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PSEUDO-KAN EXTENSIONS AND DESCENT THEORY
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Abstract: There are two main constructions in classical descent theory: the cat-
egory of algebras and the descent category, which are known to be examples of
weighted bilimits. We give a formal approach to descent theory, employing formal
consequences of commuting properties of bilimits to prove classical and new theo-
rems in the context of Janelidze-Tholen “Facets of Descent II”, such as Bénabou-
Roubaud Theorems, a Galois Theorem, embedding results and formal ways of get-
ting effective descent morphisms. In order to do this, we develop the formal part
of the theory on commuting bilimits via pseudomonad theory, studying idempotent
pseudomonads and proving a 2-dimensional version of a well known adjoint trian-
gle theorem. Also, we work out the concept of pointwise pseudo-Kan extension,
used as a framework to talk about bilimits, commutativity and the descent object.
As a subproduct, this formal approach can be an alternative perspective/ guiding
template for the development of higher descent theory.
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Introduction

Descent theory is a generalization of a solution given by Grothendieck
to a problem related to modules over rings [12]. There is a pseudofunctor
Mod : Ring Ñ CAT which associates each ring R with the category ModpRq
of right R-modules. The original problem of descent is the following: given
a morphism f : RÑ S of rings, we wish to understand what is the image of
Modpfq : ModpRq Ñ ModpSq. The usual approach to this problem in descent
theory is somewhat indirect: firstly, we characterize the morphisms f in Ring
such that Modpfq is a functor that forgets some “extra structure”. Then,
we would get an easier problem: verifying which objects of ModpSq could be
endowed with such extra structure (see, for instance, [20]).
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Given a category C with pullbacks and a pseudofunctor A : Cop Ñ CAT,
for each morphism p : E Ñ B of C, the descent data plays the role of such
“extra structure” in the basic problem (see [18, 19, 34]). More precisely, in
this context, there is a natural construction of a category DescAppq, called
descent category, such that the objects of DescAppq are objects of ApEq
endowed with descent data, which encompasse the 2-dimensional analogue
for equality/ 1-dimensional descent: one invertible 2-cell plus coherence. This
construction comes with a comparison functor and a factorization; that is to
say, we have the commutative diagram below, in which DescAppq Ñ ApEq is
the functor which forgets the descent data (see [19]).

ApBq φp
//

Appq %%LLLLLLLLLL
DescAppq

��

ApEq
Therefore the problem is reduced to investigating whether the comparison
functor φp is an equivalence. If it is so, p is is said to be of effective A-descent
and the image of Appq are the objects of ApEq that can be endowed with
descent data. Pursuing this strategy, it is also usual to study cases in which
φp is fully faithful or faithful: in these cases, p is said to be, respectively, of
A-descent or of almost A-descent.
Furthermore, we may consider that the descent problem (in dimension 2) is,

in a broad context, the characterization of the image (up to isomorphism) of
a given functor F : CÑ D. In this case, using the strategy described above,
we investigate if C can be viewed as a category of objects in D with some
extra structure (plus coherence). Thereby, taking into account the original
basic problem, we can ask, hence, if F is (co)monadic. Again, we would get
a factorization, the Eilenberg-Moore factorization:C φ

//

F $$H
HHHHHHHHHH pCoqAlg

��D
And this approach leads to what is called “monadic descent theory”. Bénabou
and Roubaud proved that, if the functor F is induced by a pseudofunctor
A : Cop Ñ CAT such that every Appq has a left adjoint and A satisfies
the Beck-Chevalley condition, then “monadic descent theory” coincides with
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“Grothendieck A-descent theory”. More precisely, assuming the hypotheses
above, the morphism that induces F is of effective descent if and only if F
is monadic [2].
Thereby, in the core of classical descent theory, there are two constructions:

the category of algebras and the descent category. These constructions are
known to be examples of 2-categorical limits (see [34, 35]). Also, in a 2-
categorical perspective, we can say that the general idea of category of objects
with “extra structure (plus coherence)” is, indeed, captured by the notion of
2-dimensional limits.
Not contradicting such point of view, Street considered that (higher) de-

scent theory is about the higher categorical notion of limit [34]. Following
this posture, we investigate whether pure formal methods and commuting
properties of bilimits are useful to prove classical and new theorems in the
classical context of descent theory [18, 19, 20, 9].
Willing to give such formal approach, we employ the concept of Kan ex-

tension. However, since we only deal with bilimits (see [36]) and we need
some good properties w.r.t. pointwise equivalences, we use a weaker notion:
pseudo-Kan extension [28], which is stronger than the notion of lax-Kan
extension, already studied by Gray in [10].
In this direction, the fundamental standpoint on “classical descent theory”

of this paper is the following: the “descent object” of a cosimplicial object in
a given context is the image of the initial object of the appropriate notion of
Kan extension of such cosimplicial object. More precisely, in our context of
dimension 2 (which is the same context of [19]), we get the following result:
The descent category of a pseudocosimplicial object A : ∆ Ñ CAT is equiva-
lent to PsRanjAp0q, in which j : ∆ Ñ 9∆ is the full inclusion of the category
of finite nonempty ordinals into the category of finite ordinals and order pre-
serving functions, and PsRanjA denotes the right pseudo-Kan extension of A
along j. In particular, we develop some of the abstract features of the “clas-
sical theory of descent”, including Bénabou-Roubaud theorem, as a theory
(of pseudo-Kan extensions) of pseudocosimplicial objects or pseudofunctors9∆Ñ CAT.
This work was motivated by three main aims. Firstly, to get formal proofs

of classical results of descent theory. Secondly, to prove new results in the
classical context – for instance, formal ways of getting sufficient conditions for
a morphism to be effective descent. Thirdly, to get proofs of descent theorems
that could be recovered in other contexts, such as in the development of
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higher descent theory (see, for instance, the work of Hermida [14] and Street
[34] in this direction).
In Section 1, we give an idea of our scope: we revisit the context of [18, 19],

we show the main results classically used to deal with the problem of char-
acterization of effective descent morphisms and we present classical results
that we prove in Sections 10 and 11: that is to say, the embedding results
(Theorems 1.1 and 1.2) and the Bénabou-Roubaud Theorem (Theorem 1.3).
At the end of this section, we establish a theorem on pseudopullbacks of
categories (Theorem 1.4) which is proved in Section 11.
Section 2 explains why we do not use the usual enriched Kan extensions to

study commutativity of the 2-dimensional limits related to descent theory:
the main point is that we like to have results which works for bilimits in
general (not only flexible ones). In Section 3, we establish our main setting:
the tricategory of 2-categories, pseudofunctors and pseudonatural transfor-
mations. In this setting, we define pseudo-Kan extensions. We give further
background material in Section 4, studying weighted bilimits and proving
that, similarly to the enriched case, the appropriate notion of pointwise
pseudo-Kan extension is actually a pseudo-Kan extension in the presence
of weighted bilimits.
Section 5 is the largest one: it contains most of the abstract results needed

to get our formal approach to descent theory. In Subsection 5.1, we define
and study idempotent pseudomonads. Then, in Subsection 5.2, we study
pseudoalgebra structures of idempotent pseudomonads, proving a Biadjoint
Triangle Theorem (Theorem 5.11) and giving a result related to the study of
pseudoalgebra structures in commutative squares (Corollary 5.12).
In Subsection 5.3, we deal with the technical situation of considering ob-

jects that cannot be endowed with pseudoalgebra structures but have com-
parison morphisms belonging to a special class of morphisms. We finish
Section 5 with Subsections 5.4, 5.5 and 5.6 which apply the results of the
section to the special case of weighted bilimits and pseudo-Kan extensions:
we get, then, results on factorizations, commutativity of weighted bilimits/
pseudo-Kan extensions and exactness/ (almost/ effective) descent diagrams.
Section 6 studies descent objects. They are given by conical bilimits of

pseudocosimplicial objects: in our context, a descent object is given by the
pseudo-Kan extension of a pseudocosimplicial object (as explained above).
But we finish Section 6 presenting also the strict version of a descent object,
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which is given by a Kan extension of a special type of 2-diagram. We get,
then, the strict factorization of descent theory.
Section 7 gives elementary examples of our context of effective descent di-

agrams. Every weighted bilimit can be seen as an example, but we focus
in examples that we use in applications. As mentioned above, the most
important examples of bilimits in descent theory are descent objects and
Eilenberg-Moore objects: thereby, Section 8 is dedicated to explain how
Eilenberg-Moore objects fit in our context, via the free adjunction category
of [33].
In Section 9, we study the Beck-Chevalley condition: by doctrinal ad-

junction [22], this is a condition to guarantee that a pointwise adjunction
between pseudoalgebras can be, actually, extended to an adjunction between
such pseudoalgebras. We show how it is related to commutativity of weighted
bilimits, giving our first version of a Bénabou-Roubaud Theorem (Theorem
9.4).
We apply our results to the usual context [18, 19] of descent theory in

Section 10: we prove a general version (Theorem 10.2) of the embedding
results (Theorem 1.1), we prove the Bénabou-Roubaud Theorem (Theorem
10.4) and, finally, we give a weak version of Theorem 1.4.
We finish the paper in Section 11: there, we give a stronger result on

commutativity (Theorem 11.2) and we apply our results to descent theory,
proving Theorem 1.4 and the Galois result of [16] (Theorem 11.6). We also
apply Theorem 1.4 to get effective descent morphisms of the category of
enriched categories V -Cat, provided that V satisfies some hypotheses. For
instance, we apply this result to Top-Cat and Cat-Cat.
This work was realized during my PhD program at University of Coim-

bra. I am grateful to my supervisor Maria Manuel Clementino for her pre-
cious help, support and attention. I also thank all the speakers of our in-
formal seminar on descent theory for their insightful talks: Maria Manuel
Clementino, George Janelidze, Andrea Montoli, Dimitri Chikhladze, Pier
Basile and Manuela Sobral. Finally, I wish to thank Stephen Lack for our
brief conversations which helped me to understand aspects related to this
work about 2-dimensional category theory, Kan extensions and coherence.
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1. Basic Problem

In the context of [15, 18, 19, 20, 26, 32, 7], the very basic problem of descent
is the characterization of effective descent morphisms w.r.t. the basic fibra-
tion. Although this problem is trivial for some categories (for instance, for lo-
cally cartesian closed categories), that is not true in general. The topological
case, solved by Tholen and Reiterman [32] and reformulated by Clementino
and Hofmann [6, 8], is an important example of such nontrivial problems.
Below, we present some theorems classically used as a framework to deal

with this basic problem. In this paper, we show that most of these theorems
are consequences of a formal theorem presented in Section 2, while others
are consequences of theorems about bilimits. We give such proofs in Section
10.
Firstly, the most fundamental features of descent theory are the descent

category and its related factorization. Assuming that C is a category with
pullbacks, ifA : Cop Ñ CAT is a pseudofunctor, this factorization is described
by Janelidze and Tholen in [19].

DescAppq
��

ApBq φp
99rrrrrrrrrr

Appq // ApEq
We show in Subsection 6.1 that the concept of Kan extension encompasses

these features. In fact, the comparison functor and the factorization de-
scribed above come from the unit and the triangular identity of the adjunc-
tion rt,CATs % Rant.
Secondly, for the nontrivial problems, the usual approach to study (basic/

universal) effective/ almost descent morphisms is the embedding in well be-
haved categories, in which “well behaved category” means just that we know
which are the effective descent morphisms of this category. For this matter,
there are some theorems in [18] and [26]. That is to say, the embedding
results:

Theorem 1.1 ([18]). Let C and D be categories with pullbacks and U : CÑD be a pullback preserving functor.

(1) If U is faithful, then U reflects almost descent morphisms;
(2) If U is fully faithful, then U reflects descent morphisms.
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Theorem 1.2 ([18]). Let C and D be categories with pullbacks. If U : CÑ D
is a fully faithful pullback preserving functor and Uppq is of effective descent
in D, then p is of effective descent if and only if it satisfies the following
property: whenever the diagram below is a pullback in D, there is an object
C in C such that UpCq � A.

UpP q //

��

A

��

UpEq
Uppq // UpBq

We also show in Section 10 that Theorem 1.1 is a very easy consequence
of formal and commuting properties of pseudo-Kan extensions (Corollary
5.20 and Corollary 5.23), while we show in Section 11 that Theorem 1.2 is
a consequence of a theorem on bilimits (Theorem 11.3) which also implies
the generalized Galois Theorem of [16]. It is interesting to note that, since
Theorems 1.1 and 1.2 are just formal properties, they can be applied in other
contexts - for instance, for morphisms between pseudofunctors A : Cop Ñ
CAT and B : Dop Ñ CAT, as it is explained in Section 10.
Furthermore, Bénabou-Roubaud Theorem [2, 18] is a well known result of

Descent Theory. It allows us to understand some problems via monadicity,
since it says that monadic descent theory is equivalent to Grothendieck A-
descent theory in suitable cases, such as the basic fibration. We demonstrate
in Section 10 that it is a corollary of commutativity of bilimits.

Theorem 1.3 (Bénabou-Roubaud [2, 18]). Let C be a category with pull-
backs. If A : Cop Ñ CAT is a pseudofunctor such that, for every morphism
p : E Ñ B of C, Appq has left adjoint Appq! and the invertible 2-cell induced
by A below satisfies the Beck-Chevalley condition, then the factorization de-
scribed above is pseudonaturally equivalent to the Eilenberg-Moore factoriza-
tion. In other words, assuming the hypotheses above, Grothendieck A-descent
theory is equivalent to monadic descent theory.

