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1. Introduction

The idea of “categorification” originates from the joint work [3] of Crane
and Frenkel, and the term was coined later in Crane’s article [2]. Recently
categorification became an intensively studied subject in several mathemat-
ical areas. A detailed account on this topic can be found in [12].

Given an action p of a monoid M on the Grothendieck group Gr(C) of a
category C, one can ask if it can be categorified, that is if there exists an
action of M on C that induces p. Note that, to find such an action, one has:
(i) to find a set of functors F,,,, m € M, whose action on C gives operators
p(m) on Gr(C); (ii) to show the existence of a coherent family of natural
isomorphisms Ay, 0 FipFry — F. Usually, (ii) is much more tricky than
(1).

Let B, be the negative Borel subgroup of the general linear group of degree
n over an algebraically closed field. Denote by Gr the Grothendieck group
of the category of finite dimensional polynomial B,-modules. The tensor
product of modules turns Gr into a ring. Let N be a finite dimensional
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polynomial B,-module. Then we can consider the formal character chy of N
in Z[x1,...,x,). In fact ch is a ring homomorphism from Gr to Z[z1, ..., ;).
In [5] Demazure showed how the characters of certain B,-modules can be
calculated by applying what is now called the Demazure operators, m;, 1 <

1 < n—1, to a monomial xlfl ...aF Tt turns out that the operators m;,

n
1 < i < n, define an action of the Hecke monoid, $(X,), on Z[zy,. .., z,].
Later Magyar in [11] generalised Demazure’s character formula for the class
of flag Weyl modules corresponding to percentage-avoiding shapes. While
researching this class we were lead to the idea that a categorification of the
action of $H(X,) on Z[zy,...,x,] can be useful to prove some conjectures
stated in [14].

In this article we show that the Hecke monoid acts on the category of
rational modules for the quantum negative Borel subgroup of the quantum
general linear group. In fact, we construct what we call a preaction of $H(X,)
on this category. In [17] the second author proves that the category of actions
of $(2,) on a category C is equivalent to the category of preactions of $(X,)
on C. Therefore, via this equivalence, from the constructed preaction one
can obtain an action of $(X,) on the above referred category. It is then
quite simple to get a preaction, and so an action, of $(X,) on the category of
Sq5(n, r)-modules, where S 5(n,r) is the quantised (negative) Borel-Schur
algebra. In a forthcoming paper we will show that the action of $(X,) on
the category of rational modules for the quantum Borel subgroup induces
an action of H(X,) on the corresponding derived category. This action will
provide a categorification of the action of H(X,) on Z[xy, ..., x,].

The paper is organised as follows. In Section 2 we introduce the notion of
a preaction of the Hecke monoid $(X,) on a category C. Section 3 contains
some results, on cotensor product and induction for coalgebras, that are due
to Takeuchi [15] and Donkin [7, 8]. In Section 4 we study some subgroups of
the quantum general linear group (or rather their coordinate Hopf algebras),
namely quantum parabolic subgroups and quantum Borel subgroups, follow-
ing [16] and [10]. We also prove the exactness of the short exact sequences (7)
and (8), which play a crucial role in our construction. Section 5 is dedicated
to the definition of functors F;, 1 < i < n — 1, that generate an action of
$H(X,) on the category of rational modules for the quantum negative Borel
subgroup. We also construct natural isomorphisms 7;;, 1 <i < 57 <n —1,
which, together with the functors Fj, give a preaction of £(3,) on the above
mentioned category. The proof that (F,7) is in fact a preaction is given in
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Section 6. In Section 7 we show that (F,7) induces a preaction of $(3,) on
the category of S 5(n, r)-modules. In Section 8 we consider explicit examples
of the apphcatlon of the functors F; to B,-modules.

2. (Pre)actions of Hecke monoids

Let n be a positive integer and >, the symmetric group of degree n.
The Hecke monoid, $(3,), is the monoid with elements T, ,w € 3, , and
multiplication determined by the rule

T, — Tow, ifl(ow)=I1(w)+1
Tw, ifllow)=1l(w)—

where w € ¥, and o is an elementary transposition of the form (k, &k + 1),
1<k<n-1.
Let C be a category and M a monoid with neutral element e. An action
(F,A) of M on C is
i) a collection F of endofunctors F,: C — C, a € M, such that F, is the
identity functor;
ii) natural isomorphisms A\, : F,F, — Fy, such that for a, b, ¢ € M the

diagram
a bF
F,FyF.— F,F,
Fa)\b c l/ l )\ab,c
)\a be

F F be 7 abc

commutes, and A., = Ay is the identity isomorphism of F,, (see [4]).

