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A MODIFIED REPLICATOR EQUATION ON GRAPHS
WITH TRIANGLES

DANIEL PINTO AND MINUS VAN BAALEN

Abstract: Under the assumption of weak selection, and using a new closure
method for the pair approximation technique, we build a modified replicator equa-
tion on infinitely large regular graphs, for birth-death updating. The closure method
that we propose takes into account the probability of triangles in the graph. Us-
ing this new equation, we study how graph structure can affect cooperation in some
games with two different strategies, namely the Prisoner’s Dilemma, the Snow-Drift
Game and the Coordination Game.
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1. Introduction
The replicator equation was introduced for the first time by Peter Taylor

and Leo Joker [1] and quickly played an important role in evolutionary game
dynamics, for instance in the work of Christopher Zeeman [2], Josef Hofbauer,
Peter Schuster and Karl Sigmund [3]. These last two authors were also
responsible for its name [4]. Since then, the equation has been adapted to
include other elements, such mutation, but the original form was the first
important tool to connect game dynamics, where individuals change their
strategy over time, with evolutionary game theory, developed by Maynard
Smith and Price [5, 6] to predict the prevalence of competing strategies in
evolving populations. The replicator equation in evolutionary games with n
strategies, is given by:

ẋi = xi(fi − φ), i = 1, ..., n

where xi is the frequency of strategy i, fi is the fitness of strategy i and
φ is the average fitness of the population. Fitness is calculated from the
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n × n payoff matrix A whose entries correspond to the payoff for strategy i
versus strategy j. The fitness of strategy i is given by fi =

∑n
j=1 xjaij and

the average fitness is obtained from φ =
∑n

i=1 xifi. This replicator equation
describes the dynamics in the deterministic limit of an infinitely large and
well-mixed population. It is assumed that the population is infinitely large so
that one can look at xi as differentiable functions. (There have been attempts
to connect this deterministic approach to the stochastic models; see [7] for
a good example.) If we think of each individual as a vertex, a well-mixed
population can be represented by a complete graph, in which every pair of
vertices is connected by an edge. However, this is not often the case when one
looks at the structure of a population. Frequently, each individual interacts
only with some of the others, not all of them. In this paper, we will deal with
structured populations, although only considering regular graphs, in which
all the vertices have the same valency. Therefore, we will need to apply
some changes to the traditional replicator equation. We will do that under
the assumption of weak selection, meaning that differences in reproductive
success are small. This approach has been brought into evolutionary game
theory more than two decades ago [8]. In infinitely large populations, if
structure is ignored, the intensity of selection merely results in a rescaling
of time, it does not change the outcome [9, 10]. However, if we take into
account the structure, the assumption of weak selection allows us to separate
the timescales of local and global dynamics, and regard global frequencies as
constant while local frequencies equilibrate [11]. If each individual derives a
payoff P interacting with its neighbours, then the fitness of that individual
is given by 1−w+wP , where w is the parameter of selection. In the limit of
weak selection: w ≈ 0. In 2006, Ohtsuki and Nowak [12] derived a replicator
equation on graphs with great similarities with the classic one for well-mixed
populations

ẋi = xi(fi + gi − φ) = xi

[∑
l

xj(aij + bij)− φ
]
, i = 1 ... n,

where gi =
∑n

j=1 xjbij and B = [bij] is a well defined n × n matrix. In a
sense, the only change in the equation, moving from well-mixed populations
to structured populations, is the payoff matrix. Instead of [aij], we have now
[aij + bij]. The entries of the matrix B = [bij] depend on the details of the
update rule that is used; since population size is assumed to be fixed, death
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and reproduction are fundamentally linked. There exist many different up-
date rules that depend on the detail of how players interact and reproduce.
Some of the most common ones are birth-death updating, death-birth up-
dating and imitation. Death-birth (DB) updating means that a player is
randomly chosen to die and to be replaced by the offspring of one of its
neighbours according to their relative fitness. For imitation updating (IM),
a random player is chosen and he will either keep his strategy or imitate one
of the neighbours’ strategies proportional to fitness. Here, however, we will
just deal with birth-death updating (BD): a player is chosen with probability
proportional to its fitness, and the offspring of this player replaces a random
neighbour.