ApBq
Appq

��

Appq
// ApEq

��
�

ApEq // ApE �p Eq
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1.1. Open problems. Clementino and Hofmann [7] studied the problem of
characterization of effective descent morphisms for pT, V q-categories provided
that V is a lattice. To deal with this problem, they used the embeddingpT, V q-Cat Ñ pT, V q-Grph and Theorems 1.1 and 1.2. However, for more
general monoidal categories V , such inclusion is not fully faithful and the
characterization of effective descent morphisms still is an open problem even
for the simpler case of the category of enriched categories V -Cat.
As an application of the perspective given in this paper, we give some

results about effective descent morphisms of V -Cat. They are consequences of
formal results given in this paper on effective descent morphisms of categories
constructed from other categories: i.e. limits of categories. For instance, we
prove Theorem 1.4 in Section 11.

Theorem 1.4. Let B,C,D and E be categories with pullbacks. Assume that
the diagram B S //

Z
��

C
F
��D �

G
// E

is a pseudopullback such that S, G, F and Z are pullback preserving functors.
If p is a morphism in B such that Sppq, Zppq are of effective descent and
FSppq is a descent morphism, then p is of effective descent.

We can apply the theorem above in some cases of categories of enriched
categories: if V is a cartesian closed category satisfying suitable hypotheses,
there is a full inclusion V -Cat Ñ CatpV q, in which CatpV q is the category
of internal categories. When this happens, as a consequence of the formal
theorem above, we conclude that the inclusion reflects effective descent mor-
phisms. Since the characterization of effective descent morphisms for internal
categories in this setting was already done by Le Creurer [26], we get effec-
tive descent morphisms for enriched categories (provided that V satisfies
some properties).

2. Kan Extensions

Our perspective is that, in broad terms, descent theory is about reducing a
problem of understanding the image of a functor to a problem of understand-
ing the algebras of a (fully) property-like (pseudo)monad [21]. It is easier
to understand these pseudoalgebras: they are just the objects that can be
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endowed with a unique pseudoalgebra structure (up to isomorphism), or,
more appropriately, the effective descent points/ objects. More precisely, in
dimension 2, we restrict herein our attention to idempotent pseudomonads:
every such idempotent pseudomonad comes with a unit η which gives the
comparisons η

X
: X Ñ TX. In this case, an object X can be endowed with

a pseudoalgebra structure if and only if η
X
is an equivalence.

This setting is precisely sufficient to deal with the classical descent prob-
lem [18, 19]. It is known that the descent category and the category of
algebras are 2-categorical limits (see, for instance, [35, 36, 17]). Thereby, our
standpoint is to deal with descent theory strictly guided by bilimits results.
For the sake of this aim, we focus our study on the pseudomonads coming

from a weak notion of right Kan extensions. Actually, since the concept of
“right Kan extension” plays the leading role in this work, “Kan extension”
means always right Kan extension, while we always make the word “left”
explicit when we refer to the dual notion.
We explain below why we need to use a weak notion of Kan extension, in-

stead of employing the fully developed theory of enriched Kan extensions: the
natural place of (classical) descent theory is the tricategory of 2-categories,
pseudofunctors, pseudonatural transformations and modifications, denoted
by 2-CAT. Although we can construct the bilimits related to descent the-
ory as (enriched/ strict) Kan extensions of 2-functors in the 3-category of
2-categories, 2-functors, 2-natural transformations and modifications (see
[35, 36]), the necessary replacements [24] do not make computations and
formal manipulations any easier.
Further, most of the transformations between 2-functors that are necessary

in the development of the theory are pseudonatural. Thus, to work within
the “strict world” without employing repeatedly coherence theorems (such as
the general coherence result of [24]), we would need a result saying that usual
Kan extensions of pseudonaturally equivalent diagrams are pseudonaturally
equivalent. This is not true in most of the cases: it is easy to construct
examples of pseudonaturally isomorphic diagrams such that their usual Kan
extensions are not pseudonaturally equivalent. For instance, consider the
2-category A below.

d
α //

β
// c

The 2-category A has no nontrivial 2-cells. Assume that B is the 2-category
obtained from A adding an initial object s, with inclusion t : A Ñ B. Now,
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if � is the terminal category and ∇2 is the category with two objects and one
isomorphism between them (i.e. ∇2 is the localization of the preorder 2 w.r.t.
all morphisms), then there are two 2-natural isomorphism classes of diagrams
A Ñ CAT of the type below, while all such diagrams are pseudonaturally
isomorphic. � //// ∇2

And these 2-natural isomorphism classes give pseudonaturally nonequivalent
Kan extensions along t. More precisely, if X,Y : A Ñ CAT are such that
Xpdq � Ypdq � �, Xpcq � Ypcq � ∇2, Xpαq � Xpβq and Ypαq � Ypβq; then
RantXpsq � H, while RantYpsq � �. Therefore RantX and RantY are not
pseudonaturally equivalent, while X is pseudonaturally isomorphic to Y.
The usual Kan extensions behave well if we add extra hypotheses related

to flexible diagrams (see [3, 4, 24, 28]). However, we do not give such restric-
tions and technicalities. Thereby we deal with the problems natively in the
tricategory 2-CAT, without employing further coherence results. The first
step is, hence, to understand the appropriate notion of Kan extension in this
tricategory.

3. Pseudo-Kan Extensions

In a given tricategory, if t : aÑ b, f : aÑ c are 1-cells, we might consider
that the right Kan extension of f along t is the right 2-reflection of f along
the 2-functor rt, cs : rb, cs Ñ ra, cs. That is to say, if it exists for all f : aÑ c,
the global Kan extension would be a 2-functor Rant : ra, cs Ñ rb, cs such
that rt, cs % Ranj is a 2-adjunction. But it happens that, in very important
cases, such concept is very restrictive, because it does not take into account
the bicategorical structure of the hom-2-categories of the tricategory. Hence,
it is possible to consider weaker notions of Kan extension, corresponding to
the two other important notions of adjunction between 2-categories [10], that
is to say, lax adjunction and biadjunction. For instance, Gray [10] studied
the notion of lax-Kan extension.
For the reasons already explained in Section 2, we also consider a weak

notion of Kan extension in our tricategory 2-CAT, that is to say, the no-
tion of pseudo-Kan extension. In our case, the need of this concept comes
from the fact that, even with many assumptions, the (usual) Kan exten-
sion of a pseudofunctor may not exist. Furthermore, we prove in Section 6
that the descent object (descent category) and the Eilenberg-Moore object
(Eilenberg-Moore category) can be easily described using our language. In
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particular, the pseudo-Kan extension of a pseudocosimplicial object gives the
descent object (descent category), which agrees with our viewpoint that the
appropriate notion of Kan extension of a cosimplicial object gives the descent
object for this context.
Before defining pseudo-Kan extension, we need to recall some results of

bicategory theory. Most of them can be found in [36, 37]. Firstly, to fix
notation, we give the definitions of pseudofunctors, pseudonatural transfor-
mations and modifications.
Henceforth, in a given 2-category, we always denote by � the vertical com-

position of 2-cells and by � their horizontal composition.

Definition 3.1. [Pseudofunctor] Let A,B be 2-categories. A pseudofunctor
A : AÑ B is a pair pA, aq with the following data:
 Function A : objpAq Ñ objpBq;
 Functors A

XY
: ApX, Y q Ñ BpApXq,ApY qq;
 For each pair g : X Ñ Y, h : Y Ñ Z of 1-cells in A, an invertible 2-cell

in B: a
hg
: AphqApgq ñ Aphgq;
 For each object X of A, an invertible 2-cell a

X
: Id

AX
ñ ApId

X
q in B;

subject to associativity, identity and naturality axioms [28].

If A � pA, aq : A Ñ B and pB, bq : B Ñ C are pseudofunctors, we de-
fine the composition as follows: B � A :� pBA, pbaqq, in which pbaq

hg
:�

Bpa
hg
q � b

AphqApgq and pbaqX :� Bpa
X
q � b

ApXq. This composition is associative
and it has trivial identities. A pseudonatural transformation between pseud-
ofunctors A ÝÑ B is a natural transformation in which the usual (natural)
commutative squares are replaced by invertible 2-cells plus coherence.

Definition 3.2. [Pseudonatural transformation] If A,B : AÑ B are pseud-
ofunctors, a pseudonatural transformation α : A ÝÑ B is defined by:
 For each object X of A, a 1-cell α

X
: ApXq Ñ BpXq of B;
 For each 1-cell g : X Ñ Y of A, an invertible 2-cell α

g
: Bpgqα

X
ñ

α
Y
Apgq of B;

such that axioms of associativity, identity and naturality hold [28].

Firstly, the vertical composition, denoted by βα, of two pseudonatural
transformations α : Añ B, β : Bñ C is defined bypβαq

W
:� β

W
α

W



12 FERNANDO LUCATELLI NUNES

ApW qβW
α
W//

Apfq
��

pβαq
fðùùùCpW q

:�Cpfq
��

ApW q α
W //

Apfq
��

α
fðù BpW q

Bpfq
��

β
W //

β
fðù CpW q

Cpfq
��

ApXq
β
X
α
X

// CpXq ApXq
α
X

// BpXq
β
X

// CpXq
Secondly, let pU, uq, pL, lq : B Ñ C and A,B : A Ñ B be pseudofunctors.
If α : A ÝÑ B, λ : U ÝÑ L are pseudonatural transformations, then the
horizontal composition of U with α, denoted by Uα, is defined by: pUαq

W
:�

Upα
W
q and pUαq

f
:� �

u
α
X

Apfq	�1 � Upα
f
q � u

Bpfqα
W
, while the composition λA

is defined trivially. Thereby, we get the (usual) definition of the horizontal
composition, pλ � αq :� pλBqpUαq � pLαqpλAq
Similarly, we get the three types of compositions of modifications.

Definition 3.3. [Modification] Let A,B : A Ñ B be pseudofunctors. If
α, β : A ñ B are pseudonatural transformations, a modification Γ : α ùñ β

is defined by the following data:
 For each object X of A, a 2-cell Γ
X
: α

X
ñ β

X
of B satisfying one

axiom of naturality [28].

It is straightforward to verify that 2-CAT is a tricategory which is locally
a 2-category. In particular, we denote by rA,BsPS the 2-category of pseudo-
functors AÑ B, pseudonatural transformations and modifications. Also, we
have the bicategorical Yoneda lemma [36], that is to say, the usual Yoneda
embedding Y : A Ñ rAop,CATsPS is locally an equivalence (i.e. it induces
equivalences between the hom-categories).
A pseudofunctor A : A Ñ CAT is said to be birepresentable if there is an

object W of A such that A is pseudonaturally equivalent to ApW,�q : A Ñ
CAT. In this case, W is called the birepresentation of A. By the bicategorical
Yoneda lemma, birepresentations are unique up to equivalence.
If L : A Ñ B is a pseudofunctor and X is an object of B, a right bire-

flection of X along L is, if it exists, a birepresentation of the pseudofunctor
BpL�, Xq : Aop Ñ CAT. We say that L is left biadjoint to U : B Ñ A if,
for every object X of B, UpXq is the right bireflection of X along L. In this
case, we say that U is right biadjoint to L. This definition of biadjunction is
equivalent to Definition 3.4.
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Definition 3.4. Let U : BÑ A and L : AÑ B be pseudofunctors between
2-categories. We say that L is left biadjoint to U, denoted by L % U, if there
exist

(1) pseudonatural transformations η : IdA ÝÑ UL and ε : LU ÝÑ IdB
(2) invertible modifications s : IdL ùñ pεLq � pLηq and t : pUεq � pηUq ùñ

IdU

satisfying coherence equations [28].
In this case, we say that pL % U, η, ε, s, tq is a biadjunction. Sometimes we

omit the invertible modifications, denoting a biadjunction by pL % U, η, εq.
By the (bicategorical) Yoneda lemma, if L : A Ñ B is left biadjoint, its

right biadjoint is unique up to pseudonatural equivalence. Further, if L is
left 2-adjoint, then it is left biadjoint.
Assume that A,B are small 2-categories and H is a 2-category. If t : AÑ B

and A : AÑ H are pseudonfunctors, the (right) pseudo-Kan extension of A
along t, denoted by PsRantA, is, if it exists, a right bireflection of A : AÑ H

along the pseudofunctorrt,HsPS : rB,HsPS Ñ rA,HsPS .

A global pseudo-Kan extension along t : A Ñ B is, hence, a right biadjoint
of rt,HsPS, provided that it exists. That is to say, a pseudofunctor PsRant :rA,HsPS Ñ rB,HsPS such that rt,HsPS % PsRant. Of course, right pseudo-
Kan extensions are unique up to pseudonatural equivalence. In this paper,
we always assume that the considered global pseudo-Kan extensions exist.
In Section 4, we prove that this assumption may be replaced by a stronger
(but suitable) one: that is to say, a (bicategorical) completeness condition.
Herein, the expression Kan extension refers to the usual notion of Kan

extension in CAT-enriched category theory. That is to say, if t : A Ñ B

and A : A Ñ H are 2-functors, the (right) Kan extension of A along t,
denoted by RantA : BÑ H, is (if it exists) the right 2-reflection of A along
the 2-functor rt,Hs. And the global Kan extension is a right 2-adjoint ofrt,Hs : rB,Hs Ñ rA,Hs , in which rB,Hs denotes the 2-category of 2-functors
BÑ H, CAT-natural transformations and modifications.
If RantA exists, it is not generally true that RantA is pseudonaturally

equivalent to PsRantA. This is a coherence problem, related to flexible dia-
grams [4, 24, 3] and to the construction of bilimits via strict 2-limits [35, 36].
For instance, in particular, using the results of [28], we can easily prove, as
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a corollary of coherence results [4, 24, 28], that, for a given pseudofunctor
A : A Ñ H and a 2-functor t : A Ñ B, we can replace A by a pseudonat-
urally equivalent 2-functor A1 : A Ñ H such that RantA

1 is equivalent to
PsRantA

1 � PsRantA, provided that H satisfies some completeness condi-
tions (for instance, if H is CAT-complete).
In Section 6 we show that the descent object of a pseudocosimplicial ob-

ject D : ∆ Ñ CAT is PsRanjDp0q, in which j : ∆ Ñ 9∆ is the inclusion of
the category of nonempty finite ordinals into the category of finite ordinals.
Observe that the Kan extension of a cosimplicial object does not give the
descent object: it gives an equalizer (which is the notion of descent for di-
mension 1), although we might give the descent object via a Kan extension
after replacing the (pseudo)cosimplicial objects by suitable strict versions of
pseudocosimplicial objects as it is done at Subsection 6.1.

