
Pré-Publicações do Departamento de Matemática
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1. Introduction
The idea of “categorification” originates from the joint work [3] of Crane

and Frenkel, and the term was coined later in Crane’s article [2]. Recently
categorification became an intensively studied subject in several mathemat-
ical areas. A detailed account on this topic can be found in [12].
Given an action ρ of a monoid M on the Grothendieck group Gr(C) of a

category C, one can ask if it can be categorified, that is if there exists an
action of M on C that induces ρ. Note that, to find such an action, one has:
(i) to find a set of functors Fm, m ∈ M , whose action on C gives operators
ρ(m) on Gr(C); (ii) to show the existence of a coherent family of natural
isomorphisms λm,m′ : FmFm′ → Fmm′. Usually, (ii) is much more tricky than
(i).
Let Bn be the negative Borel subgroup of the general linear group of degree

n over an algebraically closed field. Denote by Gr the Grothendieck group
of the category of finite dimensional polynomial Bn-modules. The tensor
product of modules turns Gr into a ring. Let N be a finite dimensional
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polynomial Bn-module. Then we can consider the formal character chN of N
in Z[x1, . . . , xn]. In fact ch is a ring homomorphism from Gr to Z[x1, . . . , xn].
In [5] Demazure showed how the characters of certain Bn-modules can be
calculated by applying what is now called the Demazure operators, πi, 1 ≤
i ≤ n − 1, to a monomial xk11 . . . x

kn
n . It turns out that the operators πi,

1 ≤ i ≤ n, define an action of the Hecke monoid, H(Σn), on Z[x1, . . . , xn].
Later Magyar in [11] generalised Demazure’s character formula for the class
of flag Weyl modules corresponding to percentage-avoiding shapes. While
researching this class we were lead to the idea that a categorification of the
action of H(Σn) on Z[x1, . . . , xn] can be useful to prove some conjectures
stated in [14].
In this article we show that the Hecke monoid acts on the category of

rational modules for the quantum negative Borel subgroup of the quantum
general linear group. In fact, we construct what we call a preaction of H(Σn)
on this category. In [17] the second author proves that the category of actions
of H(Σn) on a category C is equivalent to the category of preactions of H(Σn)
on C. Therefore, via this equivalence, from the constructed preaction one
can obtain an action of H(Σn) on the above referred category. It is then
quite simple to get a preaction, and so an action, of H(Σn) on the category of
S−
α,β(n, r)-modules, where S−

α,β(n, r) is the quantised (negative) Borel-Schur

algebra. In a forthcoming paper we will show that the action of H(Σn) on
the category of rational modules for the quantum Borel subgroup induces
an action of H(Σn) on the corresponding derived category. This action will
provide a categorification of the action of H(Σn) on Z[x1, . . . , xn].
The paper is organised as follows. In Section 2 we introduce the notion of

a preaction of the Hecke monoid H(Σn) on a category C. Section 3 contains
some results, on cotensor product and induction for coalgebras, that are due
to Takeuchi [15] and Donkin [7, 8]. In Section 4 we study some subgroups of
the quantum general linear group (or rather their coordinate Hopf algebras),
namely quantum parabolic subgroups and quantum Borel subgroups, follow-
ing [16] and [10]. We also prove the exactness of the short exact sequences (7)
and (8), which play a crucial role in our construction. Section 5 is dedicated
to the definition of functors Fi, 1 ≤ i ≤ n − 1, that generate an action of
H(Σn) on the category of rational modules for the quantum negative Borel
subgroup. We also construct natural isomorphisms τij, 1 ≤ i ≤ j ≤ n − 1,
which, together with the functors Fi, give a preaction of H(Σn) on the above
mentioned category. The proof that (F, τ) is in fact a preaction is given in
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Section 6. In Section 7 we show that (F, τ) induces a preaction of H(Σn) on
the category of S−

α,β(n, r)-modules. In Section 8 we consider explicit examples
of the application of the functors Fi to Bn-modules.

2. (Pre)actions of Hecke monoids
Let n be a positive integer and Σn the symmetric group of degree n.
The Hecke monoid, H(Σn), is the monoid with elements Tw , w ∈ Σn , and

multiplication determined by the rule

TσTw =

{
Tσw, if l(σw) = l(w) + 1

Tw, if l(σw) = l(w)− 1,

where w ∈ Σn and σ is an elementary transposition of the form (k, k + 1),
1 ≤ k ≤ n− 1.
Let C be a category and M a monoid with neutral element e. An action

(F , λ) of M on C is

i) a collection F of endofunctors Fa : C → C, a ∈ M , such that Fe is the
identity functor;

ii) natural isomorphisms λa,b : FaFb → Fab, such that for a, b, c ∈ M the
diagram

FaFbFc

λa,bFc
//

Faλb,c

��

FabFc

λab,c

��

FaFbc

λa,bc
// Fabc

commutes, and λe,a = λa,e is the identity isomorphism of Fa (see [4]).

Suppose (F , λ) is an action of H(Σn) on C. To simplify notation we write
Fa for FTa

and λa,b for λTa,Tb
. We also replace (i, i+ 1) by i in the subscript

of F and λ.
We define natural isomorphisms τij, 1 ≤ i ≤ j ≤ n− 1 , as follows:

τii = λi,i : F
2
i → Fi ;

τij = λ−1
i,j λj,i : FjFi → FiFj , for i+ 2 ≤ j ;

τi,i+1 : Fi+1FiFi+1 → FiFi+1Fi

is the composition of

Fi+1FiFi+1

Fi+1λi,i+1
// Fi+1F(i,i+1,i+2)

λi+1,(i,i+1,i+2)
// F(i,i+2)
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followed by the inverse of the map

FiFi+1Fi

Fiλi+1,i
// FiF(i,i+2,i+1)

λi,(i,i+2,i+1)
// F(i,i+2) .

The natural transformations τij fit in the following commutative diagrams:

F 3
i

τiiFi //

Fiτii
��

F 2
i

τii
��

F 2
i

τii // Fi

F 2
i+1FiFi+1

τi+1,i+1FiFi+1
//

Fi+1τi,i+1

��

Fi+1FiFi+1

τi,i+1

��

Fi+1FiFi+1Fi

τi,i+1Fi
// FiFi+1F

2
i

FiFi+1τii // FiFi+1Fi

Fi+1FiF
2
i+1

Fi+1Fiτi+1,i+1
//

τi,i+1Fi+1

��

Fi+1FiFi+1

τi,i+1

��

FiFi+1FiFi+1

Fiτi,i+1
// F 2

i Fi+1Fi

FiFi+1τii // FiFi+1Fi

FjF
2
i

Fjτii
//

τi,jFi

��

FjFi

τij
��

FiFjFi

Fiτi,j
// F 2

i Fj

τiiFj
// FiFj

F 2
j Fi

τjjFi
//

Fjτi,j
��

FjFi

τij
��

FjFiFj

τi,jFj
// FiF

2
j

Fiτjj
// FiFj
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Fi+1FiFi+1FiFi+1

Fi+1Fiτi,i+1 //

τi,i+1FiFi+1

��

Fi+1F
2
i Fi+1Fi

Fi+1τiiFi+1Fi

��
Fi+1FiFi+1Fi

τi,i+1Fi

��
FiFi+1F

2
i

FiFi+1τii

��
FiFi+1F

2
i Fi+1

FiFi+1τiiFi+1// FiFi+1FiFi+1

Fiτi,i+1 // F 2
i Fi+1Fi

τiiFi+1Fi // FiFi+1Fi

FjFiFi−1Fi

τijFi−1Fi
//

Fjτi−1,i
��

FiFjFi−1Fi

Fiτi−1,jFi
// FiFi−1FjFi

FiFi−1τij
��

FjFi−1FiFi−1

τi−1,jFiFi−1
��

FiFi−1FiFj

τi−1,iFj

��

Fi−1FjFiFi−1
Fi−1τijFi−1

// Fi−1FiFjFi−1
Fi−1Fiτi−1,j

// Fi−1FiFi−1Fj

Fj+1FjFj+1Fi

Fj+1Fjτi,j+1
//

τj,j+1Fi

��

Fj+1FjFiFj+1
Fj+1τijFj+1

// Fj+1FiFjFj+1

τi,j+1FjFj+1
��

FjFj+1FjFi

FjFj+1τij
��

FiFj+1FjFj+1

Fiτj,j+1
��

FjFj+1FiFj

Fjτi,j+1Fj
// FjFiFj+1Fj

τijFj+1Fj
// FiFjFj+1Fj

FkFjFi

Fkτij
//

τjkFi

��

FkFiFj

τikFj

��

FiFkFj

Fiτjk
��

FjFkFi

Fjτik
// FjFiFk

τijFk
// FiFjFk
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Fi+2Fi+1FiFi+2Fi+1Fi+2

Fi+2Fi+1τ
−1
i,i+2Fi+1Fi+2

//

Fi+2Fi+1Fiτi+1,i+2

��

Fi+2Fi+1Fi+2FiFi+1Fi+2

τi+1,i+2FiFi+1Fi+2

��
Fi+2Fi+1FiFi+1Fi+2Fi+1

Fi+2τi,i+1Fi+2Fi+1

��

Fi+1Fi+2Fi+1FiFi+1Fi+2

Fi+1Fi+2τi,i+1Fi+2

��
Fi+2FiFi+1FiFi+2Fi+1

τi,i+2Fi+1FiFi+2Fi+1

��

Fi+1Fi+2FiFi+1FiFi+2

Fi+1τi,i+2Fi+1FiFi+2

��
FiFi+2Fi+1FiFi+2Fi+1

FiFi+2Fi+1τ
−1
i,i+2Fi+1

��

Fi+1FiFi+2Fi+1FiFi+2

Fi+1FiFi+2Fi+1τ
−1
i,i+2

��
FiFi+2Fi+1Fi+2FiFi+1

Fiτi+1,i+2FiFi+1

��

Fi+1FiFi+2Fi+1Fi+2Fi

Fi+1Fiτi+1,i+2Fi

��
FiFi+1Fi+2Fi+1FiFi+1

FiFi+1Fi+2τi,i+1

��

Fi+1FiFi+1Fi+2Fi+1Fi

τi,i+1Fi+2Fi+1Fi

��
FiFi+1Fi+2FiFi+1Fi

FiFi+1τi,i+2Fi+1Fi // FiFi+1FiFi+2Fi+1Fi

We will say that a collection of functors F1, . . . , Fn−1 and natural isomor-
phisms τij, 1 ≤ i ≤ j ≤ n − 1, satisfying the above commutative diagrams
defines a preaction of H(Σn) on C. There is proved in [17] that the category
of actions of H(Σn) on C is equivalent to the category of preactions of H(Σn)
on C.
In the next sections we will construct a preaction of H(Σn) on the category

of rational modules for the negative quantum Borel subgroups of the quan-
tum general linear groups. Therefore, we obtain an action of H(Σn) on this
category, via the above referred equivalence.