2. A Modified Pair Approximation MPA
If populations are not well-mixed, what happens locally, around each indi-

vidual player (located at a vertex in an interaction network), becomes very
important. It follows that, instead of global frequencies, one has to look at
local frequencies. If we use qi|j as the notation for local frequency of strategy
i around strategy j (the probability of a given neighbour of a j player playing
i), this conditional probability can be expressed as qi|j = xij/xj, where xij
and xj are, respectively, the global frequency of i − j pairs and the global
frequency of j-strategy. However, if one has to calculate qi|jl (for instance
to track the dynamics of jl-pairs [11]), the probability that a neighbouring
player uses strategy i given that the focal player uses strategy j and is also
connected to a player using strategy l, one has to take into account xijl,
the global frequency of triples. The easiest way to avoid this, is to assume
qi|jl = qi|j, ignoring the effect that a two-step adjacent player might have
on the neighbour. This method is called pair approximation and was first
developed by Matsuda [11]. Some approaches, instead of focusing only on
pairs, have taken triplet correlations into account. For instance, in [13, 14],
the difference between open and closed triple configurations was ignored in
order to obtain a new estimate; later, Morita [15] used the Kirkwood closure
[16] to build his approximation rule. We have taken a different approach here
(see Table 1 to compare the different approaches).

A complication arises from the fact that one cannot pick just any arbitrary
form to try to improve the approximation for qi|jl, as the approximation
should satisfy the condition that

∑
i qi|jl = 1 (where the index i sums over
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Van Baalen qa|ab = qa|a
[
(1− γ) + γ

qa|b
xa

]
qb|ab = 1− qa|ab

Morita qa|ab = (1− γ)qa|a + γ
qa|a

qa|a+qb|b

qb|ab = 1− qa|ab
MPA qa|ab = (1− γ

2)qa|a + γ
2qa|b

qb|ab = (1− γ
2)qb|a + γ

2qb|b
Table 1. Approximations taking into account the probability
of triples

all possible strategies). Many published approximations do not satisfy this
consistency condition.

By looking at local frequencies instead of global frequencies, one is acknowl-
edging the importance that structure has in population dynamics. Neverthe-
less, when one uses the standard pair approximation (SPA), the particular
structure of a population is not taken into account. The same approxima-
tion is chosen, regardless of the graph that represents interactions between
players. What we will do here is to slightly change the pair approximation,
according to the probability of finding triangular triples in the graph. If we
denote by γ the probability of triangular triples in the graph, then we take
the following approximation (that we will call MPA):

qi|lj = (1− γ

2
)qi|l +

γ

2
qi|j

The idea behind this modified pair approximation is that if we have a triangu-
lar triple and we want, for instance, to calculate qi|lj in that configuration, we
can either approximate it using qi|l or qi|j because there’s an edge connecting
the vertice i to both l and j (Figure 1).

Figure 1. Triangular triple where i is both a neighbour of j
and of l
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What we do here is to take the average of these two probabilities ([qi|l +
qi|j]/2) instead of picking either one of them. For triangles, we use

q4i|lj =
qi|l + qi|j

2
.

However, not all triples are closed, as this depends on the topology of the
network. We will represent by q−i|lj = qi|l, so we ignore that, in a linear triple,

player l has another neighbour that uses strategy j. Then,

qi|lj = (1− γ)q−i|lj + γq4i|lj = (1− γ)qi|l + γ
qi|l + qi|j

2
= (1− γ

2
)qi|l +

γ

2
qi|j.

If l = j this is similar to the standard pair approximation (SPA) since
qi|jj = qi|j. The consistency conditions are also satisfied by this modified
approximation because

∑
i qi|lj = 1, as it can easily be checked.