4. Bilimits and pseudo-Kan extensions

Similarly to Kelly’s approach for (enriched) Kan extensions, we define what
should be called pointwise (right) pseudo-Kan extension. Then, we prove
that, whenever such pointwise pseudo-Kan extensions exist, they are (equiv-
alent to) the pseudo-Kan extensions [28].
Pointwise right pseudo-Kan extensions are defined via weighted bilimits,

the bicategorical analogue for (enriched) weighted limits [36, 37]. Thereby, in
the first part of this section, we list some needed results on weighted bilimits.

Definition 4.1. [Weighted bilimit] Assume that A is a small 2-category. Let
W : A Ñ CAT, A : A Ñ H be pseudofunctors, the (weighted) bilimit of A
with weight W, denoted by tW,Aubi, if it exists, is the birepresentation of
the pseudofunctor

Aop Ñ CAT : X ÞÑ rA,CATsPSpW,HpX,A�qq
That is to say, if it exists, a bilimit is an object tW,Aubi of H endowed with a
pseudonatural equivalence (inX) ApX, tW,Aubiq � rA,CATsPSpW,HpX,A�qq.
Since, by the (bicategorical) Yoneda lemma, tW,Aubi is unique up to equiv-
alence, we refer to it as the bilimit.

Firstly, it is easy to see that CAT is bicategorically complete, that is to say,
it has all (small) bilimits. More precisely, if A is a small 2-category andW,A :
A Ñ CAT are pseudofunctors, we have that tW,Aubi � rA,CATsPSpW,Aq.
Moreover, from the bicategorical Yoneda lemma of [36], we get the strong
bicategorical Yoneda lemma.
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Lemma 4.2 (Yoneda Lemma). Let A : A Ñ H be a pseudofunctor between
2-categories. There is a pseudonatural equivalence (in X) tApX,�q,Aubi �
ApXq.
There is one important notion remaining: if A is a small 2-category, we can

give an ad hoc definition of the end of a pseudofunctor T : A�Aop Ñ CAT.

Definition 4.3. [End] Let A be a small 2-category, and assume that T :
Aop � AÑ CAT is a pseudofunctor. We define the (pseudo)end of T by»

A

T :� rA,CATsPSpAp�,�q, T q
From the definition above, we get some expected results: they are all analo-

gous to the results of the enriched context of [23]. For instance, it is important
to note that, if A is a small 2-category and A,B : AÑ H are pseudofunctors,
we get:

Proposition 4.4. Let A be a small 2-category and A,B : AÑ H be pseudo-
functors. There is a pseudonatural equivalence»

A

HpA�,B�q � rA,HsPSpA,Bq
Proof : Firstly, observe that a pseudonatural transformation

α : Ap�,�q ÝÑ HpA�,B�q
corresponds to a collection of 1-cells αpW,Xq : ApW,Xq Ñ HpApW q,BpXqq and
collections of invertible 2-cells

αpY,fq : HpApY q,BpfqqαpY,W q � αpY,XqApY, fq
αpf,Y q : HpApfq,BpY qqαpX,Y q � αpW,Y qApf, Y q

such that, for each object Y of A, αpY,�q and αp�,Y q (with the invertible 2-cells
above) are pseudonatural transformations. In other words, pseudonatural
transformations are transformations which are pseudonatural in each vari-
able.
By the bicategorical Yoneda lemma, we get what we want: more precisely,

such a pseudonatural transformation corresponds (up to isomorphism) to a
collection of 1-cells

γ
W
:� α

W,W
pId

W
q : ApW q Ñ BpW q

with (coherent) invertible 2-cells Bpfq � γ
W
� γ

W
�Apfq.
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Hence, the original bicategorical Yoneda lemma may be reinterpreted: as-
sume that A : AÑ CAT is a pseudofunctor, then we have the pseudonatural
equivalence (in X): »

A

CATpApX,�q,A�q � ApXq.
We also need Theorem 4.6 to prove that the “pointwise” pseudo-Kan exten-
sion is, indeed, a pseudo-Kan extension. This theorem is the bicategorical
analogue to the Fubini theorem in the enriched context.

Lemma 4.5. Let A,B be small 2-categories. Assume that

T : Aop �Bop �B� AÑ CAT

is a pseudofunctor. Then we have a pseudofunctor T
B

: Aop � A Ñ CAT
defined below.

T
BpA,Bq :� »

B

T pA,X,X,Bq
And, clearly, we have T

A

: Bop �B Ñ CAT such that T
ApX, Y q is the end

analogously defined.

Theorem 4.6 (Fubini’s Theorem). Let A,B be small 2-categories. Assume
that

T : Aop �Bop �B� AÑ CAT

is a pseudofunctor. Then there are pseudonatural equivalences»
A�B

T � »
A

TB � »
B

T
A

.

For short, we denote it by»
A�B

T � »
A

»
B

T � »
B

»
A

T.

Before defining pointwise pseudo-Kan extension, the following, which is
mainly used in Section 6, already gives a glimpse of the relation between
weighted bilimits and pseudo-Kan extensions.

Theorem 4.7. Let t : A Ñ B, W : A Ñ CAT be pseudofunctors. If the left
pseudo-Kan extension PsLantW exists and A : B Ñ H is a pseudofunctor,
then there is an equivalencetW,A � tubi � tPsLantW,Aubi
whenever one of the weighted bilimits exists.



PSEUDO-KAN EXTENSIONS AND DESCENT THEORY 17

Proof : Let X be an object of H. Assuming the existence of tW,A � tubi,
HpX, tW,A � tubiq � rB,HsPS pW,HpX,A�t�qq � rA,HsPS pPsLantW,HpX,A�qq
are pseudonatural equivalences (in X). TherebytW,A � tubi � tPsLantW,Aubi .
The proof of the converse is analogous.

Let H be a 2-category. If we consider the full 2-subcategoryHY of rBop,CATsPS

such that the objects of HY are the birepresentable pseudofunctors, the
Yoneda embedding Y : H Ñ HY is a biequivalence: that is to say, we can
choose a pseudofunctor I : HY Ñ H and pseudonatural equivalences YI � Id
and IY � Id.
Therefore if A is a small 2-category and H is a bicategorically complete

2-category, given a pseudofunctor A : A Ñ H, there is a pseudofunctort�,Aubi : rA,CATsopPS Ñ H which is unique up to pseudonatural equivalence
and which gives the bilimits of A [35, 28]. More precisely, since we assume
that H has all bilimits of A, we are assuming that the pseudofunctor L :rA,CATsopPS Ñ rHop,CATsPS, in which

LpWq : Bop Ñ CAT : X ÞÑ rA,CATsPS pW,HpX,A�qq
is such that LpWq has a birepresentation for every weight W : A Ñ CAT.
Therefore L can be seen as a pseudofunctor L : rA,CATsopPS Ñ HY. Hence we
can take t�,Aubi :� IL.

Definition 4.8. [Pointwise pseudo-Kan extension] Let A,B be small 2-
categories. Assume that t : A Ñ B is a pseudofunctor. The pointwise
pseudo-Kan extension is defined by

RAN tA : B Ñ H

X ÞÑ tBpX, tp�qq,Aubi ,
provided that the weighted bilimit tBpX, tp�qq,Aubi exists in H for every
object X of B.

We prove below that the pointwise pseudo-Kan extension is, actually, a
pseudo-Kan extension; that is to say, we have a pseudonatural equivalencerA,HsPS p� � t,Aq � rB,HsPS p�,RAN tAq.
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Theorem 4.9. Assume that A : A Ñ H, t : A Ñ B are pseudofunctors.
If the pointwise right pseudo-Kan extension RAN tA is well defined, then
RAN tA � PsRantA.

Proof : By the propositions presented in this section and by the definition of
a pointwise Kan extension, we have the following pseudonatural equivalences
(in S):rB,HsPS pS,RAN tAq � »

B

HpSpbq,RAN tApbqq� »
B

HpSpbq, tBpb, tp�qq,Aubiq� »
B

rA,CATsPS pBpb, tp�qq,HpSpbq,A�qq� »
B

»
A

CATpBpb, tpaqq,HpSpbq,Apaqqq� »
A

»
B

CATpBpb, tpaqq,HpSpbq,Apaqqq� »
A

HpS � tpaq,Apaqq� rA,HsPS pS � t,Aq
More precisely, the first, fourth, sixth and seventh pseudonatural equivalences
come from the fundamental equivalence of ends, while the second and third
are, respectively, the definitions of the pointwise pseudo-Kan extension and
the definition of bilimit. The remaining pseudonatural equivalence follows
from Fubini’s theorem.

Moreover, let t : A Ñ B be fully faithful and A : A Ñ H a pseudofunctor.
By the (bicategorical) Yoneda lemma, if the pseudo-Kan extension PsRantA

exists, it is actually a pseudoextension.

Theorem 4.10. Let A,B be small 2-categories. If t : A Ñ B is a local
equivalence (i.e. it induces equivalences between hom-categories) and there is
a biadjunction rt,HsPS % PsRant, its counit is a pseudonatural equivalence.

Proof : It follows from the (bicategorical) Yoneda lemma. More precisely, by
Lemma 4.2, if X is an object of A, tBptpXq, t�q,Aubi � tApX,�q,Aubi �
ApXq.
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Henceforth, for simplicity, we always assume that H is a bicategorically
complete 2-category, or at least H has enough bilimits to construct the con-
sidered pseudo-Kan extensions as pointwise pseudo-Kan extensions.

Remark 4.11. The pointwise pseudo-Kan extension was studied originally in
[28] using the Biadjoint Triangle Theorem proved therein, while the approach
presented above was more similar to the usual approach of the enriched
case [23].

5. Formal Results: pseudomonads

Although we focus on pseudomonads coming from pseudo-Kan extensions,
recall that our broad context of descent is about understanding the im-
age of a “(pseudo)monadic” (pseudo)functor. In our case, if H is a bi-
categorically complete 2-category and t : A Ñ B is a pseudofunctor be-
tween small 2-categories, by the results of Section 4.9 we have a biadjunc-
tion rt,HsPS % PsRan

t
. We know that every biadjunction induces a pseu-

domonad [25, 28]. In this case, it induces a pseudomonad PsRan
t
p��tq. Our

interest is to study the objects of rB,HsPS that can be endowed with pseu-
doalgebra structure [28], that is to say, the image of the forgetful Eilenberg-
Moore 2-functor

Ps-PsRan
t
p� � tq-Alg Ñ rB,HsPS .

Definition 5.1. [Effective Diagrams] Let t : A Ñ B be a pseudofunctor
between small 2-categories and H be a bicategorically complete 2-category.
Herein, a pseudofunctor A : B Ñ H is said to be of effective t-descent if A
can be endowed with a PsRan

t
p� � tq-pseudoalgebra structure.

We study more closely pseudomonads coming from pseudo-Kan extensions
along local equivalences, that is to say pseudomonads PsRan

t
p�� tq in which

t : A Ñ B induces equivalences between the hom-categories. Actually,
most of the important examples we deal with are about such pseudomonads
PsRan

t
p� � tq in which t : A Ñ 9A is the full inclusion of a small 2-category

A into a small 2-category 9A with only one extra object a.
We show in Subsection 5.4 that these right pseudo-Kan extensions induce

a special kind of pseudomonads: idempotent pseudomonads. Thereby this
section is dedicated to the study of this type of pseudomonads.
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5.1. Idempotent Pseudomonads. Instead of considering the broad con-
text, since we deal only with idempotent pseudomonads, we give an ele-
mentary approach focusing on them. The main benefit of this approach is
that idempotent pseudomonads have only free pseudoalgebras. Recall that
a pseudomonad T on a 2-category H consists of a sextuple pT, µ, η,Λ, ρ,Γq,
in which T : H Ñ H is a pseudofunctor, µ : T2 ÝÑ T, η : Id

H
ÝÑ T are

pseudonatural transformations and

T
η
T //

Λðù T2

µ
��

T
Tη

oo

ρðù T3
Tµ

//

µT

��
Γðùù T2

µ

��

T T2
µ

// T

are invertible modifications satisfying the following coherence equations [30,
28]: 
 Identity:

T2

TηT

~~}}
}}

}}
}} TηT

  A
AA

AA
AA

A

Id
T2

��

T2

TηT
��

T3

µT   A
AA

AA
AA

A

ρTðù T3yTΛðù
Tµ~~}}

}}
}}

}}
T3

µT
}}
}

~~}}}
Tµ
AA

A

  A
AA

T2

µ
��

� T2 Γðùù
µ

AA
A

  A
AA

T2

µ}}
}

~~}}
}

T T
 Associativity:

T4
T2µ

//

TµT
AA

A

  A
AAµT2

��

T3

Tµ

  A
AA

AA
AA

AyTΓðù T4
T2µ

//

µ�1
µðùùµT2

��

T3

µT
��

Tµ

  A
AA

AA
AA

A

T3

µT   A
AA

AA
AA

A

ΓTðù T3 Tµ //

µT
��

Γðù T2

µ
��

� T3 Tµ //

µT   A
AA

AA
AA

A
T2 Γðù

  A
AA

AA
AA

A

Γðù T2

µ

��

T2
µ

// T T2
µ

// T

in whichxTΛ :� pt
T
q�1 pTΛq �tpµqpηTq� xTΓ :� �

tpµqpµTq��1 pTΓq �tpµqpTµq�
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Definition 5.2. [Idempotent pseudomonad] A pseudomonad pT, µ, η,Λ, ρ,Γq
is said to be idempotent if there is an invertible modification ηT � Tη.