3. Cotensor product and induction
In this section we collect some general definitions and results concerning

coalgebras, bialgebras, and Hopf algebras. In our treatment of the cotensor
product we follow [15].
We start with some notation. We will denote by K the ground field. By a

coalgebra we will always mean a K-coalgebra and we use Sweedler summation
notation for coalgebras and for comodules.
Let C be a K-coalgebra. By a C-comodule we mean a right C-comodule

and Comod-C denotes the category of C-comodules. If M ∈ Comod-C we
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write ρM for the structure mapM →M⊗C ofM . If N is a left C-comodule,
we denote the structure map N → C ⊗N by λN .
The cotensor product M ⊗C N of these right and left comodules is defined

as the kernel of the map

ρM ⊗N −M ⊗ λN : M ⊗N →M ⊗ C ⊗N.

If M is a C ′-C-bicomodule and N is a C-C ′′-bicomodule, then M ⊗C N is
a C ′-C ′′-bicomodule with coactions given by restricting λM ⊗N and M ⊗ρN
to M ⊗C N .

Remark 3.1. If L is a C ′′-C ′′′-bicomodule, then (M ⊗C N)⊗C′′

L and M ⊗C

(N ⊗C′′

L) are isomorphic, and this isomorphism is given by restricting the
natural isomorphism (M⊗N)⊗L→M⊗(N⊗L), (m⊗n)⊗ l 7→ m⊗(n⊗ l).
Moreover, both (M ⊗CN)⊗C′′

L and M ⊗C (N ⊗C′′

L) can be identified with
the intersection of the kernels of the maps

ρM ⊗N ⊗ L−M ⊗ λN ⊗ L : M ⊗N ⊗ L→M ⊗ C ⊗N ⊗ L

M ⊗ ρN ⊗ L−M ⊗N ⊗ λL : M ⊗N ⊗ L→M ⊗N ⊗ C ′′ ⊗ L.

Suppose f : C → B is a homomorphism of coalgebras. Then we can con-
sider every left (right) C-comodule as a left (right) B-comodule via f . We
will denote the resulting left (right) B-comodule by f◦M , or simply by M if
no confusion arises. In particular, we can consider C as a B-C-bicomodule.
Thus for every right B-comodule M , we get that M ⊗B C is a C-comodule.
The C-comoduleM⊗BC is called the induced comodule and will be denoted
either by f ◦M or IndCBM .
If H is a Hopf algebra, then the category Comod-H of (right) comodules

over H is endowed with a monoidal structure. Namely, if M and N are
H-comodules, the coaction of H on M ⊗N is defined by

m⊗ n 7→
∑

m(0) ⊗ n(0) ⊗m(1)n(1).

The trivialH-comodule Ktr is the one-dimensional comodule with underlying
vector space K and coaction given by 1 7→ 1⊗ 1. It is clear that Ktr can be
chosen as the identity object for the above tensor product.
We will frequently use the tensor identity:
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Theorem 3.2 ([8, Proposition 1.3]). Suppose f : H1 → H2 is a homomor-

phism of Hopf algebras and M is an H1-comodule. Then for every H2-

comodule N there are natural isomorphisms

Rk IndH1

H2
(M ⊗N) ∼= M ⊗ Rk IndH1

H2
N, for all k ≥ 0.

The explicit formula for the above isomorphism when k = 0 is given in [7].
Namely, we have

φ : M ⊗ IndH1

H2
N → IndH1

H2
(M ⊗N)

x⊗
∑

i

yi ⊗ ci 7→
∑

i

x(0) ⊗ yi ⊗ x(1)ci.
(1)

4. Quantisation
In this section we study properties of some quantised bialgebras and of

subgroups of quantum general linear groups. We start with an overview of
notions introduced in [16] and some results proved in [10].
From here on, α and β are non-zero elements of K. We will also denote by

n the set of integers {1, · · · , n}.
Let F (n) be the free K-algebra with n2 generators xij, for i, j ∈ n. Denote

by Iα,β the ideal of F (n) generated by elements of the form

xisxir − αxirxis, for 1 ≤ i ≤ n and 1 ≤ r < s ≤ n;

xjrxir − βxirxjr, for 1 ≤ i < j ≤ n and 1 ≤ r ≤ n;

xjrxis − α−1βxisxjr, for 1 ≤ i < j ≤ n and 1 ≤ r < s < n;

xjsxir − xirxjs − (β − α−1)xisxjr, for 1 ≤ i < j ≤ n and 1 ≤ r < s ≤ n.

(2)

The algebra F (n)
/
Iα,β is denoted by Aα,β(n) and the canonical image xij +

Iα,β of xij in Aα,β(n) by cij. In what follows, we will often skip the subscripts
α, β. For a matrix ω ∈Mn(N) we write cω for the product

cω11

11 c
ω12

12 . . . c
ω1n

1n . . . cωnn

nn

and, similarly, xω for the product

xω11

11 x
ω12

12 . . . x
ω1n

1n . . . xωnn

nn .

On the set {xis | i, s ∈ n} ⊂ F (n) we define an ordering by xjs > xit if
j > i, and xis > xir if s > r. We consider the corresponding lexicographical
ordering on the set of monomials {xω |ω ∈Mn(N)}.
The following fact is well-known but we include a short sketch of a proof.
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Theorem 4.1. The set (2) is a Gröbner basis of Iα,β with respect to the

above ordering. Moreover, { cω |ω ∈Mn(N)} is a basis of A(n).

Proof : Note that every element in (2) is written so that the leading monomial
is a first term. To show that (2) is a Gröbner basis one has to check that all
the critical pairs are resolvable.
Supposem ≥ 3. Let S ′ be the set (2) for n = 3, and S the set (2) for n = m.

It is easy to see that every critical pair of S involves at most three row and
three column indices. Let us fix two triples of indices 1 ≤ i1 < i2 < i3 ≤ m
and 1 ≤ r1 < r2 < r3 ≤ m. Then we have a homomorphism of free algebras
ϕ : F (3) → F (m) defined by ϕ(xjs) = xij,rs. Clearly ϕ(S ′) ⊂ S. Now every
critical pair involving row indices i1, i2, i3, and column indices r1, r2, r3 lies
in φ(S ′). This shows that it is enough to prove that S ′ is a Gröbner basis.
Hence the claim of the theorem has to be verified for n ≤ 3 only. The case
n = 1 is trivial, and the cases n = 2, n = 3 can be checked using a computer
algebra system, such as Magma [1].
It is easy to see that the set {xω |ω ∈Mn(N)} is the set of non-reducible

monomials with respect to the Gröbner basis (2). Thus { cω |ω ∈Mn(N)} is
a basis of A(n).

Given a sequence b = (b1, . . . , bn) ∈ nn, let I(b) = Iα,β(b) be the ideal of
A(n) generated by {cis|s > bi} . We define the quotient algebra

A(b) = A(n)
/
I(b) ,

and denote by [cis]b the image of cis under the canonical projection from A(n)
to A(b).

Theorem 4.2. On the set { xω |ω ∈Mn(N)} ⊂ F (n) consider the ordering

used in Theorem 4.1. Let b = (b1, . . . , bn) ∈ nn be a non-decreasing sequence.

Denote by S ′′ the union of the set (2) and S ′ := { xis | s > bi}. Then S ′′ is a

Gröbner basis of the ideal generated by S ′′. In particular,

{ [cω]b |ω ∈Mn(N), ωis = 0 for s > bi}

is a basis of A(b).

Proof : To prove the theorem we have to check that all ambiguities in S ′′

are resolvable. Let us write S for the set (2). For pairs of elements in S
the ambiguities are resolvable, since S is a Gröbner basis, by Theorem 4.1.
There are no ambiguities between pairs of elements in S ′. Thus we only have
to check that all the ambiguities between an element in S and an element in
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S ′ are resolvable. The only interesting case is when the element of S is of the
form xjsxir−xirxjs− (β−α−1)xisxjr, for i < j and r < s, and the element of
S ′ is either xjs or xir. In the first case we get that s > bj ≥ bi and therefore
also xis ∈ S ′. In the second case s > r > bi and again xis ∈ S ′. Therefore in
both cases the ambiguity is resolvable.
It is now straightforward that { xω |ω ∈Mn(N), ωis = 0 for s > bi} is the

set of non-reducible monomials with respect to S ′′. Thus the set

{ [cω]b |ω ∈Mn(N), ωis = 0 for s > bi}

is a K-basis of A(b).

Corollary 4.3. Suppose b = (b1, . . . , bn) ∈ nn is a non-decreasing sequence.

Then the algebra A(b) has no zero divisors.

Proof : Consider the subset S ′′ of F (n) defined in Theorem 4.2. We have that
S ′′ is a Gröbner basis of the kernel of the canonical projection F (n) ։ A(b).
One can check that the leading term of (the reduced expression for) [cω]b[c

τ ]b
is [cω+τ ]b multiplied by αsβt, for suitable s, t ∈ N. Thus given two non-zero
elements in A(b) with leading monomials [cω]b and [cτ ]b, respectively, we get
that their product has leading monomial [cω+τ ]b and so it is non-zero.

The algebra A(n) has a unique structure of bialgebra with comultiplication
△ : A(n) → A(n)⊗ A(n) and counit ε : A(n) → K, satisfying

△(cij) =
n∑

k=1

cik ⊗ ckj, ε(cij) =

{
1, i = j

0, i 6= j.

The next theorem, proved in [10], allows us to identify the coalgebraA(n) =
Aα,β(n) with the coalgebra A1,αβ(n) studied in [6, 8].
For a matrix ω ∈Mn(N), we denote by J(ω) the number

∑

i<j,s<t

ωitωjs.

Theorem 4.4 ([10, Proposition 2.1]). Suppose that α, β, α′, β ′ are non-zero

elements in K such that α′β ′ = αβ. Then the map

Aα,β(n) → Aα′,β′(n)

cω 7→ (α/α′)J(ω)cω

is an isomorphism of coalgebras.
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Before we proceed, we need to introduce some notation concerning se-
quences of natural numbers. We denote by vl the n-tuple (0, · · · , 0, 1, 0, · · · , 0)
(1 in the lth position). Given a composition λ = (λ1, . . . , λm) of n, we write

(λλ1

1 , (λ1 + λ2)
λ2, . . . , nλm) (3)

for
(λ1, . . . , λ1, λ1 + λ2, . . . , λ1 + λ2, . . . , n, . . . , n),

where λ1 + · · · + λk is repeated λk times. For λ = (1n), we obtain the
sequence δ = (1, 2, . . . , n). If λ = (1l−1, 2, 1n−l−1), for some natural number
1 ≤ l ≤ n− 1, we denote the corresponding sequence by a[l]. Thus

a[l] = (1, 2, . . . , l − 1, l + 1, l + 1, l + 2, . . . , n) = δ + vl.