Suppose (F, A) is an action of $(X,) on C. To simplify notation we write
F, for Fr, and A\, for Ap, 7,. We also replace (4,7 + 1) by ¢ in the subscript
of F' and .

We define natural isomorphisms 7;;, 1 <7 < j <n —1, as follows:

i = Nt FP — Fy;
i = AN FiF, — FiF;, for i+2<j;
Tiir1: i Fibi — FiFia B
is the composition of

Fiidi it Aig1,(i,i+1,i42)

E—i—lﬂﬂ—i—l

Fiv1Fit1,42) Fliiv)
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followed by the inverse of the map

Fidiy1 b, (iyi4+2,i4+1)

FiFi 1 F; FiF(iiv2,i11) (i,i+2) -

The natural transformations 7;; fit in the following commutative diagrams:

3 Tii B

) 1

FiTi l l Tii

-
P?-—i¥>}ﬁ

Tit1,i+1 P Fipn

2
Fi o FiFi FiFiFi
Fi+17'i,i+1l Tiyitl
Tiir1 85 9 FFia1mi
Fip Fibi o b FiFi 1 F; FiFin b
FroiFimi
) +14707941,941
FiFF7 FiFiFi
Tz‘,i+1F¢+1l Tiyit1
Firi i1 9 FFiami
Fibi 1 Fibig F7F; 1 F; FiFin b
F"T" TF
2 s I 2 It I
b FF; F?F, FjF;
Ti,jﬂl Ti]'l/ leTiJ’ Tij
FF F FiTi,j ) T’iiFj FF Ti,ij 2 FiTjj
iyl —= F7F; —= Il FiFiFy — FF; — FF}
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Fip1FiTiiv1

Fi+1F¢Fi+1FiFi+l

Tii+1FiFigpa

FiFip17iiFiga

FiTiit1

Tii Fip1Fy

Fi1F2Fi 1 F;
Fijp1mii Fip1 Fy
Fip1FiFip  Fy
Tii+1Fs
FyFi  F?

FiFiy17i;

FiF; (2 FPFiy, ————— FiFi 1 FiFipn —— FPF 0 Fy, ————— FiFinF

Tij Fio1 Firiq; F;
FyFiFy F, FiF,Fy\F, FiF FyF,
Firi1; l FiF; 175 l
FiFi 1 FiFi 4 FiF, 1 FiF;
Ti—1,;FFi 1 l lTiLiFj
FFEF , 2 g ppp 220 g pp R
14 i—1E P i1 1k
Fj1Fymijnm Fiji11i;Fja
FynFiFn F Fi 1 FjFiFj Fin il F
Tj’jJrlEl/ lTi7j+1Fij+1
FjFj 1 FiFy FiFj 1 FjFj0
leFanj lFﬂj,jH
FyTi g1 Fj TijEj+1Fj
FjFj iy FjFiFF; FiFFFj
Fymij
F.F,F, F.FF,
lTiij
Tk ki EFkE
lETjk

FjTik

Tiij
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-1
FipoFipam, (o Fig1Figo

FioFip FiF o Fi 1 Fiyo FiobiFipoFiFip Fiyo
FiyoFi 1 Fimiq1iq2 Titl,it+2FiFip1Fiqo
Fiobip FiF 1 FioFiq FiFipobip FiFipFiyo
Fiyor; i1 FipoFiq1 Fii1Fipomiiv1Fiqo
FioFiFip FiFioFi FinFipoFiFi g FiFio
Tiit2 P 1 FiFipoFiqq Fip1mi o Fi 1 FiFyqo
FiFioFi Fili o Fi Fip FiF o Fip FiF o
FiFi+2Fi+lTiTi1+2Fi+l Fi+1FiFi+2Fi+lTiTi1+2
FiFi o Fi 1 FioFiFi FipFiF o Fi Fio F;
Fimig1,i12FiFiq Fi 1 Fitigq1,i42F;
FiFi o FioF FiFi FipgFiFa FioFi F;

FiFiy 1 Fiyomi it Tiit1FiqoFi 1 B
FiFFupFiFi F, — 000 BF G FFoFiF
We will say that a collection of functors Fi, ..., Fj,_1 and natural isomor-

phisms 7;;, 1 <17 < j < n — 1, satisfying the above commutative diagrams
defines a preaction of $(X,) on C. There is proved in [17] that the category
of actions of $(X,) on C is equivalent to the category of preactions of $(3,)
on C.

