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1. Introduction
There are quite numerous papers studying geometric and combinatorial

properties of convex lattice polytopes and polygons: [1–4, 13–16, 18–22] to
cite a few; see also the monographs [5,9–11]. Our present study is motivated
by our paper [7].

Remember that a lattice in R2 is the set of integral linear combinations
of a linearly independent system of two vectors. The system itself is called
the basis of the lattice, and the lattice is said to be spanned by the bases.
The integer lattice Z2 is the lattice spanned by the standard basis of R2.
The points of Z2 are called integer points. We are primarily interested in the
integer lattice and the ones contained in it, i. e. its sublattices.

By a convex polygon we understand the convex hull of a finite set of points
in R2 that has nonempty interior. We assume that the reader is familiar with
basic terminology such as vertices and edges, see [12,23] for reference. As we
never consider nonconvex polygons, we occasionally drop the word ‘convex’.
If a polygon has N vertices, we refer to it as an N -gon. An integer polygon,
or a lattice polygon is a polygon, whose vertices are integer points. Generally,
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we prefer the former term, as it is more unambiguous in a context where a
few lattices are considered simultaneously.

It was noted in [6] that any convex integer pentagon contains a point of the
lattice 2Z2. The paper [7] raises the following question: given a sublattice Λ
of the integer lattice Z2, what is the smallest number of vertices of an integer
polygon that ensures that the polygon contains at least one point of Λ? The
answer is the Main Theorem of [7]. To state it, we recall that any sublattice
of Z2 is characterised by two positive integers called invariant factors (see
the definition in Section 2.1). Let δ, n be the invariant factors of Λ and set

ν(Λ) = ν(δ, n) = 2n+ 2 min{δ, 3} − 3.

Theorem 1.1 (Main Theorem of [7]). Let Λ be a proper sublattice of Z2

having the invariant factors δ, n. Then any convex integer polygon with ν(Λ)
vertices contains a point of Λ.

The constant ν(Λ) in Theorem 1.1 cannot be improved.
The paper [7] does not give a full proof of this theorem. It is shown that

the the proof can be reduced to obtaining upper bounds on the number of
vertices of integer polygons free of points of the lattice nZ2 = (nZ) × (nZ).
The paper [7] introduces the following classification of such polygons.

We say that a line or a segment splits a polygon, if it divides the polygon
into two parts with nonempty interior. Here and in the sequel [a,b] denotes
the segment with the endpoints a and b.

Let P be an integer polygon free from points of nZ2, where n ≥ 2 is an
integer.

Definition 1.2. We say that P is a

• type In polygon, if no line of the form x1 = jn or x1 = jn where j ∈ Z,
splits P , or, equivalently, if P lies in a slab of the form jn ≤ x1 ≤
(j + 1)n or jn ≤ x1 ≤ (j + 1)n, where j ∈ Z;
• type IIn polygon, if each of the segments [0, (n, 0)], [(n, 0), (n, n)],

[(0, n), (n, n)], and [0, (0, n)] splits P ;
• type IIIn polygon, if each of the segments [0, (n, 0)], [(n, 0), (n, n)], and

[(n, n), (0, n)] splits P , and the line x1 = 0 does not split P ;
• type IVn polygon, if each of the segments [0, (0, n)], [0, (n, 0)], [(n, 0), (n, n)],

and [(n, n), (2n, n)] splits P and P has no common points with the
lines x1 = −n and xn = 2n;



SUBLATTICE-FREE LATTICE POLYGONS 3

Type II Type III Type IV

Type V Type VI

Figure 1. Definition 1.2 introduces the types of polygons in
terms of intersection with segments and lines. Here thick seg-
ments split polygons of the specified type, thin lines do not split
them, and dotted lines have no common points with them.

• type Vn polygon, if each of the segments [0, (−n, 0)] and [0, (0, n)], and
the lines x1 = −n and x2 = n do not split P ;
• type VIn polygon, if each of the segments [0, (−n, 0)], [0, (0, n)], and

[(0, n), (n, n)] split P , and the lines x1 = ±n do not split P .

The polygon types are illustrated on Figure 1.
The following theorem is proved in [7].

Theorem 1.3. Suppose that an integer polygon P is free of points of the
lattice nZ2, where n ∈ Z, n ≥ 2; then there exists an affine transformation ϕ
of R2 preserving nZ2 such that ϕ(P ) is a polygon of one of the types In–VIn.

The hard part of Theorem 1.1 is encapsulated in the following assertion.

Theorem 1.4 (Sub-Theorem C of [7]). Let P be a convex integer N-gon of
one of the types In–VIn, where n is an integer, n ≥ 3. Then:

(i) the following inequality holds:

N ≤ 2n+ 2;

(ii) if the vertices of P belong to a (1, n/2)-lattice, then

N ≤ 2n;

(iii) if the vertices of P belong to a (1, n)-lattice, then

N ≤ 2n− 2.
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It is shown in [7] that Theorem 1.4 together with other results of that
paper imply Theorem 1.1. In [7] Theorem 1.4 is proved for type I and II
polygons. The present paper aims to prove this theorem for the rest cases,
systematically applying the approach developed in [7]. Thus, the proof of
Theorem 1.1 will be also completed.

The method we adopt can be summarised as follows. Geometric constraints
imposed on the polygon are translated into Diophantine inequalities relating
the numbers of vertices of certaing broken lines contained in the boundary
of the polygon, the parameters of its bounding box and, possibly, auxiliary
integral parameters. The analysis of the inequalities, however, may prove
rather technical due to the number of parameters and nonlinearities. The
core of the method is constituted by a few statements about certain classes
of broken lines. These statements provide relations between the number of
edges of the broken lines and the coordinates of their endpoints.

The rest of the paper is organised as follows.
In Section 2 we collect familiar facts concerning the geometry of lattices

and convex polygons as well as results of [7] useful for estimating the number
of edges of lattice broken lines and polygons.

In Sections 3 and 4 we prove Theorem 1.4 for type III and IV polygons,
respectively, applying the method described above. In the case of type III
polygons the transition from geometric constraints to Diaphantine equations
is fairly straightforward, but the analysis of the equations is rather involved.
Type IV polygons are somewhat more technical from the geometric point of
view.

In Section 5 we consider type V polygons. We introduce so called lifts for a
class of polygons and show that iterating lifting in combination with certain
affine transformations we can map any type V polygon either onto a type III
polygon, thus reducing the problem to a known case, or onto a polygon lying
in a certain triangle (we call them type Va polygons). Thus, it suffices to
consider type Va polygons instead of type V polygons. We establish a few
bounds on the number of vertices of type Va polygons using various algebraic
and geometric tricks; however, at this point we are unable to obtain all the
estimates required by Theorem 1.4. We revisit type Va polygons in Section 7.

In Section 6 we reuse the lifts introduced in the previous section and show
that any type VI polygon can be mapped onto a polygon of another type.
However, type V is not excluded, so at this point we are unable to prove
Theorem 1.4 for type VI polygons.



SUBLATTICE-FREE LATTICE POLYGONS 5

In Section 7 we finally prove the missing inequality for type Va polygons,
which automatically gives the proof of Theorems 1.4 and, eventually, 1.1.
What enables us to carry out this proof is a bound on the number of ver-
tices of an arbitrary integer polygon free of points of nZ2, obtained as a
combination of established estimates and Theorem 1.3.

2. Preliminaries
2.1. Lattices and polygons. In this section we collect a few definitions and
facts concerning the geometry of the integer lattice and convex polytops. For
reference, see [5, 8, 10,11].

A lattice Λ ⊂ Z2 is spanned by the columns of a matrix A = (aij) ∈ GL2(Z)
if and only if Λ = AZ2 = {Au : u ∈ Z2}. Given Λ, the matrix A is not
uniquely defined. However, the numbers

δ = gcd(aij), n = | detA|/δ
are independent of A. They are called invariant factors of Λ, and the pair
(δ, n) is the invariant factor sequence of Λ (see [17]). The product of the
invariant factors equals the determinant of A; it is called the determinant of
the lattice and denoted det Λ. Clearly, proper sublattices of Z2 (i. e. the ones
that do not coincide with Z2) have determinants ≥ 2.

For brevity, we write that Λ is a (δ, n)-lattice if it is a sublattice of Z2 with
invariant factor sequence (δ, n).

As an example, the lattice nZ2 = {(nu1, nu2) : u1, u2 ∈ Z2}, where n is a
positive integer, has invariant factor sequence (n, n), and the lattice δZ ×
nZ2 = {(δu1, nu2) : u1, u2 ∈ Z2}, where δ and n are positive integers and δ
divides n, has invariant factor sequence (δ, n).

If a point belongs to a lattice Λ, we call it a Λ-point.
A matrix A ∈M2(Z) is called unimodular, if detA = ±1.

Proposition 2.1. Let (f1, f2) be a basis of a lattice Λ; then the vectors ai1fj +
ai2f2, where i = 1, 2, form a basis of Λ if and only if the matrix (aij) is
unimodular.

A linear transformation of the plane is called a linear automorphism of
a lattice if it maps the lattice onto itself. A linear transformation is an
automorphism of a lattice if and only if it maps some (hence, any) basis of
the lattice onto another basis. Clearly, linear automorphism of a lattice form
a group.
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Given a matrix A ∈ M2(R), the transformation x 7→ Ax is an automor-
phism of Z2 if and only if the matrix A is unimodular. We call such trans-
formation unimodular. What is more, for any positive integer n, the linear
automorphisms of nZ2 are exactly the unimodular transformations.

If Λ is a sublattice of Z2 and A is a unimodular transformation, the image
AΛ is a lattice with the same invariant factors as Λ.

The following proposition is a geometric version of the Smith normal form
of integral matrices [17].

Proposition 2.2. For any sublattice of Z2 with invariant factors (δ, n) there
exists a unimodular transformation mapping it onto the lattice δZ× nZ.

An affine frame of a lattice Λ is a pair (o; f1, f2) consisting of a point o ∈ Λ
and a basis (f1, f2) of Λ. An integer frame is an affine frame of Z2.

An affine automorphism of a lattice Λ is an affine transformation of R2

mapping Λ onto itself. It is not hard to see that given A ∈M2(R) and b ∈ R2,
the mapping x 7→ Ax+b is an affine automorphism of Λ if and only if x 7→ Ax
is an automorphism of Λ and b ∈ Λ. In particular, affine automorphisms
of nZ2, where n is a positive integer, are exactly the transformations of the
form x 7→ Ax + b, where A is unimodular and b ∈ nZ2.

Of course, if P is a convex integer N -gon and ϕ is an affine automorphism
of Z2, the image ϕ(P ) is still a convex integer N -gon. Obviously, is P is free
from points of a lattice Λ, then so is its image under any affine automorphism
of Λ.

Following [7], we introduce the following definition.
Let Λ be a sublattice of Z2 and (f1, f2) be a basis of Z2. Clearly, {u ∈

Z : uf1 ∈ Λ} is a subgroup of Z. It is generated by a positive integer, which
we call the large f1-step of Λ with respect to (f1, f2). Further, {u1 ∈ Z : ∃ u2 ∈
z, u1f1 + u2f2 ∈ Λ} is a subgroup of Z, too. We call its positive generator
the small f1-step of Λ. Alternatively, the small f1-step can be defined as the
largest s such that all the points of Λ lie on the lines {ksf1 + tf2}, k ∈ Z.
Obviously, the small step is smaller then the large step. We can define the
large and small f2-steps of Λ with respect to (f1, f2) in the same way.

In what follows we consider small and large steps of lattices with respect
to bases made up of the vectors ±e1, ±e2, where (e1, e2) is the standard
basis of R2, and we usually omit the reference to the basis when there is no
ambiguity.

We note two simple properties of the steps.
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Proposition 2.3. Let Λ be a sublattice of Z2 and (f1, f2) be a basis of Z2.
Then the product of the small f1-step and the large f2-step of Λ equals the
determinant of Λ.

Proposition 2.4. Let (f1, f2) be a basis of Z2, Λ be a sublattice of Z2 such that
the small f1-step of Λ is 1, and R be a complete residue system modulo det Λ.
Then there exists a unique r ∈ R such that (f1 +rf2, (det Λ)f2) is a basis of Λ.

The following Lemma and its corollary are geometrically obvious. An ap-
plication of Helly’s theorem provides an immediate proof of the proposition.

Lemma 2.5. If a convex polygon has common points with each of the four
angles formed by intersecting lines, it contains the intersection point.

Corollary 2.6. If a convex polygon has common points with both sides of
one of the vertical angles and does not contain its vertex, it has no common
points with the other vertical angle.

We always denote the vectors of the standard basis of R2 by e1 = (1, 0)
and e2 = (0, 1) and the standard coordinates in R2 by x1, x2. We also use
usual notations b·c for the floor function, d·e for the ceiling function, and | · |
for the cardinality of a finite set.

2.2. Slopes. This section summarises the results of [7] about a class of
broken lines called slopes. These are our main tool for obtaining bounds on
the number of vertices of polygons. The proofs can be found in [7].

