1,2 > 0.

Lemma 6.3. The cardinality s of S satisfies

s ≤ t, (6.1)

and, moreover, ∑
εi∈S

ai1 ≤ (t− s)s+
s(s+ 1)

2
. (6.2)

If the vertices of Q belong to a proper sublattice of Z2, then s = t only if both
equal 0 or 1, and in the latter case the only edge εi ∈ S has the associated
vector ai = f1 − f2.

Proof : Let S = {εi1, . . . , εis}, where i1 < · · · < is < k. It follows from (3.2)
and (3.3) that

a11

−a12
<

a21

−a22
< · · · < ak1

−ak2
= α.

Hence, as aip2 = −1, we see that

0 < ai11 < ai21 < · · · < ais1 ≤ dαe − 1 = t. (6.3)

This implies (6.1). Moreover, (6.3) implies that aip1 ≤ t − s + p, where
p = 1, . . . , s, and upon summation, we recover (6.2). Now suppose that
s = t, and the vertices of Q belong to a proper sublattice Γ of Z2. Let us
show that either s = 0 or s = 1. If s 6= 0, then S 6= ∅, and as the vectors
ai belong to Γ, we see that the small f2-step of Γ is 1. By Proposition 2.7,
Γ has large f1-step m ≥ 2. The differences aip − aiq ∈ Γ are proportional to
f1, so the numbers aip, where p = 1, . . . , s, differ by multiples of m. Thus, in
view of (6.3), we can only have s = t if s = t = 1, as claimed. In this case
ai11 = 1, so that ai1 = f1 − f2.

Given an edge εi ∈ E, define

π1(εi) = v+
i1 − v+

i−1,1,

π2(εi) = v+
i−1,2 − v+

i2,

π̂(εi) = π1(εi) + π2(εi)− 2
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and extend the functions π1, π2, and π̂ to the set of all subsets of E by
additivity. Observe that these functions take integer values.

Remark 6.4. Obviously, for any F ⊂ E we have

πj(F ) ≥ 0 (j = 1, 2), (6.4)

π̂(F ) = π(F )− 2|F |. (6.5)

Moreover, it is clear that if Q̃ is a subslope of Q (not necessarily integer)
with the endpoints ṽ = o + ṽ1f1 + ṽ2f2 and w̃ = o + w̃1f1 + w̃2f2, then

π1(Q̃) = |ṽ+
1 − w̃+

1 |, π2(Q̃) = |ṽ+
2 − w̃+

2 |.
Set

E1 = {ε1, . . . , εk}, E2 = {εk+1, . . . , εN}.
Clearly, E1 ∩ E2 = ∅ and E1 ∪ E2 = E.

6.2. Auxiliary statements.

Lemma 6.5. We have

π̂(E1) ≥ (v+
k−1,1 + vk−1,2 − 1) + δ + (t− s) + b(−vk2 − 1)αc, (6.6)

where

δ =

{
1, if vk−1,2 > 0 and α ∈ Z,
0, otherwise.

(6.7)

Proof : Let us show the inequality

π1(εk) ≥ δ + 1 + t+ b(−vk2 − 1)αc. (6.8)

Since the frame (o; f1, f2) splits the slope Q, it follows from the definition
that the ray {o + λf1 : λ ≥ 0} meets Q at a point z = o + z1f1, where z1 > 0.
As vk2 < 0 ≤ vk−1,2, it is easily seen that z belongs to the edge εk and either
coincides with vk−1 or is an inner point of the edge. We consider these cases
separately.

If z = vk−1, then vk−1,2 = 0 and vk−1,1 > 0, so

π1(εk) = vk1 − vk−1,1 = ak1 = αak2 = α(−vk2) = dαe+ b(−vk2 − 1)αc,
and as in this case δ = 0, (6.8) follows.
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Assume that z is an interior point of εk, then vk−1,2 > 0. As in this case z
is not the leftmost point of εk, it is clear that π1(εk) is strictly greater than
vk1 − z1 = α(−vk2). Thus,

π1(εk) ≥ bα(−vk2)c+ 1 ≥ bαc+ b(−vk2−1)αc+ 1 = dαe+ δ+ b(−vk2−1)αc,
and (6.8) follows. The inequality is proved.