In the next sections we will construct a preaction of $(3,) on the category
of rational modules for the negative quantum Borel subgroups of the quan-
tum general linear groups. Therefore, we obtain an action of $(3,) on this
category, via the above referred equivalence.

3. Cotensor product and induction

In this section we collect some general definitions and results concerning
coalgebras, bialgebras, and Hopf algebras. In our treatment of the cotensor
product we follow [15].

We start with some notation. We will denote by K the ground field. By a
coalgebra we will always mean a K-coalgebra and we use Sweedler summation
notation for coalgebras and for comodules.

Let C' be a K-coalgebra. By a C-comodule we mean a right C-comodule
and Comod-C' denotes the category of C-comodules. If M € Comod-C we
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write pys for the structure map M — M ®C of M. If N is a left C'-comodule,
we denote the structure map N — C'® N by Ay.

The cotensor product M ®° N of these right and left comodules is defined
as the kernel of the map

PU QN —-—MOAN: MRQN = MxC®N.

If M is a C'-C-bicomodule and N is a C-C”-bicomodule, then M ®¢ N is
a C'-C"-bicomodule with coactions given by restricting Ay @ N and M ® py
to M @° N.

Remark 3.1. If L is a C"-C"-bicomodule, then (M ®¢ N) ®“" L and M ®°
(N QC” L) are isomorphic, and this isomorphism is given by restricting the
natural isomorphism (M@ N)QL — MQ(NQL), (m®n)®l— m® (n®l).
Moreover, both (M ®° N)®%" L and M ®@° (N ®°" L) can be identified with
the intersection of the kernels of the maps

pUONQL-—MIMNQL MINRXIL—-MxCRN®L
M@pNnQL-—MOINRQIN: MOINRQL—->MN®C"® L.

Suppose f: C — B is a homomorphism of coalgebras. Then we can con-
sider every left (right) C-comodule as a left (right) B-comodule via f. We
will denote the resulting left (right) B-comodule by f,M, or simply by M if
no confusion arises. In particular, we can consider C' as a B-C-bicomodule.
Thus for every right B-comodule M, we get that M ®@” C is a C-comodule.
The C-comodule M ®5 C is called the induced comodule and will be denoted
either by f°M or Ind$ M.

If H is a Hopf algebra, then the category Comod-H of (right) comodules
over H is endowed with a monoidal structure. Namely, if M and N are
H-comodules, the coaction of H on M ® N is defined by

m@n = Yy me @ ng) ®maynq).

The trivial H-comodule K, is the one-dimensional comodule with underlying
vector space K and coaction given by 1 — 1 ® 1. It is clear that K, can be
chosen as the identity object for the above tensor product.

We will frequently use the tensor identity:
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Theorem 3.2 ([8, Proposition 1.3]). Suppose f: Hy — Hy is a homomor-
phism of Hopf algebras and M 1is an Hi-comodule. Then for every Hs-
comodule N there are natural isomorphisms

RMIndj} (M ® N) = M @ RFIndjit N, for all k > 0.

The explicit formula for the above isomorphism when k = 0 is given in [7].
Namely, we have

¢: M @ Indjit N — Indj (M & N)
$®Z%®0i — ZSU(O) QD Yi & T(1)C;- (1)

4. Quantisation

In this section we study properties of some quantised bialgebras and of
subgroups of quantum general linear groups. We start with an overview of
notions introduced in [16] and some results proved in [10].

From here on, a and S are non-zero elements of K. We will also denote by
n the set of integers {1,--- ,n}.