Remark 4.5. Suppose that b = (λλ1

1 , (λ1+λ2)
λ2, . . . , nλm) for some composition

λ of n. By [8, Proposition 2.3]. I1,q(b) is a biideal of A1,q(n), q ∈ K
∗.

Combining this fact with Theorem 4.4, we see that Iα,β(b) is a coideal, for
every α, β ∈ K

∗. As Iα,β(b) is an ideal by definition, we get that Aα,β(b) is a
bialgebra. In particular, Aα,β[l] := Aα,β(a[l]) and Aα,β(δ) are bialgebras.

Proposition 4.6. Suppose that b = (b1, . . . , bn) ∈ nn satisfies bk 6= l for all

k. Then △(I(b)) ⊂ I(b) ⊗ A(n) + A(n) ⊗ I(a[l]). In particular, A(b) is an

A[l]-comodule with the coaction given by

A(b) → A(b)⊗ A[l]

[x]b 7→
∑

[x(1)]b ⊗ [x(2)]a[l].

Proof : Let cij ∈ I(b). Then j > bi and

△(cij) =
∑

k>bi

cik ⊗ ckj +

bi∑

k=1

cik ⊗ ckj.

For k > bi, we get that cik ∈ I(b), and so the elements of the first sum are in
I(b)⊗A(n). For k ≤ bi, we get j > bi ≥ k. It is easy to see that ckj ∈ I(a[l])
if and only if j > k and (k, j) 6= (l, l+ 1). Suppose (k, j) = (l, l+ 1). Then

j = l + 1 > bi ≥ k = l

implies bi = l, which contradicts our assumption on b. Therefore ckj ∈ I(a[l])
for all k ≤ bi.

With a proof similar to the above one, we obtain the following result for
A(b) and the bialgebra A(δ).
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Proposition 4.7. For any b = (b1, . . . , bn) ∈ nn, we have △(I(b)) ⊂ I(b)⊗
A(n) + A(n) ⊗ I(δ). In particular, A(b) has a structure of A(δ)-comodule

with the coaction given by

[x]b 7→
∑

[x(1)]b ⊗ [x(2)]δ.

Note that the A(δ)-coaction on A(b) is multiplicative in the sense of the
following proposition.

Proposition 4.8. Denote by ρ the coaction of A(δ) both on A(b) and on

A(b) ⊗ A(b), and by µ the multiplication in the algebras A(n) and A(b).
Then the following diagram is commutative

A(b)⊗A(b)
ρ

//

µ
��

A(b)⊗A(b)⊗ A(δ)

µ⊗A(δ)
��

A(b)
ρ

// A(b)⊗A(δ).

Proof : Let h denote the following composition of maps

A(n)⊗ A(n)
△⊗△ // A(n)⊗A(n)⊗A(n)⊗A(n) EDBC

GF
τ23

��
A(n)⊗ A(n)⊗ A(n)⊗ A(n)

A(n)⊗A(n)⊗µ
// A(n)⊗A(n)⊗A(n),

where τ23 is the twist map of the second and third factors ofA(n)⊗A(n)⊗A(n)⊗A(n).
Then we have the diagram

A(b)⊗ A(b)
ρ //

µ

��

A(b)⊗ A(b)⊗A(δ)

µ⊗A(δ)

��

A(n)⊗ A(n)

ggggNNNNNNNNNNN
h //

µ

��

A(n)⊗ A(n)⊗ A(n)

55 55jjjjjjjjjjjjjjj

µ⊗A(n)
��

A(n)
△ //

wwwwpppppppppppp
A(n)⊗A(n)

)) ))TTTTTTTTTTTTTTT

A(b)
ρ // A(b)⊗A(δ).

The internal square in the above diagram commutes since A(n) is a bialgebra.
The trapezoids commute by the definition of the A(δ)-coaction on A(b) and of
the multiplication on A(b). Since the upper-left diagonal arrow is surjective,
we conclude that the exterior square is also commutative.
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Let a = (a1, · · · , an) ∈ N
n. We denote by Ka the 1-dimensional A(δ)-

comodule with underlying vector space K and structure map

Ka → Ka ⊗A(δ)

1 7→ 1⊗ [ca111 · · · c
an
nn]δ.

(4)

Given b = (b1, . . . , bn) ∈ nn, consider the map

f : A(b)⊗Kvbl
→ A(b)

x⊗ 1 7→ x[cl,bl]b.

Proposition 4.9. If b is non-decreasing, then the map f defined above is an

injective homomorphism of A(δ)-comodules.

Proof : Note that, since there are no zero divisors in A(b), f is injective.
Denote by ρ the coaction of A(δ) on A(b) and by ρbl the coaction of A(δ)

on A(b)⊗Kvbl
. Then, for any x ∈ A(b), we have

ρbl(x⊗ 1) =
∑

([x(1)]b ⊗ 1)⊗ [x(2)]δ[cbl,bl]δ.

Hence

f ⊗ A(δ) (ρbl(x⊗ 1)) =
∑

[x(1)]b[cl,bl]b ⊗ [x(2)]δ[cbl,bl]δ. (5)

Further

ρ([cl,bl]b) =

n∑

k=1

[clk]b ⊗ [ck,bl]δ.

Now we have [ck,bl]δ = 0 for k < bl , and [clk]b = 0 for k > bl. Therefore
ρ([cl,bl]b) = [cl,bl]b ⊗ [cbl,bl]δ. Using this and Proposition 4.8, we get

ρ(x[cl,bl]b) =
∑

[x(1)]b[cl,bl]b ⊗ [x(2)]δ[cbl,bl]δ. (6)

Compairing (5) and (6), we see that f is indeed a homomorphism of A(δ)-
comodules.

Proposition 4.10. Suppose that b and b − vl ∈ nn are non-decreasing se-

quences. Then we have the following short exact sequence of A(δ)-comodules

0 // A(b)⊗Kvbl

f
// A(b)

π // A(b− vl) // 0 . (7)

Proof : Clearly I(b) ⊂ I(b− vl). So we can consider the canonical projection
π : A(b) ։ A(b− vl).
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By Proposition 4.2 the sets { [cω]b |ωij = 0, j > bi} and

{ [cω]b−vl |ωij = 0, j > bi if i 6= l, and j > bl − 1, if i = l}

are basis of A(b) and A(b− vl), respectively. Therefore

{ [cω]b |ωij = 0, j > bi; ωl,bl 6= 0}

is a basis of the kernel of π.
Let ω ∈ Mn(N) be such that ωij = 0 for j > bi. Then, in particular, ωl,bl

is the last possible non-zero element in the lth row of ω. Define ω′ ∈Mn(N)
to be the matrix with the same elements in the first l rows as ω and zeros
elsewhere. Denote ω − ω′ by ω′′. Then from the definition of cω, we get
[cω]b = [cω

′

]b[c
ω′′

]b. Moreover, [cω
′

]b[cl,bl]b[c
ω′′

]b = [cω+el,bl ]b, where el,bl denotes
the matrix with 1 in position (l, bl) and zeros elsewhere. We claim that
[cω

′′

]b[cl,bl]b = αsβt[cl,bl]b[c
ω′′

]b for suitable integers s and t. In fact [cω
′′

]b is the
product of the elements [cij]b with i > l. If j < bl, we get

[cij]b[cl,bl]b = α−1β[cl,bl]b[cij]b.

If j = bl, then
[cij]b[cl,bl]b = [ci,bl]b[cl,bl]b = β[cl,bl]b[cij]b.

If j > bl, then

[cij]b[cl,bl]b = [cl,bl]b[cij]b + (β − α−1)[clj]b[ci,bl]b.

Since j > bl, we get that [clj]b = 0. Thus

[cij]b[cl,bl]b = [cl,bl]b[cij]b

in this last case. Therefore, we have [cω]b[cl,bl]b = αsβt[cω+el,bl ]b . This shows
that the image of f and the kernel of π coincide. By Proposition 4.9, the
map f is injective and so (7) is exact.

Let l(σ) denote the length of the permutation σ ∈ Σn. The quantum
determinant is the element of A(n) defined by

d = dα,β =
∑

σ∈Σn

(−α)−l(σ)c1,σ(1)c2,σ(2) . . . cn,σ(n)

=
∑

σ∈Σn

(−β)−l(σ)cσ(1),1cσ(2),2 . . . cσ(n),n.

The determinant d is a group-like element of A(n), see [10]. For every
nondecreasing b ∈ nn such that bi ≥ i, we get that [d]b is a non-zero el-
ement of A(b) and so a non-zero divisor, by Corollary 4.3. We also have
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[cij]b[d]b = (α−1β)i−j[d]b[cij]b. Hence, we can localize A(b) with respect to d.
We will denote the resulting localization by A(b)d.

Remark 4.11. Since d is group-like this localization process preserves the
coalgebra and comodule structures. Therefore, A(n)d, A(δ)d, A[l]d are bial-
gebras, A(b)d is an A(δ)d-comodule, and for b such that bi 6= l , for all i, A(b)d
is an A[l]d-comodule.

The bialgebra A(n)d admits a Hopf algebra structure with the antipode
given by

S(cis) = (−β)s−id−1dsi,

where dsi denotes the quantum determinant of the subalgebra of A(n) ob-
tained by deleting all generators csk and cki with 1 ≤ k ≤ n (see [10, (1.7)]).

Proposition 4.12. Let λ = (λ1, . . . , λm) be a composition of n, and

b = (λλ1

1 , (λ1 + λ2)
λ2, . . . , nλm).

Then, the kernel J(λ) of the canonical projection A(n)d → A(b)d is a Hopf

ideal generated, as an ideal, by { cis | s > bi}. Therefore A(b)d admits a Hopf

algebra structure with the antipode given by

S([cis]b) = (−β)s−i[d]−1
b [dsi]b.

Proof : We know that, in this case, A(b)d is a bialgebra. It is obvious that the
projection A(n)d → A(b)d is a homomorphism of bialgebras, which implies
that J(λ) is a biideal.
Suppose d−ky ∈ J(λ), for some y ∈ A(n). Then [d]−k

b [y]b = 0 in A(b)d.
By the definition of localization this implies that [y]b = 0, and so y ∈ I(b).
Therefore y =

∑n
i=1

∑
s>bi

yiscisy
′
is for some elements yis, y

′
is ∈ A(n). Since

d−kyis ∈ A(n)d, we get that the ideal J(λ) is generated by the elements cis
with s > bi.
As S is an anti-endomorphism of A(n), to show that S(J(λ)) ⊂ J(λ) it

is enough to check that S(cis) ∈ J(λ), for every pair (i, s) such that s > bi.
But as S(cis) = (−β)s−id−1dsi it is sufficient to verify that dsi ∈ I(b).
Let us consider the embedding ϕ : A(n− 1) → A(n) determined by

cjt 7→





cjt, j < s, t < i

cj+1,t j ≥ s, t < i

cj,t+1, j < s, t ≥ i

cj+1,t+1, j ≥ s, t ≥ i.
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Then, by the definition of dsi, we get that dsi is the image of the determinant
d ∈ A(n − 1) under ϕ, see [10]. Now consider the ideal ϕ−1(I(b)). Suppose
k and w ∈ {1, . . . , m} are such that

λ1 + · · ·+ λk−1 < i ≤ λ1 + · · ·+ λk

λ1 + · · ·+ λw−1 < s ≤ λ1 + · · ·+ λw.