Let (f1, f2) be a basis of R2, and let v0,v1, . . . ,vN (N ≥ 0) be a finite
sequence of points on the plane. If N ≥ 1, set

vi + vi−1 = ai = ai1f1 + ai2f2 (i = 1, . . . , N). (2.1)

If
ai1 > 0, ai2 < 0 (i = 1, . . . , N) (2.2)

and ∣∣∣∣ai1 ai+1,1

ai2 ai+1,2

∣∣∣∣ > 0 (i = 1, . . . , N − 1), (2.3)

we say that the union Q of the segments [v0,v1], [v1,v2], . . . , [vN−1,vN ] is
a slope with respect to the basis (f1, f2). These segments are called the edges
of the slope, and the points v0, v1, . . . , vN , its vertices, v0 and vN being the
endpoints. If N = 1, we call the segment [v0,v1] a slope if (2.2) holds, and
if N = 0, we still call the one-point set {v0} a slope. If all the vertices of Q
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belong to a lattice Γ, we call it a Γ-slope. A Z2-slope is called integer, and it
is the only kind of slopes we are interested in.

If Q is a slope with respect to a basis (f1, f2), then it is a slope with respect
to the basis (f2, f1) as well.

Proposition 2.7. Let (f1, f2) be a basis of Z2 and v and w be the endpoints
of an integer slope (with respect to (f1, f2)) having N edges. Let

w − v = b1f1 + b2f2.

Then there exists an integer s such that

2N ≤ |b1|+ s, (2.4)

|b2| ≥
s(s+ 1)

2
, (2.5)

0 ≤ s ≤ N. (2.6)

If the vertices of the slope belong to a lattice with small f1-step greater then 1,
one can take s = 0, so that

2N ≤ |b1|. (2.7)

If the vertices of the slope belong to a lattice having the basis (f1 − af2,mf2),
where 1 ≤ a ≤ m, then (2.5) can be replaced by

|b2| ≥
2a+ (s− 1)m

2
s. (2.8)

Let (o; f1, f2) be an affine frame of Z2 and Q be a slope with respect to
(f1, f2).

Definition 2.8. We say that the frame (o; f1, f2) splits the slope Q, if

(1) one endpoint v = o + v1f1 + v2f2 of Q satisfies

v1 < 0, v2 > 0, (2.9)

while the other endpoint w = o + w1f1 + w2f2 satisfies

w1 > 0, w2 < 0; (2.10)

(2) there exists a point on Q having both positive coordinates in the frame
(o; f1, f2).

Remark 2.9. Obviously, a frame can only split a slope if the slope has at least
one edge.
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Suppose that a frame (o; f1, f2) splits a slope Q and let z be the point
where Q meets the ray {o + λf1 : λ ≥ 0}. If there is a supporting line for Q
passing through z that forms an angle ≤ π/4 with the ray, we say that the
frame (o; f1, f2) forms small angle with the slope Q.

Proposition 2.10. Suppose that an integer frame (o; f1, f2) splits a slope Q;
then the frame (o; f2, f1) splits it as well, and at least one of the frames forms
small angle with Q. If there exists a point y = o + y1f1 + y2f2 ∈ Q such that
y2 > 0 and y1 + y2 ≤ 0, then (o; f1, f2) forms small angle with Q.

Theorem 2.11. Suppose that an integer frame (o; f1, f2) splits an integer
slope Q having N edges and the endpoints v = o + v1f1 + v2f2 and w =
o +w1f1 +w2f2 satisfying (2.9) and (2.10). Then there exist s ∈ Z and t ∈ Z
such that

0 ≤ s ≤ t, (2.11)

v2 − s ≥ 0, (2.12)

−v1 < ts− s2 − s
2

+ (v2 − s)(t+ 1), (2.13)

2N ≤ v2 + w1 − t+ s. (2.14)

Moreover, if (o; f1, f2) forms small angle with Q, we have

2N ≤ v2 + w1 − t+ s−
⌈−w2

2

⌉
+ 1. (2.15)

Corollary 2.12. Under the hypotheses of Theorem 2.11,

2N ≤ v2 + w1,

and if (o; f1, f2) forms small angle with Q, then

2N ≤ v2 + w1 −
⌈−w2

2

⌉
+ 1.

Theorem 2.13. Under the hypotheses of Theorem 2.11, if the vertices of Q
belong to a proper sublattice of Z2, then

2N ≤ v2 + w1 − 1.

There are four slopes naturally associated with a given convex polygon P .
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Let P be an integer polygon in the plane. Define

N = max{x2 : (x1, x2) ∈ P},
N− = min{x1 : (x1,N ) ∈ P},
N+ = max{x1 : (x1,N ) ∈ P},

S = min{x2 : (x1, x2) ∈ P},
S− = min{x1 : (x1,S) ∈ P},
S+ = max{x2 : (x2,S) ∈ P},

W = min{x1 : (x1, x2) ∈ P},
W− = min{x2 : (W , x2) ∈ P},
W+ = max{x2 : (W , x2) ∈ P},

E = max{x1 : (x1, x2) ∈ P},
E− = min{x2 : (E , x2) ∈ P},
E+ = max{x2 : (E , x2) ∈ P}.

All these are integers. Note that (S−,S), (S+,S), (N−,N ), (N+,N ), (W ,W−),
(W ,W+), (E , E−), and (E , E+) are (not necessarily distinct) vertices of P .

Let us enumerate the vertices of P starting from v0 = (W ,W−) and going
in the positive direction until we come to vN4

= (S−,S). Clearly, the sequence
v0, . . . , vN4

gives rise to a slope with respect to the basis (e1, e2). We denote
it by Q4. Obviously, Q4 is an inclusion-wise maximal slope with respect to
(e1, e2) contained in the boundary of P . Likewise, we define the slope Q1

with respect to (e2,−e1) having the endpoints (S+,S) and (E , E−), the slope
Q2 with respect to (−e1,−e2) having the endpoints (E , E+) and (N+,N ),
and the slope Q3 with respect to (−e2, e1) having the endpoints (N−,N )
and (W ,W+). We call those maximal slopes of the polygon P and denote
by Nk the number of edges of Qk.

Remark 2.14. For each of the mentioned bases, the boundary of the polygon
contains single-point maximal slopes apart from correspondent Qk. However,
we single Qk out by explicitly indicating its endpoints. For a given polygon,
some of the maximal slopes Qk may have but one vertex.

Define

M1 =

{
0, if S− = S+,

1, otherwise;
M2 =

{
0, if E− = E+,

1, otherwise;

M3 =

{
0, if N− = N+,

1, otherwise;
M4 =

{
0, if W− =W+,

1, otherwise.

Proposition 2.15. Let P be an N-gon; then each edge of P either lies on
a horizontal or a vertical line or it is the edge of exactly one of the maximal
slopes of P ; thus,

N =
4∑

k=1

Nk +
4∑

k=1

Mk.
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Proposition 2.16. Let P be a convex integer polygon and (o; f1, f2) be an
integer frame such that f1, f2 ∈ {±e1,±e2}. Suppose that o does not belong
to P and the rays {o + λfj : λ ≥ 0} (j = 1, 2) split P ; then (o; f1, f2) splits
Qk, where

k =


1, if (f1, f2) = (−e1, e2) or (f1, f2) = (e2,−e1),
2, if (f1, f2) = (−e2,−e1) or (f1, f2) = (−e1,−e2),
3, if (f1, f2) = (e1,−e2) or (f1, f2) = (−e2, e1),
4, if (f1, f2) = (e2, e1) or (f1, f2) = (e1, e2).

Proposition 2.17. Let P be a Γ-polygon, S1 be the large e1-step of Γ, and
S2 be the large e2-step of Γ. Then

S+ − S− ≥ S1M1, E+ − E− ≥ S2M2,

N+ −N− ≥ S1M3, W+ −W− ≥ S2M4.

3. Type III polygons
In this section we prove Theorem 1.4 for type III polygons.

Lemma 3.1. Given an integer n ≥ 2 and a type IIIn polygon P , the following
assertions hold:

(i) The frame ((n, 0); e2,−e1) splits Q1.
(ii) The frame ((n, n);−e2,−e1) splits Q2.

(iii) The following inequalities hold:

W ≥ 0, (3.1)

N+ ≤ n− 1, (3.2)

S+ ≤ n− 1, (3.3)

E ≥ n+ 1, (3.4)

S < E− < 0. (3.5)

(iv) The intersection of P with the open half-plane x1 < n is contained in the
slab 0 ≤ x1 < n. All the vertices of P belonging to the closed half-plane
x1 ≥ n lie on the lines

x2 = k (k = 1, . . . , n− 1), (3.6)

each line containing at most one vertex.
(v) If the vertices of P belong to a (1, n)-lattice Γ, then the large e2- and

e1-steps of Γ are greater then or equal to 2.
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Proof : Assertions (i) and (ii) follow from the definition of a type IIIn polygon
and Proposition 2.16. Assertions (iii) and (iv) are obvious. According to
Proposition 2.3, to prove (v), it suffices to show that the small e1- and e2-steps
of Γ are less then n. As the vertex (E , E−) belongs to Γ and satisfies (3.5),
we see that indeed the small e2-step of Γ is less than n. Further, it follow
from (3.2), (3.3), and (3.5) that the vertices (N+,N ) and (S+,S) lie in the
slab 0 ≤ x1 < n. Suppose, contrary to our claim, that the small e1-step of
Γ equals n. Then we see that N+ = S+ = 0 and consequently, P contains
the segment [(0,S), (0,N )]. However, we obviusly have S < 0 and N > n,
so the segment contains the points 0, (0, n) ∈ nZ2, which is impossible, as P
is free of nZ2-points.

Lemma 3.2. Suppose that n ≥ 3. Let Γ and b be a lattice and a number
such that either Γ = Z2 and b = 0 or Γ is a (1, n/2)-lattice with the basis
(e1 + ae2, (n/2)e2), where the integer a satisfies 1 ≤ a ≤ n/2− 1, and b = 1.
Let P be a type IIIn N-gon with the vertices belonging to Γ. Then

N ≤ 2n+ 2− 2b. (3.7)

Proof : We begin by translating the geometrical constraints on P into in-
equalities.

The frame ((n, 0); e2,−e1) splitsQ1, so by Theorem 2.11 there exist integers
s1 and t1 such that

2N1 ≤ E− − S+ + n− t1 + s1, (3.8)

−S+ + n− s1 ≥ 0, (3.9)

−S < t1s1 −
s2

1 − s1

2
+ (−S+ + n− s1)(t1 + 1), (3.10)

0 ≤ s1 ≤ t1. (3.11)

Likewise, ((n, n);−e2,−e1) splits Q2, so there exist integers s2 and t2 such
that

2N2 ≤ −E+ −N+ + 2n− t2 + s2, (3.12)

−N+ + n− s2 ≥ 0, (3.13)

N − n < t2s2 −
s2

2 − s2

2
+ (−N+ + n− s2)(t2 + 1), (3.14)

0 ≤ s2 ≤ t2. (3.15)
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As Q3 is a slope with respect to (e1,−e2), by Proposition 2.7 there exists
s3 ∈ Z such that

2N3 ≤ N− −W + s3, (3.16)

N −W+ ≥
1

2
s3(s3 + 1), (3.17)

0 ≤ s3 ≤ N3. (3.18)

Likewise, applying Proposition 2.7 to Q4 and (e1, e2), we conclude that
there exists s4 ∈ Z such that

2N4 ≤ S− −W + s4, (3.19)

W− − S ≥
1

2
s4(s4 + 1), (3.20)

0 ≤ s4 ≤ N4. (3.21)

Further, by Proposition 2.17,

S+ − S− ≥ (1 + b)M1, (3.22)

E+ − E− ≥ (1 + b)M2, (3.23)

N+ −N− ≥ (1 + b)M3, (3.24)

W+ −W− ≥ (1 + b)M4, (3.25)

W ≥ bM4. (3.26)

Indeed, if b = 0, (3.22)–(3.25) immediately follow from the proposition. Sup-
pose that b = 1; then the large e2-step of Γ is n/2 ≥ 2, and as a ≥ 1, by
virtue of Proposition 2.4 we have e1 /∈ Γ, and consequently, the large e2-step
of Γ is ≥ 2 as well.

By Lemma 3.1, we have W ≥ 0, so to prove (3.26) it suffices to show that
M4 = 0 provided that b = 1 and W = 0. Indeed, in this case Γ has large
e2-step n/2, so every other point of Γ lying on the line x1 = 0 belongs to nZ2.
Therefore, P cannot have two vertices on this line and M4 = 0 if W = 0.

To prove the lemma, we argue by contradiction, assuming that

2N ≥ 4n+ 6− 4b. (3.27)
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Summing (3.8), (3.12), (3.16), and (3.19) and subsequently using (3.22)–
(3.26), we obtain:

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk

≤ 3n+ s1 + s2 + s3 + s4 − t1 − t2
− (S+ − S−)− (E+ − E−)− (N+ −N−)

− 2W + 2M1 + 2M2 + 2M3 + 2M4

≤ 3n+ s1 + s2 + s3 + s4 − t1 − t2
+ (1− b)M1 + (1− b)M2 + (1− b)M3 + (2− 2b)M4.