Since vk−1,2 ≥ 0 and vk2 < 0, we have π2(εk) = vk−1,2. This and (6.8)
implies

π̂(εk) ≥ vk−1,2 + δ − 1 + t+ b(−vk2 − 1)αc. (6.9)

Let Q̃ be the subslope of Q with the vertices v0 = v, v1, . . . , vk−1 and
Ẽ be the set of its edges, then εk /∈ Ẽ, and Ẽ ∪ {εk} = E1. As Q̃ lies in
the upper half-plane, for any εi ∈ Ẽ we have π2(εi) = vi−1,2 − vi2 = −ai2.
Consequently, π2(εi) = 1 if εi ∈ S and π2(εi) ≥ 2 otherwise, whence

π2(Ẽ) ≥ 2|Ẽ| − s. (6.10)

Further, by Remark 6.4, we have π1(Ẽ) = v+
k−1,1 − v+

k1 = v+
k−1,1. Combining

this with (6.10) and using (6.5), we obtain

π̂(Ẽ) ≥ v+
k−1,1 − s. (6.11)

As π̂(E1) = π̂(εk) + π̂(Ẽ), we sum (6.9) and (6.11) and obtain (6.6).

Lemma 6.6. Suppose that (o; f1, f2) forms small angle with Q; then

π̂(E2) ≥
1

2
(vk2 − w2 − 1). (6.12)

Proof : If E2 = ∅, we have vk = w and (6.12) is obvious.
Assume that E2 6= ∅ and take εi ∈ E2. It is easy to see that all the edges

belonging to E2 lie in the right half-plane, so π1(εi) = vi−1,1 − vi1 = ai1, and
since π2(εi) ≥ 0, we obtain

π̂(εi) ≥ ai1 − 2

(actually, the equality holds here). Write the last inequality in form

π̂(εi) ≥
−ai2 + g(ai1, ai2)

2
, (6.13)

where

g(m1,m2) = 2m1 +m2 − 4.
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Using (3.3), we see that

α =
ak1

−ak2
<

ak+1,1

−ak+1,2
< · · · < aN1

−aN2
;

besides, as (o; f1, f2) forms small angle with Q, we have α ≥ 1 (Remark 6.1;
consequently,

ai1 + ai2 > 0.

Now it is not hard to check that g takes nonnegative values in all the points
of the set

{(m1,m2) ∈ Z2 : m1 > 0,m2 < 0,m1 +m2 > 0}
except (2,−1), and g(2,−1) = −1. Consequently, (6.13) gives

π̂(εi) ≥
−ai2 − δi

2
,

where

δi =

{
1, if ai = 2f1 − f2,

0, otherwise.

The vectors ai are distinct, so at most one δi is nonzero. Thus, we have:

π̂(E1) =
N∑

i=k+1

π̂(εi) ≥
1

2

(
−

N∑
i=k+1

ai2 −
N∑

i=k+1

δi

)
≥ 1

2
(vk−1, 2 − v02 − 1),

and (6.12) is proved.

Lemma 6.7. Suppose that Q is a Γ-slope, where Γ is a proper sublattice
of Z2; then

π̂(E) ≥ 1. (6.14)

Proof : In view of Remark 6.2, there is no loss of generality in assuming that
(o; f1, f2) forms small angle with Q, and moreover, that vk−1,2 > 0 if α = 1.

Suppose, contrary to our claim, that π̂(E) ≤ 0. As E = E1 ∪ E2 and
E1 ∩ E2 = ∅, we have π̂(E) = π̂(E1) + π̂(E2). It follows from Lemma 6.6
that π̂(E2) ≥ 0, so we conclude that π̂(E1) ≤ 0. Together with Lemma 6.5
this gives

(v+
k−1,1 + vk−1,2 − 1) + δ + (t− s) + b(−vk2 − 1)αc ≤ 0, (6.15)

where δ is defined by (6.7). Observe that the summands on the left-hand
side are nonnegative. Indeed, the vertex vk−1 cannot simultaneously satisfy
vk−1,1 ≤ 0 and vk−1,2 ≤ 0 (Remark 3.5), so the first summand is nonnegative.
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The second one is nonnegative by definition, the third one by Lemma 6.3,
and the last one by the definition of k. Thus, (6.15) can hold only if

v+
k−1,1 + vk−1,2 = 1, (6.16)

δ = 0, (6.17)

t = s, (6.18)

vk2 = −1, (6.19)

where we recover (6.19) due to the fact that α ≥ 1. Also, (6.17) implies that
α > 1, since we are assuming vk−1,2 > 0 if α = 1. Thus, we have t ≥ 1, and
by Lemma 6.3 we conclude from (6.18) that

t = s = 1 (6.20)

and the set S consists of a single edge εi having the associated vector ai =
f1 − f2. Thus, we necessarily have f1 − f2 ∈ Γ.