Similarly to 1-dimensional monad theory, the name idempotent pseudomonad
is justified by Lemma 5.3, which says that multiplications of idempotent
pseudomonads are pseudonatural equivalences.

Lemma 5.3. A pseudomonad pT, µ, η,Λ, ρ,Γq is idempotent if and only if its
multiplication µ is a pseudonatural equivalence. Furthermore, if it is so, ηT
is a pseudonatural equivalence inverse of µ.

Proof : Since µpηTq � Id
T
� µpTηq, it is obvious that, if µ is a pseudonat-

ural equivalence, then ηT � Tη. Therefore T is idempotent and ηT is an
equivalence inverse of µ.
Reciprocally, assume that T is idempotent. By the definition of pseudomon-

ads, there is an invertible modification µpηTq � Id
T
. And, since ηT � Tη, we

get the invertible modificationspηTqµ � pTµqpηT2q � pTµqpTηTq � TpµpηTqq � Id
T2

which prove that µ is a pseudonatural equivalence and ηT is a pseudonatural
equivalence inverse.

The reader familiar to lax-idempotent/ KZ-pseudomonads will notice that
an idempotent pseudomonad is just a KZ-pseudomonad whose adjunction
µ % ηT is actually an adjoint equivalence. Hence, idempotent pseudomonads
are fully property-like pseudomonads [21].
Every biadjunction induces a pseudomonad [25, 28]. In fact, we get the

multiplication µ from the counit, and the invertible modifications Λ, ρ,Γ
come from the invertible modifications of Definition 3.4. Of course, a biad-
junction L % U induces an idempotent pseudomonad if and only if its unit
η is such that ηUL � ULη.
As a consequence of this characterization, we have Lemma 5.4 which is

necessary to give the Eilenberg-Moore factorization for idempotent pseu-
domonads.

Lemma 5.4. If a biadjunction pL % U, η, εq induces an idempotent pseu-
domonad, then ηU : U ÝÑ ULU is a pseudonatural equivalence.

Proof : By the triangular invertible modifications of Definition 3.4, if ε is the
counit of the biadjunction L % U, pUεqpηUq � Id

U
. Also, since ULη � ηUL,
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we have the following invertible modificationspηUq � pUεq � pULUεqpηULUq � pULUεqpULηUq � ULpId
U
q � Id

ULU

Therefore ηU is a pseudonatural equivalence.

As mentioned in the beginning of this subsection, besides being fully property-
like, one of the main benefits of restricting our attention to idempotent pseu-
domonads comes from the fact that all their pseudoalgebras are free. In
particular, we can avoid the coherence equations [30, 25, 28] used to define
the 2-category of pseudoalgebras of a pseudomonad T when assuming that T
is idempotent.

Definition 5.5. [Pseudoalgebras] Let pT, µ, η,Λ, ρ,Γq be an idempotent pseu-
domonad on a 2-category H. We define the 2-category of T-pseudoalgebras
Ps-T-Alg as following:
 Objects: the objects of Ps-T-Alg are the objects X of H such that

η
X
: X Ñ TpXq

is an equivalence;
 The inclusion objpPs-T-Algq Ñ objpHq extends to a full inclusion 2-
functor

I : Ps-T-Alg Ñ H

In other words, the inclusion I : Ps-T-Alg Ñ H is defined to be final among

the full inclusions pI : AÑ H such that ηpI is a pseudonatural equivalence.
If η

X
: X Ñ TpXq is an equivalence, then we say that X can be endowed

with a pseudoalgebra structure and the left adjoint a : TpXq Ñ X to η
X
:

X Ñ TpXq is called a pseudoalgebra structure to X. Because we could
describe Ps-T-Alg by means of pseudoalgebras/ pseudoalgebra structures, we
often denote the objects of Ps-T-Alg by small letters a, b.

Theorem 5.6 (Eilenberg-Moore biadjunction). Let pT, µ, η,Λ, ρ,Γq be an
idempotent pseudomonad on a 2-category H. There is a unique pseudofunctor
L

T

such that

H T //

L
T

II
II

$$II
II

H

Ps-T-Alg

Iuuuuu

::uuuuu

is a commutative diagram. Furthermore, L
T

is left biadjoint to I.
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Proof : Firstly, we define L
TpXq :� TpXq. On one hand, it is well defined,

since, by Lemma 5.3,

ηT : T ÝÑ T2

is a pseudonatural equivalence. On the other hand, the uniqueness of L
T

is
a consequence of the fact that I is a monomorphism.
Now, it remains to show that L

T

is left biadjoint to I. By abuse of language,
if a is an object of Ps-T-Alg, we denote by a its pseudoalgebra structure (of
Definition 5.5). Then we define the equivalences inverses below

Ps-T-AlgpTpXq, bq Ñ HpX, Ipbqq
f ÞÑ fη

X

α ÞÑ α � Id
η
X

HpX, Ipbqq Ñ Ps-T-AlgpTpXq, bq
g ÞÑ bT pgq
β ÞÑ Id

b
� T pβq

It completes the proof that L
T % I.

Theorem 5.7 shows that this biadjunction L
T % I satisfies the expected

universal property [25] of the 2-category of pseudoalgebras, which is the
Eilenberg-Moore factorization. In other words, we prove that our definition of
Ps-T-Alg for idempotent pseudomonads T agrees with the usual definition [27,
25, 30, 36] of pseudoalgebras for a pseudomonad.

Theorem 5.7 (Eilenberg-Moore). Let L : AÑ B be a pseudofunctor. If L %
U is a biadjunction which induces an idempotent pseudomonad pT, µ, η,Λ, ρ,Γq,
then we have a unique comparison pseudofunctor K : B Ñ Ps-T-Alg such
that

B
K //

U $$J
JJJJJJJJJJ Ps-T-Alg

I
��

A
L

T

//

L $$I
IIIIIIIIII Ps-T-Alg

A B

K

OO

commute.

Proof : It is enough to define KpXq � UpXq and Kpfq � Upfq. This is well
defined, since, by Lemma 5.4, ηU : U ÝÑ TU is a pseudonatural equivalence.

Actually, in 2-CAT, every biadjunction L % U induces a comparison pseud-
ofunctor and an Eilenberg-Moore factorization [27] as above, in which T �
UL denotes the induced pseudomonad. When the comparison pseudofunctor
K is a biequivalence, we say that U is pseudomonadic. Although there is the
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Beck’s theorem for pseudomonads [27, 14, 28], the situation is simpler in the
setting of idempotent pseudomonads.

Theorem 5.8. Let L : A Ñ B be a pseudofunctor and L % U be a bi-
adjunction. The pseudofunctor U is a local equivalence if and only if U is
pseudomonadic and the induced pseudomonad pT, µ, η,Λ, ρ,Γq is idempotent.
Or, equivalently, the counit of L % U is a pseudonatural equivalence if and
only if U is pseudomonadic and the induced pseudomonad is idempotent.

Proof : Firstly, if the counit ε of the biadjunction of L % U is a pseudonatural
equivalence, then µ :� UεL is a pseudonatural equivalence as well. And,
thereby, the induced pseudomonad is idempotent. Now, if a : TpXq Ñ X is
a pseudoalgebra structure to X, we have that

KpLpXqq � TpXq �a // X.

Thereby U is pseudomonadic.
Reciprocally, if L % U induces an idempotent pseudomonad and U is pseu-

domonadic, then we have that I � K � U, K is a biequivalence and I is a
local equivalence. Thereby U is a local equivalence and ε is a pseudonatural
equivalence.

In descent theory, one needs conditions to decide if a given object can be
endowed with a pseudoalgebra structure. Idempotent pseudomonads provide
the following simplification.

Theorem 5.9. Let T � pT, µ, η,Λ, ρ,Γq be an idempotent pseudomonad on
H. Given an object X of H, the following conditions are equivalent:

(1) The object X can be endowed with a T-pseudoalgebra structure;
(2) η

X
: X Ñ TpXq is a pseudosection, i.e. there is a : TpXq Ñ X such

that aη
X
� Id

X
;

(3) η
X
: X Ñ TpXq is an equivalence.

Proof : Assume that η
X
: X Ñ TpXq is a pseudosection. By hypothesis, there

is a : TpXq Ñ X such that aη
X
� Id

X
. Thereby

η
X
a � Tpaqη

TpXq � TpaqTpη
X
q � Tpaη

X
q � Id

TpXq.
Hence η

X
is an equivalence.
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5.2. Biadjoint Triangle Theorem. The main formal result used in this
paper is somehow related to distributive laws of pseudomonads [30, 31].
Roughly, let T be a pseudomonad on H compatible with the pseudomon-

ads T2,T1 and pseudomonads T4,T3. We denote by pT2 the lifting of T2 to
Ps-T1-Alg. If a : T1pXq Ñ X is a T1-pseudoalgebra structure such that a can

be endowed with a pT2-pseudoalgebra structure, then X can be endowed with
a T3-pseudoalgebra structure. This is described by the diagram below.

Ps- pT2-Alg � //�
��

Ps-T1-Alg

��

Ps- pT4-Alg

��

Ps-T3-Alg // H

However, we choose a more direct approach, avoiding some technicalities of
distributive laws unnecessary to our setting. To give such direct approach,
we use the Biadjoint Triangle Theorem 5.11.
Precisely, we give a bicategorical version (for idempotent pseudomonads)

of a well known adjoint triangle theorem [1]. It is important to note that
this bicategorical version holds for pseudomonads in general [29], so that our
restriction to the idempotent version is due to our scope.

Lemma 5.10. Let pL % U, η, εq and ppL % pU, pη, pεq be biadjunctions. As-

sume that pL % pU induces an idempotent pseudomonad and that there is a
pseudonatural equivalence

A � BEoo

C

L???

__??? pL~~~ ??~~~

If η
X
is a pseudosection, then pη

X
is an equivalence.

Proof : Let X be an object of C such that η
X
: X Ñ ULpXq is pseudosection.

By Theorem 5.9, it is enough to prove that pη
X
is a pseudosection, because

the pseudomonad induced by pL % pU is idempotent.
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To prove that pη
X
is a pseudosection, we construct a pseudonatural trans-

formation α : pUpL ÝÑ UL such that there is an invertible modification

Id
C�pη{{

{

}}{{
{

η
CC

C

!!C
CC

CpUpL α // UL

Without loosing generality, we assume that E � pL � L. Then we define

α :� pUEpεpLqpηpUpLq. Indeed,
αpη � pUEpεpLq�ηpUpL	 ppηq � pUEpεpLq pULpηq pηq � pUEpεpLq�UEpLpη	 pηq � η

Therefore, if η
X
is a pseudosection, so is pη

X
. And, as mentioned, by Theorem

5.9, if pη
X
is a pseudosection, it is an equivalence.

Let pT be the idempotent pseudomonad induced by pL % pU and T the
pseudomonad induced by L % U. Then Lemma 5.10 could be written as
following:
If X is an object of C that can be endowed with a T-pseudoalgebra structure,

then X can be endowed with a pT-pseudoalgebra structure, provided that there

is a pseudonatural equivalence EpL � L.

Theorem 5.11. Let pL % U, η, εq and ppL % pU, pη, pεq be biadjunctions such
that their right biadjoints are local equivalences. If there is a pseudonatural
equivalence

A � BEoo

C

L???

__??? pL~~~ ??~~~

then E is left biadjoint to a pseudofunctor R which is a local equivalence.

Proof : It is enough to define R :� pLU. By Lemma 5.10, ppηUq : U ÝÑ pUpLU �pUR is a pseudonatural equivalence. Thereby we get

ApEpbq, aq � ApEpLpUpbq, aq� ApLpUpbq, aq� CppUpbq,Upaqq� CppUpbq, pURpaqq� Bpb, Rpaqq.
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This completes the proof that R is right biadjoint to E.

Assume that A : A Ñ B and B : B Ñ C are pseudomonadic pseudofunc-
tors, and their induced pseudomonads are idempotent. Then it is obvious
that B �A : AÑ C is also pseudomonadic and induces an idempotent pseu-
domonad. Indeed, by Theorem 5.8, this statement is equivalent to: composi-
tions of right biadjoint local equivalences are right biadjoint local equivalences
as well.
The main results of this section are related to the study of pseudoalgebra

structures, knowing other pseudoalgebras structures: a kind of commuta-
tivity property. This is related to Theorem 5.11 and established in Corol-
lary 5.12.

Corollary 5.12. Assume that there is a pseudonatural equivalence

A � HEoo

B

L
A

OO

CL
B

oo

L
C

OO

such that L
A

% A, L
B

% B and L
C

% C are pseudomonadic biadjunctions

inducing idempotent pseudomonads T
A
,T

B
,T

C
. Then E % R and R is a local

equivalence.
In particular, if pX, aq is a T

B
-pseudoalgebra that can be endowed with a

T
A
-pseudoalgebra structure, then X can be endowed with a T

C
-pseudoalgebra

structure as well.

Lemma 5.10 and Corollary 5.12 can be seen as results on descent theory
in our broad context, i.e. they give conditions to decide whether a given
object can be endowed with a pseudoalgebra structure. In fact, most of the
theorems proved in this paper are consequences of successive applications of
these results, including Bénabou-Roubaud theorem and other theorems that
essentially are consequences of commutativity properties of bilimits.
However it does not deal with the technical “almost descent” aspects.