Comparing this with (3.27), we deduce

n− s1 − s2 − s3 − s4 + t1 + t2

− (1− b)M1 − (1− b)M2 − (1− b)M3 − (2− 2b)M4 + 6− 4b ≤ 0. (3.28)

Now we use (3.10) and (3.14) to estimate N − S from above:

N − S < n+ t1s1 −
s2

1 − s1

2
+ t2s2 −

s2
2 − s2

2
+ (−S+ + n− s1)(t1 + 1) + (−N+ + n− s2)(t2 + 1). (3.29)

Let us estimate S+ and N+. Using (3.22), (3.19), (3.21), and (3.1), we
obtain

S+ ≥ S− + (1 + b)M1 ≥ 2N4 +W − s4 + (1 + b)M1

≥ s4 +W + (1 + b)M1 ≥ s4 +M1,

whence

−S+ + n− s1 ≤ n− s1 − s4 −M1. (3.30)

Incidentally, note that the left-hand side is nonnegative by virtue of (3.9), so

n− s1 − s4 −M1 ≥ 0. (3.31)

Likewise, from (3.24), (3.17), (3.18), and (3.1) we derive

−N+ + n− s2 ≤ n− s2 − s3 −M3, (3.32)

which together with (3.13) implies

n− s2 − s3 −M3 ≥ 0. (3.33)
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As t1 + 1 > 0 and t2 + 1 > 0, we can use (3.30) and (3.32) to obtain
from (3.29)

N − S < n+ t1s1 −
s2

1 − s1

2
+ t2s2 −

s2
2 − s2

2
+ (n− s1 − s4 −M1)(t1 + 1) + (n− s2 − s3 −M3)(t2 + 1). (3.34)

Now we estimate N −S from below by summing (3.17), (3.20), and (3.25):

N − S ≥ (1 + b)M4 +
1

2
s3(s3 + 1) +

1

2
s4(s4 + 1). (3.35)

Consider the second term on the right-hand side. Inequality (3.28) gives

s3 − 1 ≥ (n− s1 − s4 + t1 −M1) + (t2 − s2)

+ (5− 4b+ bM1 − (1− b)M2 − (1− b)M3 − (2− 2b)M4).

The second term on the right-hand side is nonnegative by virtue of (3.15)
and the third one is also nonnegative (even positive), which is easily seen by
separately checking b = 0 and b = 1. Consequently, we have

s3 − 1 ≥ n− s1 − s4 + t1 −M1. (3.36)

By virtue of (3.31) we have n− s1 − s4 + t1 −M1 ≥ t1 ≥ 0, so using (3.36),
we get

1

2
s3(s3 + 1) = s3 +

1

2
s3(s3 − 1)

≥ s3 +
1

2
(n− s1 − s4 + t1 −M1 + 1)(n− s1 − s4 + t1 −M1).

Set

A = n− s1 − s4 −M1, B = t1 + 1

(A and B are integers) and continue as follows:

1

2
s3(s3 + 1) ≥ s3 +

1

2
(A+B)(A+B − 1)

= s3 +
1

2
(A2 − A) +

1

2
(B2 −B) + AB ≥ s3 +

1

2
(B2 −B) + AB.
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For the terms on the right-hand side we have

1

2
(B2 −B) =

1

2
(t21 + t1) = t1s1 −

s2
1 − s1

2
+

1

2
(t1 − s1)(t1 − s1 + 1)

≥ t1s1 −
s2

1 − s1

2

(since t1 − s1 ≥ 0 according to (3.11)), and

AB = (n− s1 − s4 −M1)(t1 + 1),

and we finally obtain

1

2
s3(s3 + 1) ≥ s3 + t1s1 −

s2
1 − s1

2
+ (n− s1 − s4 −M1)(t1 + 1). (3.37)

One can estimate the third term on the right-hand side of (3.35) in much
the same way by making use of (3.11), (3.33), and (3.15). Eventually,

1

2
s4(s4 + 1) ≥ s4 + t2s2 −

s2
2 − s2

2
+ (n− s2 − s3 −M3)(t2 + 1). (3.38)

Now, using (3.37) and (3.38), we derive from (3.35) the following estimate:

N − S ≥ (1 + b)M4 + s3 + s4 + t1s1 −
s2

1 − s1

2
+ t2s2 −

s2
2 − s2

2
+ (n− s1 − s4 −M1)(t1 + 1) + (n− s2 − s3 −M3)(t2 + 1). (3.39)

Comparing (3.34) with (3.39), we obtain

−n+ s3 + s4 + (1 + b)M4 < 0.

Summing this inequality with (3.28), we get

(t1−s1)+(t2−s2)+(6−4b−(1−b)M1−(1−b)M2−(1−b)M3−(1−3b)M4) < 0.

However, the summands on the left-hand side are nonnegative. Indeed, in
the case of the first and the second ones it follows from (3.11) and (3.15),
respectively. In the case of the third summand for b = 0 we have

6− 4b− (1− b)M1 − (1− b)M2 − (1− b)M3 − (1− 3b)M4

= 6−M1 −M2 −M3 −M4 ≥ 2,

while for b = 1 we have

6− 4b− (1− b)M1 − (1− b)M2 − (1− b)M3 − (1− 3b)M4 = 2 + 2M4 ≥ 2.

This contradiction proves the lemma.
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Lemma 3.3. Suppose that n ≥ 4 is even and P is a type IIIn N-gon with
vertices belonging to a (1, n/2)-lattice Γ having the basis (e1, (n/2)e2); then

N ≤ 2n.

Proof : According to Lemma 3.1, all the vertices of P belonging to the open
half-plane x1 < n lie in the slab 0 ≤ x1 < n. All the points of Γ belonging to
this slab lie on the lines x1 = i (i = 0, 1, . . . , n − 1), and each of these lines
contains at most two vertices except for x1 = 0, which contain at most one
(since every other point of Γ lying on this line belongs to nZ2). This gives
the maximum of 2n− 1 lying in the said half-plane.

It remains to prove that at most one vertex lies in the half-plane x1 ≥ n.
According to Lemma 3.1, each of the lines (3.6) contains at most one vertex,
and there are no other vertices. But among these only the line x2 = n/2 has
points belonging to Γ.

Lemma 3.4. Suppose that n ≥ 3 and P is a type IIIn N-gon with vertices
belonging to a (1, n)-lattice Γ having the basis (e1 + ae2, ne2), where 1 ≤ a ≤
n− 1. Then

N ≤ 2n− 2. (3.40)

Proof : The frame ((n, 0), e2,−e1) splits Q1, and the vertices of Q1 belong to
a proper subset of Z2, so by Theorem 2.13 we have

2N1 ≤ E− − S+ + n− 1. (3.41)

Applying the same theorem to ((n, n),−e2,−e1) and Q2, we obtain

2N2 ≤ −E+ −N+ + 2n− 1. (3.42)

As Q3 is a slope with respect to (e1,−e2) and (e1 − a(−e2), n(−e2)) is
a basis of Γ (Proposition 2.1), we evoke Proposition 2.7 and conclude that
there exists an integer s3 such that

2N3 ≤ N− −W + s3, (3.43)

N −W+ ≥
2a+ (s3 − 1)n

2
s3, (3.44)

0 ≤ s3 ≤ N3. (3.45)
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Likewise, applying Proposition 2.7 to Q4, the basis (e1, e2) and the basis
(e1 − (n− a)e2, ne2) of Γ, we obtain an integer s4 such that

2N4 ≤ S− −W + s4, (3.46)

W− − S ≥
2(n− a) + (s4 − 1)n

2
s4, (3.47)

0 ≤ s4 ≤ N4. (3.48)

Finally, we have

S+ − S− ≥ 2M1, (3.49)

E+ − E− ≥ nM2, (3.50)

N+ −N− ≥ 2M3, (3.51)

W+ −W− ≥ nM4, (3.52)

W ≥ 1. (3.53)

Indeed, the large e2-step of Γ is n, so by Proposition 2.17 we have (3.50)
and (3.52). Because 1 ≤ a ≤ n − 1, we have e1 /∈ Γ and the large e1-step
of Γ is greater then or equal to 2, so inequalities (3.49) and (3.51) hold by
virtue of the same proposition. Finally, (3.53) follows from the fact that W
is nonnegative by Lemma 3.1, and the fact that all the points of Γ lying on
the line x1 = 0 belong to nZ2.

Assuming that (3.40) does not hold, we have

2N ≥ 4n− 2. (3.54)

Estimate 2N from above by summing (3.41), (3.42), (3.43), and (3.46) and
subsequently using (3.49)–(3.51) and (3.53):

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk

≤ 3n− 2 + s3 + s4 + (2M1 − (S+ − S−)) + (nM2 − (E+ − E−))

+ (2M3 − (N+ −N−))− (n− 2)M2 + 2(M4 −W)

≤ 3n− 2 + s3 + s4.

Comparing this with (3.54), we get

s3 + s4 ≥ n. (3.55)
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Summing (3.44), (3.47), and (3.52) and discarding the nonnegative term nM4,
we obtain a lower estimate of N − S:

N − S ≥ 2a+ (s3 − 1)n

2
s3 +

2(n− a) + (s4 − 1)n

2
s4. (3.56)

Now, a simple geometrical reasoning provides the upper estimate

N − S ≤ n2 − 1. (3.57)

Indeed, note that the triangle with the vertices (N+,N ), (S+,S), and (E , E−)
is contained in P , so the segment being the intersection of the triangle with
the line x1 = n lies between two adjacent points of nZ2. As the distance
from (E , E−) to the line is greater than or equal to 1, it is not hard to see
that the projection of the segment [(N+,N ), (S+,S)] onto x1 = 0 has length
strictly less than n2, whence (3.57) follows.

Comparing (3.56) and (3.57), we obtain

2a+ (s3 − 1)n

2
s3 +

2(n− a) + (s4 − 1)n

2
s4 ≤ n2 − 1. (3.58)

Let us estimate the second term on the left-hand side. It follows from (3.43)
and (3.45) that

2s3 ≤ N− −W + s3,

whence using (3.53) and (3.2) we obtain

s3 ≤ N− −W ≤ N+ − 1 ≤ n− 2.

Combining this with (3.55) we deduce

0 < n− s3 ≤ s4.

Consequently, we have

2(n− a) + (s4 − 1)n

2
s4 ≥

2(n− a) + (n− s3 − 1)n

2
(n− s3),

and from (3.58) we obtain

2a+ (s3 − 1)n

2
s3 +

2(n− a) + (n− s3 − 1)n

2
(n− s3)− n2 + 1 ≤ 0.

Transforming the left-hand side, we can write the inequality in the form

n

(
s3 +

2a− n− n2

2n

)2

+
a(n− a)

n
+

1

4
(n+ 1)(n− 1)(n− 4) ≤ 0.
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Clearly, this inequality cannot hold with n ≥ 4. This contradiction proves
the lemma in the case n ≥ 4.

If n = 3, it follows from (3.2) and (3.3) that

N+ + S+ ≤ 4, (3.59)

inequalities (3.43), (3.45), and (3.53) give

N− ≥ s3 +W + (2N3 − 2s3) ≥ s3 + 1,

and inequalities (3.46), (3.48), and (3.53) similarly imply

S− ≥ s4 + 1.

From these estimates and (3.55) we derive

N+ + S+ ≥ N− + S− ≥ s3 + s4 + 2 ≥ n+ 2 = 5,

which contradicts (3.59).

Lemma 3.5. Suppose that n ≥ 3. Let Γ and b be a lattice and a number
such that either Γ has invariant factors (1, n) and b = 0 or Γ has invariant
factors (1, n/2), and b = 1. Suppose that the small e1-step of Γ is greater
then 1, and let P be a type IIIn N-gon with the vertices belonging to Γ. Then

N ≤ 2n− 2 + 2b. (3.60)

Proof : As in the proof of Lemma 3.4, we have (3.41) and (3.42). Applying
Proposition 2.7 to Q3 and Q4, we obtain

2N3 ≤ N− −W , (3.61)

2N4 ≤ S− −W . (3.62)

As the small e1-step of Γ is greater then 1, we still have (3.49) and (3.51).
By Proposition 2.17, we also have

E+ − E− ≥ (2− b)M2 (3.63)

(in the case b = 0 this follows from assertion (v) of Lemma 3.1).
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Summing (3.41), (3.42), (3.61), and (3.62) and subsequently applying (3.49),
(3.51), (3.63), and (3.1), we obtain the estimate

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk

≤ 3n+ (2M1 − (S+ − S−)) + ((2− b)M2 − (E+ − E−))

+ (2M3 − (N+ −N−)) + 2(M4 − 1) + bM2 ≤ 3n+ b,

whence

N ≤ 3

2
n+

b

2
= (2n− 2 + 2b) +

−n− 3b+ 4

2
.

Since n ≥ 3 and b ≥ 0, we can write

N ≤ (2n− 2 + 2b) +
1

2
,

which yields (3.60).

Proof of Theorem 1.4 for type III polygons : Let P be a type IIIn N -gon. By
Lemma 3.2, its number of vertices satisfies N ≤ 2n+ 2.

Suppose that the vertices of P belong to a (1, n)-lattice Γ. If the small
e1-step of Γ is greater then 1, by Lemma 3.5 we have N ≤ 2n − 2. If the
small e1-step of Γ equals 1, by Proposition 2.4 this lattice admits a basis of
the form (e1 + ae2, ne2), where 0 ≤ a ≤ n− 1. According to assertion (v) of
Lemma 3.1, we cannot have a = 0, so Lemma 3.4 provides the same bound
on the number of vertices.

Finally, suppose that n is even and the vertices of P belong to a (1, n/2)-
lattice Γ. If the small e1-step of Γ is greater than 1, by Lemma 3.5 we have
N ≤ 2n. Otherwise, Γ has a basis of the form (e1 + ae2, (n/2)e2), where
0 ≤ a ≤ n/2− 1; then Lemma 3.2 gives the same estimate in case a 6= 0 and
Lemma 3.3, in case a = 0.