In other words (i, s) lies in the (k, w) block determined by the composition λ.
Note that s > bi ≥ i implies that w > k. One can show that ϕ−1(I(b)) = I(b′)
where

b′ = (λλ1
1 , . . . , (λ1 + · · ·+ λk − 1)λk , . . . , (λ1 + · · ·+ λw − 1)λw−1, . . . , (n− 1)λm).

Suppose d 6∈ I(b′). Then there is σ ∈ Σn−1 such that cj,σ(j) 6∈ I(b′), for
all 1 ≤ j ≤ n − 1. This implies that, for all 1 ≤ j ≤ λ1, we must have
1 ≤ σ(j) ≤ λ1. In other words, σ maps bijectively [1, λ1]∩N into itself. Now,
for λ1 + 1 ≤ j ≤ λ1 + λ2, we must have 1 ≤ σ(j) ≤ λ1 + λ2. But since σ
maps [1, λ1] ∩ N maps bijectively into itself, this implies that σ also maps
[λ1+1, λ1+λ2]∩N into itself. Proceeding this way, we get that σ must map
[λ1+ · · ·+λk−1+1, λ1+ · · ·+λk]∩N bijectively into [λ1+ · · ·+λk−1+1, λ1+
· · · + λk − 1] ∩ N, which is impossible. Therefore, we get that d ∈ I(b′) and
thus dsi = ϕ(d) ∈ I(b).

The Hopf algebra A(n)d = (A(n)α,β)d is the coordinate algebra of the quan-
tum general linear group GLα,β(n,K), defined by Takeuchi in [16] and also
studied in [10]. The quantum groups GL1,β(n,K) and GLβ,β(n,K) are, re-
spectively, the quantum general linear groups studied by Dipper and Donkin
in [6] and Parshall and Wang in [13].

If λ = (λ1, . . . , λm) is a composition of n, and b = (λλ1

1 , (λ1+λ2)
λ2, . . . , nλm),

then the Hopf algebra A(b)d can be considered as the coordinate algebra of a
quantum parabolic subgroup of GLα,β(n,K). Taking b = δ, we obtain the coor-
dinate algebra A(δ)d of the quantum negative Borel subgroup of GLα,β(n,K).
Quantum parabolic and Borel subgroups were extensively studied by Donkin

in [8] (see also [9]), for the case α = 1.
Consider a = (a1, · · · , an) ∈ nn. Then we also denote by Ka the 1-

dimensional A(δ)d-comodule which is the restriction of the A(δ)-comodule
Ka defined in (4).
Given a = (a1, · · · , an), b = (b1, · · · , bn) ∈ nn, we write b ≥ a if bi ≥ ai, for

i ∈ n. Then we have the following extension of Proposition 4.10
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Proposition 4.13. Suppose b ∈ nn is such that b ≥ a[l], and b, b−vl are non-
decreasing sequences. Then we have an exact sequence of A(δ)d-comodules

0 // A(b)d ⊗Kvbl

f
// A(b)d

π // A(b− vl)d // 0 , (8)

where f is the comodule homomorphism defined by z ⊗ 1 7→ z[cl,bl]b, for any

z ∈ A(b)d, and π is the canonical projection.

Proof : It is obvious that π is surjective. Let [d]−k
b x ∈ ker(π), with x ∈ A(b)

and k ∈ N. Then [d]−k
b−vl

π(x) = 0 in A(b − vl)d. Since [d]b−vl is not a zero
divisor in A(b − vl), we get that π(x) = 0 in A(b − vl). This shows that
x is in the kernel of the projection A(b) → A(b − vl). Since (7) is exact,
we get that there is y ⊗ 1 ∈ A(b) ⊗ Kvl such that f(y ⊗ 1) = x. Therefore
f([d]−k

b y ⊗ 1) = [d]−k
b x. This shows that (8) is exact at the second term.

Now, suppose [d]−k
b y ⊗ 1 ∈ ker(f), with y ∈ A(b). Then [d]−k

b ycl,vl = 0 in
A(b)d. Thus ycl,vl = 0 in A(b). Since cl,vl is not a zero-divisor in A(b), we get
y = 0 in A(b). Therefore f is injective.

5. The construction of the preaction
Our next step will be to define a preaction of H(Σn) on the category

Comod-A(δ)d.
For any 1 ≤ i ≤ n − 1, let πi : A[i]d → A(δ)d be the canonical projection.

We denote the corresponding induction functor Ind
A[i]d
A(δ)d

by π◦i . For any A[i]d-

comodule M , we also write M for the restricted A(δ)d-comodule πi◦(M).
Define Fi as the functor π◦i followed by the restriction to A(δ)d, i.e,

Fi = πi◦π
◦
i : Comod-A(δ)d → Comod-A(δ)d.

Thus every Fi is an endofunctor of Comod-A(δ)d. Next we will define natural
isomorphisms τij, 1 ≤ i ≤ j ≤ n − 1, and, in Section 6, we will prove that
they satisfy all the necessary commutation relations to define a preaction of
H(Σn) on Comod-A(δ)d.
To proceed we will need the following proposition describing the behaviour

of the A(δ)d-comodules Ktr = K0 and of Kvi+1 under π
◦
i .

Theorem 5.1. Suppose 1 ≤ i ≤ n− 1 then

Rkπ◦iK0
∼=

{
Ktr, k = 0

0, k 6= 0
(9)
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and

Rkπ◦iKvi+1
= 0, k ≥ 0.

Proof : First we reduce the claim of the theorem to the case (α, β) = (1, q).
Then we will apply results of [8].
Let q := αβ. Consider the isomorphism of coalgebras ϕ : A(n) → A1,q(n) ,

ϕ(cω) = αJ(ω)cω, defined in Theorem 4.4. By Lemma 2.3 in [10], we have
ϕ(dα,β) = d1,q. Therefore, ϕ can be extended to a map ϕ′ : A(n)d → A1,q(n)d
by ϕ′(dkα,βx) = dk1,qϕ(x). It is shown in Theorem 2.4 of [10], that ϕ′ is an
isomorphism of coalgebras.
The isomorphism ϕ′ induces isomorphisms of coalgebras

[ϕ′]δ : Aα,β(δ)d → A1,q(δ)d[x]δ 7→ [ϕ′(x)]δ

and
[ϕ′]i : Aα,β[i]d → A1,q[i]d[x]a[i] 7→ [ϕ′(x)]a[i].

Therefore we get the following commutative diagram of coalgebras

Aα,β[i]d ∼=

[ϕ′]i
//

πi

��

A1,q[i]d

πi

��

Aα,β(δ)d ∼=

[ϕ′]δ
// A1,q(δ)d.

From this diagram it follows that we have to prove the theorem only for the
case (α, β) = (1, q), since the induction of comodules involves only the coal-
gebra and the comodule structures. The case (α, β) = (1, q) was thoroughly
studied in [8], and both claims of the theorem now follow from Lemma 3.1
and Lemma 2.12 therein.

Corollary 5.2. The map η : Ktr → π◦iK0, 1 7→ 1 ⊗ 1, is an isomorphism of

A[i]d-comodules.

Proof : Consider the injective map η′ : Ktr → K0 ⊗ A[i]d defined by 1 7→
1 ⊗ 1. It is easy to see that the image of η′ lies in K0 ⊗

A(δ)d A[i]d = π◦iK0.
Therefore we have the monomorphism of A[i]d-comodules η : Ktr → π◦iK0.
Since dimπ◦iK0 is 1, by Therorem 5.1, we get that η is an isomorphism.

Note that for any Hopf algebraH and anyH-comoduleN , n 7→ n⊗1 defines
an isomorphism between N and N ⊗ Ktr. Now let N be an A[i]d-comodule.
We consider the following chain of isomorphisms of A[i]d-comodules

N
∼=
→ N ⊗Ktr

1⊗η
−−→ N ⊗ π◦iK0

φ
→ π◦i (N ⊗K0)

∼=
→ π◦iN,
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where φ is the isomorphism (1) and η is defined in Corollary 5.2. Under this
isomorphism we have for every z ∈ N

z 7→ z ⊗ 1 7→ z ⊗ 1⊗ 1 7→
∑

z(0) ⊗ 1⊗ z(1) 7→
∑

z(0) ⊗ z(1).

Hence ρN : N → π◦iN , z 7→
∑
z(0) ⊗ z(1) gives an isomorphism of A[i]d-

comodules.
We are now ready to define the natural isomorphism

τii : F
2
i → Fi, all 1 ≤ i ≤ n− 1.

Let M ∈ Comod-A(δ)d. Then π
◦
iM is an A[i]d-comodule with the comodule

structure given by
∑

j

zj ⊗ [xj]a[i] 7→
∑

zj ⊗ [xj,(1)]a[i] ⊗ [xj,(2)]a[i],

where zj ∈M , and xj ∈ A(n)d. Therefore, we get for everyM ∈ Comod-A(δ)d
the isomorphism

ρπ◦

i M
: π◦iM → π◦iFiM

∑

j

zj ⊗ [xj]a[i] 7→
∑

zj ⊗ [xj,(1)]a[i] ⊗ [xj,(2)]a[i].
(10)

By restricting, we can consider ρπ◦

i M
as a homomorphism of A(δ)d-comodules.

From the explicit expression of ρπ◦

iM
it is obvious that the class of isomor-

phisms (ρπ◦

i M
) is a natural transformation of functors Fi → F 2

i . We define
the natural isomorphism τii : F

2
i → Fi as the inverse of (ρπ◦

i M
).

Before defining the isomorphisms τij for i < j, we need to prove the fol-
lowing theorem.

Theorem 5.3. Suppose b ∈ nn satisfies b ≥ δ, the sequences b and b+ vl are
non-decreasing, and bl−1 < bl. Then the map

A(b+ vl)d → π◦blA(b)d

[x]b+vl 7→
∑

[x(1)]b ⊗ [x(2)]a[bl]

(11)

is a well defined isomorphism of A[bl]d-comodules, and therefore an isomor-

phism of A(δ)d-comodules.
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Proof : By Proposition 4.13, we have an exact sequence of A(δ)d-comodules

0 → A(b+ vl)d ⊗Kvbl+1
→ A(b+ vl)d → A(b)d → 0.