Figure 2. Regular graph with vertices of valency 4 on a torus
(identifying opposites sides of the rectangle).

To test the accuracy of this modified pair approximation (MPA) we have
run some computer simulations. Our method is the following: we start with
a triangular lattice of 1000 vertices, all of them with A players. At the
beginning of each run, we substitute n of those A players by random clusters
(of random length) of B players. We then compare the exact qA|BA and
qA|AB with the predictions that we get using SPA and MPA. We conduct this
simulation 104 times and we calculate the average absolute errors of both
approximations. The results are summarized in Table 2. If n = 250 and
n = 500, MPA does always better than SPA. If n = 10 (very few B’s), SPA
does better for qA|BA but it is not so good to predict qA|AB, which is what we
could expect from the definition of MPA (when the spatial clumping of B is
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high, qB|B will also be high and it will counterbalance the low qB|A, if B is
rare). And if we look carefully at the table, even when the number of B’s is
very small, what we loose in accuracy, while calculating qA|BA with MPA, is
slightly less than what we gain when predicting qA|AB. The same conclusions
can be achieved when simulations are run in the regular graph represented
in Figure 2, which has vertices of degree 4, and faces of degree 3 (triangles)
and 6 (hexagons). A summary of these simulations is presented in Table 3.

10 B’s 250 B’s 500 B’s
SPA error 0,0249 0,1253 0,1709
MPA error 0,0728 0,0357 0,0383

(a) qA|BA

10 B’s 250 B’s 500 B’s
SPA error 0,1403 0,3170 0,3048
MPA error 0,0734 0,1804 0,1647

(b) qA|AB

Table 2. Triangular lattice on torus with 1000 vertices.

10 B’s 250 B’s 500 B’s
SPA error 0,0466 0,1021 0,1414
MPA error 0,0700 0,0419 0,0643

(a) qA|BA

10 B’s 250 B’s 500 B’s
SPA error 0,1175 0,2758 0,2727
MPA error 0,0766 0,1992 0,1945

(b) qA|AB

Table 3. Graph in Figure 2, with 990 vertices of valency 4.

From the definition of MPA and from these simulations, we can estimate
that, by substituting SPA by MPA, we are slightly increasing the accuracy
of the approximation, while keeping the simplicity of the original pair ap-
proximation, which is very important for applications.

2.1. Dynamics of local frequencies. The dynamics of local frequencies
on an infinite regular graph of degree k > 2, assuming weak selection w � 1
and birth-death updating can be described by the following equation [12]:

q̇i|j =
ẋij
xj

=
2

k

[
δij + (k − 1)(

∑
l

qi|ljql|j)− kqi|j
]

+O(w).

If we adopt the standard pair approximation (SPA) then qi|lj = qi|l and the
equilibrium local frequencies are, according to Ohtsuki and Nowak [12], given
by
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(a) q∗i|j = 4
5
xi (SPA),

q∗i|j = 3
4
xi (MPA)

(b) q∗i|j = 2
3
xi (SPA),

q∗i|j = 17
27
xi (MPA)

(c) q∗i|j = 3
4
xi (SPA),

q∗i|j = 5
7
xi (MPA)

Figure 3. Equilibrium frequencies for the triangular lattice (a)
and two other regular graphs.

q∗i|j =
(k − 2)xi + δij

k − 1
,

where xi is the global frequency of strategy i and δ is the Kronecker delta
function. We should note that since w � 1, while the local frequencies (fast
variables) equilibrate we can look at global frequencies (slow variables) as
constant.