4. Type IV polygons
In this section we prove Theorem 1.4 for type IV polygons.
Throughout the section, we fix an integer n ≥ 3.

Lemma 4.1. Suppose that the line x1 − x2 = n splits a type IVn polygon;
then so does one of the segments [(0,−n), (n, 0)] and [(n, 0), (2n, n)].

Proof : All the points of the line x1− x2 = n belonging to the slab −n+ 1 ≤
x1 ≤ 2n − 1 lie on the segments [(−n,−2n), (0,−n)], [(0,−n), (n, 0)], and
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x 2
− x

1
=
−n

x 2
− x

1
=
0

x1

x2

0 n−n 2n

n

Figure 2. The segments splitting the polygon in the hypothesis
of Lemma 4.2 are thick, and P does not intersect dotted lines.
The inequalities (4.3)–(4.6) are obvious.

[(n, 0), (2n, n)], and as the polygon is free of nZ2-points, exactly one of the
segments splits it. However, it cannot be the first one, because it follows
from Corollary 2.6 that the polygon has no points with both nonpositive
coordinates.

Lemma 4.2. Suppose that P is a type IVn polygon and the segment [(0,−n), (n, 0)]
splits it. Then the following assertions hold:

(i) The intersection of P with the half-plane x1 ≥ n lies in the slab

−n < x2 − x1 < 0. (4.1)

(ii) The frame ((n, 0); e2,−e1) splits the slope Q1 and forms small angle
with it.

(iii) The frame ((n, n); e1,−e2) splits the slope Q3 and forms small angle
with it.

(iv) The frame (0; e1, e2) splits the slope Q4.
(v) The slope Q1 has a vertex v = (v1, v2) satisfying

v2 − v1 ≤ −n− 1. (4.2)
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(vi) The following inequalities hold:

n < N+ ≤ E ≤ 2n− 1, (4.3)

n < N ≤ N+ − 1, (4.4)

−n <W < 0, (4.5)

0 <W+ < n. (4.6)

Proof : To prove (i), it suffices to observe that P cannot have common points
with the segments [(n, 0), (2n, n)] and [(n, n), (2n, 2n)]. Indeed, if P had
common points with the former segment, by convexity it would containt the
point (n, 0); if it had common points with the latter, it would contain the
point (n, n) by Lemma 2.5 applied to P and the lines x2−x1 = 0 and x2 = n.
Thus, the part of P contained in the half-plane x1 ≥ n must lie between the
lines x2 − x1 = −n and x2 − x1 = 0.

Let us prove (v). Clearly, the functional x2−x1 attains its maximum on P
on a vertex v ∈ Q1. As the line x2 − x1 = −n splits P , this minimum is less
than n, and (v) follows.

The fact that the frames split correspondent slopes in assertions (ii)–(iv)
follows from Proposition 2.16. To prove that ((n, 0); e2, e1) forms small angle
with Q1, we apply Proposition 2.10 taking the vertex from assertion (v) as
y. To prove that ((n, n); e1,−e2) splits Q3, we use the same theorem with
y = (W ,W+).

The inequalities in (vi) are is fairly intuitive, see Figure 4.

Lemma 4.3. Let Γ and b be a sublattice of Z2 and a number such that either
Γ = Z2 and b = 0 or Γ has a basis of the form (e1 + ae2, (n/2)e2), where
1 ≤ a ≤ n/2 − 1, and b = 1 (this is only possible if n is even). Let P be a
type IVn N-gon with vertices belonging to Γ, and suppose that the segment
[(0,−n), (n, 0)] splits P . Then

N ≤ 2n+ 2− 2b. (4.7)

Proof : By Lemma 4.2, the frame ((n, 0); e2,−e1) forms small angle with the
slope Q1, so by Corollary 2.12 we have

2N1 ≤ E− − S+ + n−
⌈E − n

2

⌉
+ 1. (4.8)
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Likewise, as ((n, n); e1,−e2) forms small angle with Q3, we obtain

2N3 ≤ N− −W+ −
⌈N − n

2

⌉
+ 1. (4.9)

Applying Proposition 2.7 to the basis (−e1,−e2) and the slope Q2, we see
that there exists an integer s2 such that

2N2 ≤ E −N+ + s2, (4.10)

N − E+ ≥
s2

2 + s2

2
, (4.11)

0 ≤ s2 ≤ N2. (4.12)

As the frame (0; e1, e2) splits Q4, by Corollary 2.12 and Theorem 2.13 we
have

2N4 ≤ S− +W− − b. (4.13)

Finally, by Proposition 2.17 we have

S+ − S− ≥ (1 + b)M1, (4.14)

E+ − E− ≥ (1 + b)M2, (4.15)

N+ −N− ≥ (1 + b)M3, (4.16)

W+ −W− ≥ (1 + b)M4. (4.17)

Indeed, if b = 0, these inequalities immediately follow from the proposition.
If b = 1, Γ has large e2-step n/2 ≥ 2 and as e1 /∈ Γ due to the restriction
1 ≤ a ≤ n− 1, we see that Γ has large e1-step greater then or equal to 2.

We estimate 2N by means of (4.8)–(4.10), and (4.13):

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk

≤ n+ 2− b−
⌈E − n

2

⌉
+ E −

⌈N − n
2

⌉
+ s2 + E− + 2M2

− (S+ − S−)− (N+ −N−)− (W+ −W−) + 2M1 + 2M3 + 2M4.

Dropping the ceilings, using (4.3) and (4.14)–(4.17) and subsequently esti-
mating Mk ≤ 1, we obtain

2N ≤ 3n+
9

2
− 4b+

(
−N

2
+ s2 + E− + 2M2

)
. (4.18)



SUBLATTICE-FREE LATTICE POLYGONS 25

Let us estimate the term in parentheses on the right-hand side. From (4.11)
and (4.15) we get

N ≥ E+ +
s2

2 + s2

2
, E− ≤ E+ − (1 + b)M2 ≤ E+ −M2,

whence

−N
2

+ s2 + E− + 2M2 ≤
E+

2
− s2

2 − 3s2

4
+M2. (4.19)

It follows from assertion (iv) of Lemma 4.2 that the vertex (E+, E) of P
lies in the half-plane x1 ≥ n, so using assertion (i) and (4.3), we get E+ ≤
E − 1 ≤ 2n− 2. Moreover, M2 ≤ 1 and s2

2− 3s2 ≥ −2, since s2 is an integer,
so from (4.19) we obtain

−N
2

+ s2 + E− + 2M2 ≤ n+
1

2
.

Combining this with (4.18), we get

2N ≤ 4n+ 5− 4b.

Dividing both sides by 2 and taking floor, we obtain (4.7).

Lemma 4.4. Suppose that P is a type IVn N-gon, the segment [(0,−n), (n, 0)]
splits P , the vertices of P belong to a (1,m)-lattice Γ, where m divides n,
and Γ has small e1-step and large e2-step greater than or equal to 2. Then

N ≤ 2n− 2.

Proof : Applying Proposition 2.7 to the basis (−e1, e2) and the slope Q1 and
to the basis (−e1,−e2) and the slope Q2, we obtain

2N1 ≤ E − S+, (4.20)

2N2 ≤ E −N+. (4.21)

Applying Theorem 2.13 to the frame ((n, n), e1,−e2) and the slope Q3 and
to the frame (0, e1,−e2) and the slope Q4, we obtain

2N3 ≤ N− −W+ − 1, (4.22)

2N4 ≤ S− +W− − 1. (4.23)
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By Proposition 2.17,

S+ − S− ≥ 2M1, (4.24)

E+ − E− ≥ 2M2, (4.25)

N+ −N− ≥ 2M3, (4.26)

W+ −W− ≥ 2M4. (4.27)

Observe that nZ2 is a sublattice of Γ. Indeed, nZ2 is a sublattice of Z×mZ,
since m divides n, and the unimodular transformation mapping Z×mZ onto
Γ maps nZ2 onto itself. Thus, the point (2n, 0) belongs to Γ. So does the
vertex (E , E−). Therefore, the small e1-step of Γ divides the difference 2n−E ,
which is positive by (4.3). Consequently, we obtain

E ≤ 2n− 2. (4.28)

Now we use the above inequalities to estimate N . Summing (4.20)–(4.23)
and subsequently using (4.24)–(4.27) and (4.28), we obtain

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk ≤ 2E + (2M1 − (S+ − S−))

+ (2M3 − (N+ −N−)) + (2M4 − (W+ −W−)) + 2(M2 − 1)

≤ 2E ≤ 2(2n− 2),

and the lemma follows.

Lemma 4.5. Let n ≥ 3 be an integer and Q be a slope with N edges with
respect to the basis (−e1, e2). Suppose that the vertices of Q belong to a
lattice Γ spanned by e1 +ae2 and ne2, where a is an integer. Suppose that the
frame ((n, 0);−e1, e2) splits Q, the endpoints v = (v1, v2) and w = (w1, w2)
of Q satisfy

v1 < n, v2 < 0, n < w1 ≤ 2n− 1, w2 > 0, (4.29)

the intersection of Q with the half-plane x1 ≥ n lies in the slab

−n < x2 − x1 < 0, (4.30)

and Q has a vertex u = (u1, u2) satisfying

u2 − u1 ≤ −n− 1. (4.31)

Then

2N ≤ 2n− 1− v1. (4.32)
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Proof : Let v0 = v, v1, . . . , vN = w be consecutive vertices of Q, εi =
[vi−1,vi] and ai = vi− vi−1 be the edges and their associated vectors, where
i = 1, . . . , N , and let vi = (vi1, vi2), ai = (ai1, ai2). Of course, vij and aij are
integers. It follows from the definition of a slope that

ai1 ≥ 1 (i = 1, . . . , N); (4.33)

ai2 ≥ 1 (i = 1, . . . , N); (4.34)
a12

a11
<
a22

a21
< · · · < aN2

aN1
; (4.35)

v01 < v11 < · · · < vN1. (4.36)

Set
E(j) = {εi : ai1 = j}, N (j) = |E(j)| (j = 1, 2, . . . ).

Of course, E(j) 6= ∅ and N (j) 6= 0 for finitely many j. As the vectors ai are
distinct, we have

N =
∞∑
j=1

N (j), (4.37)

w1 − v1 =
N∑
i=1

ai1 =
∞∑
j=1

jN (j). (4.38)

We claim that
N (1) ≤ 1. (4.39)

It follows from (4.29) that vN1 ≥ n + 1 and taking into account (4.33), we
also obtain vN−1,1 = vN1 − aN1 ≤ vN − 1. Therefore, there exists a point
y = (y1, y2) ∈ εN such that y1 = vN1 − 1 ≥ n. Then

aN2

aN1
=
vN2 − y2

vN1 − y1
= vN2 − y2.

As the points vN and y lie in the half-plane x1 ≥ n, they satisfy

−n < y2 − y1 < 0, −n < vN2 − vN1 < 0,

whence vN2 ≤ vN1 − 1 and
aN2

aN1
< (vN1 − 1)− (y1 − n) = n+ (vN1 − y1)− 1 = n.

Thus, according to (4.35),

ai2 =
ai2
ai1

< n (εi ∈ E(1)). (4.40)
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As ai ∈ Γ, it is easily seen that possible values for ai corresponding to
εi ∈ E(1) belong to the set {e1 + (a + pn)e2 : p ∈ Z}. Only one vector of
this set satisfies both (4.34) and (4.40). As the vectors ai are distinct, we
conclude that E(1) contains at most one edge, and (4.33) follows.

Having established all these auxiliary facts, we start proving (4.32). As-
suming the converse, we have

2n− v1 − 2N ≤ 0,

or, equivalently,

(2n− 1− w1) + (1−N (1)) +
∞∑
j=3

(j − 2)N (j) ≤ 0,

where we have used (4.37) and (4.38). In view of (4.29) and (4.40), the three
summands on the left-hand side are nonnegative. Consequently, we obtain

w1 = 2n− 1, (4.41)

N (1) = 1, (4.42)

N (j) = 0, (j = 3, 4, . . .) (4.43)

We must have E(2) 6= ∅, for otherwise N (2) = 0 and (4.42), (4.43), and (4.38)
would give w1 − v1 = 1, which together with (4.41) implies

v1 = w1 − 1 = 2n− 2 > n,

in contradiction to (4.29). Set

i′ = max{i : εi ∈ E(2)}.
Let us show that if

vi′−1,1 ≥ n, (4.44)

then

ai2 ≤ n (εi ∈ E(2)). (4.45)

Indeed, if (4.44) holds, according to (4.36) we have n ≤ vi′−1,1 < vi′1, so the
vertices vi′−1 and vi′ belong to the slab (4.30), whence

−n+ 1 ≤ vi′−1,2 − vi′−1,1 ≤ −1,

−n+ 1 ≤ vi′2 − vi′1 ≤ −1,
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Then

ai′2
ai′1

=
vi′2 − vi′−1,2

2
≤ (vi′1 − 1)− (vi′−1,1 − n+ 1)

2
=
ai′1 − 2 + n

2
=
n

2
.

This and (4.35) imply (4.45).
Assume that n ≥ 4. Let us show that in this case

N (2) = 1. (4.46)

To this end let us estimate vi′−1,1. If εN ∈ E(2), we have i′ = N and by virtue
of (4.41) we get

vi′−1,1 = vN1 − aN1 = 2n− 3 ≥ n.