These are taken care in next subsection.

5.3. F-comparisons. In the classical context of descent [18, 19], instead
of restricting attention to effective descent morphisms, we often are inter-
ested in almost descent and descent morphisms as well. In the context of
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idempotent pseudomonads, these are objects that possibly do not have pseu-
doalgebra structure but have comparison 1-cells belonging to special classes
of morphisms.
In this subsection, every 2-category H is assumed to be endowed with a

special subclass of morphisms F
H
satisfying the following properties:
 Every equivalence of H belongs to F

H
;
 F

H
is closed under compositions and under isomorphisms;
 If fg and f belongs to F

H
, g is also in F

H
.

If f is a morphism of H that belongs to F
H
, we say that f is an F

H
-morphism.

Definition 5.13. Let pT, µ, η,Λ, ρ,Γq be an idempotent pseudomonad on a
2-category H. An object X is an pF

H
,Tq-object if the comparison η

X
: X Ñ

TpXq is an F
H
-morphism.

We say that a pseudofunctor E : HÑ H preserves pF
H
,Tq-objects if it takespF

H
,Tq-objects to pF

H
,Tq-objects.

Theorem 5.14 is a commutativity result for pF
H
,Tq-objects. Similarly

to Corollary 5.12, it follows from the construction given in the proof of
Lemma 5.10, although it requires some extra hypotheses.

Theorem 5.14. Let

A � HEoo

B

L
A

OO

CL
B

oo

L
C

OO

be a pseudonatural equivalence such that L
A

% A, L
B

% B and L
C

% C are

biadjunctions inducing pseudomonads T
A
,T

B
,T

C
. Also, we denote by T the

pseudomonad induced by the biadjunction L
A

L
B

% BA.

Assume that all the right biadjoints are local equivalences, B takes F
B
-

morphisms to F
C
-morphisms and T

C
preserves pF

C
,Tq-objects. If X is apF

C
,T

B
q-object of C and L

B

pXq is a pF
B
,T

A
q-object, then X is a pF

C
,T

C
q-

object as well.

Proof : By the proof of Lemma 5.10, there is a pseudonatural transformation
α : T