Although most of the results could easily be adapted to other kind of
populations, throughout this paper, to simplify our calculations, we will only
deal with populations whose elements have only one of two distinct strategies
(i or j). If, instead of the standard pair approximation (SPA), we take our
modified pair approximation (MPA), the equilibrium frequencies would be
given by

q∗i|j =
[
1− 2

(2− γ)(k − 1)

]
xi = xi −

2xi
(2− γ)(k − 1)

q∗j|j = 1− xi +
2xi

(2− γ)(k − 1)
= xj +

2− 2xj
(2− γ)(k − 1)

Or, in a single expression:

q∗l|m = xl −
2xl

(2− γ)(k − 1)
+

2

(2− γ)(k − 1)
δlm,

where δ is the Kronecker function (see Apendix A for details). Some examples
can be found in Figure 3.
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It follows that, in these new approaches (as in the standard one), we have

q∗i|j < xi < q∗i|i, for all γ.

This is the same as saying that j-players have fewer i-neigbhours than is
expected by global frequencies, while i-players have more. But here, we can
conclude something else: if γ (the probability of triangular triples) increases
and the degree of the graph does not change, the diference between q∗i|j and

xi, as well as the difference between q∗i|i and xi, also increases. Since the

difference between local frequencies and global frequencies grows with the
probability of triangular triples, we have to take into account local dynamics
in graphs with abundant triangles, if we do not want to ignore the spatial
effects.

3. Replicator equation on graphs for BD updating
The traditional replicator equations for well-mixed populations is given by

ẋi = xi(fi−φ). Using the standard pair approximation, Ohtsuki and Nowak
[12] have obtained a replicator equation on graphs,

ẋi = xi(fi + gi − φ),

where fi =
∑n

j=1 xjaij, gi =
∑n

j=1 xjbij and φ is the average fitness of the
population. In the case of BD-updating,

bij =
aii + aij − aji − ajj

k − 2
.

3.1. MPA. Our goal is to obtain a modified replicator equation but using
MPA instead of SPA. To stress the differences and similarities between both
equations, we will try, whenever possible, to use the same notation Ohtsuki
and Nowak have used in [12]. Their replicator equation was obtained from the
following deterministic evolutionary dynamics (here we present a simplified
expression, assuming there are only two different strategies: i and j):

ẋi =
∑

ki+kj=k

[
xi
( k!

ki!kj!
qkii|iq

kj
j|i
)W (i; ki, kj)

W̃

]
− (1)

−
∑
r∈{i,j}

xr
∑

ki+kj=k

[( k!

ki!kj!
qkii|rq

kj
j|r
)]ki
k

W (r; ki, kj)

W̃
,
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where W (i; ki, kj) = 1 − w + w(kiaii + kjaij) is the fitness of a player us-
ing strategy i, with ki neighbours using strategy i and kj neighbours using

strategy j, and W̃ is the average fitness in the population.
If we use MPA, instead of SPA, from the subtraction of these two terms,

we obtain the following replicator equation on graphs (see Appendix B):

ẋi =
wyz2

2(2− γ)
xi(fi + gi − φ),

with z = (2− γ)(k − 1)− 2 and y = 2
(2−γ)(k−1) . Neglecting the factor wyz2

2(2−γ) ,

which is equivalent to a change of time scale, we obtain the MPA replicator
equation on graphs:

ẋi = xi(fi + gi − φ) = xi

[∑
l

xl(ail + bil)− φ
]
,

with

bil =
2aii + (2− γ)ail − (2− γ)ali − 2all

(2− γ)(k − 1)− 2
. (2)

Hence, the structure of the replicator equation is preserved but the transfor-
mation of the payoff matrix is not independent of the graph, since B = [bml]
depends on the probability of triangles (and on the degree of the graph). The
2 × 2 matrix B has the following property: bii = bjj = 0 and bij = −bji. In
[12], the contributions from assortativeness (characterized by the terms aii
and ajj) and spite (characterized by the terms aij and aji) are equally strong
but here, assuming γ > 0, assortativeness has a stronger influence than spite,
as one can see in equation (2).