Otherwise, εN ∈ E(1), then εN−1 ∈ E(2), since |E(1)| = 1. Moreover, i′ = N−1
and

vN−1,1 = vN1 − aN1 = 2n− 2,

vi′−1,1 = vN−1,1 − aN−1,1 = 2n− 4 ≥ n.

Thus, in any case we have (4.44), so (4.45) holds.
As the vectors ai associated with edges from E(2) belong to Γ, it is easily

seen that they have the form ai = (2, 2a+pn), where p is an integer. Clearly,
only one vector of this form satisfies 1 ≤ ai2 ≤ n and as the vectors ai are
distinct, we see that E(2) contains at most one edge. Thus, (4.46) is proved.

From (4.38), (4.42), (4.43), and (4.46) it follows that

w1 − v1 = 3,

and according to (4.41),

v1 = w1 − 3 = 2n− 4 ≥ n,

which contradicts (4.29). The contradiction proves the lemma for n ≥ 4.
Now assume that n = 3. Let us prove the following assertions:

(a) The numbers ai2/ai1 (i = 1, . . . , N) are positive integers or half-integers
not exceeding 2.

(b) The numbers ai2/ai1 (i = 1, . . . , N − 1) are positive integers or half-
integers not exceeding 3/2.

Let us show (a). Fix i ∈ {1, . . . , N}. If εi ∈ E(1), then ai2/ai1 = ai2 is
a positive integer (according to (4.33)) not exceeding 2 according to (4.40).
Assume that εi ∈ E(2), then ai2/ai1 = ai2/2 is positive and either an integer or
a half-integer. Let us show that it cannot be greater then 2. If εN ∈ E(1), by
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the above we have aN2/aN1 ≤ 2 and the required estimate follows from (4.35).
On the other hand, if εN ∈ E(2), then i′ = N and by virtue of (4.41) we have

vi′−1,1 = vN1 − 2 = 3,

i. e. (4.44) holds, and the required estimate follows from (4.45). Assertion (a)
is proved.

Assertion (b) is a corollary of (a), given that by virtue of (4.35), the ratio
ai2/ai1 cannot attain its maximum at i < N .

By hypothesis, the slope Q has a vertex (u1, u2) satisfying u2 < u1 − n =
u1 − 3. Set

i0 = max{i : vi2 < vi1 − 3}.
Observe that a priori i0 < N . Then we have vi0+1,2 ≥ vi0+1,1−3 and therefore,

ai0+1,2

ai0+1,1
=
vi0+1,2 − vi0,2

ai0+1,1
>

(vi0+1,1 − 3)− (vi0,1 − 3)

ai0+1,1

=
vi0+1,1 − vi0,1

ai0+1,1
= 1.

We must have vi0 ≤ 2, because otherwise we would have vi0 ≥ 3 = n, and by
hypothesis, vi02 < vi01 − 3, contrary to the definition of i0. Thus,

vi0+1,1 = vi01 + ai0+1,1 ≤ 4.

This and (4.41) imply i0 + 1 < N . Then assertion (b) and the inequality
ai0+1,2/ai0+1,1 > 1 proved above yield ai0+1,2/ai0+1,1 = 3/2, which is only
possible if ai0+1 = (2, 3).

Let εi1 ∈ E(1), then by assertion (a), we have either ai1 = (1, 1) or ai1 =
(1, 2). By Proposition 2.1, in both cases the vectors ai1 and ai0+1 form a basis
of Z2, which is impossible, since they belong to its proper sublattice Γ. The
contradiction proves the lemma in the case n = 3.

Lemma 4.6. Suppose that P is a type IVn N-gon, the segment [(0,−n), (n, 0)]
splits P , and the vertices of P belong to a lattice Γ ⊂ Z2 having the basis
(e1 + ae2, ne2), 1 ≤ a ≤ n− 1. Then

N ≤ 2n− 2. (4.47)

Proof : Lemma 4.2 ensures that we can apply Lemma 4.5 to the slope Q1 and
obtain

2N1 ≤ 2n− 1− S+. (4.48)
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Set f1 = −e1, f2 = −e2, so that Q2 is a slope with respect to (f1, f2). By
hypothesis, the vectors b1 = −f1 − af2, b2 = −nf2 form a basis of Γ. By
Proposition 2.1, the vectors f1 − (n − a)f2 = −b1 + b2 and nf2 = −b2 form
a basis of Γ as well, and as 1 ≤ n− a ≤ n− 1, we apply Proposition 2.7 and
conclude that there exists an integer s2 such that

2N2 ≤ E −N+ + s2, (4.49)

N − E+ ≥
2(n− a) + (s2 − 1)n

2
s2. (4.50)

As n− a ≥ 1, (4.50) implies

N − E+ ≥
2 + (s2 − 1)n

2
s2. (4.51)

Applying Theorem 2.13 to the slope Q3 and the frame ((n, n), e1,−e2) and
to the slope Q4 and the frame (0; e2, e1), we obtain

2N3 ≤ N− −W+ − 1, (4.52)

2N4 ≤ S− +W− − 1. (4.53)

By assertion (vi) of Lemma 4.2, the points (E , E−), (E , E+), and (N+,N )
lie in the half-plane x1 ≥ n, so by assertion (v) of the same lemma we have

−n+ 1 ≤ E− − E ≤ −1, (4.54)

−n+ 1 ≤ E+ − E ≤ −1, (4.55)

−n+ 1 ≤ N −N+ ≤ −1. (4.56)

From (4.3) we also have
E ≤ 2n− 1. (4.57)

It is clear that e1 /∈ Γ, so the large e1-step of Γ cannot be less then 2. It is
easily seen that the large e2-step of Γ equals n. By Proposition 2.17, we get

S+ − S− ≥ 2M1, (4.58)

E+ − E− ≥ nM1, (4.59)

N+ −N− ≥ 2M3, (4.60)

W+ −W− ≥ nM4. (4.61)

Now we deduce a few implications of the inequalities.
Inequalities (4.54) and (4.55) yield

E+ − E− ≤ n− 2.
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This and (4.59) give
nM2 ≤ n− 2,

which can only hold if
M2 = 0. (4.62)

Let us estimate the difference N −E+ from above using (4.55), (4.56), and
the evident inequality E ≥ N+. We have:

N − E+ ≤ (N+ − 1)− (E − n+ 1) = n− 2− (E − N+) ≤ n− 2.

Comparing this with (4.51), we obtain

2 + n(s2 − 1)

2
s2 ≤ n− 2,

which can only hold if
s2 ≤ 1.

This and (4.49) give
2N2 ≤ E −N+ + 1. (4.63)

Now we estimate N by means of (4.48), (4.52), (4.53), (4.57), (4.58), and
(4.60)–(4.63). We have:

2N =
4∑

k=1

2Nk +
4∑

k=1

2Mk ≤ 2n− 2 + E + (2M1 − (S+ − S−))

+ (2M3 − (N+ −N−)) + (nM4 − (W+ −W−))− (n− 2)M4

≤ 4n− 3.

Dividing by 2 and taking floor, we obtain (4.47).

Now we are in position to prove Theorem 1.4 for type IVn polygons split
by the segment [(0,−n), (n, 0)].

Lemma 4.7. Theorem 1.4 holds for type IVn polygons split by the segment
[(0,−n), (n, 0)].

Proof : Let P be a N -gon satisfying the hypothesis of the lemma.
Lemma 4.3 grants the estimate

N ≤ 2n+ 2.

Assume that n is even and that the vertices of P belong to a (1, n/2)-lattice
Γ. Let us show that

N ≤ 2n. (4.64)
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Let s1 be the small e1-step of Γ and S2 be its large e2-step. By Proposi-
tion 2.3, we have

s1S2 =
n

2
. (4.65)

First, assume that s1 = 1. Then by Proposition 2.4, Γ admits a basis of
the form (e1 + ae2, (n/2)e2), where 0 ≤ a ≤ n/2− 1. If a ≥ 1, the estimate
(4.64) follows from Lemma 4.3. Assume that a = 0. It is easily seen that in
this case all the points of Γ lie on the lines x2 = (n/2)r, where r ∈ Z. In
particular, inequalities (4.4) and (4.6) become

N =
3n

2
, W+ =

n

2
.

Consider the vertices w1 = (N+, 3n/2) and w2 = (W , n/2) of P . By (4.3)
and (4.5), their first components satisfy

n < N+ < 2n, W < 0.

Taking into account that P has such vertices as well as a common point with
the segment [(n, 0), (n, n)], it is not hard to check that P and the lines

x2 =
1

2
x1 +

n

2
, x1 = n

satisfy the hypothesis of Lemma 2.5. Consequently, P contains the point
(n, n) ∈ nZ2, which is impossible. Thus, we cannot have a = 0 and estimate
(4.12) is proved for the case s1 = 1.

Now assume that s1 ≥ 2. If additionally S2 ≥ 2, Lemma 4.4 provides
an even stronger estimate than (4.64). Assume that S2 = 1, then (4.65)
gives s1 = n/2. Consequently, all the points of Γ belonging to the slab
−n+ 1 ≤ x1 ≤ 2n− 1, which contains P , lie on the five lines

x1 =
nr

2
(r = 0,±1,±2). (4.66)

Thus, P has no more than 10 vertices, and (4.64) is true for n ≥ 6 (remember
that we are considering even n at the moment). Assume that n = 4. The
vertex (N+,N ) lies on one of the lines (4.66), so taking into account (4.3),
we see that necessarily N+ = 6. Inequalities (4.3) and (4.4) imply that

4 < N ≤ N+ − 1 = 5,

so necessarily N = 5 and u1 = (6, 5) is a vertex of P . Likewise, (4.5) can
only hold if W = −2. Consequently, u2 = (−2,W+) is a vertex of P , and
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according to (4.6) we have

1 ≤ W+ ≤ 3.

Given that P has the vertices u1 and u2 with said properties as well as a
common point with the segment

[(n, 0), (n, n)] = [(4, 0), (4, 4)],

it is not hard to check that P and the lines

x2 =
1

2
x1 + 2, x1 = 4

satisfy the hypotheses of Lemma 2.5. Consequently, P contains the point
(4, 4) ∈ 4Z2 = nZ2, which is impossible. The contradiction means that
the vertices of a type IV4 polygon cannot belong to a lattice Γ having said
properties.

Thus, (4.64) holds for any (1, n/2)-lattice Γ.
Finally, suppose that the vertices of P belong to a (1, n)-lattice Γ (now

there is no need to assume that n is even). Let us prove that

N ≤ 2n− 2. (4.67)

Note that as P has the vertex (N+,N ) satisfying (4.3) and (4.4), it is clear
that the both the small e1-step and the small e2-step of Γ are not equal to n.
By Proposition 2.3, the product of the small e1-step and the large e2-step
of Γ equals n, so Γ has large e2-step different from 1. Likewise, Γ has large
e2-step different from 1 as well.

Suppose that the small e1-step of Γ equals 1. Then by Proposition 2.4
the lattice admits a basis of the form (e1 + ae2, ne2), where 0 ≤ a ≤ n − 1.
The equality a = 0 is impossible, as the large e1-step of the lattece is not 1.
Consequently, we can apply Lemma 4.6, which gives (4.67).

Otherwise, the small e1-step of Γ is greater than 1, and as its large e2-step
is greater than 1 as well, we can apply Lemma 4.4 and obtain (4.67).

Proof of Theorem 1.4 for type IVn polygons. Let P be an arbitrary type IVn

polygon. If the segment [(0,−n), (n, 0)] splits it, we complete the proof by
evoking Lemma 4.7. Otherwise it suffices to show that there is an affine
automorphism of Z2 mapping P on a type IIn or a type IIIn polygon, as the
required estimates have already been proved for those kinds of polygons.

Define the automorphism ϕ by

ϕ(x1, x2) = (−x1 + x2 + n, x2).
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By definition, the segments [0, (n, 0)] and [(n, n), (2n, n)] split the poly-
gon P , and so does [0, (n, n)] by virtue of Lemma 4.1. Consequently, the im-
ages of those segments under ϕ—i. e., the segments [(n, 0),0], [(n, n), (0, n)],
[(n, n), (n, 2n)]—split ϕ(P ). If P is also split by [(n, 0), (2n, n)], then ϕ(P ) is
split by [0, (0, n)], and consequently, ϕ(P ) is a type IIn polygon. Otherwise,
the line x1 − x2 = n does not split P , so the line x1 = 0 does not split ϕ(P )
either, and the latter is a type IIIn polygon.

5. Type V and Va polygons
5.1. Main results. In this section we prove that for any type Vn polygon
there exists an affine automorphism of nZ2 mapping it on a type IIIn or a
type Van polygon, the latter to be defined presently. We find certain bounds
for the number of vertices of type Va polygons, which are not sufficient,
however, to prove Theorem 1.4 for this class of polygons. We revisit type Va
polygons in Section 7, establishing the missing estimate and completing the
proof of Theorem 1.4.

Fix an integer n ≥ 3.
We will denote by ∆n the triangle with the vertices 0, (2n, 0), and (0, 2n). It

is easy to check that ∆n is given by the following system of linear inequalities: x1 ≥ 0,
x2 ≥ 0,

x1 + x2 ≤ 2n.
(5.1)

Definition 5.1. We say that P is a type Van polygon, if it is free of nZ2-points
and lies in ∆n.

Two following lemmas are the main results of the section.

Lemma 5.2. For any type Vn polygon there exists an affine automorphism
of nZ2 mapping it onto a type IIIn or a type Van polygon.