Let F(n) be the free K-algebra with n* generators z;;, for 7, j € n. Denote
by I, p the ideal of F'(n) generated by elements of the form

TisTiy — QTipTig, forl<i<nand1l<r<s<mn;
TjrZiy — BTir Ty, forl<i<j<nand1l<r<mn;

o 2
TjrLis — oz_lﬁxisxjr, forl<i<j<nandl<r<s<mn; (2)

TjsTiy — TipTjs — (B — a’l)xisxjr, forl<i<j<nandl<r<s<n.

The algebra F(n) / I, 5 is denoted by A, p(n) and the canonical image x;; +
I, pof x;;in A, s(n) by ¢;;. In what follows, we will often skip the subscripts
a, . For a matrix w € M,(N) we write ¢ for the product

w11 W12 Win W,
Cll Cl2 .« . . Cln .« . . C,nl,?lln

and, similarly, z“ for the product

w11 W12 Win w.
xll $12 .« . . xln .« . . xn;}"n.

On the set {z;s|i,s € n} C F(n) we define an ordering by z;, > z; if
J > 1, and x;5 > x;, if s > r. We consider the corresponding lexicographical
ordering on the set of monomials { z* |w € M,,(N)}.

The following fact is well-known but we include a short sketch of a proof.
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Theorem 4.1. The set (2) is a Gréobner basis of 1,3 with respect to the
above ordering. Moreover, { ¢ |w € M,(N)} is a basis of A(n).

Proof: Note that every element in (2) is written so that the leading monomial
is a first term. To show that (2) is a Grobner basis one has to check that all
the critical pairs are resolvable.

Suppose m > 3. Let S” be the set (2) for n = 3, and S the set (2) for n = m.
It is easy to see that every critical pair of S involves at most three row and
three column indices. Let us fix two triples of indices 1 < i1 <19 < i3 <m
and 1 < r; <re9 <rg <m. Then we have a homomorphism of free algebras
@: F(3) = F(m) defined by ¢(zj5) = 4, ,,. Clearly ¢(S5') C S. Now every
critical pair involving row indices %1, 79, 3, and column indices 71, 7o, 73 lies
in ¢(5’). This shows that it is enough to prove that S’ is a Groébner basis.
Hence the claim of the theorem has to be verified for n < 3 only. The case
n = 1 is trivial, and the cases n = 2, n = 3 can be checked using a computer
algebra system, such as Magma [1].

It is easy to see that the set {z¥|w € M, (N)} is the set of non-reducible
monomials with respect to the Grobner basis (2). Thus { ¥ |w € M, (N)} is
a basis of A(n). m

Given a sequence b = (by,...,b,) € n", let I(b) = I, 3(b) be the ideal of
A(n) generated by {cis|s > b;} . We define the quotient algebra

and denote by [¢;s], the image of ¢;s under the canonical projection from A(n)
to A(b).

Theorem 4.2. On the set {z¥|w € M,(N)} C F(n) consider the ordering
used in Theorem 4.1. Let b = (by,...,b,) € n" be a non-decreasing sequence.
Denote by S” the union of the set (2) and S’ := {x;s|s > b;}. Then S” is a
Grobner basis of the ideal generated by S”. In particular,

{[]p|w € Mu(N), wis =0 fors>b}
is a basis of A(b).

Proof: To prove the theorem we have to check that all ambiguities in S”
are resolvable. Let us write S for the set (2). For pairs of elements in S
the ambiguities are resolvable, since S is a Grobner basis, by Theorem 4.1.
There are no ambiguities between pairs of elements in S’. Thus we only have
to check that all the ambiguities between an element in S and an element in
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S’ are resolvable. The only interesting case is when the element of S is of the
form z 5w — xirxjs — (B —a~ Vxiszjr, for i < j and r < s, and the element of
S’ is either x5 or x;.. In the first case we get that s > b; > b; and therefore
also z;; € S’. In the second case s > r > b; and again z;; € S’. Therefore in
both cases the ambiguity is resolvable.

It is now straightforward that { 2% |w € M, (N), w;s =0 for s > b;} is the
set of non-reducible monomials with respect to S”. Thus the set

{[“]y|w e Mu(N), wis =0 for s> b;}
is a K-basis of A(b). |

Corollary 4.3. Suppose b = (by,...,b,) € n" is a non-decreasing sequence.
Then the algebra A(b) has no zero divisors.