4. Games on graphs
4.1. The Prisoner’s Dilemma. In the Prisoner’s Dilemma [17, 18, 19], a
cooperator pays a cost c for his opponent to receive a benefit b > c. It is a
dilemma because, for each player, the best option is to defect, regardless of
the other player’s behaviour. However, if both decide to defect, their benefit
will be smaller than if both decide to cooperate. The payoff matrix of this
simplified Prisoner’s Dilemma [20] is the following:

A =

[
b− c −c
b 0

]
.
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According to our model, the matrix that describes local competition around
a vertex, in a graph of degree k > 2 and with γ being the probability of
triangular triples, is given by

B =

[
0 2(b−c)+(2−γ)(−b−c)

z
2(c−b)+(2−γ)(b+c)

z 0

]
.

If we denote by x the frequency of cooperators in the population, the repli-
cator equation would be the following (see Appendix C):

ẋ = x(1− x)
[
− c+

(γ − 4)c+ γb

z

]
.

Defectors always win if −c + (γ−4)c+γb
z < 0. This happens when γ < 2kc

kc+b .
Hence, if b ≤ kc then defectors always win, regardless of the graph, but if
b > kc (which happens when the ratio benefit/cost is greater than k) then
cooperators will win if the probability of triangles is high enough. In previ-
ous models (for complete graphs, for cycles [21] and for other non-complete
regular graphs [12]), structure does not favor cooperation for BD updat-
ing. However, in our case, if the benefit/cost ratio a player can get is big
enough (b/c > k), cooperators might win. This also means that cooperation
is the only EES (Evolutionary Stable Strategy) on the graph if b/c > k and
γ > 2kc

kc+b , which is a different conclusion than the one obtained for well-mixed
populations and the one derived from the replicator equation in [12] (in both
cases, defection is the only ESS in the game). Hence, if we take our modified
replicator equation, evolutionary stability is also affected by structure for BD
updating, and not only for DB (death-birth) updating and IM (imitation)
updating [22].

4.2. The Snow-Drift Game. Two drivers are trapped on opposite sides of
a snow-drift. Each driver has two options: to get out of the car and shoveling
to clear the path (cooperate) or stay warm in the car (defect). If at least one
player cooperates they will get a benefit b. The cost of getting out of the car
and shovel is c (which is shared if both get out of the car). It follows that
the payoff matrix of this game is given by

A =

[
b− c

2 b− c
b 0

]
,



A MODIFIED REPLICATOR EQUATION ON GRAPHS WITH TRIANGLES 11

so that

B =

[
0 2b−c−(2−γ)c

z
c−2b+(2−γ)c

z 0

]
.

If we denote by x the frequency of cooperators in the population, the
replicator equation would be the following (see Appendix C):

ẋ = x(1− x)
[
(
c

2
− b)x+

(b− c)z + 2b− c− (2− γ)c

z

]
Then x∗ = 1 + −zc/2+2b−c−(2−γ)c

z(b−c/2) is a stable equilibrium solution.

If b/c > (3−γ)/2 this equilibrium solution is greater than in the well-mixed
populations. For Ohtsuki and Nowak [12] and for Morita [23] this occurs
when b/c > 3/2, while our condition also depends on γ, the probability of
triples (but not on the valency k of the vertices). It can be easily verified that
if γ = 0 our new approach coincides with previous ones, as expected. Some
choices of parameters can lead to dominance of one strategy over the other.

If b
c < 1 + 1−γ

(2−γ)(k−1) then defectors always win. If b
c >

2k−(k+1)γ+2
4 then coop-

erators always win. Here again, the probability of triples becomes relevant
to the final result (although, in this case, the degree k of the graph has also
to be taken into account). For instance, in the triangular lattice, the equi-
librium solution is greater than in the well-mixed population if b/c > 13/10.
If b/c < 43/40 then defectors always win. If b/c > 14/5 then cooperators
always win.