The proof is given in Section 5.2.

Lemma 5.3. Suppose that P is a type Van N-gon; then

N ≤ 2n+ 2,

and if the vertices of P belong to a (1, n)-lattice, then

N ≤ 2n− 2.

The proof is given in Section 5.3.
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5.2. The lift. Let P be an integer polygon free of nZ2-points, where n ≥ 3
is an integer. Assume that the segments [0, (−n, 0)] and [0, (0, n)] split P .
In particular, P can be any type Vn polygon. Given a ∈ Z, consider the
unimodular transformation

Aa =

(
1 0
−a 1

)
and the polygon Pa = AaP .

Lemma 5.4. The set of such a ∈ Z that Pa is split by the segment [0, (−n, 0)]
is nonempty and has a nonnegative maximal element.

Proof : Obviously, P0 = P , so the set in question contains 0 and its maximal
element, if it exists, is nonnegative. To prove the lemma, it remains to show
that the set is bounded from above, i. e. that the segment [0, (−n, 0)] does
not split the polygon Pa for large a.

As P does not contain the point 0 ∈ nZ2, there exists a linear form
`(x1, x2) = α1x1 + α2x2 such that

`(x) > 0, x ∈ P. (5.2)

Choosing points x̌ ∈ P∩[0, (0, n)] and x̂ ∈ P∩[0, (−n, 0)], so that x̌ = (0, x̌2),
x̌2 > 0, and x̂ = (x̂1, 0), x̂1 < 0 and computing `(x̌) and `(x̂), we see that in
view of (5.2),

α1 < 0, α2 > 0. (5.3)

Fix an integer a such that

a ≥ −α1

α2
. (5.4)

Consider the linear form

˜̀(x̃1, x̃2) = (α1 + aα2)x̃1 + α2x̃2.

It is easy to check that `(x) = ˜̀(x̃) whenever x = A−1
a x̃. In particular, if

x̃ ∈ Pa, we have x = A−1
a0

x̃ ∈ P , and according to (5.2), we obtain

˜̀(x̃) > 0, x̃ ∈ Pa. (5.5)

On the other hand, if x̃ = (x̃1, 0) ∈ [0, (−n, 0)], then x̃1 ≤ 0, and

˜̀(x̃) = (α1 + aα2)x̃1 < 0, x̃ ∈ [0, (−n, 0)] (5.6)

according to the choice of a. Comparing (5.5) and (5.7), we see that Pa

has no common points with the segment [0, (−n, 0)]. This is true for any a
satisfying (5.4), so the set in question is bounded from above, as claimed.
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Let a0 ≥ 0 be the greatest integer such that Pa0 is split by the segment

[0, (−n, 0)]. We say that the polygon P̂ = Pa0 is the lift of P and that Aa0 is
the lift transformation of P .

Lemma 5.5. Let that P̂ be the lift of P ; then the segment [0, (0, n)] splits P̂
and the segment [0, (−n,−n)] does not. If the segment [(0, n), (n, 2n)] does

not split P , it does not split P̂ either.

Proof : The line x1 = 0 is invariant under the lift transformation and since
the segment [0, (0, n)] = Aa0[0, (0, n)] splits P , it splits Aa0P = P̂ as well.

By the definition of a0, the segment [0, (−n, 0)] does not split the polygon

Aa0+1P = A1P̂ . Consequently, the segment [0, (−n,−n)] = A−1
1 [0, (−n, 0)]

does not split P̂ , as claimed.
Suppose that the segment [(0, n), (n, 2n)] does not split P . The the inter-

section P ∩ {0 ≤ x1 ≤ n} lies in the half-plane x2 ≤ x1 + n. It suffices to

check that the intersection P̂ ∩ {0 ≤ x1 ≤ n} lies in the same half-plane.

Indeed, let (x̂1, x̂2) ∈ P̂ and 0 ≤ x̂1 ≤ n; then x̂1 = x1 and x̂2 = −a0x + x2

for some (x1, x2) ∈ P ∩ {0 ≤ x1 ≤ n}, so x̂2 ≤ x2 ≤ x1 + n = x̂1 + n, as
claimed.

Lemma 5.6. Suppose that P̂ is the lift of P ; then S(P̂ ) ≥ S(P ) and S(P̂ ) =

S(P ) if and only if P = P̂ .

Proof : If a0 = 0, we have P = P̂ , so S(P̂ ) = S(P ). It remains to show that

a0 ≥ 1 (5.7)

implies

S(P̂ ) > S(P ). (5.8)

As the segments [0, (−n, 0)] and [0, (0, n)] split both P and P̂ , by Proposi-

tion 2.16 the frame (0;−e1, e2) splits the slopes Q1(P ) and Q1(P̂ ), whence

S+(P ) ≤ −1, S+(P̂ ) ≤ −1.

Thus,

S(P ) = min{x2 : (x1, x2) ∈ P, x1 ≤ −1},

S(P̂ ) = min{x2 : (x1, x2) ∈ P̂ , x1 ≤ −1}.
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Using these representations and (5.7), we get

S(P̂ ) = min{x̂2 : (x̂1, x̂2) ∈ P̂ , x̂1 ≤ −1}
= min{−a0x1 + x2 : (x1, x2) ∈ P, x1 ≤ −1}
≥ min{x2 + 1: (x1, x2) ∈ P, x1 ≤ −1} = S(P ) + 1,

so (5.8) is proved.

Lemma 5.7. Let P be a type Vn polygon and P̂ be its lift. Then either P̂ is
a type Vn polygon, or the translation of P̂ by the vector (n, 0) is a type IIIn
polygon.

Proof : Let T be the translation by the vector (n, 0). Note that P̂ and T P̂
are obtained by applying affine automorphisms os nZ2 to P , so they are free
of points of this lattice.

The polygon P̂ is split by the segments [0, (0, n)] (by Lemma 5.5) and
[0, (−n, 0)] (by the definition of lift), but not by the line x1 = −n (because
by the definition of a type Vn polygon this line does not split P and it is
invariant under the lift transformation). Assume for a moment that the

segment [(0, n), (−n, n)] splits P̂ . Then the segments

[0, (n, 0)] = T [(−n, 0),0],

[(n, 0), (n, n)] = T [0, (0, n)],

[(0, n), (n, n)] = T [(−n, n), (0, n)].

split TP , while the line x1 = 0, being the image of x1 = −n under T , does
not. Consequently, TP is a type IIIn polygon.

It remains to show that if the segment [(0, n), (−n, n)] does not split P̂ , the
latter is a type Vn polygon. We know already that the segments [0, (−n, 0)]

and [0, (0, n)] split P̂ , while the line x1 = −n does not, so we only need

to show that the line x2 = n does not split P̂ either, or, equivalently, that
N (P̂ ) ≤ n.

As P̂ lies in the half-plane x1 ≥ −n and the segment [(−n, n), (0, n)] does

not split P̂ , it is clear that

max{x2 : (x1, x2) ∈ P̂ , x1 ≤ 0} ≤ n. (5.9)
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On the other hand,

max{x2 : (x1, x2) ∈ P̂ , x1 ≥ 0}
= max{−a0x

′
1 + x′2 : (x′1, x

′
2) ∈ P, x1 ≤ 0}

≤ max{x′2 : (x′1, x
′
2) ∈ P, x1 ≤ 0} ≤ N (P ) ≤ n. (5.10)

Estimates (5.9) and (5.10) imply that N (P̂ ) ≤ n, as claimed.

Proof of Lemma 5.2: Take a type Vn polygon P0, and let P̂0 be its lift. If
the translation by the vector (n, 0) maps P̂0 onto a type IIIn polygon, we are

done. Otherwise, by Lemma 5.7, P̂0 is a type Vn polygon. Let P ′0 be the

reflection of P̂0 about the line x1 +x2 = 0. It is easy to check that it is again
a type Vn polygon. Let P̂ ′0 be its lift. As before, either the translation of P̂ ′0
by (n, 0) is a type IIIn polygon and we are done, or P̂ ′0 is a type Vn polygon,

in which case we define the type Vn polygon P1 to be the reflection of P̂ ′0
about the line x1 + x2 = 0.

Iterating this procedure, we either find an affine automorphism of nZ2

mapping P0 onto a type IIIn polygon, or construct the sequences of type Vn

polygons {Pk}, {P̂k}, {P ′k}, and {P̂ ′k}. In the latter case consider the sequence
of integers {S(Pk)}∞k=0. As Pk are type Vn polygons, it is easily seen that the
the members of this sequence are negative (this follows e. g. from the fact
that by Proposition 2.16 the frame (0;−e1,−e2) splits any type Vn polygon).
Observe that the sequence increases. Indeed, it is easy to check that

S(Pk+1) = −E(P̂ ′k) = −E(P ′k) = S(P̂k);

furthermore, by Lemma 5.6 we have

S(P̂k) ≥ S(Pk).

Thus, we see that the sequence {S(Pk)} increases; moreover, we have S(Pk+1) =

S(Pk) if and only if S(P̂k) = S(Pk), which by Lemma 5.6 is equivalent to

P̂k = Pk.
The sequence of integers {S(Pk)} increases and is bounded from above, so

it stabilises. We show in the same way that the sequence {S(P ′k)} stabilises,

too. Consequently, there exists k0 such that Pk0 = P̂k0 and P ′k0 = P̂ ′k0. Then

also Pk0 = Pk0+1. Set P̂ = Pk0.
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We claim that P̂ lies in the triangle ∆ having the vertices (−n,−n),
(−n, n), and (n, n), which is the solution set of the system x1 ≥ −n,

x2 ≤ n,
x1 − x2 ≤ 0.

Since P̂ is a type Vn polygon, it lies in the angle{
x1 ≥ −n,
x2 ≤ n.

The intersection of the line x1 − x2 = 0 with this angle is the segment
[(−n,−n), (n, n)], so we only need to show that neither of the segments

I1 = [(−n,−n),0] and I2 = [0, (n, n)] splits P̂ . It the case of the former

this is true by Lemma 5.5, as P̂ is the lift of Pk0. Likewise, I1 does not split

P̂ ′k0, so I2, being the reflection of I1 about the line x1 +x2 = 0, does not split

Pk0+1 = P̂ , as claimed.

By construction, P̂ = BP , where B is a unimodular transformation. The
affine automorphism of nZ2 defined by

ψ(x1, x2) = (x1 + n,−x2 + n)

maps ∆ onto ∆n. Consequently, the polygon ψ(BP ) lies in ∆n, i. e. ϕ = ψB
is the required automorphism.

5.3. Bounds on the number of vertices of type Van polygons. Here
we establish a few estimates of the number of vertices of type Van polygons
and eventually prove Lemma 5.3.

Lemma 5.8. Suppose that P is a type Van polygon, the frame ((n, n);−e2,−e1)
splits the slope Q2 and forms small angle with it and either

S+ ≤ n (5.11)

or

S+ ≥ n+ 1, W+ ≤ n. (5.12)

Then

N ≤ 2n+ 2. (5.13)
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Proof : As Q1 is a slope with respect to the basis (e2,−e1), by Proposition 2.7
there exists an integer s1 such that

2N1 ≤ E− − S + s1, (5.14)

E − S+ ≥
1

2
s1(s1 + 1), (5.15)

0 ≤ s1 ≤ N1. (5.16)

The same proposition applied to Q3 and (e1,−e2) ensures the existence of
an integer s3 such that

2N3 ≤ N− −W + s3, (5.17)

N −W+ ≥
1

2
s3(s3 + 1), (5.18)

0 ≤ s3 ≤ N3. (5.19)

As Q4 is a slope with respect to the bases (e1, e2) and (e2, e1), by the same
proposition there exist integers s and s′ such that

2N4 ≤ S− −W + s, (5.20)

W− − S ≥
1

2
s(s+ 1), (5.21)

0 ≤ s ≤ N4, (5.22)

2N4 ≤ W− − S + s′, (5.23)

S− −W ≥
1

2
s′(s′ + 1), (5.24)

0 ≤ s′ ≤ N4. (5.25)

The frame ((n, n);−e2,−e1) forms small angle withQ2, so by Corollary 2.12

2N2 ≤ 2n−N+ − E+ −
⌈E − n

2

⌉
+ 1. (5.26)

By Proposition 2.17,

S+ − S− ≥M1, (5.27)

E+ − E− ≥M2, (5.28)

N+ −N− ≥M3, (5.29)

W+ −W− ≥M4. (5.30)
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Moreover, as the points of P satisfy (5.1), we have

W ≥ 0, (5.31)

S ≥ 0. (5.32)

Assume that (5.13) does not hold. Then

2N ≥ 4n+ 6. (5.33)

First, assume that (5.11) holds.
Let us estimate 2N from above. First, estimate the sum 2N1 + 2N2 + 2M2.

Using (5.14), (5.26), (5.28), and (5.32), we have

2N1 + 2N2 + 2M2 ≤ 2n+ s1 −N+ +M2 −
⌈E − n

2

⌉
+ 1. (5.34)

Estimating the ceiling by means of (5.15), we obtain:⌈E − n
2

⌉
≥ −n+ S+ + s1 +

⌈
n− S+

2
+

1

4
(s2

1 − 3s1)

⌉
. (5.35)

It follows from (5.11) that (n− S+)/2 ≥ 0, and because s1 is an integer, we
have 1/4(s2

1 − 3s1) ≥ −1/2, so we get⌈
n− S+

2
+

1

4
(s2

1 − 3s1)

⌉
≥
⌈
−1

2

⌉
= 0.