Applying π◦bl, we get the exact sequence

π◦bl(A(b+vl)d⊗Kvbl+1
) → π◦blA(b+vl)d → π◦blA(b)d → R1π◦bl(A(b+vl)d⊗Kvbl+1

)

with the middle arrow given by

π◦blA(b+ vl)d → π◦blA(b)d∑

k

[xk]b+vl ⊗ [yk]a[bl] 7→
∑

k

[xk]b ⊗ [yk]a[bl].
(12)

Note that since bl−1 < bl and b+ vl is non-decreasing, the vector b+ vl does
not have any component equal to bl. Therefore, by Remark 4.11, A(b+ vl)d
is an A[bl]d-comodule. Hence, by the tensor identity (see Theorem 3.2), we
have

Riπ◦bl(A(b+ vl)d ⊗Kvbl+1
) ∼= A(b+ vl)d ⊗ Riπ◦blKvbl+1

.

But, by Theorem 5.1,

Riπ◦blKvbl+1 = 0, i ≥ 0.

Therefore, (12) is an isomorphism. Now, using (1) for H1 = A[bl]d, H2 =
A(δ)d, M = A(b+ vl)d, and N = K0, we get the isomorphism

A(b+ vl)d ⊗ π◦blK0 → π◦blA(b+ vl)d

[x]b+vl ⊗ 1⊗ [y]a[bl] 7→
∑

[x(1)]b+vl ⊗ [x(2)]a[bl][y]a[bl].
(13)

Recall that, in Corollary 5.2, we defined the isomorphism of A[bl]d-comodules
η : Ktr → π◦blK0 .
Composing A(b+ vl)d ⊗ η with (13) and (12), we get the isomorphism

A(b+ vl)d ⊗K0 → π◦blA(b)d

[x]b+vl ⊗ 1 7→
∑

[x(1)]b ⊗ [x(2)]a[bl].
(14)

Composing this with the natural isomorphism A(b+ vl)d → A(b+ vl)d ⊗K0,
we see that (11) is indeed a well-defined isomorphism of A[bl]d-comodules.

To define the isomorphisms τij, i+2 ≤ j, we proceed as follows. Applying
Theorem 5.3 with l = j and l = i, respectively, we get the isomorphisms

A(δ + vi + vj)d → π◦jA(δ + vi)d

A(δ + vi + vj)d → π◦iA(δ + vj)d.
(15)
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As δ + vi = a[i] and δ + vj = a[j], composing the inverse of the first of these
isomorphisms with the second one, we obtain the isomorphism

tij : π
◦
jA[i]d → π◦iA[j]d.

For i+ 2 ≤ j, we define τij : FjFi → FiFj, by (τij)M = M ⊗A(δ)d tij. Clearly,
the family (τij) is a natural transformation of functors.
Finally, we will define now the natural transformations τi,i+1. Applying

Theorem 5.3 with l = i, we get the isomorphisms

A(δ + 2vi + vi+1)d → π◦i+1A(δ + vi + vi+1)d

A(δ + vi + vi+1)d → π◦iA(δ + vi+1)d.
(16)

Therefore, we have the isomorphism of A(δ)d-comodules

A(δ + 2vi + vi+1)d → A[i+ 1]d ⊗
A(δ)d A[i]d ⊗

A(δ)d A[i+ 1]d. (17)

Since comultiplication is coassoative on A(n)d, the explicit formula for (17)
is given by

[x]δ+2vi+vi+1
7→

∑
[x(1)]a[i+1] ⊗ [x(2)]a[i] ⊗ [x(3)]a[i+1].

Proposition 5.4. The map

ρα,β : A(δ + 2vi + vi+1)d → A[i]d ⊗
A(δ)d A[i+ 1]d ⊗

A(δ)d A[i]d

[x]δ+2vi+vi+1
7→

∑
[x(1)]a[i] ⊗ [x(2)]a[i+1] ⊗ [x(3)]a[i]

(18)

is a well defined isomorphism of A(δ)d-comodules.

Proof : The idea of the proof is to exhibit an isomorphism that identifies (18)
with (17).

Without loss of generality we can assume that q := (αβ)
1
2 ∈ K. In fact,

if (18) is not an isomorphism, then it will not be an isomorphism upon field
extension either.
By Theorem 4.4 the map ϕ : Aα,β(n) → Aq,q(n), defined by ϕ(cω) =

(αβ−1)
1
2J(ω)cω, is an isomorphism of coalgebras. Using Proposition 4.2, we

see that ϕ induces an isomorphism of vector spaces ϕa : Aα,β(a) → Aq,q(a)
for every non-decreasing sequence a ∈ nn. If a is of the form

(λλ1

1 , (λ1 + λ2)
λ2, . . . , nλr),

then Aα,β(a) and Aq,q(a) are coalgebras and we see that ϕa is an isomor-
phism of coalgebras. This is the case of the sequences δ, a[i], a[i + 1] and
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b = δ + 2vi + vi+1. So we get the following commutative diagram

Aα,β(b)
ϕb //

$$IIIIIIIII

����
��

��
��

��
��

��
��

��

��

Aq,q(b)

$$III
II

II
II

����
��

��
��

��
��

��
��

��

��

Aα,β[i]
ϕa[i] //

����
��

��
��

��
��

��
��

�
Aq,q[i]

����
��

��
��

��
��

��
��

�

Aα,β[i+ 1]
ϕa[i+1]

//

&&LLLLLLLLLL
Aq,q[i+ 1]

%%LLLLLLLLLL

Aα,β(δ)
ϕδ // Aq,q(δ)

where all the maps are homomorphisms of coalgebras and the horizontal
arrows are isomorphisms.
From [10, Lemma 2.3], we get that ϕa[dα,β]a = [dq,q]a. Thus the above

diagram remains commutative upon localization. This shows that we have
the following commutative diagram, whose vertical arrows are isomorphisms

Aα,β(b)d
ρα,β

//

ϕb

��

Aα,β[i]d ⊗
Aα,β(δ)d Aα,β[i+ 1]d ⊗

Aα,β(δ)d Aα,β[i]d

ϕa[i]⊗ϕa[i+1]⊗ϕa[i]

��

Aq,q(b)d
ρq,q

// Aq,q[i]d ⊗
Aq,q(δ)d Aq,q[i+ 1]d ⊗

Aq,q(δ)d Aq,q[i]d.

Therefore it is enough to prove the proposition in the case (α, β) = (q, q).
In this case we can use the results of Parshall and Wang in [13]. Propo-
sition 3.7.1(3) of that work says that the map h sending cis to cn+1−s,n+1−i

extends to an anti-automorphsims of Aq,q(n) considered both as a coalgebra
and an algebra. It is not difficult to check that

h(I(δ)) = I(δ)

h(I(a[i])) = I(a[n− i])

h(I(a[i+ 1])) = I(a[n− i− 1])

h(I(b)) = I(δ + 2vn−i−1 + vn−i).
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Thus if b′ = δ + 2vn−i−1 + vn−i, we get the commutative diagram

Aq,q(b)
hb //

!!C
CC

CC
CC

C

��		
		

		
		

		
		

		
		

	

��

Aq,q(b
′)op

%%KKKKKKKKKK

����
��

��
��

��
��

��
��

��
�

��

Aq,q[i]
ha[i] //

��








Aq,q[n− i]op

����
��

��
��

��
��

��
��

��

Aq,q[i+ 1]
ha[i+1]

//

##HH
HH

HH
HH

H
Aq,q[n− i− 1]op

&&NNNNNNNNNNN

Aq,q(δ)
hδ // Aq,q(δ)

op

where all the horizontal arrows are isomorphisms of coalgebras, and all
slanted arrows are natural projections preserving comultiplication. It is
shown in [13, Lemma 4.2.3], that h(dq,q) = dq,q. Therefore, we have a similar
diagram with all the bialgebras replaced by their localizations with respect
to [d]a, for a suitable a. We get then the commutative diagram

Aq,q(b)d
ρq,q //

hb

��

Aq,q[i]d ⊗
Aq,q(δ)d Aq,q[i+ 1]d ⊗

Aq,q(δ)d Aq,q[i]d

ha[i]⊗ha[i+1]⊗ha[i]

��

Aq,q(b
′)opd

ρ′q,q // Aq,q[n− i]opd ⊗Aq,q(δ)
op
d Aq,q[n− i− 1]opd ⊗Aq,q(δ)

op
d Aq,q[n− i]opd .

whose vertical arrows are isomorphisms and the map ρ′q,q is given by

ρ′q,q : [x]b′ 7→
∑

[x(3)]a[n−i] ⊗ [x(2)]a[n−i−1] ⊗ [x(1)]a[n−i].

Thus it is enough to prove that ρ′q,q is an isomorphism. It follows, from
Remark 3.1, that the linear isomorphism

Aq,q[n− i]opd ⊗Aq,q[n− i− 1]opd ⊗Aq,q[n− i]opd → Aq,q[n− i]d ⊗Aq,q[n− i− 1]d ⊗Aq,q[n− i]d

given by

a1 ⊗ a2 ⊗ a3 7→ a3 ⊗ a2 ⊗ a1

induces a linear isomorphism ν between

Aq,q[n− i]opd ⊗Aq,q(δ)
op
d Aq,q[n− i− 1]opd ⊗Aq,q(δ)

op
d Aq,q[n− i]opd

and

Aq,q[n− i]d ⊗
Aq,q(δ)d Aq,q[n− i− 1]d ⊗

Aq,q(δ)d Aq,q[n− i]d.
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Therefore we get the commutative diagram

Aq,q(b
′)opd

ρ′q,q //

id
��

Aq,q[n− i]opd ⊗Aq,q(δ)
op
d Aq,q[n− i− 1]opd ⊗Aq,q(δ)

op
d Aq,q[n− i]opd

ν

��

Aq,q(b
′)d

ρ′′q,q // Aq,q[n− i]d ⊗
Aq,q(δ)d Aq,q[n− i− 1]d ⊗

Aq,q(δ)d Aq,q[n− i]d,

where ρ′′q,q is the isomorphism (17). This shows that ρ′q,q is an isomorphism,
and the result follows.

We define the map ti,i+1 as the composition of the inverse of (17) followed
by (18). Therefore

ti,i+1 : A[i+ 1]d ⊗
A(δ)d A[i]d ⊗

A(δ)d A[i+ 1]d → A[i]d ⊗
A(δ)d A[i+ 1]d ⊗

A(δ)d A[i]d.

Now the natural transformations τi,i+1 are defined by (τi,i+1)M =M ⊗A(δ)d

ti,i+1, i.e.,

Fi+1FiFi+1M → FiFi+1FiM∑

k

mk ⊗ wk 7→
∑

k

mk ⊗ ti,i+1(wk),

all mk ∈M, wk ∈ A[i+ 1]d ⊗
A(δ)d A[i]d ⊗

A(δ)d A[i+ 1]d.