Proof: Consider the subset S” of F/(n) defined in Theorem 4.2. We have that
S" is a Grobner basis of the kernel of the canonical projection F(n) — A(b).
One can check that the leading term of (the reduced expression for) [¢“],[c"],
is [¢“*7], multiplied by o3, for suitable s, ¢ € N. Thus given two non-zero
elements in A(b) with leading monomials [¢*], and [¢"],, respectively, we get
that their product has leading monomial [¢“*7], and so it is non-zero. u

The algebra A(n) has a unique structure of bialgebra with comultiplication
A A(n) — A(n) ® A(n) and counit : A(n) — K, satisfying

i 1, i=j
(CJ) ;Ck Ckj (C]) {0’ )

The next theorem, proved in [10], allows us to identify the coalgebra A(n) =
A, p(n) with the coalgebra A; ,5(n) studied in [6, 8.
For a matrix w € M,(N), we denote by J(w) the number

Theorem 4.4 ([10, Proposition 2.1]). Suppose that o, 3, o, 5’ are non-zero
elements in K such that o/ = af. Then the map
Aap(n) = Aw g (n)
& ()o@ e

1s an wsomorphism of coalgebras.



AN ACTION OF THE HECKE MONOID 11

Before we proceed, we need to introduce some notation concerning se-
quences of natural numbers. We denote by v; the n-tuple (0,---,0,1,0,---,0)
(1 in the Ith position). Given a composition A = (Aq, ..., A,) of n, we write

(A, (AL + ), ) (3)
for
()\1,...,)\1,)\1+)\2,...,)\1+)\2,...,n,...,n),
where A; + -+ 4+ )\ is repeated Ay times. For A = (1"), we obtain the
sequence 6 = (1,2,...,n). If A = (1/71,2,1"7'=1) for some natural number
1 <1< n-—1, we denote the corresponding sequence by all]. Thus

alll] = (1,2,...,0— 1,1+ 1,1+ 1,14+2,...,n) =0+ .

Remark 4.5. Suppose that b = ()\?1, (A1+X2)?2, ..., n*m) for some composition
A of n. By [8, Proposition 2.3]. I ,(b) is a biideal of A ,(n), ¢ € K*.
Combining this fact with Theorem 4.4, we see that I, 3(b) is a coideal, for
every «, 3 € K*. As I, (D) is an ideal by definition, we get that A, 3(b) is a
bialgebra. In particular, A, g[l] := A, p(all]) and A, 5(9) are bialgebras.

Proposition 4.6. Suppose that b = (by,...,b,) € n" satisfies by # | for all
k. Then AN(1(b)) C 1(b) ® A(n) + A(n) ® I(a[l]). In particular, A(b) is an
All]-comodule with the coaction given by

A(b) — A(b) ® A[l]

2o = > [z ® [3@)]ay.
Proof: Let ¢;; € 1(b). Then j > b; and

b;
Alcij) = Z Cik & Cj + Z Cik & Clj-

k>b; k=1
For k > b;, we get that ¢;; € I(b), and so the elements of the first sum are in
I(b)® A(n). For k < b;, we get j > b; > k. It is easy to see that cx; € I(all])
if and only if j > k and (k, ) # (I,l + 1). Suppose (k,j) = ({,1+1). Then
j=l+1>b;2>k=1
implies b; = [, which contradicts our assumption on b. Therefore ¢i; € I(all])
for all k£ < b;. |

With a proof similar to the above one, we obtain the following result for
A(b) and the bialgebra A(J).
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Proposition 4.7. For any b = (by,...,b,) € n", we have A(I(b)) C I(b) ®
A(n) + A(n) ® 1(9). In particular, A(b) has a structure of A(6)-comodule

with the coaction given by
Ty > Z[x(n]b ® [1(2)]s

Note that the A(§)-coaction on A(b) is multiplicative in the sense of the
following proposition.

Proposition 4.8. Denote by p the coaction of A(d) both on A(b) and on
A(b) ® A(b), and by pu the multiplication in the algebras A(n) and A(D).
Then the following diagram is commutative
A(b) @ A(b) 2~ A(b) @ A(b) @ A(6)
Ml lu@A(é)
A(b) L A(b) @ A(6).