Combining this with (5.35), we get⌈E − n
2

⌉
≥ −n+ S+ + s1,

and further combining this with (5.34) and the inequality M2 ≤ 1, we obtain

2N1 + 2N2 + 2M2 = 3n−N+ − S+ +M2 + 1 ≤ 3n−N+ − S+ + 2.

By means of the last estimate and (5.17), (5.20), (5.27), (5.29), and (5.31),
we obtain

2N = (2N1 + 2N2 + 2M2) + 2N3 + 2N4 + 2M1 + 2M3 + 2M4

≤ (3n−N+−S+ + 2) + (N−−W + s3) + (S−−W + s) + 2M1 + 2M3 + 2M4

≤ 3n+ 2 + s3 + s+M1 +M3 + 2M4 ≤ 3n+ 3 + s3 + s+M3 + 2M4.

Comparing this estimate with (5.33), we get

3n+ 3 + s3 + s+M3 + 2M4 ≥ 4n+ 6,
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whence

n ≤ s3 + s+M3 + 2M4 − 3. (5.36)

As M ⊂ ∆n, we have

N+ +N ≤ 2n.

Let us estimate the terms on the left-hand side. Using (5.31), (5.17), (5.19),
and (5.29), we get

N+ =W + (N− −W) + (N+ −N−) ≥ 2N3 − s3 +M3 ≥ s3 +M3.

Using (5.32), (5.21), (5.30), and (5.18), we obtain

N = S+(W−−S)+(W+−W−)+(N −W+) ≥ 1

2
s(s+1)+M4 +

1

2
s3(s3 +1).

Thus,

(s3 +M3) +

(
1

2
s(s+ 1) +M4 +

1

2
s3(s3 + 1)

)
≤ 2n,

or, equivalently,

1

2
(s2

3 + 3s3) +
1

2
(s2 + s) +M3 +M4 ≤ 2n. (5.37)

Now we use (5.36) to estimate n on the right-hand side of (5.37):

1

2
(s2

3 + 3s3) +
1

2
(s2 + s) +M3 +M4 ≤ 2(s3 + s+M3 + 3M4 − 3).

Hence
1

2
(s2

3 − s3) +
1

2
(s2 − 3s) ≤M3 + 3M4 − 6 ≤ −2,

so

s2
3 − s3 + s2 − 3s ≤ −4.

Completing the squares, we obtain a contradiction:(
s3 −

1

2

)2

+

(
s− 3

2

)2

≤ −3

2
,

Thus, we have proved (5.13) provided that (5.11) holds.
Now assume that (5.12) holds.
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Let us estimate 2N from above starting with the sum 2N1 + 2N2 + 2M1 +
2M2. Using (5.14), (5.26), (5.28), and (5.15), we obtain

2N1 + 2N2 + 2M1 + 2M2

≤ (E− − S + s1) +

(
2n−N+ − E+ −

⌈E − n
2

⌉
+ 1

)
+ 2M1 + 2M2

≤ 2n−N+ − S + 2M1 +M2 + 1−
⌈S+ − n

2
+
s2

1 − 3s1

4

⌉
Estimating (s2

1 − 3s1)/4 ≥ −1/2, we get

2N1 + 2N2 + 2M1 + 2M2

≤ 2n−N+ − S + 2M1 +M2 + 1−
⌈S+ − n− 1

2

⌉
= 2n−N+ − S + 2M1 +M2 + 1−

⌊S+ − n
2

⌋
.

Write the estimate in the form

2N1 + 2N2 + 2M1 + 2M2

≤ 2n−N+ +M1 +M2 + 1−
(⌊S+ − n

2

⌋
+ S −M1

)
. (5.38)

Let us show that ⌊S+ − n
2

⌋
+ S −M1 ≥ 0. (5.39)

Assume that M1 = 1. According to (5.12), we have either S+ ≥ n + 2 or
S+ = n+ 1. In the former case we use (5.32) and obtain (5.39). In the latter
case by (5.27) we have S− ≤ S+−M1 = n, so the edge [(S−,S), (S+,S)] of P
contains the point (n,S). Thus, we cannot have S = 0, since P is free of
points of nZ2. Thus, we must have S ≥ 1, and (5.39) follows.

If M1 = 0, inequality (5.39) follows from (5.12) and (5.32).
Thus, we have proved (5.39) for all possible cases. Combining it with (5.38),

we obtain

2N1 + 2N2 + 2M1 + 2M2 ≤ 2n−N+ +M1 +M2 + 1.
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Now estimate 2N using the last inequality and (5.17), (5.23), (5.29), (5.30),
(5.31), and (5.32):

2N = (2N1 + 2N2 + 2M1 + 2M2) + 2N3 + 2N4 + 2M3 + 2M4

≤ (2n−N+ +M1 +M2 + 1) + (N− −W + s3)

+ (W− − S + s′) + 2M3 + 2M4

≤ 2n+ 1 + s3 + s′ + (M3 − (N+ −N−))

+ (W− +M4) +M1 +M2 +M3 +M4

≤ 2n+ 1 + s3 + s′ +W+ +M1 +M2 +M3 +M4.

Comparing this estimate with (5.33) we obtain

W+ ≥ −s3 − s′ + 2n+ 5−M1 −M2 −M3 −M4. (5.40)

Together with (5.12) this implies

n ≤ s3 + s′ − 5 +M1 +M2 +M3 +M4. (5.41)

The triangle ∆n lies in the half-plane x1 ≤ 2n, so we have

S+ ≤ 2n. (5.42)

We can estimate the left-hand side by means of (5.31), (5.24), and (5.27) as
follows:

S+ =W + (S− −W) + (S+ − S−) ≥ 1

2
s′(s′ + 1) +M1.

Using this estimate and (5.41), we obtain from (5.42):

1

2
s′(s′ + 1) +M1 ≤ 2s3 + 2s4 − 10 + 2M1 + 2M2 + 2M3 + 2M4,

whence

2s3 ≥
1

2
(s′2 − 3s′) + 10−M1 − 2M2 − 2M3 − 2M4 ≥

≥ 1

2
(s′2 − 3s′) + 3 =

1

2
(s′2 − 3s′ + 6),

and finally

s3 ≥
1

4
(s′2 − 3s′ + 6). (5.43)

The vertices of P solve (5.1), so

N+ +N ≤ 2n. (5.44)
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Using (5.31), (5.17), (5.19), and (5.29), we deduce

N+ =W + (N− −W) + (N+ −N−) ≥ 2N3 − s3 +M3 ≥ s3 +M3,

while by virtue of (5.40) and (5.18) we obtain

N =W++(N−W+) ≥ (−s3−s′+2n+5−M1−M2−M3−M4)+
1

2
s3(s3+1).

Combining (5.44) with two last estimates, we get

s′ ≥ 1

2
s3(s3 + 1) + 5−M1 −M2 −M4 ≥

1

2
s3(s3 + 1) + 2 =

1

2
(s2

3 + s3 + 4),

and finally

s′ ≥ 1

2
(s2

3 + s3 + 4). (5.45)

It is not hard to check that the inequalities (5.43) and (5.45) are incom-
patible. This contradiction proves (5.13) in case (5.12) holds.

Lemma 5.9. Suppose that the vertices of a type Van N-gon P belong to a
(1, n)-lattice Γ; then

N ≤ 2n− 2. (5.46)

Proof : Note that by Proposition 2.3 the product of the small e1-step and the
large e2-step of Γ equals n.

First, assume that Γ has small e1-step s ≥ 2. In this case s divides n and
all the points of Γ belonging to ∆n lie on the lines

x1 = js (j = 0, . . . , 2n/s).

Consequently, the vertices of P lie on the same lines as well. Each of the
2n/s lines corresponding to j = 0, . . . , 2n/s−1 contains at most two vertices
while the line x1 = 2n corresponding to j = 2n/s does not contain any
vertex, since its only common point with ∆n is (2n, 0) ∈ nZ2. Thus, if s ≥ 3,
we can estimate the number of vertices of P as follows:

N ≤ 2 · 2n
s
≤ 4n

3
≤ 2n− 2

(since n ≥ 3). If s = 2, the large e2-step of Γ is n/2, so each of the lines the
lines x1 = 0 and x1 = n has a single point of Γ between adjacent points of
nZ2. Consequently, each of these lines (corresponding to j = 0 and j = n/2)
contains at most one vertex of P and there are n− 2 other lines containing
up to two vertices. Thus, the total number of vertices does not exceed

N ≤ 2 + 2 · (n− 2) = 2n− 2.
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We have thus proved the lemma under the hypothesis that the small e1-step
of Γ is greater then 1.

Assume that Γ has small e1-step 1. Then by Proposition 2.4 the lattice Γ
admits a basis of the form (e1− ae2, ne2), where bn/2c−n+ 1 ≤ a ≤ bn/2c.
Consider the linear transformation

A =

(
1 0
a/n 1/n

)
.

It is easily seen that AΓ = Z2 and Λ = A(nZ2) is a lattice having the basis

(ne1, e2); the image P̂ of P is an integer N -gon free from points of Λ and

contained in the triangle ∆̂ = A∆n with the vertices 0, (0, 2), and (2n, 2a).
Set

p = min{x2 : (x1, x2) ∈ ∆̂} = min{2a, 0}, (5.47)

q = max{x2 : (x1, x2) ∈ ∆̂} = max{2a, 2}. (5.48)

Note two obvious facts. Firstly, all the integer points of the triangle ∆̂ lie
on the q − p+ 1 lines

x2 = j (j = p, p+ 1, . . . , q), (5.49)

so all the vertices of P̂ lie on the lines (5.49), each line containing at most

two vertices. Secondly, if a 6= 0, there are no vertices of P̂ on the line x2 = p,
as it is easy to check that in this case the line has the only common point with
∆̂—the vertex of the triangle, which belongs to Λ. By the same argument,
if a 6= 1, there are no vertices of P̂ on the line x2 = q.

As a consequence, we see that (5.46) holds, provided that

q − p ≤ n. (5.50)

Indeed, if additionally a 6= 0 and a 6= 1, then the vertices of P̂ lie on the
q − p− 1 lines (5.49) corresponding to j = p+ 1, . . . , q − 1, whence

N ≤ 2(q − p− 1) ≤ 2n− 2.

On the other hand, if a = 0 or a = 1, then according to (5.47) and (5.48)

we have p = 0, q = 2, and the vertices of P̂ lie on the lines (5.49) (excluding
j = p and j = q), whence

N ≤ 4 ≤ 2n− 2

as n ≥ 3.
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According to (5.47) and (5.48), we have

q − p =

{
2a, if a ≥ 1,

−2a+ 2, if a ≤ 0.

Using this formula, we see that if 1 ≤ a ≤ n
2 , then

q − p ≤ 2 · n
2

= n,

and if n/2− n+ 1 ≤ a ≤ 0, then

q − p ≤ −2(n/2− n+ 1) + 2 = n.

Thus, inequality (5.50) holds provided that n/2 − n + 1 ≤ a ≤ n/2, so for
these a inequality (5.46) is proved. Taking into account the range of possible
values of a, we see that it only remains to check the case a = bn/2c − n+ 1
when bn/2c < n/2, i. e. a = (−n+ 1)/2 for an odd n.

In this case the vertices of ∆̂ are the points 0, (0, 2), and (2n,−n+ 1), and
this triangle is the solution set of the system

x1 ≥ 0,
x1 ≤ − 2n

n+1(x2 − 2),
x1 ≥ − 2n

n−1x2.
(5.51)

We will show that if n ≥ 5, each of the lines x2 = 1 and x2 = −n+2 contains
at most one vertex of P̂ .

It follows from system (5.51) that points of ∆̂ lying on the line x2 = 1
satisfy

0 ≤ x1 ≤
2n

n+ 1
.

As 2n/(n + 1) < 2 and all the integer points of the line x1 = 0 belong to Λ,

we see that the line x2 = 1 has only one point that could be a vertex of P̂ :
the point (1, 1).

It also follows from (5.51) that the points of ∆̂ lying on the line x2 = −n+2
satisfy

2n(n− 2)

n− 1
≤ x1 ≤

2n2

n+ 1
.

Given that n ≥ 5, we have

2n− 3 <
2n(n− 2)

n− 1
<

2n2

n+ 1
< 2n− 1,
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so (2n− 2,−n+ 2) is the only point of the line x2 = −n+ 2 that could be a

vertex of P̂ .
As in our case p = −n+1 and q = 2, we see that each of the n−2 lines (5.49)

corresponding to j = p+2, . . . , q−2 contains at most two vertices of P̂ ; each
of the lines corresponding to j = p + 1 and j = q − 1 contains at most one
vertex; finally, as a 6= 0 and a 6= 1, the lines corresponding to j = p and
j = q contain no vertices. This amounts to a total of at most 2n−2 vertices,
so (5.46) is proved.

It only remains to check the case n = 3. Then the vertices of the triangle ∆̂
are the points 0, (0, 2), and (6,−2). It is easy to check that ∆̂ contains only
4 integer points not belonging to Λ, so the inequality N ≤ 4 = 2n − 2 is
trivial.

Definition 5.10. We call an integer polygon minimal if it does not contain
other integer polygon with the same number of vertices.

We note two simple properties of minimal polygons.

Proposition 5.11. Any edge of a minimal polygon contains precisely two
interger points—its endpoints.