6. The commutativity of the preaction diagrams
We will show now that the natural isomorphisms τij, defined in the previous

section, satisfy all the necessary relations so that (Fi, 1 ≤ i ≤ n − 1; τij, 1 ≤
i ≤ j ≤ n − 1) is a preaction (in the sense of Section 2) of H(Σn) on the
category Comod-A(δ)d.
We start by describing the notation used in the diagrams below. First of

all, note that if M is an A(δ)d-comodule, then

Fik . . . Fi1M = M ⊗A(δ)d A[i1]d ⊗
A(δ)d · · · ⊗A(δ)d A[ik]d.

Suppose that λ = (λ1, · · · , λm) is a composition of n, and

b = (λλ1

1 , (λ1 + λ2)
λ2, . . . , nλm).
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Then, using the coassosiativity of the comultiplication on A(n)d, we get the
map

A(b)d → A(b)d ⊗
A(δ)d · · · ⊗A(δ)d A(b)d︸ ︷︷ ︸

k times

[x]b 7→
∑

[x(1)]b ⊗ · · · ⊗ [x(k)]b.

(19)

Suppose now that b(1),. . . , b(k) ∈ nn satisfy δ ≤ b(i) ≤ b, for 1 ≤ i ≤ k.
Composing (19) with the canonical projections A(b)d → A(b(i))d, we get the
map

ρb;b(1),...,b(k) : A(b)d → A(b(1))d ⊗
A(δ)d · · · ⊗A(δ)d A(b(k))d

[x]b 7→
∑

[x(1)]b(1) ⊗ · · · ⊗ [x(k)]b(k).

Remark 6.1. In the case k = 2, b = b(1) = b(2) = a[i], we recover

(τ−1
ii )M = M ⊗A(δ)d ρb;b(1),b(2).

For k = 2, b = δ + vi + vj, b
(1) = a[i] (b(1) = a[j]), and b(2) = a[j]

(b(2) = a[i]), we get isomorphisms, since (15) are isomorphisms. For k = 3,
b = δ + 2vi + vi+1, b

(1) = b(3) = vi, b
(2) = vi+1, we get that ρb;b(1),b(2),b(3)

is an isomorphism by Proposition 5.4. For k = 3, b = δ + 2vi + vi+1,
b(1) = b(3) = vi+1, b

(2) = vi, we get that ρb;b(1),b(2),b(3) is an isomorphism,
since (17) is an isomorphism.

In the diagrams below we will skip M and write:

i) iα1

1 . . . iαl

l for A(δ +
∑l

k=1 αkvik)d, where 1 ≤ i1 < · · · < il ≤ n − 1, and
1 ≤ αk ≤ n− ik;

ii) dot “.” for ⊗A(δ)d;

iii) ρk for ρb;b(1),...,b(k), and ρ for ρ2.

For example,

(i+ 1).i.(i+ 1) oo
ρ3
i2(i+ 1)

ρ3 // i.(i+ 1).i , i.j oo
ρ
ij

ρ
// j.i ,

(i+ 1).i.(i+ 1).i oo
ρ3.i

i2(i+ 1).i
ρ3.i // i.(i+ 1).i.i , i.i.j oo

i.ρ
i.ij

i.ρ
// i.j.i ,
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denote, respectively, τi,i+1, τi,j, Fiτi,i+1 and τi,jFi.
Note that all the diagrams below are commutative, since comultiplication

in A(n) is coassociative. Moreover, the maps at the boundaries are isomor-
phisms by Remark 6.1.
We have to check that two paths going from the upper-left vertex to the

down-right vertex produce equal maps. For this it is enough to check that
all the maps which are not at the boundary are also isomorphisms.
In the diagram

i.i.i i.i
i.ρ

oo

i.i

ρ.i

OO

i

ρ

OO

ρ
oo

there is nothing to check since there are no arrows except the boundary ones.
In the diagrams

(i+ 1).i.(i+ 1).(i+ 1) (i+ 1).i.(i+ 1)
(i+1).i.ρ

oo

i
2(i+ 1).(i+ 1)

ρ3.(i+1)

OO

ρ3.(i+1)

��
i.(i+ 1).i.(i+ 1) i

2(i+ 1)

ρ3

OO

ρ3

��

ρ

iiTTTTTTTTTTTTTTTTTT

ρ

uujjjjjjjjjjjjjjjjjj

i.i
2(i+ 1)

i.ρ3

OO

i.ρ3

��
i.i.(i+ 1).i i.(i+ 1).i

ρ.(i+1).i
oo

(i+ 1).(i+ 1).i.(i + 1) (i+ 1).i.(i + 1)
ρ.i.(i+1)

oo

(i+ 1).i2(i+ 1)

(i+1).ρ3

OO

(i+1).ρ3

��
(i+ 1).i.(i+ 1).i i

2(i+ 1)

ρ3

OO

ρ3

��

ρ

iiTTTTTTTTTTTTTTTTTT

ρ

uujjjjjjjjjjjjjjjjjj

i
2(i+ 1).i

ρ3.i

OO

ρ3.i

��
i.(i+ 1).i.i i.(i+ 1).i

i.(i+1).ρ
oo

the invertibility of non-boundary maps follows from the commutativity of
the upper and lower trapezoids.
In the diagrams

i.i.j i.j
ρ.j

oo

i.ij

i.ρ

OO

i.ρ
��

ij

ρ

OO

ρ
��

ρ
oo

ρ

vvmmmmmmmmmmmmmmmmmm

i.j.i ij.i
ρ.i

oo
ρ.i

// j.i.i j.i
j.ρ

oo

i.j.j i.j
i.ρ

oo

ij.j

ρ.j

OO

ρ.j
��

ij

ρ

OO

ρ
��

ρ
oo

ρ

vvllllllllllllllllll

j.i.j j.ij
j.ρ

oo
j.ρ

// j.j.i j.i
ρ.i

oo
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the invertibility of non-boundary arrows follows from the commutativity of
the upper rectangles and the commutativity of the lower-down triangles.
It is not difficult to conclude, by a recursive argument, that in the next

diagrams it is enough to check that one of the radial arrows is invertible to
conclude that all the radial arrows are isomorphisms.
In the diagram

(i+ 1).i.(i+ 1).i.(i+ 1) i2(i+ 1).i.(i+ 1)
ρ3.i.(i+1)

oo
ρ3.i.(i+1)

// i.(i+ 1).i.i.(i+ 1)

(i+ 1).i.i2(i+ 1)

(i+1).i.ρ3

OO

(i+1).i.ρ3
��

i.(i+ 1).i.(i+ 1)

i.(i+1).ρ.(i+1)

OO

(i+ 1).i.i.(i+ 1).i i2(i+ 1)

ρ3

kkVVVVVVVVVVVVVVVVVVVVV

ρ3

OO

ρ //

ρ3

%%LLLLLLLLLLLLLLLLLLLLLLLLLL

ρ

xxqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
i.i2(i+ 1)

i.ρ3

OO

i.ρ3
��

(i+ 1).i.(i+ 1).i

(i+1).ρ.(i+1).i

OO

i.i.(i+ 1).i

i2(i+ 1).i

ρ3.i

OO

ρ3.i // i.(i+ 1).i.i i.(i+ 1).i
i.(i+1).ρ

oo

ρ.(i+1).i

OO

the 5 o’clock map ρ3 : i
2(i+ 1) → i.(i+ 1).i is invertible, by Remark 6.1.

In the diagram

i.(i− 1).i.j i.(i− 1).ij
i.(i−1).ρ

oo
i.(i−1).ρ

// i.(i− 1).j.i

(i− 1)2i.j

ρ3.j

OO

ρ3.j

��

i.(i− 1)j.i

i.ρ.i

OO

i.ρ.i

��
(i− 1).i.(i− 1).j i.j.(i− 1).i

(i− 1).i.(i− 1)j

(i−1).i.ρ

OO

(i−1).i.ρ

��

(i− 1)2ij

ρ3

OO

ρ3

88qqqqqqqqqqqqqqqqqqqqqqqqqqq
ρ3 //

ρ

&&MMMMMMMMMMMMMMMMMMMMMMMMMMM

ρ3

��

ρ3

xxqqqqqqqqqqqqqqqqqqqqqqqqqqq

ρ3oo

ρ

ffMMMMMMMMMMMMMMMMMMMMMMMMMMM

ij.(i− 1).i

ρ.(i−1).i

OO

ρ.(i−1).i

��
(i− 1).i.j.(i− 1) j.i.(i− 1).i

(i− 1).ij.(i− 1)

(i−1).ρ.(i−1)

OO

(i−1).ρ.(i−1)

��

j.(i− 1)2i

j.ρ3

OO

j.ρ3
��

(i− 1).j.i.(i− 1) (i− 1)j.i.(i− 1)
ρ.i.(i−1)

oo
ρ.i.(i−1)

// j.(i− 1).i.(i− 1)
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the 10 o’clock map ρ : (i − 1)2ij → (i − 1)2i.j is an isomorphism, by Theo-
rem 5.3.
In the diagram

i.(j + 1).j.(j + 1) i(j + 1).j.(j + 1)
ρ.j.(j+1)

oo
ρ.j.(j+1)

// (j + 1).i.j.(j + 1)

i.j2(j + 1)

i.ρ3

OO

i.ρ3
��

(j + 1).ij.(j + 1)

(j+1).ρ.(j+1)

OO

(j+1).ρ.(j+1)

��
i.j.(j + 1).j (j + 1).j.i.(j + 1)

ij.(j + 1).j

ρ.(j+1).j

OO

ρ.(j+1).j

��

ij2(j + 1)

ρ3

OO

ρ3

88qqqqqqqqqqqqqqqqqqqqqqqqqqqq
ρ3 //

ρ

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMM

ρ3

��

ρ3

xxqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ρ3oo

ρ

ffMMMMMMMMMMMMMMMMMMMMMMMMMMMM

(j + 1).j.i(j + 1)

(j+1).j.ρ

OO

(j+1).j.ρ

��
j.i.(j + 1).j (j + 1).j.(j + 1).i

j.i(j + 1).j

j.ρ.j

OO

j.ρ.j

��

j2(j + 1).i

ρ3.i

OO

ρ3.i

��
j.(j + 1).i.j j.(j + 1).ij

j.(j+1).ρ
oo

j.(j+1).ρ
// j.(j + 1).j.i

the 4 o’clock map ρ : ij2(j + 1) → j2(j + 1).i is an isomorphism, by Theo-
rem 5.3.
In the diagram

i.j.k ij.k
ρ.k

oo
ρ.k

// j.i.k j.ik
j.ρ

oo
j.ρ

// j.k.i

i.jk

i.ρ

OO

i.ρ
��

ijk
ρ

eeLLLLLLLLLLL

ρ
99rrrrrrrrrrr ρ

//
ρ

oo

ρyyrrrrrrrrrrr
ρ

%%LLLLLLLLLLL
jk.i

ρ.i

OO

ρ.i
��

i.k.j ik.j
ρ.j

oo
ρ.j

// k.i.j k.ij
k.ρ

oo
k.ρ

// k.j.i

for example, the map ρ : ijk → ij.k is an isomorphism, by Theorem 5.3.
In the diagram depicted in Figure 1, we write j = i + 1 and k = i + 2.