4.3. Coordination Game. In a Coordination Game, both strategies (S1

and S2) are strict Nash equilibria and it is best to do the same as the op-
ponent. A strategy is called risk-dominant [24] if its basin of attraction is
greater than 1/2, and is called Pareto-efficient if a player can get the best
outcome by choosing it. To make comparisons easier, let us consider the
same specific coordination game chosen in [12], given by the payoff matrix

A =

[
a 0
1 2

]
.

We are assuming 1 < a < 3. In this case, S2 is always risk-dominant. If
a < 2 then S2 is both risk dominant and Pareto-efficient. If 2 < a < 3 then
S1 becomes Pareto-efficient, while S2 remains risk-dominant. This last case



12 DANIEL PINTO AND MINUS VAN BAALEN

is the most interesting, since a conflict arises, and it might be useful to know
how structure can affect the dynamics of this game.

According to our model, the matrix that describes local competition around
a vertex, in a graph of degree k and with γ being the probability of triangular
triples, is given by

B =

[
0 2a+ γ − 6

6− 2a− γ 0

]
.

If we denote by x the frequency of S1 in the population, the replicator
equation would be the following (see Appendix C):

ẋ = x(1− x)
[
x(1 + a) +

2a+ γ − 6− 2z

z

]
.

Then x∗ = 2z−2a−γ+6
z(1+a) is an unstable equilibrium solution. If we compare

it to x∗∗ = 2
a+1 , the equilibrium solution for a well-mixed population, we

conclude that, if a < 2.5, the basin of attraction of strategy S2 is always
larger than in a well-mixed population. But in the case where 2.5 < a < 3,
that is true only if γ < 6−2a. Hence, differently from [12], BD updating not
always favors risk dominance; it depends on the graph and, consequently, on
the way the population is structured.

5. Alternative Modified Replicator Equations
In previous sections, we have dealt with the approximation qi|lj ≈ (1 −

γ
2)qi|l + γ

2qi|j. However, if we just look at the mathematical accuracy, we
could have chosen any constant α ∈ [0, 1] instead of γ

2 . Any approximation
qi|lj(1−α)qi|l +αqi|j would satisfy the consistency conditions. The replicator
equation would be the same as for MPA, only with a slight modification,

bil =
aii + (1− α)ail − (1− α)ail − all

(1− α)(k − 1)− 1
.

In some cases, choosing a constant α different from γ
2 would give better

results, but that would require some experimental tests for each graph, and,
here, we are trying to be as general as possible.
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6. Discussion
The replicator equation on graphs can be improved, keeping its simplicity,

by including more information about the graph of interactions than just the
valency of the vertices [12]. Inspired by previous approaches [13, 14], we take
into account the probability of triangles in the graph but in a much simpler
way. This results in a change in the matrix that describes local competition,
which becomes dependent on that probability and, consequently, on the way
the elements of the population are linked to each other.

In previous models for BD updating, structure seems not to favor coop-
eration in the Prisoner’s Dilemma game. However, if we use our modified
approximation and replicator equation, that might not be the case if the ra-
tio b/c is big enough. In the snow-drift game, if the probability of triangles
increases, the b/c ratio that one needs to consider to make the equilibrium
solution greater than in the case of well-mixed populations, becomes smaller.
In our model, BD updating not always favors risk dominance in coordination
games.

Appendices
Appendix A.

q̇i|j =
ẋij
xj

=
2

k

[
δij + (k − 1)(

∑
l

qi|ljql|j)− kqi|j
]

+O(w)

=
2

k

[
(k − 1)(qi|ijqi|j + qi|jjqj|j)− kqi|j

]
+O(w)

=
2

k

[
(k − 1)

(
[(1− γ

2
)qi|i +

γ

2
qi|j]qi|j + qi|jqj|j

)
− kqi|j

]
+O(w)

=
2

k
qi|j

[
(k − 1)

(
(1− γ

2
)qi|i +

γ

2
qi|j + qj|j

)
− k
]

+O(w)

Hence, if qi|j 6= 0,
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q̇i|j = 0 ⇐⇒ (k − 1)
(