Proof : If v1,. . . ,vN are the vertices of an integer N -gon and its edge [v1,v2]
contains an integer point v different from v1 and v2, then it is easily seen that
the convex hull of the points v, v2, . . . ,vn is an integer N -gon contained in
the original one and different from it. This means that the original polygon
is not minimal.

Proposition 5.12. Affine automorphisms of the integer lattice map minimal
polygons onto minimal polygons.

This proposition is obvious.

Proof of Lemma 5.3: Let us prove the inequality

N ≤ 2n+ 2. (5.52)

We can certainly assume that P is minimal, for if not, we replace P by a
minimal polygon it contains (which is, of course, again a type Van polygon).

First, assume that P satisfies either

S+ ≤ n (5.53)
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or
S+ ≥ n+ 1, W+ ≤ n. (5.54)

If P lies in a slab of the form

0 ≤ x1 ≤ n, n ≤ x1 ≤ 2n, 0 ≤ x2 ≤ n, n ≤ x2 ≤ 2n,

it is a type In polygon, and the estimate (5.53) follows from Theorem 1.4
for type I polygons. Otherwise, P is split by the segments [(n, 0), (n, n)] and
[(0, n), (n, n)], which are the intersections of the lines x1 = n and x2 = n
with ∆n. Therefore, by Proposition 2.16 the frame ((n, n);−e2,−e1) splits
the slope Q2. If this frame forms small angle with the slope, Lemma 5.8
provides (5.52). If not, it follows from Proposition 2.10 that the frame
((n, n);−e1,−e2) forms small angle with Q2. Let P ′ be the reflection of
P about the line x1 = x2. It is not hard to check that ((n, n);−e2,−e1)
forms small angle with Q2(P

′); moreover, P ′ is a minimal type Van polygon,
and since

S+(P ′) =W+(P ), W+(P ′) = S+(P ),

we see that P ′ satisfies (5.53) or (5.54). Applying the already proved part of
the lemma to P ′, we obtain (5.52).

Now suppose that P satisfies neither (5.53), nor (5.54). Thus, in particular,

S+(P ) ≥ n+ 1.

Consider the affine automorphism of nZ2 given by

ϕ(x1, x2) = (−x1 − x2 + 2n, x2).

By Proposition 5.12, the polygon ϕ(P ) is minimal. Moreover, it lies in the
triangle ∆n, since ∆n = ϕ(∆n). Obviously, we have

S(ϕ(P )) = S(P ).

A straightforward computation gives

S−(ϕ(P )) = −S+(P )− S(P ) + 2n.

As the points of P satisfy system (5.1), we have S(P ) ≥ 0, so

S−(ϕ(P )) ≤ −S+(P ) + 2n ≤ n− 1.

By Proposition 5.11,

S+(ϕ(P )) ≤ S−(ϕ(P )) + 1,

so we have
S+(ϕ(P )) ≤ n.
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Thus, the polygon ϕ(P ) satisfies (5.53), and applying the already proved
part of the lemma to ϕ(P ), we obtain (5.52).

The part of the lemma concerning polygons with vertices belonging to a
(1, n)-lattice is given by Lemma 5.9.

6. Type VI polygons
It turns out that any type VI polygon can be mapped onto a polygon of

another type by an automorphism of nZ2. The following lemma is the main
result of this section.

Lemma 6.1. Suppose that P is a type VIn polygon; then there exists an affine
automorphism ψ of nZ2 such that ψ(P ) is a polygon of one of the types In,
IIn, IIIn, or Vn.

Proof : The polygon P is split by the segments [0, (−n, 0)] and [0, (0, n)], so

the lift P̂ (see Section 5.2) is well-defined. The polygon P̂ is split by the
segment [0, (−n, 0)] by the definition of the lift and by the segment [0, (0, n)]
by Lemma 5.5. By the same lemma, the segment [0, (−n,−n)] does not

split P̂ . The lines x1 = ±n are invariant under the lift transformation, so
they do not split P̂ either. Besides, P̂ has points in the slab

−n ≤ x1 ≤ n, (6.1)

(e. g. on the segment [0, (0, n)]), so we conclude that it is contained in this
slab.

If the line x2 = n does not split P̂ , the latter is a type Vn polygon. Oth-
erwise, P̂ is split by one of the segments [(−n, n), (0, n)] and [(0, n), (n, n)],
since their union is exaclty the set of common points of the line x2 = n and
the slab (6.1).

Suppose that the segment [(−n, n), (0, n)] splits P̂ . Let T be the translation

by the vector (n, 0) ∈ nZ2. The polygon T P̂ is split by the segments

[(0, n), (n, n)] = T [(−n, n), (0, n)],

[(n, 0),0] = T [0, (−n, 0)],

[(n, 0), (n, n)] = T [0, (0, n)]

and is not split by the line x1 = 0 being the image of x1 = −n under T . In
other words, T P̂ is a type IIIn polygon, and we are done.
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It remains to consider the case of the segment [(0, n), (n, n)] splitting P̂ .
Let ϕ be an affine automorphism of nZ2 defined by

ϕ(x1, x2) = (−x1, n− x2),

(the symmetry with respect to (0, n/2)) and set P ′ = ϕ(P̂ ). The polygon P ′

lies in the slab (6.1), which is invariant under ϕ; also P ′ is split by the
segments

[(−n, 0),0] = ϕ([(n, n), (0, n)]),

[0, (0, n)] = ϕ([(0, n),0])

and is not split by the segment

[(0, n), (n, 2n)] = ϕ([0, (−n,−n)]).

Thus, the lift P̂ ′ is well-defined. By the definition of the lift and by Lemma 5.5,
the polygon P̂ ′ is split by the segments [0, (−n, 0)] and [0, (0, n)] and is not

split by the segments [0, (−n,−n)] and [(0, n), (n, 2n)]; moreover, P̂ ′ lies in

the slab (6.1). Consequently, the line x1 = −n does not split P̂ ′. If the
line x2 = n does not split it either, it is a type Vn polygon, and we are
done. Otherwise, as before, we infer that either [(−n, n), (0, n)] splits P̂ ′,
and we conclude by noticing that T P̂ ′ is a type IIIn polygon, or [(0, n), (n, n)]

splits P̂ ′, which we assume in what follows.
The intersection of the line x1 − x2 = −n and the slab (6.1) is the union

of the segments [(−n, 0), (0, n)] and [(0, n), (n, 2n)]. The latter segment does

not split P̂ ′, the line x1 − x2 = −n splits P̂ ′ if and only if the segment
[(−n, 0), (0, n)] does so. Likewise, the line x1− x2 = 0 splits P̂ ′ if and only if

the segment [0, (n, n)] does so, for P̂ ′ is not split by [(−n,−n),0]. Thus, we
have four logical possibilities.

Case 1. The lines x1 − x2 = −n and x1 − x2 = 0 do not split P̂ ′.
Case 2. The segments [(−n, 0), (0, n)] and [0, (n, n)] split P̂ ′.
Case 3. The segment [(−n, 0), (0, n)] splits P̂ ′ and the line x1 − x2 = 0

does not.
Case 4. The segment [0, (n, n)] splits P̂ ′ and the line x1 − x2 = −n does

not.
In Case 1 define the affine automorphism of nZ2 by

ψ1(x1, x2) = (−x1 + x2, x2)
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and consider the polygon ψ1(P̂
′). It is not split by the lines x1 = 0 and

x1 = n, being the images of x1− x2 = 0 and x1− x2 = −n, respectively, and
ψ1(P̂

′) has points inside the slab 0 ≤ x1 ≤ n, e. g. on the segment

[(n, 0), (0, n)] = ψ1([0, (0, n)]).

Consequently, ψ1(P̂
′) is a type In polygon.

In Cases 2 and 3 we use the same automorphism ψ1. It is not hard to check
that in Case 2, ψ1(P̂

′) is a type IIn polygon and in Case 3, it is a type IIIn
polygon

In Case 4, define the automorphism of nZ2 by

ψ2(x1, x2) = (x1 − x2 + n, x2).

It is easily seen that ψ2(P̂
′) is a type IIIn polygon.

7. Proof of Theorem 1.4 for polygons of types V and VI
We have already proved Theorem 1.4 for polygons of types In–IVn. Type Van

polygons have been our stumbling block so far, because we have not proved
the estimate N ≤ 2n for such N -gons, in case their vertices belong to
a (1, n/2)-lattice. However, for type Van N -gons we have the estimate
N ≤ 2n + 2 (Lemma 5.3). In view of Lemmas 5.2 and 6.1, this estimate
is valid for type Vn and VIn N -gons as well. Combining this with Theo-
rem 1.3, we obtain the following particular case of Theorem 1.1:

Lemma 7.1. Let n be an integer, n ≥ 3; then any integer polygon free of
nZ2-points has no more than 2n+ 2 vertices.

Now we can prove the missing estimate for type Va polygons.

Lemma 7.2. Let n be an even integer, n ≥ 4, and P be a type Van N-gon.
Suppose that the vertices of P belong to a (1, n/2)-lattice. Then

N ≤ 2n. (7.1)

Proof : Let Γ be a (1, n/2)-lattice containing the vertices of P .
By definition, P is contained in the triangle ∆n defined by (5.1).
Assume that n = 4, then we must prove that

N ≤ 8. (7.2)

In this case Γ is a (1, 2)-lattice, and by Proposition 2.3, the only possible
values for the small e1- and e2-steps of Γ are 1 and 2.
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If the small e1-step of Γ is 2, it is easily seen that all the points of Γ lying
in ∆4 and not belonging to 4Z2 lie on the lines

x1 = 0, x1 = 2, x1 = 4, x1 = 6.

In particular, all the vertices of P lies on these lines. Each of the four lines
contains at most two vertices, and (7.2) follows.

The case when the small e2-step of Γ is 2 is handled in the same way.
Suppose that the small e1-step of Γ is 1. By Proposition 2.4 it has a basis

(e1 + ae2, 2e2), where a = 0 or a = 1. In the former case the small e1-step
of Γ is 2 and (7.2) is proved. In the latter case define the automorphism
of 4Z2 by

ψ(x1, x2) = (x1, x1 − x2 + 8).

The polygon ψ(P ) lies in the triangle ∆4 = ψ(∆4) and its vertices belong
to a (1, 2)-lattice ψ(Γ) spanned by (e1,−2e2). Obviously, the small e2-step
of ψ(Γ) is 2, so we obtain (7.2) applying the proved part of the lemma

to ψ(P̂ ).
Now assume that n ≥ 6 and, contrary to our assertion,

N > 2n. (7.3)

It follows from Proposition 2.2 that there exists a unimodular transforma-
tion B such that BΓ = Z × (n/2)Z. Clearly, the transformation A =
diag(1, 2/n)B maps Γ onto Z2, so P ′ = AP is an integer N -gon contained in
the integer triangle ∆′ = A∆n.

Let us estimate the number of integer points in P ′, which we denote by n0.
We claim that

n0 ≥ (n− 1)2. (7.4)

Indeed, if P ′ contained less then (n− 1)2 integer points, we could find two
integers i1 and i2 such no integer point (u1, u2) ∈ P ′ would satisfy

xk ≡ ik (mod (n− 1))

simultaneously for k = 0 and k = 1. In other words, the shifted N -gon
P ′ − (i1, i2) would be free of (n − 1)Z2-points, which is impossible due to
Lemma 7.1 and inequality (7.3). Thus, (7.4) is proved.

To estimate n0 from above we use the inclusion P ′ ⊂ ∆′. Let n′ be the
number of integer points in the interior of ∆′ and b′ be the number of integer
points on its boundary. Observe that the vertices and midpoints of the sides
of ∆n are nZ2-points, so they do not belong to P ; consequently, the vertices
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and the midpoints of ∆′ do not belong to P ′. Therefore, if P ′ has common
points with a side of ∆′, they lie between the midpoint of the side and one
of its endpoints. This and the fact that the vertices of ∆′ are integer points,
imply

n0 < n′ +
b′

2
.

Let s′ be the area of ∆′. By Pick’s theorem,

s′ = n′ +
b′

2
− 1,

whence
n0 < s′ + 1.

On the other hand, s′ = 4n, because the area of ∆n is 2n2 and | detA| = 2/n.
Finally, we obtain

n0 < 4n+ 1.

Comparing the last inequality and (7.4), we get

(n− 1)2 < 4n+ 1.

which cannot hold if n ≥ 6. The contradiction proves the lemma for n ≥
6.

As a corollary of Lemmas 7.2 and Lemma 5.3 we obtain that Theorem 1.4
holds for type Va polygons. In view of Lemma 5.2 we conclude that it also
holds for type V polygons. Now, Lemma 6.1 implies that Theorem 1.4 is true
for type VI polygons as well.

Thus, Theorem 1.4 is proved in full generality. Combining it with other
results of [7], we conclude that Theorem 1.1—the Main Theorem of [7]—is
proved as well.
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Preprint Number 16-27.

[8] John William Scott Cassels. An introduction to the geometry of numbers. Springer Science &
Business Media, 2012.

[9] Paul Erdös, Peter M Gruber, and Joseph Hammer. Lattice points. Longman scientific & tech-
nical Harlow, 1989.

[10] Peter Gruber. Convex and discrete geometry, volume 336. Springer Science & Business Media,
2007.

[11] Peter M Gruber and Cornelis Gerrit Lekkerkerker. Geometry of numbers. North-Holland, 1987.
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