In this diagram the 11 o’clock map ρ4 : i
3(i + 1)2(i + 2) → j2k.i.j.k is an

isomorphism, since it is the following composition of isomorphisms defined
in Theorem 5.3

i3j2k → i2j2k.k → ij2k.j.k → j2k.i.j.k .
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Figure 1.

k.j.k.i.j.k k.j.ik.j.k
k.j.ρ.j.k

oo
k.j.ρ.j.k

// k.j.i.k.j.k k.j.i.j2k
k.j.i.ρ3oo

k.j.i.ρ3
��

j2k.i.j.k

ρ3.i.j.k

OO

ρ3.i.j.k
��

k.j.i.j.k.j

j.k.j.i.j.k k.i2j.k.j

k.ρ3.k.j

OO

k.ρ3.k.j
��

j.k.i2j.k

j.k.ρ3.k

OO

j.k.ρ3.k
��

k.i.j.i.k.j

j.k.i.j.i.k k.i.j.ik.j

k.i.j.ρ.j
��

k.i.j.ρ.j

OO

j.k.i.j.ik

j.k.i.j.ρ
��

j.k.i.j.ρ

OO

i3j2k

ρ5

OO

ρ4

44

ρ4

77oooooooooooooooooooooooooooooooooooooooooooooooooooo

ρ5

22dddddddddddddddddddddddddddddddddddddddddddddd

ρ5

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

ρ4

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ρ4

**

ρ5

��

ρ4

~~

ρ4

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

ρ5

zzttttttttttttttttttttttttt

ρ5oo

ρ4

ddIIIIIIIIIIIIIIIIIIIIIIIII

ρ4

[[66666666666666666666666666666666666666666

k.i.j.k.i.j

j.k.i.j.k.i ik.j.k.i.j

ρ.j.k.i.j
��

ρ.j.k.i.j

OO

j.ik.j.k.i

j.ρ.j.k.i
��

j.ρ.j.k.i

OO

i.k.j.k.i.j

j.i.k.j.k.i i.j2k.i.j

i.ρ3.i.j
��

i.ρ3.i.j

OO

j.i.j2k.i

j.i.ρ3.i
��

j.i.ρ3.i

OO

i.j.k.j.i.j

j.i.j.k.j.i i.j.k.i2j

i.j.k.ρ3
��

i.j.k.ρ3

OO

i2j.k.j.i

ρ3.k.j.i

OO

ρ3.k.j.i // i.j.i.k.j.i i.j.ik.j.i
i.j.ρ.j.i

//
i.j.ρ.j.i

oo i.j.k.i.j.i
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This concludes the proof that the collection of functors Fi, 1 ≤ i ≤ n− 1,
and of natural isomorphisms τij, 1 ≤ i ≤ j ≤ n − 1, defines a preaction of
H(Σn) on Comod-A(δ)d.

7. A (pre)action of H(Σn) on S−
α,β(n, r)-Mod

In this section we show that the preaction of H(Σn) on Comod-A(δ)d in-
duces a preaction (and so an action) of H(Σn) on the category of S−(n, r)-
modules, where S−(n, r) = S−

α,β(n, r) is the quantum negative Borel-Schur
algebra.
We prove first that the preaction of H(Σn) on Comod-A(δ)d can be re-

stricted to Comod-A(δ). For each 1 ≤ i ≤ n− 1, define F ′
i : Comod-A(δ) →

Comod-A(δ) by

M 7→M ⊗A(δ) A[i].

Let ψ : A(δ) → A(δ)d be the canonical inclusion. Then we have the associated
restriction functor ψ◦ : Comod-A(δ) → Comod-A(δ)d.

Proposition 7.1. The inclusion ψi : A[i] → A[i]d induces a natural isomor-

phism ψ◦F
′
i → Fiψ◦.

Proof : Let M ∈ Comod-A(δ). Then the natural transformation in question
is given by

M ⊗A(δ) A[i] → ψ◦M ⊗A(δ)d A[i]d∑

j

mj ⊗ xj 7→
∑

mj ⊗ ψi(xj).

Since we have M ∼= M ⊗A(δ) A(δ), and the cotensor product is associative,
to prove the proposition it is enough to show that

A(δ)⊗A(δ) A[i] → ψ◦A(δ)⊗
A(δ)d A[i]d∑

j

zj ⊗ xj 7→
∑

zj ⊗ ψi(xj)

is an isomorphism. Precomposing this with the isomorphism

A[i] → A(δ)⊗A(δ) A[i]

[x]a[i] 7→
∑

[x(1)]δ ⊗ [x(2)]a[i]
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we get the map

A[i] → A(δ)⊗A(δ)d A[i]d

[x]a[i] 7→
∑

[x(1)]δ ⊗ [x(2)]a[i].
(20)

Thus all that is left to check is that (20) is an isomorphism. For this, consider
the exact sequence (7), for b = a[i] and l = i,

0 → A[i]⊗Kvi+1
→ A[i] → A(δ) → 0.

It can also be considered as a sequence of A(δ)d-comodules. Proceeding as
in the proof of Theorem 5.3 (with b = δ and l = i), using Theorem 5.1 and
Theorem 3.2, we see that (20) is an isomorphism of A(δ)d-comodules.

Note that, since ψ : A(δ) → A(δ)d is a monomorphism of coalgebras over a
field, the functor ψ◦ is full and faithful. Therefore, for anyM ∈ Comod-A(δ),
we have an isomorphism

Comod-A(δ)((F ′
i)

2M,F ′
iM)

∼=
−→ Comod-A(δ)d(F

2
i ψ◦M,Fiψ◦M),

for every 1 ≤ i ≤ n − 1. Hence we can define (τ ′ii)M as the map that cor-
responds to (τii)M under this isomorphisms. It is clear that τ ′ii is a natural
transformation from (F ′

i)
2 to F ′

i . Similarly, one can define the natural trans-
formations τ ′i,j for i < j. Since (F, τ) is a preaction on Comod-A(δ)d, we get
that (F ′, τ ′) is a preaction on Comod-A(δ).
Let r be a natural number. Then the subset A(δ; r) of r-homogeneous

elements in A(δ) is a finite dimensional subcoalgebra of A(δ). Similarly, the
set A(a[i]; r) of r-homogeneous elements in A[i] is a finite dimensional sub-
coalgebra of A[i]. Let M be an A(δ; r)-comodule. Then from the definition
of the cotensor product we get

M ⊗A(δ) A[i] =M ⊗A(δ;r) A(a[i]; r).

Thus F ′
iM is an A(δ; r)-comodule. Hence the preaction (F ′, τ ′) defines a

preaction of H(Σn) on Comod-A(δ; r).
As it is well known, see e.g. [8], [9], the associative algebra S−(n, r) =

S−
α,β(n, r) dual to A(δ; r) is called the (negative) quantised Borel-Schur al-

gebra. As usual, we have a canonical equivalence between the categories
S−(n, r)-Mod and Comod-A(δ; r). Therefore we get that (F ′, τ ′) induces an
action of H(Σn) on S

−(n, r)-Mod.
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8. Examples
In this section we consider some explicit examples of the application of the

functors Fw to A(δ)d-comodules. For simplicity, we will work within the non-
quantised setting over an infinite field. In particular, the coordinate variables
cij commute with each other.
We will need some additional notation. We denote by K[Tn] the coordinate

algebra of the subgroup of diagonal matrices in GLn(K). The canonical
projection π : A(δ)d → K[Tn] is defined by

π(cij) =

{
cii, i = j

0, otherwise.

It is straightforward to verify that π is a homomorphism of coalgebras. There-
fore, every A(δ)d-comodule (M, ρ) can be considered a K[Tn]-comodule with
the coaction given by

ρT (x) := (id⊗ π)(ρ(x)),

for all x ∈ M . For every a ∈ Z
n we define the one-dimensional K[Tn]-

comodule Ka by

ρ(1) := 1⊗ ca111 . . . c
an
nn.

It is well-known that every finite dimensional indecomposable comodule over
K[Tn] is isomorphic to Ka for some a ∈ Z

n. Given a finite dimensional
A(δ)d-comodule M , we can write M =

⊕
aMa, where each Ma is the K[Tn]-

submodule of M satisfying

ρT (x) = x⊗ ca111 . . . c
an
nn

for all x ∈ Ma. The subspaces Ma of M are called weight subspaces of M .
We will say that the elements of Ma have weight a.
Fix i ∈ n. We will write K[Gi] for the coordinate algebra of the Levi

subgroup

Gi := GL1(K)(i−1) ×GL2(K)×GL1(K)(n−i−1).

Thus K[Gi] is the localization of K[c11, c22, . . . , cnn, ci,i+1, ci+1,i] with respect
to

c11 . . . ci−1,i−1(ciici+1,i+1 − ci,i+1ci+1,i)ci+2,i+2 . . . cnn.

Note that A[i]d is the coordinate algebra of the corresponding parabolic sub-
group in GLn(K). Since the Levi subgroup Gi is a quotient of the corre-
sponding parabolic subgroup we get a well defined homomorphism of Hopf
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algebras

ζi : K[Gi] → A[i]d

determined by

ζi(ckl) = ckl,

where k = l ∈ n or {k, l} = {i, i+ 1}. Thus every K[Gi]-comodule can be
considered as an A[i]d-comodule via ζi.
For every composition µ = (µ1, . . . , µn) such that µi = µi+1, we denote by

Kµ the one-dimensional A[i]d-comodule with coaction given by

ρ(1) = 1⊗ cµ1

11 . . . c
µi−1

i−1,i−1(ciici+1,i+1 − ci,i+1ci+1,i)
µic

µi+2

i+2,i+2 . . . c
µn
nn.

From [8, Section 3], we know that K[cii, ci,i+1] is a K[Gi]-subcomodule
of the regular K[Gi]-comodule K[Gi]. For a natural number m, we denote
by Yi,m the mth homogeneous component of K[cii, ci,i+1]. Then Yi,m is a

K[Gi]-subcomodule of the K[Gi]-comodule K[cii, ci,i+1]. We write Ỹi,m for
Yi,m considered as A[i]d-comodule via ζi.
It follows from Lemma 3.1 and Lemma 2.12 in [8] that

1) If λ = (λ1, . . . , λn) is such that λi−λi+1 = m ≥ 0, then π◦iKλ
∼= Kµ⊗ Ỹi,m,

where

µ = (λ1, . . . , λi−1, λi+1, λi+1, . . . , λn)

and Rkπ◦iKλ
∼= 0 for k ≥ 1.