(1− γ

2
)qi|i +

γ

2
qi|j + qj|j

)
− k = 0

(1− γ

2
)qi|i +

γ

2
qi|j + qj|j =

k

k − 1

(1− γ

2
)qi|i +

γ

2
(1− qj|j) + qj|j =

k

k − 1

(1− γ

2
)qi|i + (1− γ

2
)qj|j =

k

k − 1
− γ

2

qi|i + qj|j =
k
k−1 −

γ
2

1− γ
2

qi|i + qj|j = 1 +
2

(2− γ)(k − 1)

Since qi|j + qj|j = qj|i + qi|i = 1 we have

qi|j + qj|i = 2− (qi|i + qj|j) = 1− 2

(2− γ)(k − 1)
.

Hence, (qi|j + qj|i)xi =
[
1− 2

(2−γ)(k−1)

]
xi and, because qj|ixi = qi|jxj, we have

qi|j(xi + xj) =
[
1− 2

(2− γ)(k − 1)

]
xi.

From this equality, since xi+xj = 1, we can obtain the equilibrium frequency

q∗i|j =
[
1− 2

(2− γ)(k − 1)

]
xi = xi −

2xi
(2− γ)(k − 1)

.

Appendix B. Notation:

ai• =
∑
l

xlail , a•i =
∑
l

xlali , a• =
∑
l

xlall, , a•• =
∑
l,m

xlxmalm.

As in [12], we can use properties of the multinomial distribution to obtain
the equality

W̃ = 1− w + w
∑
m

xm
∑
l

kql|maml.

Considering

θ =
∑
m

xm
∑
l

kql|maml,
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we have
W̃ = 1− w + wθ.

And, since w � 1:

W (i; ki, kj)

W̃
≈ 1 + w

(∑
l

klail − θ
)
.

If y = 2
(2−γ)(k−1) , then we can write qi|j = xi(1− y) + yδij. Thus, both terms

of equation (1) can be presented in a simplified way.
The first term of equation (1) is∑
ki+kj=k

[
xi
( k!

ki!kj!
qkii|iq

kj
j|i
)W (i; ki, kj)

W̃

]
= xi[1 + w

(∑
l

kql|iail − θ
)
]

= xi[1 + w
(∑

l

k(xl(1− y) + yδli)ail − θ
)
]

= xi[1 + wykaii + w
(∑

l

kxl(1− y)ail − θ
)
]

= xi[1 + wy
(
kaii + k(

1

y
− 1)

∑
l

xlail −
θ

y

)
]

= xi[1 + wy
(
kaii + k(

1

y
− 1)ai• −

θ

y

)
].

The second term of equation (1) is∑
r∈{i,j}

xr
∑

ki+kj=k

[( k!

ki!kj!
qkii|rq

kj
j|r
]]ki
k

W (r; ki, kj)

W̃
=

=
∑
r

xrqi|r[1 + w(
∑
l

{δil + (k − 1)ql|r}arl − θ)] =

=
∑
r

xr
(
xi(1− y) + yδir

)
[1 +w(

∑
l

{δil + (k− 1)(xl(1− y) + yδlr)}arl− θ)] =

=
∑
r

xr
(
xi(1− y) + yδir

)
[1 +w{ari + (k− 1)(1− y)ar•+ (k− 1)yarr− θ}] =

= xi(1− y)[1 + w{a•i + (k − 1)(1− y)a•• + (k − 1)ya• − θ}]+
+xiy[1 + w{aii + (k − 1)(1− y)ai• + (k − 1)yaii − θ} =

= xi[1 + w(a•i + (k − 1)(1− y)a•• + (k − 1)ya• − θ)]+
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+xiyw[
(
1+y(k−1)

)
aii+(k−1)(1−y)ai•−a•i−(k−1)(1−y)a••−y(k−1)a•] =

= xi[1 + wy
(1

y
a•i + (k − 1)(

1

y
− 1)a•• + (k − 1)a• −

θ

y

)
]+

+xiyw[
(
1+y(k−1)

)
aii+(k−1)(1−y)ai•−a•i−(k−1)(1−y)a••−y(k−1)a•] =

= xi[1+wy{(1

y
−1)a•i+(k−1)(1−y)a•+(1+y(k−1))aii+(k−1)(1−y)ai•+

+(k − 1)(
1

y
− 2 + y)a•• −

θ

y
}].