C
ÝÑ T such that there is an invertible modification

X�η
C

~~
~

~~~~
η

>>
>

��>
>>

T
C

α // T
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In particular, if X is an object of C satisfying the hypotheses of the theorem,
we get an isomorphism

X�η
C

X

xx
x

||xxx
η
X

EE
EE

""E
EE

T
C
pXq α

X
// TpXq

in which, by the hypotheses, we conclude that η
X
� �

Bη
A

L
B

	
X

� ηB

X
is an

F
C
-morphism.
By the properties of the subclass F

C
, it remains to prove that α

X
is an

F
C
-morphism. Recall that α

X
is defined by α

X
:� pBAε

C

L
C

q
X
� pηT

C
q
X
, in

which ε
C

is the counit of the biadjunction L
C

% C.

Since pBAε
C

L
C

q
X

is an equivalence and, by hypothesis, pηT
C
q
X

is a F
C
-

morphism, it follows that α
X
is a F

C
-morphism.

This completes the proof that η
C

X
is also a F

C
-morphism.

5.4. Pseudo-Kan extension. As mentioned before, we deal mainly with
pseudo-Kan extensions along local equivalences. Actually, our setting reduces
to the study of right pseudo-Kan extensions of pseudofunctors A : A Ñ H

along t, in which t : A Ñ 9A is the full inclusion of a small 2-category A into
a small 2-category 9A which has only one extra object a.

Theorem 5.15 (Factorization). Let t : A Ñ 9A be an inclusion of a small

2-category A into a small 2-category 9A in which

objp 9Aq � objpAq Y tau .
If A : 9A Ñ H is a pseudofunctor, a � b and f : b Ñ a, g : a Ñ b are
morphisms of 9A, we get induced “factorizations” (actually, invertible 2-cells):

Apbq Apfq //

f
A

PPPPPP

''PPP
PP

Apaq Apaq Apgq //

ηa
A

PPPPPP

''PPP
PP

Apbq
PsRan

t
pA � tqpaq� ηa

Annnnn

77nnnnnn

PsRan
t
pA � tqpaq� g

Annnnn

77nnnnnn

in which

f
A
:� PsRan

t
pA � tqpfq � εbpA�tq g

A
:� εbpA�tq � PsRant

pA � tqpgq
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and ηa
A

, εbpA�tq are the 1-cells induced by the components of the unit η and

counit ε of the biadjunction rt,HsPS % PsRan
t
, that is to say

η
A
: A ÝÑ PsRan

t
pA � tq εpA�tq : PsRant

pA � tq � t ÝÑ A � t
Proof : By the (triangular) invertible modifications of Definition 3.4,

g
A
� ηa

A

� εbpA�tq � PsRant
pA � tqpgq � ηa

A

� εbpA�tq � ηbA �Apgq � Apgq
The proof of the factorization of Apfq is analogous.
Furthermore, when t is a local equivalence, PsRan

t
: rA,HsPS Ñ � 9A,H�

PS

induces an idempotent pseudomonad PsRan
t
p� � tq. This is a consequence

of Theorem 4.10 and Theorem 5.8.

Theorem 5.16. Let t : AÑ 9A be a full inclusion of A into a small 2-category9A with only one extra object a. We have the following
 PsRan
t
: rA,HsPS Ñ � 9A,H�

PS
is pseudomonadic;
 PsRan

t
induces an idempotent pseudomonad PsRan

t
p� � tq.

Thereby, by Theorem 5.9, we can easily study the PsRan
t
p��tq-pseudoalgebra

structures on diagrams, using the unit of the biadjunction rt,HsPS % PsRan
t
.

More precisely:

Theorem 5.17. Let t : A Ñ B be a local equivalence between small 2-
categories and A : 9A Ñ H be a pseudofunctor. The following conditions are
equivalent:
 A is of effective t-descent;
 The component of the unit on A/ comparison η

A
: AÑ PsRan

t
pA� tq

is a pseudonatural equivalence;
 The comparison η
A
: A Ñ PsRan

t
pA � tq is a pseudonatural pseudo-

section.

Moreover, the component of the unit η
A
: A ÝÑ PsRan

t
pA� tq is a pseudo-

natural equivalence if and only if all components of η
A
are equivalences. But,

by Theorem 4.10, assuming that t : A Ñ 9A is a full inclusion of a (small)

2-category A into a small 2-category 9A with only one extra object a, ηb
A
is

always an equivalence for all b in A. Thereby we get:
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Theorem 5.18. Let t : A Ñ 9A be an inclusion of a small 2-category A into
a small 2-category 9A in which objp 9Aq :� objpAq Y tau is a disjoint union.

If A : 9A Ñ H is a pseudofunctor, A is of effective t-descent if and only if
ηa
A
: Apaq Ñ PsRan

t
pA � tqpaq is an equivalence.

5.5. Commutativity. We can apply the main results of this section (The-
orem 5.11 and Corollary 5.12) to our context of pseudo-Kan extensions: we
get, then, theorems on commutativity.
Let t : A Ñ 9A, h : B Ñ 9B be full inclusions of small 2-categories, such

that

objp 9Aq � objpAq Y tau and objp 9Bq � objpBq Y tbu
are disjoint unions. Unless we explicit otherwise, henceforth we always con-
sider right pseudo-Kan extensions along such type of inclusions. Recall that
we are always assuming that H is bicategorically complete (or at least, H
have enough bilimits to define the considered global pointwise pseudo-Kan
extensions). In general, we have that (see [37]):� 9A� 9B,H

�
PS

� � 9A, � 9B,H
�
PS

�
PS

� � 9B,
� 9A,H�

PS

�
PS

Thereby every pseudofunctor A : 9A � 9B Ñ H can be seen (up to pseudo-

natural equivalence) as a pseudofunctor A : 9A Ñ � 9B,H
�
PS

. Also, A : 9A Ñ� 9B,H
�
PS

can be seen as a pseudofunctor A : 9BÑ � 9A,H�
PS

.

Theorem 5.19. Let A : 9A Ñ H be a effective t-descent pseudofunctor.
Assume that U : pH Ñ H is a pseudomonadic pseudofunctor such that its
induced pseudomonad T is idempotent and L % U. If A : 9A Ñ H is a
effective t-descent pseudofunctor and T is an idempotent pseudomonad on
H such that the objects of the image of A � t can be endowed with a T-
pseudoalgebra structure, then Apaq can be endowed with a T-pseudoalgebra
structure.
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Proof : Observe that the pseudonatural equivalence�
A, pH�

PS �
� 9A, pH�

PS
rt,pHs

PS
oo

rA,HsPS

rA,LsPS

OO

� 9A,H�
PS

rt,HsPS
oo

r 9A,Ls
PS

OO

satisfies the hypotheses of Corollary 5.12.
If A : 9A Ñ H is a effective t-descent pseudofunctor such that all the

objects of the image of A � t has T-pseudoalgebra structure, it means that
A satisfies the hypotheses of Corollary 5.12. I.e. A is a PsRantp� � tq-
pseudoalgebra that can be endowed with a rA,TsPS-pseudoalgebra structure.

Thereby, by Corollary 5.12,A can be endowed with a
� 9A,T�

PS
-pseudoalgebra

structure.

Corollary 5.20. Let A : 9AÑ � 9B,H
�
PS

be a effective t-descent pseudofunc-

tor such that all the diagrams in the image of A � t are of effective h-descent,
then Apaq is also of effective h-descent.

Corollary 5.21. Let A : 9A � 9B Ñ H be a pseudofunctor. Assume that its
mates pA : 9AÑ � 9B,H

�
PS

Ā : 9BÑ � 9A,H�
PS

are such that all the diagrams in the image of pA � t are of effective h-descent
and all the diagrams in the image of Ā�h are of t-effective descent. We have

that pApaq is of effective h-descent if and only if Āpbq is of effective t-descent.

Corollary 5.21 is enough to prove Bénabou-Roubaud Theorem and other
abstract theorems of Descent Theory that depend only on basic commuta-
tivity properties. Next subsection deals with the technical issues of almost
descent pseudofunctors.

5.6. Almost descent pseudofunctors. Recall that a 1-cell in a 2-category
H is called faithful/ fully faithful if its images by the (covariant) representable
2-functors are faithful/ fully faithful.
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Definition 5.22. Let t : A Ñ 9A be an inclusion of a small 2-category A

into a small 2-category 9A in which objp 9Aq � objpAqY tau is a disjoint union.

If A : 9A Ñ H is a pseudofunctor, A is of almost t-descent if ηa
A
: Apaq Ñ

PsRan
t
pA � tqpaq is faithful. If, furthermore, ηa

A
is fully faithful, we say that

A is of t-descent.

Consider the class Fr 9A,HsPS

of pseudonatural transformations/ morphisms in� 9A,H�
PS

whose components are faithful. This class satisfies the properties

described in Subsection 5.3. Also, a pseudofunctor A : 9A Ñ H is of almost
descent if and only if A is a pFr 9A,HsPS

,PsRan
t
pA � tqq-object.

Analogously, if we take the class F1r 9A,HsPS

of objectwise fully faithful pseudo-

natural transformations, A : 9A Ñ H is of descent if and only if A is apF1r 9A,HsPS

,PsRan
t
pA � tqq-object.

Since in our context of right pseudo-Kan extensions along local equivalences
the hypotheses of Theorem 5.14 hold, we get the corollaries below. Again,
we are considering full inclusions t : AÑ 9A, h : BÑ 9B as in Subsection 5.5.

Corollary 5.23. Let A : 9AÑ � 9B,H
�
PS

be a almost t-descent pseudofunctor

such that all the pseudofunctors in the image of A�t are of almost h-descent.
In this case, Apaq is also of almost h-descent.
Similarly, if A is of t-descent and all the pseudofunctors of the image of

A � t are of h-descent, then Apaq is also of h-descent as well.

Corollary 5.24. Let A : 9A � 9B Ñ H be a pseudofunctor. Assume that its
mates pA : 9AÑ � 9B,H

�
PS

Ā : 9BÑ � 9A,H�
PS

are such that all the diagrams in the image of pA � t are of almost h-descent
and all the diagrams in the image of Ā � h are of almost t-descent. In this
case,pApaq is of almost h-descent if and only if Āpbq is of almost t-descent.

If, furthermore, all the pseudofunctors in the image of pA � t are of h-descent
and all the pseudofunctors in the image of Ā � h are of t-descent. Then:pApaq is of h-descent if and only if Āpbq is of t-descent.
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6. Descent Objects

In this section, we give a description of the descent objects in our setting.
Let j : ∆ Ñ 9∆ be the full inclusion of the category of finite nonempty
ordinals into the category of finite ordinals and order preserving functions.
Recall that 9∆ is generated by its degeneracy and face maps. That is to say,9∆ is generated by the diagram

0
d�d0 // 1

d0 //

d1 //
2s0oo

d0 //

d1 //

d2 //
3

s0

��

s1

]]

//
//
//
//
� � �

gg[[

{{

with the following relations:

dkdi � didk�1, if i   k

sksi � sisk�1, if i ¤ k

skdi � disk�1, if i   k

d0d � d1d

skdi � id, if i � k and i � k � 1

skdi � di�1sk, if i ¡ k � 1

A pseudofunctor A : ∆ Ñ H is called a pseudocosimplicial object of H.
The descent object of a pseudocosimplicial object A : ∆Ñ H is PsRanjAp0q.
Theorem 6.3 shows that this definition agrees with Definition 6.2, which is
the usual definition of the descent object/ bilimit [37, 18, 17].
Firstly, we need a suitable domain for the weight defined in [37]. Originally,

the weight is defined in a “strict version/ free version” of the category ∆
3

defined below. We choose to not do so, postponing any further comment on
strictness to Subsection 6.1.

Definition 6.1. The category 9∆
3
is generated by the diagram:

0
d // 1

d0 //

d1
//
2s0oo

B0 //B1 //B2 //
3

such that:

d1d � d0d Bkdi � Bidk�1, if i   k s0d0 � s0d1 � id

We denote by j
3
: ∆

3
Ñ 9∆

3
the full inclusion of the subcategory ∆

3
in which

objp∆
3
q � t1, 2, 3u. Still, there are obvious inclusions: 9t

3
: 9∆

3
Ñ 9∆ and

t
3
: ∆

3
Ñ ∆.
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Definition 6.2. We denote by W : ∆
3
Ñ CAT the weight below (defined in

[37]), in which ∇n denotes the localization of the category/ finite ordinal n
w.r.t all the morphisms.

∇1

//

//
∇2oo

//
//
//
∇3

Following [37], if A : ∆ Ñ H is a pseudofunctor, the descent object of A is
defined to be

DescpAq :� tW,A � t
3
ubi .

Theorem 6.3 (Descent Objects). Let A : ∆ Ñ H be a pseudofunctor. The
descent object of Definition 6.2 is equivalent to PsRanjAp0q.
Proof : Recall that we are assuming that H has the pointwise right pseudo-

Kan extension of A. By Theorem 4.9, PsRanjAp0q � ! 9∆p0, j�q,A)
bi
. How-

ever, since 0 is the initial object of 9∆, the 2-functor 9∆p0, j�q is constant and
equal to the terminal category, denoted by �. We denote this weight by �.
Therefore we just need to prove that the descent object of Definition 6.2

can be seen (up to equivalence) as the weighted bilimit t�,Aubi. Also, by
Theorem 4.7, tW,A � t

3
ubi �  

PsLant
3
W,A

(
bi
. Thereby, it remains to prove

that PsLant
3
W � �. But it is easy to verify that, by the definitions, the left

pseudo-Kan extention of W is (equivalent to)

∇1
d0 //

d1 //
∇2s0oo

d0 //

d1 //

d2 //
∇3

s0

}}

s1

aa

//////// ∇4 � � �
ii__

ww

in which PsLant
3
Wpnq � ∇n, defined in the obvious way.

At last, there is a unique 2-natural transformation α : PsLant
3
W ÝÑ �.

Since α is objectwise an equivalence (that is to say, αn : ∇n Ñ � is an
equivalence for each n), α is a pseudonatural equivalence PsLant

3
W � �.

Observe that, by Theorem 6.3, if A : 9∆Ñ H is a pseudofunctor, then A is
of effective j-descent if and only if A � 9t

3
is of effective j

3
-descent.

6.1. Strict Descent Objects. In this subsection, we show how we can
see descent objects via (strict/ enriched) Kan extensions of 2-diagrams. Al-
though this construction is important to giving a few strict features of descent
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theory (such as the strict factorization), we barely use the results of this sub-
section in the rest of the paper (since, as explained in Section 2, we avoid
coherence technicalities).
Clearly, unlike the general viewpoint of this paper, in this subsection we

have to deal closely with coherence theorems. Most of the coherence replace-
ments used here follow from the 2-monadic approach to general coherence
results [24, 4, 28]. Also, to formalize some observations of free 2-categories,
we use the concept of computad, defined in [35].
The first step is actually older than the general coherence results: the

strictification of a bicategory described in page 27 of [13]. We take the

stritification of the 2-category 9∆
3
and denote it by 9∆

Str
. More precisely, this

is defined herein as follows:

Definition 6.4. We denote by 9∆
Str

the locally preordered 2-category freely
generated by the diagram

0
d // 1

d0 //

d1
//
2s0oo

B0 //B1 //B2 //
3

with the 2-cells:

σ01 : B1d0 � B0d0
σ02 : B2d0 � B0d1
σ12 : B2d1 � B1d1 n0 : s0d0 � Id

1

n1 : Id
1
� s0d1

ϑ : d1d � d0d

We consider the full inclusion j
Str

: ∆
Str
Ñ 9∆

Str
in which objp∆

Str
q � t1, 2, 3u.

Remark 6.5. Observe that the diagram and 2-cells described above define
a computad [35], which we denote by �. Thereby Definition 6.4 is precise
in the following sense: there is a forgetful functor between the category of
locally preordered 2-categories and 2-functors and the category of computads.
This forgetful functor has a left adjoint which gives the locally preordered
2-categories freely generated by each computad.
The (locally preordered) 2-category 9∆

Str
is, by definition, the image of the

computad � by this left adjoint functor.

Remark 6.6. ∆
Str

is the 2-category freely generated by the corresponding
diagram and 2-cells σ01, σ02, σ12, n0, n1, since there are no equations involving
just these 2-cells.
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Indeed, 9∆
Str

and ∆
Str

are strict replacements of our 2-categories 9∆
3
and ∆

3

respectively. Actually, j
Str

is the strictification of j
3
. By the construction of9∆

Str
, we get the desired main coherence result of this subsection:

Proposition 6.7. There are obvious biequivalences ∆
Str
� ∆

3
and 9∆

Str
� 9∆

3

which are bijective on objects. Also, if H is any 2-category, r∆
Str
,Hs Ñr∆

Str
,HsPS is essentially surjective.

Moreover, for any 2-functor C : ∆
Str
Ñ CAT, we have an equivalencer∆

Str
,CATs p 9∆

Str
p0, j

Str
p�qq,Cq � r∆

Str
,CATsPS p 9∆

Str
p0, j

Str
p�qq,Cq.

Corollary 6.8. If A : ∆
Str
Ñ H is a 2-functor,

PsRanj
3
Ǎ � PsRanj

Str
A � Ranj

Str
A

provided that the pointwise Kan extension Ranj
Str
A exists, in which Ǎ is the

composition of A with the biequivalence ∆
3
� ∆

Str
.

Assuming that the pointwise Kan extension Ranj
Str
A exists, Ranj

Str
Ap0q is

called the strict descent diagram of A. By the last result, the descent object
of A is equivalent to its strict descent object provided that A has a strict