It follows from (6.16) that either vk−1,2 = 0 or vk−1,2 = 1.
In the former case case we use (6.19) to get ak2 = vk2 − vk−1,2 = −1;

moreover, t = 1 translates into 1 < α ≤ 2. Thus, ak1 = −αak2 = α, and
consequently, ak1 = 2. We conclude that Γ contains the vector ak = 2f1− f2.
But then by Proposition 2.4 the vectors ak and f1 − f2 form a basis of Z2,
which is impossible, since they belong to its proper sublattice.

In the latter case vk−1,2 = 1 we again use (6.19) to get ak2 = −2. Moreover,
as t = 1 and α /∈ Z by virtue of (6.17), we have 1 < α < 2. Consequently,
the integer ak1 = −αak2 belongs to the interval (2, 4), i. e. −ak1 = 3. Thus,
ak = 3f1 − 2f2. But in this case we see once again that the vectors ak and
f1− f2 form a basis of Z2, which is impossible since they belong to its proper
sublattice Γ.

6.3. Proof of Theorems 3.7 and 3.9.

Proof of Theorem 3.7: First assume that the frame (o; f1, f2) forms small an-
gle with Q, or, equivalently, α ≥ 1 (Remark 6.1). We show that in these case
inequalities (3.11)–(3.15) hold with t and s defined in Section 6.1.

Inequalities (3.11)–(3.13) follow from Lemma 6.3 and simple combinatorial
arguments, see Figure 10.
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cot θ = α ≤ t + 1
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Figure 10. The intersection of Q with the upper half-space is
a (possibly non-integer) slope Q′. The length of the vertical pro-
jection of Q′ is v2 and that of its horizontal projection is strictly
greater than −v1. All the edges belonging to S are edges of
Q′. They all contribute s to the length of the vertical projec-
tion of Q′, whence (3.12). Also, they all contribute at most
t + (t − 1) + · · · + (t − s + 1) = ts − s(s − 1)/2 to the hori-
zontal projection. The horizontal contribution of any other edge
is less than t+ 1 times its vertical contribution, totalling at most
(t+ 1)(v2 − s) for all the edges not in S, and (3.13) follows.

Let us prove (3.14). Since the sets E1 and E2 are disjoint and their union is
E, we have π̂(E) = π̂(E1) + π̂(E2). Evoking Lemmas 6.5 and 6.6, we obtain

π̂(E) = (v+
k−1,1 + vk−1,2 − 1) + δ + (t− s)

+ b(−vk2 − 1)αc+
1

2
(vk2 − w2 − 1), (6.21)

where δ is defined by (6.7). By definition, δ ≥ 0. The first term on the right-
hand side of (6.21) is nonnegative, since at least one coordinate of vk−1 must
be positive (Remark 3.5. Let us estimate the fourth term on the right-hand
side of (6.21). By the definition of k we have vk2 < 0, so −vk2 − 1 ≥ 0, and
by assumption, α ≥ 1; thus, we have:

b(−vk2 − 1)αc ≥ −vk2 − 1 ≥ 1

2
(−vk2 − 1).

Consequently, from (6.21) we obtain

π̂(E) ≥ t− s+
−w2

2
− 1.
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As π̂(E) is an integer, this yields

π̂(E) ≥ t− s+

⌈−w2

2

⌉
− 1.

As π1(E) + π2(E) = v2 + w1 by Remark 6.4, now it remains to use (6.5) in
order to obtain (3.14)

Now assume that the frame does not form small angle with Q. Let us check
that in this case (3.11)–(3.14) hold with t = s = 0.

Inequality (3.11) becomes trivial, and (3.12) follows from the definition of
a splitting frame. Inequality (3.13) becomes

−vN1 < vN2.

It is true, since otherwise by Proposition 3.6 the frame would form small
angle with Q. To prove (3.14), it suffices to apply the proved part of the
theorem to Q and the frame (o; f2, f1), which forms small angle with Q by
Proposition 3.6. Indeed, with certain t̃ and s̃ by virtue of (3.14) and (3.11)
we have:

2N ≤ w1 + v2 − t̃+ s̃ ≤ v2 + w1,

so (3.14) holds for (o; f2, f1) with t = s = 0 as claimed.

Proof of Theorem 3.9: It suffices to apply Lemma 6.7, write inequality (6.14)
in the form

π1(E) + π2(E)− 2N ≥ 1,

and substitute π1(E) = w1 and π2(E) = v2 according to Remark 6.4.
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