Hence, when we subtract the second term from the first term, we get the
following expression:

xiwy[
(
k − 1− y(k − 1)

)
aii +

(
k(

1

y
− 1)− (k − 1)(1− y)

)
ai• − (

1

y
− 1)a•i−

−(k − 1)(1− y)a• − (k − 1)(
1

y
+ y − 2)a••].

If z = (2− γ)(k − 1)− 2 then 1
y − 1 = z

2 and the previous expression can be
rewritten as:

xiwy[
z

2− γ
aii + z(

k

2
− 1

2− γ
)ai• −

z

2
a•i −

z

2− γ
a• − z(

k − 1

2
− 1

2− γ
)a••] =

= xi
wyz

2(2− γ)
[zai• +

(
2aii + (2− γ)ai• − (2− γ)a•i − 2a•

)
− za••] =

= xi
wyz2

2(2− γ)
[ai• +

2aii + (2− γ)ai• − (2− γ)a•i − 2a•
z

− a••].

Appendix C.

Prisoner’s Dilemma.

ẋ = x
[
x(b− c) + (1− x)

(
− c+

2(b− c) + (2− γ)(−b− c)
z

)
− x(b− c)

]
= x(1− x)

[
− c+

(γ − 4)c+ γb

z

]
Defectors always win if −c+ (γ−4)c+γb

z < 0.
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But then, since z = (2− γ)(k − 1)− 2,

−c+
(γ − 4)c+ γb

(2− γ)(k − 1)− 2
< 0

[(2− γ)(k − 1)− 2](−c) + (γ − 4)c+ γb < 0

−kc(2− γ) + γb < 0

γ <
2kc

kc+ b
.

Snow-Drift.

ẋ = x
[
x(b− c

2
) + (1− x)

(
b− c+

2b− c− (2− γ)c

z

)
− x2(b− c

2
)− x(1− x)(2b− c)

]
= x(1− x)

[
x(
c

2
− b) +

(b− c)z + 2(b− c
2)− (2− γ)c

z

]
The non trivial equilibrium solution is given by the following expression:

x∗ =
z(b− c) + 2b− c− (2− γ)c

z(b− c/2)
= 1 +

−zc/2 + 2b− c− (2− γ)c

z(b− c/2)
.

If we take x̄ = 1− c
2b−c , the equilibrium solution for a well-mixed population,

then

x∗ > x̄ ⇐⇒ 1 +
−zc/2 + 2b− c− (2− γ)c

z(b− c/2)
> 1− c

2b− c
⇐⇒ b

c
>

3− γ
2

.

Defectors always win if

1+
−zc/2 + 2b− c− (2− γ)c

z(b− c/2)
< 0 ⇐⇒ b

c
<
z + 3− γ
z + 2

= 1+
1− γ

(2− γ)(k − 1)
.

Cooperators always win if

1+
−zc/2 + 2b− c− (2− γ)c

z(b− c/2)
> 1 ⇐⇒ b

c
>
z + 6− 2γ

4
=

2k − (k + 1)γ + 2

4
.

Coordination Game.

ẋ = x(1− x)
[
x(1 + a) +

2a+ γ − 6− 2z

z
]

The non trivial equilibrium solution is given by the following expression:
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x∗ =
6 + 2z − a− γ

z(1 + a)
.

If we denote by x∗∗ the equilibrium solution for well-mixed populations,

x∗ > x∗∗ ⇐⇒ 6 + 2z − a− γ
z(1 + a)

>
2

a+ 1
⇐⇒ γ < 6− 2a.
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