descent object. We get a glimpse of the explicit nature of the (strict) descent

object at Theorem 6.9 which gives a presentation to 9∆
Str
.

We denote by 9� the 2-category freely generated by the diagram and 2-
cells described in Definition 6.4. It is important to note that 9� is not locally
preordered. Moreover, there is an obvious 2-functor 9�Ñ 9∆

Str
, induced by the

unit of the adjunction between the category of 2-categories and the category
of locally preordered 2-categories.

Theorem 6.9. Let H be a 2-category. There is a bijection between 2-functors
A : 9∆

Str
Ñ H and 2-functors A : 9�Ñ H satisfying the following equations:
 Associativity:

Ap0q Apdq
//

Apdq
��

Apϑqùùñ Ap1q
Apd0q

��

Apd0q
//

Apσ01qùùùñ Ap2q
ApB0q
�� � Ap3q

Apσ02qùùùñ Ap2qApB0q
oo

Apϑqùùñ Ap2q
Ap1q Apd1q //

Apd1q
��

Apσ12qùùùñAp2q ApB1q // Ap3q
Apid

3
q

��

Ap2q
ApϑqùùñApB2q OO

Ap1qApd0qoo

Apd1qOO

Ap2q
ApB2q // Ap3q Ap1qApd1q OO

Ap0q
Apdqoo

ApdqOO
Apdq // Ap1qApd0q

OO
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 Identity:

Ap0q Apdq
//

Apdq
��

Ap1q
Apd1q

��

Apn1qðùùù
Ap0q

Apdq
��

� Apdq
��

Apϑqðùù �
Ap1q

Apd0q //

Apn0qðùùùAp2q
Aps0qFFF

""FF
F

Ap1q Ap1q
Remark 6.10. Using the strict descent object, we can construct the “strict”
factorization described in Section 1. If A : 9∆

Str
Ñ H is a 2-functor and H has

strict descent objects, we get the factorization from the universal property of
the right Kan extension of A � j

Str
: ∆

Str
Ñ H along j

Str
. More precisely, since

j
Str

is fully faithful, we can consider that Ran
j
Str
A � j

Str
is actually a strict

extension of A � j
Str
. Thereby we get the factorization

Ran
j
Str
pA � j

Str
qp0q

Ran
j
Str

pA�j
Str
qpdq

��

Ap0q η0
A

99rrrrrrrrrrrrrrrrrrrrrr

Apdq // Ap1q
in which η0

A
is the comparison induced by the unit/ comparison η

A
: A ÝÑ

Ran
j
Str
pA � j

Str
q.

Remark 6.11. As observed in Section 3, the Kan extension of a 2-functorA :
∆Ñ H along j gives the equalizer of Apd0q and Apd1q. This is a consequence
of the isomorphism Lan

t2
� � �, in which t2 denotes the full inclusion of the

category ∆2,

1

d0 //

d1
//
2s0oo

such that s0d0 � Id � s0d1, into ∆.
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Remark 6.12. [[28]] The 2-category CAT is CAT-complete. In particular,
CAT has strict descent objects. More precisely, if A : ∆

Str
Ñ CAT is a

2-functor, then ! 9∆
Str
p0,�q,A) � r∆

Str
,CATs� 9∆p0,�q,A	 .

Thereby, we can describe the category the strict descent object of A : ∆ Ñ
CAT explicitly as follows:

(1) Objects are 2-natural transformations W : 9∆
Str
p0,�q ÝÑ A. We

have a bijective correspondence between such 2-natural transforma-
tions and pairs pW, ̺

W
q in which W is an object of Ap1q and ̺

W
:

Apd1qpW q Ñ Apd0qpW q is an isomorphism in Ap2q satisfying the fol-
lowing equations:
 Associativity:�

ApB0qp̺
W
q� pApσ

02
q
W
q �ApB2qp̺

W
q� �Apσ

12
q�1

W

� � pApσ
01
q
W
q �ApB1qp̺

W
q�
 Identity: pApn0qW q �Aps0qp̺

W
q� pApn1qW q � id

W

If W : 9∆p0,�q ÝÑ A is a 2-natural transformation, we get such pair
by the correspondence W ÞÑ pW

1
pdq,W

2
pϑqq.

(2) The morphisms are modifications. In other words, a morphism m :
W Ñ X is determined by a morphismm : W Ñ X such thatApd0qpmq̺

W
�

̺
X
Apd1qpmq.

7. Elementary Examples

In this section, we give elementary (though important) examples of inclu-

sions t : A Ñ 9A for which we can study the Ps-Ran
t
p� � tq-pseudoalgebras/

effective t-descent diagrams in the setting of Section 5. The examples of this
section are such that a is the initial object of 9A.
Let H be a 2-category with enough bilimits to construct our pseudo-Kan

extensions as global pointwise pseudo-Kan extensions. The most simple ex-
ample is taking the final category 1 and the inclusion 0 Ñ 1 of the empty
category/ empty ordinal. In this case, a pseudofunctor A : 1 Ñ H is of
effective descent if and only if this pseudofunctor (which corresponds to an
object of H) is equivalent to the pseudofinal object of H.
If, instead, we take the inclusion d0 : 1Ñ 2 of the ordinal 1 into the ordinal

2 such that d0 is the inclusion of the codomain object, then a pseudofunctor
A : 2Ñ H corresponds to a 1-cell of H and A is of effective d0-descent if and
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only if its image is an equivalence 1-cell. Moreover, A is almost d0-descent/
d0-descent if and only if its image is faithful/ fully faithful. Precisely, the

comparison morphism would be the image Ap0 dÑ 1q of the only nontrivial
1-cell of 2.
Furthermore, we may consider the following 2-categories 9B. The first one

corresponds to the bilimit notion of lax-pullback, while the second corre-
sponds to the notion of pseudopullback.

b //

��

e

��

b //

��

e

��
c

ñ
// o c // o

Actually, we can study the exactness of any weighted bilimit in our setting.
More precisely, if W : AÑ CAT is a weight, we can define 9A adding an extra
object a and defining9Apa, aq :� � 9Apa, bq :�Wpbq 9Apb, aq :� H
for each object b of A. Hence, it remains just to define the unique nontrivial
composition, that is to say, we define the functor composition � : 9Apb, cq �9Apa, bq Ñ 9Apa, cq for each pair of objects b, c of A to be the “mate” of

W
bc
: 9Apb, cq Ñ CATpWpbq,Wpcqq.

Thereby, a pseudofunctor A : 9A Ñ H is of effective t-descent/ t-descent/
almost t-descent if the canonical comparison 1-cell Apaq Ñ tW,A � tubi is an
equivalence/ fully faithful/ faithful.

8. Eilenberg-Moore Objects

Let H be a 2-category as in the last sections. In [33], a 2-category Adj

such that an adjunction in a 2-category corresponds to a 2-functor Adj Ñ H

is described. This 2-category has a full sub-2-category with a full inclusion
m : Mnd Ñ Adj such that monads of H correspond to 2-functors Mnd Ñ H.
We describe this 2-category below, and we show how it (still) works in our
setting. The 2-category Adj has two objects: alg and b. The hom-categories
are defined as follows:

Adjpb, bq :� 9∆ Adjpalg, bq :� ∆� Adjpalg, algq :� ∆�� Adjpb, algq :� ∆�
in which ∆� denotes the subcategory of ∆ with the same objects such that its
morphisms preserve initial objects and, analogously, ∆� is the subcategory
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of ∆ with the same objects and last-element-preserving arrows. Finally, ∆��
is just the intersection of both ∆� and ∆�.
Then the composition of Adj is such that Adjpb, wq � Adjpc, bq Ñ Adjpc, wq

is given by the usual “ordinal sum” � (given by the usual strict monoidal
structure of ∆) for every objects c, w of Adj and

Adjpalg, wq � Adjpc, algq Ñ Adjpc, wqpx, yq ÞÑ x� y � 1pφ : xÑ x1, υ : y Ñ y1q ÞÑ φ` υ

in which

φ` υpiq :� #
υpiq, if i   y

φpi�mq � 1� y1 otherwise.

It is straightforward to verify that Adj is a 2-category. We denote by u the
1-cell 1 P Adjpalg, bq and by l the 1-cell 1 P Adjpb, algq. Also, we consider the
following 2-cells9∆p0, 1q Q n : id

b
ñ ul ∆��p1, 2q Q e : luñ id

alg

The 2-category Mnd is defined to be the full sub-2-category of Adj with
the unique object b. As mentioned above, we denote its full inclusion by
m : MndÑ Adj.
Firstly, observe that pl % u, n, eq is an adjunction in Adj, therefore the

image of pl % u, n, eq by a 2-functor is an adjunction. Also, if pL % U, η, εq is
an adjunction in H, then there is a unique 2-functor A : Adj Ñ H such that
Apuq :� U , Aplq :� L, Apeq :� ε and Apuq :� η. Thereby, it gives a bijection
between adjunctions in H and 2-functors Adj Ñ H [33].
Secondly, as observed in [33], there is a similar bijection between 2-functors

MndÑ H and monads in the 2-category H. Also, if the pointwise (enriched)
Kan extension of a 2-functor Mnd Ñ H along m exists, it gives the usual
Eilenberg-Moore adjunction. Moreover, given a 2-functor A : Adj Ñ H,
if the pointwise Kan extension Ranm pA �mq exists, the usual comparison
Apalgq Ñ Ranm pA �mq palgq is the Eilenberg-Moore comparison 1-cell.
If, instead, A : Adj Ñ H is a pseudofunctor, we also get that Aplq % Apuq

and �
Aplq % Apuq, a�1

ul
Apnqa

b
, a�1

alg
Apeqa

lu
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is an adjunction in H. The unique 2-functor A1 corresponding to this adjunc-
tion is pseudonaturally isomorphic to A. Furthermore, the Eilenberg-Moore
object is a flexible limit as it is shown in [3].

Proposition 8.1 ([3]). If H is any 2-category, rAdj,Hs Ñ rAdj,HsPS is es-
sentially surjective.
Moreover, for any 2-functor C : AdjÑ CAT, we have an equivalencerAdj,CATs pAdjpalg,mp�qq,Cq � rAdj,CATsPS pAdjpalg,mp�qq,Cq.

Corollary 8.2. If A : MndÑ H is a pseudofunctor,

PsRanj
3
A � PsRanmǍ � RanmǍ

provided that the pointwise Kan extension RanmǍ exists, in which Ǎ is a
2-functor pseudonaturally isomorphic to A.

Therefore, if H has Eilenberg-Moore objects, then a pseudofunctor A :
AdjÑ H is of effective m-descent/ m-descent if and only if Apuq is monadic/
premonadic. Also, the “factorizations”

Apbq Aplq //

l
A

QQQQQQ

((QQQQQ

Apalgq Apalgq Apuq //

ηalg
A

QQQQQ
Q

((QQQQQ

Apbq
PsRan

m
pA �mqpalgq� ηalg

Ammmmm

66mmmmmm

PsRan
m
pA �mqpalgq� u

Ammmmm

66mmmmmm

described in Theorem 5.15 are pseudonaturally equivalent to the usual Eilenberg-
Moore factorizations. Henceforth, these factorizations are called Eilenberg-
Moore factorizations (even if the 2-category H does not have the strict version
of it).

9. The Beck-Chevalley Condition

We keep our general setting in which t : A Ñ 9A is a full inclusion as in
Subsection 5.5 and H is a 2-category such that all considered pseudo-Kan
extensions can be constructed pointwise.
Let T be an idempotent pseudomonad over the 2-category H. The most

obvious consequence of the commutativity results of Section 5 is the follow-
ing: if an object X of H can be endowed with a T-pseudoalgebra structure
and there is an equivalence X Ñ W , then W can be endowed with a T-
pseudoalgebra as well.
In our setting, we have the following: let A,B : 9AÑ H be pseudofunctors.

A pseudonatural transformation α : A ÝÑ B can be seen as a pseudofunctor
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Cα : 2 Ñ � 9A,H�
PS

. By Corollaries 5.20 and 5.23, we get the following: if

Cαp1q is of effective t-descent/ t-descent/ almost t-descent and the images of

the mate 9A Ñ r2,HsPS of Cα are of effective d0-descent/ d0-descent/ almost
d0-descent as well, then Cαp0q is also of effective t-descent/ t-descent/ almost
t-descent. In Section 10, we show that Theorem 1.1 is a particular case of:

Proposition 9.1. Let A,B : 9A Ñ H be pseudofunctors and α : A ÝÑ B

be a pseudonatural transformation. If B is of effective t-descent/ t-descent/
almost t-descent and α is a pseudonatural equivalence/ objectwise fully faith-
ful/ objectwise faithful, then A is of effective t-descent/ t-descent/ almost
t-descent as well.

Definition 9.2. [Beck-Chevalley condition] Let A,B : 9A Ñ H be pseudo-
functors and α : A ÝÑ B be a pseudonatural transformation. Assume that,
for each object w of 9A, α

w
is right adjoint to some 1-cell pαw

. We say that α

satisfies the Beck-Chevalley condition if, for each morphism f : w Ñ c of 9A,
the mate of the invertible 2-cell α

f
: Bpfqα

w
ñ α

c
Apfq w.r.t. the adjunctionpαw % α

w
is invertible.

By doctrinal adjunction [22], α : A ÝÑ B satisfies the Beck-Chevalley

condition if and only if α is itself a right adjoint in the 2-category
� 9A,H�

PS
.

In other words, we get:

Lemma 9.3 ([22]). Let α : A ÝÑ B be a pseudonatural transformation

and Cα : 2 Ñ � 9A,H�
PS

be its corresponding pseudofunctor. Consider the

inclusion u : 2 Ñ Adj of the morphism u. There is a pseudofunctor pCα :

AdjÑ � 9A,H�
PS

such that pCα � u � Cα if and only if every component of α is

right adjoint and α satisfies the Beck-Chevalley condition.

Thereby, as trivial consequences of Corollaries 5.21 and 5.24, we get what
can be called a generalized version of Bénabou-Roubaud Theorem:

Theorem 9.4. Let A,B : 9AÑ H be pseudofunctors. Assume that α : A ÝÑ
B is a pseudonatural transformation such that every component of α is right
adjoint, α satisfies the Beck-Chevalley condition and, for each object w of A,
α

w
is monadic.
 If B is of almost t-descent, then: pCα : Adj Ñ � 9A,H�

PS
is of almost

m-descent if and only if A is of almost t-descent;
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 If B is of t-descent, then: α
a
is premonadic if and only if A is of

t-descent;
 If B is of effective t-descent, then: α
a
is monadic if and only if A is

of effective t-descent.

Proof : Indeed, by the hypotheses, for each item, there is a pseudofunctorpCα : Adj Ñ � 9A,H�
PS

satisfying the hypotheses of Corollary 5.21 or Corollary

5.24.

10. Descent Theory

In this section, we establish briefly the setting of [19] and prove all the clas-
sical results mentioned in Section 1 for pseudocomsimplicial objects, except
Theorem 1.2 which is postponed to Section 11.
Henceforth, let C,D be categories with pullbacks and H be a 2-category as

in the last sections. In the context of [19], given a pseudofunctorA : Cop Ñ H,
we say that a morphism p : E Ñ B of C is of effective A-descent/ A-descent/

almost A-descent if Ap : 9∆ Ñ H is of effective j-descent/ j-descent/ almost
j-descent, where Ap is the composition of the diagram

Dp : 9∆op Ñ C� � � ////
//
// E �B E �B E

//
//
//

vv
hh

zz
E �B E

rr

ll

//
// Eoo

p
// B

with the pseudofunctor A, in which the diagram above is given by the pull-
backs of p along itself, its projections and diagonal morphisms.
We get the usual factorizations of (Grothendieck) A-descent theory [19]

from Theorem 5.15, although the usual strict factorization comes from Re-
mark 6.10. More precisely, if p : E Ñ B is a morphism of C, we get:

App0q � ApBq Appq //

η0
A�Dp

VVVVVV

**VVVVVV

App1q � ApEq
DescAppq � PsRan

j
pAp � jqp0q� d

Aphhhhhhh

44hhhhhhh

In descent theory, a morphism pU, αq between pseudofunctors A : Cop Ñ H

and B : Dop Ñ H is a pullback preserving functor U : C Ñ D with a
pseudonatural transformation α : A ÝÑ B � U . Such a morphism is called
faithful/ fully faithful if α is objectwise faithful/ fully faithful.
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For each morphism p : E Ñ B of C, a morphism pU, αq between pseudo-
functors A : Cop Ñ H and B : Dop Ñ H induces a pseudonatural transfor-
mation α

p

: Ap ÝÑ BUppq. Of course, α
p

is objectwise faithful/ fully faithful
if pU, αq is faithful/ fully faithful.
We say that such a morphism pU, αq between pseudofunctors A : Cop Ñ H

and B : Dop Ñ H reflects almost descent/ descent/ effective descent mor-
phisms if, whenever Uppq is of almost B-descent/ B-descent/ effective B-
descent, p is of almost A-descent/ A-descent/ effective A-descent.

Remark 10.1. Consider the pseudofunctor given by the basic fibration p q� :Cop Ñ CAT in which ppq� : C{B Ñ C{E
is the change of base functor, given by the pullback along p : E Ñ B. For
short, we say that a morphism p : E Ñ B is of effective descent if p is of
effective p q�-descent.
In this case, a pullback preserving functor U : CÑ D induces a morphismpU, αq between the basic fibrations p q� : Cop Ñ CAT and p q� : Dop Ñ CAT

in which, for each object B of C, α
B
is given by the evaluation of U . Again,

in this case, if U is faithful/ fully faithful, so is the induced morphism pU, αq
between the basic fibrations.

We study pseudocosimplicial objects A : 9∆ Ñ H and verify the obvious
implications within the setting described above. We start with the embedding
results (which are particular cases of 9.1):

Theorem 10.2 (Embedding Results). Let A,B : 9∆ Ñ H be pseudofunctors
and α : A ÝÑ B a pseudonatural transformation. If α is objectwise faithful