Proof: Let h denote the following composition of maps

A(n) ® A(n) Lol A(n) ® A(n) ® A(n) ® A(n) >

A(n) ® A(n) ® A(n) @ A(n) A(n) ® A(n) ® A(n),

where o3 is the twist map of the second and third factors of A(n) ®A(n) ®A(n) ®A(n).
Then we have the diagram

A(n)@A(n)op

A(b) ® A(D) a A(b) @ A(b) ® A(6)
A(n) ® A(n) & A(n) ® A(n) @ A(n)
Iz Hl l;@A(n) HRA(S)
A
A(n) A(n) ® A(n\
A(b) 4 A(b) ® A(6).

The internal square in the above diagram commutes since A(n) is a bialgebra.
The trapezoids commute by the definition of the A(J)-coaction on A(b) and of
the multiplication on A(b). Since the upper-left diagonal arrow is surjective,
we conclude that the exterior square is also commutative. u
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Let a = (a1, - ,a,) € N". We denote by K, the 1-dimensional A(J)-
comodule with underlying vector space K and structure map

K, — K, ® A(9)
I = 1®[c]]---cnmls

nn

(4)

Given b = (by,...,b,) € n", consider the map
f:Ab)® Ky, = A(b)
r®1— $[Cl,bl]b-

Proposition 4.9. If b is non-decreasing, then the map f defined above is an
injective homomorphism of A(6)-comodules.

Proof: Note that, since there are no zero divisors in A(b), f is injective.
Denote by p the coaction of A(J) on A(b) and by py, the coaction of A(9)
on A(b) ® K,, . Then, for any z € A(b), we have

pu(z®@1) = ([z@)s ® 1) @ [x)slcnn]s
Hence

f @A) (oo (x @ 1)) = [zablanls @ [lslcnnls (5)

Further

plernls) = D lewls © lernls.
k=1
Now we have [cpp]s = 0 for k < b, and [, = 0 for & > b;. Therefore
plcipls) = ey © [cbl bl]g. Using this and Proposition 4.8, we get

lesls) =Yzl @ [ze)lslennls (6)
Compairing (5) and (6), we see that f is indeed a homomorphism of A(9)-
comodules. ]

Proposition 4.10. Suppose that b and b — v; € n" are non-decreasing se-
quences. Then we have the following short exact sequence of A(§)-comodules

0— A(b) ©K,, —1= A(b) "= A(b— 1)) —0 . (7)

Proof: Clearly I(b) C I(b— v;). So we can consider the canonical projection

w: A(b) > A(b— vy).
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By Proposition 4.2 the sets { [¢]y |w;; =0, 7 > b;} and
{[c“]p—p |wij =0, j>bjifi#1l, and j > b — 1, if i =1}
are basis of A(b) and A(b — v;), respectively. Therefore

{[c*]s |wij = 0, j > bi; wip, # 0}
is a basis of the kernel of 7.

Let w € M, (N) be such that w;; = 0 for j > b;. Then, in particular, wyy,
is the last possible non-zero element in the /th row of w. Define w' € M, (N)
to be the matrix with the same elements in the first [ rows as w and zeros
elsewhere. Denote w — w' by w”. Then from the definition of ¢, we get
[Ty = [¢*]o[c*"Ts. Moreover, [ Ty[cipls[c]o = [¢“T44],, where e, denotes
the matrix with 1 in position ([,b;) and zeros elsewhere. We claim that
[ Tolern ]y = a®Bcrp]o[¢ ]y for suitable integers s and . In fact [¢*"], is the
product of the elements [c;;], with i > [. If j < b;, we get

[cijlolcrods = o Blersloleisls.
If j = b;, then
[cijlolern]o = [ciplblcin]s = Blewy]vlcijle-
If 7 > b, then
[cijlsleinls = [craloleils + (B — o Hleylsleinb-

Since j > by, we get that [¢;;], = 0. Thus

[cijlblermls = lcupblcisle

in this last case. Therefore, we have [¢“]p[cip ]y = B [¢“Fn],. This shows
that the image of f and the kernel of 7 coincide. By Proposition 4.9, the
map f is injective and so (7) is exact. |

Let I(o) denote the length of the permutation ¢ € ¥,. The quantum
determinant is the element of A(n) defined by

d=das =) (=) " er0)Ca00) - Cnotm)

oEY,
- Z (_5)7“0—)00—(1)7100’(2);2 e Co’(n)vn-
o€,

The determinant d is a group-like element of A(n), see [10]. For every
nondecreasing b € n" such that b, > i, we get that [d], is a non-zero el-
ement of A(b) and so a non-zero divisor, by Corollary 4.3. We also have
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[cijlold]y = (a™B)"77[d]p[cis]p. Hence, we can localize A(b) with respect to d.
We will denote the resulting localization by A(b)g.