2) If λi − λi+1 = −1, then Rkπ◦iKλ
∼= 0 for all k ≥ 0.

From now on we fix n = 3. Using the above facts we will give an explicit
description of the A(δ)d-comodules FwK(1,1,0), for all w ∈ H(Σ3).

As Ỹ1,0 is the trivial A[1]d-comodule, we get that

π◦1K(1,1,0)
∼= K(1,1,0).

Hence F1K(1,1,0)
∼= K(1,1,0). This implies that F2F1K(1,1,0)

∼= F2K(1,1,0) and

F2F1F2K(1,1,0)
∼= F1F2F1K(1,1,0)

∼= F1F2K(1,1,0). (21)

Thus, to know all the A(δ)d-comodules FwK(1,1,0), we only have to compute
F2K(1,1,0) and F1F2K(1,1,0).

We start by studying F2K(1,1,0). For this, consider Ỹ2,1. It has K-basis
{c22, c23} and A[2]d-comodule structure given by

ρ(c22) = c22 ⊗ c22 + c23 ⊗ c32, ρ(c23) = c22 ⊗ c23 + c23 ⊗ c33.
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Let us compute the A[2]d-comodule structure on

π◦2K(1,1,0)
∼= K(1,0,0) ⊗ Ỹ2,1.

Since ρ(x) = x⊗ c11 for x ∈ K(1,0,0), we get in K(1,0,0) ⊗ Ỹ2,1

ρ(1⊗ c22) = (1⊗ c22)⊗ c11c22 + (1⊗ c23)⊗ c11c32

ρ(1⊗ c23) = (1⊗ c22)⊗ c11c23 + (1⊗ c23)⊗ c11c33.

Therefore, the A(δ)d-comodule F2K(1,1,0) = π2◦π
◦
2K(1,0,0) is two-dimensional,

with basis {1⊗ c22, 1⊗ c23} and A(δ)d-comodule structure given by

ρ(1⊗ c22) = (1⊗ c22)⊗ c11c22 + (1⊗ c23)⊗ c11c32

ρ(1⊗ c23) = (1⊗ c23)⊗ c11c33.
(22)

It is now easy to determine the weight subspace structure of F2K(1,1,0). This
structure will be useful to study F1F2K(1,1,0).
From (22), we get

ρT (1⊗ c22) = (1⊗ c22)⊗ c11c22, ρT (1⊗ c23) = (1⊗ c23)⊗ c11c33.

This implies that
(
F2K(1,1,0)

)
(1,1,0)

= 〈1⊗ c22〉 ,
(
F2K(1,1,0)

)
(1,0,1)

= 〈1⊗ c23〉 .

Moreover, from (22) it also follows that 〈1⊗ c23〉 is an A(δ)d-subcomodule of
F2K(1,1,0) isomorphic to K(1,0,1). The corresponding quotient has the following
A(δ)d-coaction

ρ([1⊗ c22]) = [1⊗ c22]⊗ c11c22

and so it is isomorphic to K(1,1,0). Thus we get a short exact sequence of
A(δ)d-comodules

0 → K(1,0,1) → F2K(1,1,0) → K(1,1,0) → 0. (23)

Next we will study the A(δ)d-comodule structure of F1F2K(1,1,0). For this
we will exhibit first its weight subspaces, and then determine the A(δ)d-
coaction on a weight basis of F1F2K(1,1,0). We start by applying π◦1 to (23).
As R1π◦1K(1,0,1)

∼= 0, we get from the long exact sequence that

0 → π◦1K(1,0,1) → π◦1F2K(1,1,0) → π◦1K(1,1,0) → 0

is an exact sequence of A[1]d-comodules. Applying π1◦ and taking into ac-
count that F1K(1,1,0)

∼= K(1,1,0) we get the exact sequence

0 → F1K(1,0,1) → F1F2K(1,1,0) → K(1,1,0) → 0 (24)
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of A(δ)d-comodules.
By a computation similar to the case of F2K(1,1,0), we can see that F1K(1,0,1)

has basis {1⊗ c11, 1⊗ c12} and A(δ)d-comodule structure

ρ(1⊗ c11) = (1⊗ c11)⊗ c11c33 + (1⊗ c12)⊗ c21c33

ρ(1⊗ c12) = (1⊗ c12)⊗ c22c33.
(25)

Hence

ρT (1⊗ c11) = (1⊗ c11)⊗ c11c33, ρT (1⊗ c12) = (1⊗ c12)⊗ c22c33,

and therefore
(
F1K(1,0,1)

)
(1,0,1)

= 〈1⊗ c11〉 ,
(
F1K(1,0,1)

)
(0,1,1)

= 〈1⊗ c12〉 .

Denote by u the image of 1 ⊗ c12 in F1F2K(1,1,0) under the monomorphism
in (24), and by v the image of 1 ⊗ c11 under the same map. Since the
monomorphism in (24) is a homomorphism of A(δ)d-comodules, from (25),
we get

ρ(u) = u⊗ c22c33, ρ(v) = v ⊗ c11c33 + u⊗ c21c33.

Note that u has weight (0, 1, 1) and v has weight (1, 0, 1)
The sequence (24) splits if considered as a sequence of K[T3]-comodules.

Thus

F1F2K(1,1,0)
∼= K(0,1,1) ⊕K(1,0,1) ⊕K(1,1,0)

as K[T3]-comodules. In particular, every weight subspace of F1F2K(1,1,0) is
one-dimensional and

(F1F2K(1,1,0))(0,1,1) = 〈u〉 , (F1F2K(1,1,0))(1,0,1) = 〈v〉 .

From the explicit description (25) of the A(δ)d-coaction on F1K(1,0,1), we
get the short exact sequence

0 → K(0,1,1) → F1K(1,0,1) → K(1,0,1) → 0. (26)

As Rkπ◦2K(1,0,1)
∼= 0 for all k ≥ 0, applying π◦2 to (26), we get that

π◦2F1K(1,0,1)
∼= π◦2K(0,1,1)

∼= K(0,1,1)

Rkπ◦2F1K(1,0,1)
∼= Rkπ◦2K(0,1,1)

∼= 0, k ≥ 1.

So applying π◦2 to (24), we get the short exact sequence of A[2]d-comodules

0 → K(0,1,1) → π◦2F1F2K(1,1,0) → π◦2K(1,1,0) → 0.
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As π2◦ is exact and F2 = π2◦π
◦
2 we obtain the short exact sequence

0 → K(0,1,1) → F2F1F2K(1,1,0) → F2K(1,1,0) → 0 (27)

of A(δ)d-comodules. In view of (21), the short exact sequence (27) becomes

0 → K(0,1,1) → F1F2K(1,1,0)
θ
−→ F2K(1,1,0) → 0. (28)

Let v̄ be the image of v in F2K(1,1,0) under the epimorphimsm θ in (28).
Since v has weight (1, 0, 1), the same is true for v̄. As the weight sub-
space (F2K(1,1,0))(1,0,1) is one-dimensional and is spanned by 1⊗ c23, there is
a non-zero γ ∈ K such that v̄ = γ ⊗ c23. The epimorphism θ in (28) in-
duces an isomorphism between the weight subspaces (F1F2K(1,1,0))(1,1,0) and
(F2K(1,1,0))(1,1,0) = 〈1⊗ c22〉. We denote by w the element in (F1F2K(1,1,0))(1,1,0)
that corresponds to γ ⊗ c22 under this isomorphism. Then by (22)

ρ(θ(w)) = γρ(1⊗ c22) = (γ ⊗ c22)⊗ c11c22 + (γ ⊗ c23)⊗ c11c32. (29)

We have that
(
F1F2K(1,1,0)

)
(1,1,0)

= 〈w〉 and that {u, v, w} is a basis of

F1F2K(1,1,0). Therefore, there are unique h and f in A(δ)d such that

ρ(w) = w ⊗ c11c22 + v ⊗ h+ u⊗ f (30)

and π(h) = π(f) = 0. Thus

(θ ⊗ id)ρ(w) = (γ ⊗ c22)⊗ c11c22 + (γ ⊗ c23)⊗ h. (31)

Since (θ⊗ id)ρ = ρθ, compairing (29) and (31), we get that h = c11c32. Hence
it is left to determine f .
As K(1,1,0) is an A(δ; 2)-comodule, we get from the considerations at the

end of Section 7, that F1F2K(1,1,0) is an A(δ; 2)-comodule. Therefore f is an
element of degree two in A(δ) ∼= K[c11, c22, c33, c21, c31, c32].
From (30), we get

(ρ⊗ id)ρ(w) = w ⊗ c11c22 ⊗ c11c22 + v ⊗ (c11c32 ⊗ c11c22 + c11c33 ⊗ c11c32)

+ u⊗ (f ⊗ c11c22 + c21c33 ⊗ c11c32 + c22c33 ⊗ f);

(id⊗∆)ρ(w) = w ⊗ c11c22 ⊗ c11c22 + v ⊗ (c11c32 ⊗ c11c22 + c11c33 ⊗ c11c32)

+ u⊗∆(f).

As (ρ⊗ id)ρ = (id⊗∆)ρ we obtain that f satisfies the equation

∆(f) = f ⊗ c11c22 + c21c33 ⊗ c11c32 + c22c33 ⊗ f. (32)

Denote by V the subspace of A(δ; 2)⊗A(δ; 2) spanned by

{cijckl ⊗ cjsclt | i ≥ j ≥ s, k ≥ l ≥ t} . (33)
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From the definition of the comultiplication inA(δ), we get that ∆(A(δ; 2)) ⊂ V .
Suppose cijckl has non-zero coefficient in the expansion of f with respect

to the monomial basis of A(δ; 2). Note that cijckl 6= c11c22, cijckl 6= c22c33 as
π(f) = 0. Then from (32), we see that cijckl ⊗ c11c22 and c22c33 ⊗ cijckl have
non-zero coefficients in the expansion of ∆(f) ∈ ∆(A(δ; 2)) ⊂ V with respect
to the basis (33) of V . Thus {j, l} = {1, 2} and {i, k} = {2, 3}. Therefore
the only basis elements of A(δ; 2) that can have non-zero coefficients in the
expansion of f are c21c32 and c22c31. Direct computation now shows that the
only linear combination of c21c32 and c22c31 that satisfy (32) is

f = c21c32 − c22c31.

Therefore we get a full description ofA(δ)d-comodule structure on F1F2K(1,1,0):

ρ(u) = u⊗ c22c33, ρ(v) = v ⊗ c11c33 + u⊗ c21c33,

ρ(w) = w ⊗ c11c22 + v ⊗ c11c32 + u⊗ (c21c32 − c22c31).
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