and B is of almost j-descent, then so is A.
If, furthermore, B is of j-descent and α is objectwise fully faithful, then A

is of j-descent.

Of course, we have that, if A � B, then A is of almost j-descent/ j-descent/
effective j-descent if and only if B is of almost j-descent/ j-descent/ effective
j-descent as well.

Corollary 10.3. Let pU, αq be a morphism between the pseudofunctors A :Cop Ñ H and B : Dop Ñ H (as defined above).
 If pU, αq is faithful, it reflects almost descent morphisms;
 If pU, αq is fully faithful, it reflects descent morphisms;
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 If α is a pseudonatural equivalence, pU, αq reflects and preserves effec-
tive descent morphisms, descent morphisms and almost descent mor-
phisms.

Every pseudofunctor A : 9∆Ñ H gives rise to a pseudonatural transforma-

tion C
A
: 2Ñ � 9∆,H

�
PS

, given by the mate of A � n : 2� 9∆Ñ H, in which n

is defined by
n : 2� 9∆Ñ 9∆pa, bq ÞÑ b� a pd, id

b
q ÞÑ �

d0 : bÑ pb� 1q�pid
a
, diq ÞÑ #

di : bÑ pb� 1q, if a � 0

di�1 : pb� 1q Ñ pb� 2q, otherwisepid
a
, siq ÞÑ #

si : bÑ pb� 1q, if a � 0

si�1 : pb� 1q Ñ pb� 2q, otherwise.

0

d
��

d // 1

d0
��

//

// 2

d0
��

oo
//
//
// 3

d0
��

s0xx

s1

��
//////// � � �s0ss

s1
{{

s2

��

d0

��
1

d1
// 2

d1 //

d2 // 3s1oo d1 //
d2 //
d3 // 4

s1
ff

s2

]]

//////// � � �
s1

kk

s2

cc

s3

[[

We say that a pseudofunctor A : 9∆ Ñ H satisfies the descent of shift
property (or just shift property for short) if the induced pseudonatural trans-

formation C
A
: 2Ñ � 9∆,H

�
PS

is such that C
A
p1q is of effective j-descent. We

get, then, a version of Bénabou-Roubaud Theorem for pseudocosimplicial
objects:

Theorem 10.4. Let A : 9∆ Ñ H be a pseudofunctor satisfying the shift
property such that Apd0 : b Ñ pb � 1qq has a left adjoint for every b. If

the induced pseudonatural tranformation C
A

: 2 Ñ � 9∆,H
�
PS

satisfies the

Beck-Chevalley condition, then the Eilenberg-Moore factorization of Apdq is
pseudonaturally equivalent to its usual factorization of j-descent theory. In
particular,
 A is of effective j-descent iff Apdq is monadic;
 A is of j-descent iff Apdq is premonadic;
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 A is of almost j-descent iff the Eilenberg-Moore comparison 1-cell of
Apdq is faithful.

It is known that in the context of [19], the shift property always holds.
More precisely, it is known that [19]:

Proposition 10.5. Let A : Cop Ñ H be a pseudofunctor, in which C is
a category with pullbacks. If p is a morphism of C, Ap (defined above as
Ap :� A �Dp) satisfies the shift property.

Thereby, by Theorem 10.4, the usual Bénabou-Roubaud Theorem (Theo-
rem 1.3) follows. And, finally, the most obvious consequence of the commu-
tativity properties is that bilimits of effective j-descent diagrams are effective
j-descent diagrams. For instance, taking into account Remark 10.1 and realiz-
ing that pseudopullbacks of functors induce pseudopullback of overcategories
we already get a weak version of Theorem 1.4.
Next section, we study stronger results on bilimits and apply them to

descent theory.

11. Further on Bilimits and Descent

Henceforth, let t : AÑ 9A, h : BÑ 9B be full inclusions of small 2-categories
as in Subsection 5.5 and let H be a bicategorically complete 2-category.

Definition 11.1. [Pure Structure] A morphism f : a Ñ b of 9A is called a

t-irreducible morphism if b �� a and the 1-cells of 9Apa, bq are not in the image
of � : 9Apc, bq � 9Apa, cq Ñ 9Apa, bq,
for every b �� c in A.
An object c of A is called a t-pure structure object if each 1-cell g of 9Apa, cq

can be factorized through some t-irreducible morphism f : a Ñ b such that
b �� c. That is to say, c is a t-pure structure object, if for all g P 9Apa, cq there
are a morphism g1 and a t-irreducible morphism f such that g1f � g.
The full subcategory of the t-pure structure objects of A is denoted by S

t
,

while the full subcategory of 9A of the objects that are not in S
t
(including

a) is denoted by 9I
t
. We also denote by I

t
the full subcategory of 9I

t
without

the object a. We have full inclusions 9i
t
: 9I

t
Ñ 9A and i

t
: I

t
Ñ A.

Of course, in particular, if f : aÑ b is a t-irreducible morphism of 9A, then
b is an object of I

t
. We denote by g

t
: I

t
� 2 Ñ I

t
� 2 the full inclusion in
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which

obj
�
I

t
� 2

�
:� obj pI

t
� 2q � tpa, 0qu .

Theorem 11.2. Let A,B : 9AÑ H be pseudofunctors and α : A ÝÑ B be an
objectwise fully faithful pseudonatural transformation. We assume that B is
of effective t-descent. We consider the mate of α, denoted by Cα : 9A�2Ñ H.
The pseudofunctor A is of effective t-descent if and only if Cα � pit � Id

2
q :

I
t
� 2Ñ H is of effective g

t
-descent.

Proof : Without loosing generality, we prove it to H � CAT and get the
general result via representable 2-functors. We just need to prove that
PsRan

t
A � tpaq is equivalent to PsRan

gt
pCα � pit � Id

2
q � g

t
q pa, 0q.

The pseudonatural transformations ̺1 : 9Apa, tp�qq Ñ A � t are obviously

in bijection with the pseudonatural transformations ̺ : 9Apa, tp�qq ÝÑ B � t
that can be factorized through αt, since αt is objectwise fully faithful. Also,
given ̺ : 9Apa, tp�qq ÝÑ B � t, there exists ̺1 : 9Apa, tp�qq Ñ A � t such
that ̺ � pαtq̺1 if and only if the image of pαtq

b
is essentially surjective onto

the image of ̺
b
for every b of A. Also, if such ̺1 exists, it is unique up to

isomorphism: it is the pseudopullback of ̺ along pαtq.
But, actually, we claim that, for the existence of such ̺1, it is (necessary

and) sufficient pαtq
b
be essentially surjective onto the image of ̺

b
for every

object b of I
t
. That is to say, we just need to verify the lifting property for

the objects in I
t
.

Indeed, assume that ̺i
t
can be lifted by αti

t
. Given an object c of S

t
and

a morphism g : a Ñ c, we prove that ̺
c
pgq is in the image of pαtq

c
up to

isomorphism. Actually, there is a t-irreducible morphism f : aÑ b such that
g1f � f for some g1 : b Ñ c morphism of A, and, by hypothesis, there is an
object u of Apbq such that pαtq

b
puq � ̺

b
pfq, thereby:

̺
c
pgq � ̺

c
�� 9Apa, tpg1qq	 pfq � Bpg1q̺

b
pfq � Bpg1q pαtq

b
puq � pαtq

c
pApg1qpuqq

This completes the proof that it is enough to test the lifting property for the
objects in I

t
. Now, one should observe that, since B is of effective t-descent,

a pseudonatural transformation

I
t
� 2ppa, 0q, g

t
�q ÝÑ Cα � pit � Id

2
q � g

t
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is precisely determined (up to isomorphism) by a pseudonatural transforma-
tion

̺ : 9Apa, tp�qq ÝÑ B � t.
(i.e., an object of Bpaq), such that ̺i

t
can be lifted by αti

t
. That is to say,

as we proved, this is just a pseudonatural transformation

̺1 : 9Apa, tp�qq Ñ A � t.
We return to the context of Subsection 5.1 and Subsection 5.2. Let T be

an idempotent pseudomonad on a 2-category H and X be an object of H.
We say that X is of T-descent if the comparison η

X
: X Ñ TpXq is fully

faithful. It is important to note that, if A : 9AÑ H is of t-descent (following
Definition 5.22), then A is of PsRan

t
p� � tq-descent.

Corollary 11.3. Let T be an idempotent pseudomonad on a bicategorically
complete 2-category H and A : 9AÑ H be a pseudofunctor such that Apbq is a
T-descent object for every b in A and both A,T �A are of effective t-descent.
We assume that Apbq can be endowed with a T-pseudoalgebra structure for
every object b R S

t
in A. Then Apaq can be endowed with a T-pseudoalgebra

structure.

Corollary 11.4. Let A : 9AÑ � 9B,H
�
PS

be a effective t-descent pseudofunc-

tor such that all the pseudofunctors in the image of A � t are of h-descent.
Furthermore, we assume that Apbq is of effective h-descent for every b R S

t

in A. Then Apaq is of effective h-descent.

Recall the following full inclusion of 2-categories h : B Ñ 9B described in
Section 7.

e

��
ÞÑ b

��

// e

��
c // o c // o

(P)

As explained there, a diagram 9BÑ H is of effective h-descent if and only if
it is a pseudopullback. In this case, the unique object in S

h
is o. Thereby

we get:

Corollary 11.5. Assume that A : 9B Ñ r 9A,HsPS is a pseudopullback dia-

gram. If Apcq,Apeq : 9A Ñ H are of effective t-descent and Apoq : 9A Ñ H is
of t-descent, then Apbq is of effective t-descent.
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Taking into account Remark 10.1 and realizing that pseudopullbacks of
functors induce pseudopullback of overcategories, we get Theorem 1.4 as a
corollary.

11.1. Applications. In this subsection, we finish the paper giving applica-
tions of our results and proving the remaining theorems presented in Section
1. Firstly, considering our inclusion j : ∆ Ñ 9∆, it is important to observe
that 1 R S

j
, while all the other objects of ∆ belong to S

j
. We start prov-

ing Theorem 4.2 of [16], which is presented therein as a generalized Galois
Theorem.

Theorem 11.6 (Galois). Let A,B : 9∆ Ñ CAT be pseudofunctors and
α : A ÝÑ B be an objectwise fully faithful pseudonatural transformation.
We assume that B is of effective j-descent. The pseudofunctor A is also of
effective j-descent if and only if the diagram below is a pseudopullback.

Ap0q
α
0
��

Apdq
//

α
dùñ Ap1q

α
1

��

Bp0q
Bpdq // Bp1q

Proof : Since, in this case, I
j
� 2 and the inclusion g

j
: I

j
� 2 Ñ I

j
� 2 is

precisely equal to the inclusion described in the diagramP, by Theorem 11.2,
the proof is complete.

As a consequence of Theorem 11.6, we get a generalization of Theorem
1.2. More precisely, in the context of Section 10 and using the definitions
presented there, we get:

Corollary 11.7. Let pU, αq be a fully faithful morphism between pseudofunc-
tors A : Cop Ñ H and B : Dop Ñ H, in which C and D are categories
with pullbacks. Assume that Uppq is an effective B-descent morphism of D.
Then p : E Ñ B is of effective A-descent if and only if, whenever there are
u P BpBq, v P ApEq such that α

p

1
puq � B

Uppqpdqpvq, there is w P ApBq such
that α

p

0
pwq � u.

Proof : Recall the definitions of A
p
,B

Uppq, αp

. Since we already know that A
p

is j-descent, the condition described is precisely the condition necessary and
sufficient to conclude that the diagram of Theorem 11.6 is a pseudopullback.
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Indeed, taking into account Remark 10.1, we conclude that Theorem 1.2 is
actually a immediate consequence of last corollary.
Given a category with pullbacks V , we denote by CatpV q the category of

internal categories in V . If V is a category with products, we denote by
V -Cat the category of small categories enriched over V . We give a simple
application of the Theorem 1.4 below.

Lemma 11.8. If pV,�, Iq is an infinitary lextensive category such that

J : Set Ñ V

A ÞÑ
a̧PA Ia

is fully faithful, then the pseudopullback of the projection of the object of
objects U0 : CatpV q Ñ V along J is the category V -Cat.

Proof : We denote by SpanpV q the usual bicategory of objects of V and spans
between them and by V -Mat the usual bicategory of sets and V -matrices
between them. Let Span

Set
pV q be the full sub-bicategory of SpanpV q in which

the objects are in the image of Set.
Assuming our hypotheses, we have that Span

Set
pV q is biequivalent to V -

Mat. Indeed, we define “identity” on the objects and, if A,B are sets, take
a matrix M : A � B Ñ objpV q to the obvious span given by the coproduct¸px,yqPA�B

Mpx, yq, that is to say, the morphism
°px,yqPA�B Mpx, yq Ñ A is in-

duced by the morphismsMpx, yq Ñ Ix and the morphism
°px,yqPA�B Mpx, yq Ñ

B is analogously defined.
Since V is lextensive, this defines a biequivalence. Thereby this completes

our proof.

Corollary 6.2.5 of [26] says in particular that, for lextensive categories,
effective descent morphisms of CatpV q are preserved by the projection U0 :
CatpV q Ñ V to the objects of objects. Thereby, by Theorem 1.4, we get:

Theorem 11.9. If pV,�, Iq is an infinitary lextensive category such that
each arrow of V can be factorized as a regular epimorphism followed by a
monomorphism and

J : Set Ñ V

A ÞÑ
a̧PA Ia
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is fully faithful, then I : V -Cat Ñ CatpV q reflects effective descent mor-
phisms.

Proof : We denote by U : V -Cat Ñ Set the forgetful functor and by U0 :
CatpV q Ñ V the projection defined above. We have that U0, U, J and I are
pullback preserving functors.
If p : E Ñ B is a morphism of V -Cat such that Ippq is of effective descent,

then U0Ippq is of descent (by Corollary 5.2.1 of [26]). Therefore JUppq is of
descent.
Since J is fully faithful, by Theorem 10.3, Uppq is of descent. Therefore,

since descent morphisms of Set are of effective descent, we conclude that
Uppq is of effective descent. This completes the proof.

For instance, Theorem 6.2.8 of [26] and Proposition 11.9 can be applied to
the cases of V � Cat or V � Top:

Corollary 11.10. A 2-functor F between Cat-categories is of effective de-
scent in Cat-Cat, if

– F is surjective on objects;
– F is surjective on composable triples of 2-cells;
– F induces a functor surjective on composable pairs of 2-cells between
the categories of composable pairs of 1-cells;

– F induces a functor surjective on 2-cells between the categories of
composable triples of 1-cells.

Corollary 11.11. A Top-functor F between Top-categories is of effective
descent in Top-Cat, if F induces

– effective descent morphisms between the discrete spaces of objects and
between the spaces of morphisms in Top;

– a descent continuous map between the spaces of composable pairs of
morphisms in Top;

– an almost descent continuous map between the spaces of composable
triples of morphisms in Top.

Since the characterization of (effective/ almost) descent morphisms in Top
is known [32, 8, 6], the result above gives effective descent morphisms of
Top-Cat.

Remark 11.12. We can give further formal results on (basic) effective de-
scent morphisms (context of Remark 10.1). The main technique in this case
is to understand our overcategory as a bilimit of other overcategories.
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For instance, we study below the categories of morphisms of a given cate-
gory C with pullbacks. Consider the full inclusion of 2-categories t : AÑ 9A

0

d
��

ÞÑ a

pro
0

==
=

��=
==

pro
1

//

ξùñ 0

d
��

�

����
�

1 1

Given a morphism of C, i.e. a functor F : 2 Ñ C, we take the overcategory
Funp2,Cq{F and define A : 9AÑ CAT in which

Apaq :�Funp2,Cq{F Ap0q :�C{F p1q Ap1q :�C{F p0q.
Finally, Appro

0
q,Appro

1
q are given by the obvious projections, Apdq :� F pdq�

and the component Apξq in a morphism ̟ : H Ñ F is given by the induced
morphism from Hp0q to the pullback.
Observe thatA is of effective t-descent, that is to say, we have that the over-

category Funp2,Cq{F is a bilimit constructed from overcategories C{F p0q
and C{F p1q. Also, given a natural transformation ̟ : F Ñ G between
functors 2 Ñ C, i.e. a morphism of Funp2,Cq, taking Remark 10.1, we

can extend A to a 2-functor A : 9A Ñ r 9∆,CATs in which Apaq :� p q�̟ ,
Ap0q :� p q�̟

1
and Ap1q :� p q�̟

0
.

The 2-functor A is also of effective t-descent. Therefore, by our results, we
conclude that, if the components ̟1, ̟0 are of (basic) effective descent, so is
̟. Analogously, considering the category of spans in C, the morphisms be-
tween spans which are objectwise of effective descent are of effective descent.
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