Remark 4.11. Since d is group-like this localization process preserves the
coalgebra and comodule structures. Therefore, A(n)y, A(d)q, A[l]q are bial-

gebras, A(b)4 is an A(6)4-comodule, and for b such that b; # [, for all i, A(b)4
is an A[l];-comodule.

The bialgebra A(n); admits a Hopf algebra structure with the antipode
given by
S(Cis) - (_B)S_Zd_ldsia
where dg; denotes the quantum determinant of the subalgebra of A(n) ob-
tained by deleting all generators ¢y and cg; with 1 < k <n (see [10, (1.7)]).

Proposition 4.12. Let A = (Ay,..., A\p) be a composition of n, and
b= (A", (AL + o), ),

Then, the kernel J(\) of the canonical projection A(n)q — A(b)q is a Hopf
ideal generated, as an ideal, by { cis|s > b;}. Therefore A(b)q admits a Hopf
algebra structure with the antipode given by

S(leisly) = (_5)Siz[d]bil[dsi]b-
Proof: We know that, in this case, A(b)y is a bialgebra. It is obvious that the
projection A(n)y — A(b)g is a homomorphism of bialgebras, which implies
that J(A) is a biideal,

Suppose d~*y € J()), for some y € A(n). Then [d],*[y], = 0 in A(b)g.
By the definition of localization this implies that [y], = 0, and so y € I(b).
Therefore y = D111 > YisCisyj, for some elements s, y;, € A(n). Since
d~*y;s € A(n)g, we get that the ideal J()\) is generated by the elements c;,
with s > b;.

As S is an anti-endomorphism of A(n), to show that S(J(\)) C J(A) it
is enough to check that S(¢;s) € J(A), for every pair (i, s) such that s > b;.
But as S(c;s) = (—8)*'d1dy; it is sufficient to verify that dg; € I(b).

Let us consider the embedding ¢: A(n — 1) — A(n) determined by
'cjt, J<s,t<1
Cjt1,t J =8, t<u

Cjt > . .
Cjt+1, J<Ss, t>1

(Cjt1t+1, J =8, t 2>
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Then, by the definition of d;, we get that d; is the image of the determinant
d € A(n — 1) under ¢, see [10]. Now consider the ideal ¢1(I(b)). Suppose
k and w € {1,...,m} are such that

M+ <t <A+ 4+ A
MA A1 <5< M4+ A

In other words (i, s) lies in the (k, w) block determined by the composition A.

Note that s > b; > 7 implies that w > k. One can show that o1 (1(b)) = (V)
where

V= A e =DM (A A A = DM (= 1)),

Suppose d & I(V'). Then there is 0 € X, such that c;,;) ¢ I(b), for
all 1 < 7 < n — 1. This implies that, for all 1 < 57 < A;, we must have
1 < o(j) < A1. In other words, o maps bijectively [1, \] N into itself. Now,
for Ay +1 < 5 < Ap + A9, we must have 1 < o(j) < A\ + Ao. But since o
maps [1, A\;] N N maps bijectively into itself, this implies that ¢ also maps
[A1+ 1, A1 + Ao] NN into itself. Proceeding this way, we get that ¢ must map
A+ X1+ 1, A+ -+ M\ NN bijectively into [Ay + -+ -+ X1+ 1, A\ +
-+« + A — 1] NN, which is impossible. Therefore, we get that d € (V') and
thus dg; = p(d) € 1(b). |

The Hopf algebra A(n)y = (A(n)aq.p)a is the coordinate algebra of the quan-
tum general linear group GL, g(n,K), defined by Takeuchi in [16] and also
studied in [10]. The quantum groups GL; g(n,K) and GL3g(n,K) are, re-
spectively, the quantum general linear groups studied by Dipper and Donkin
in [6] and Parshall and Wang in [13].

If A= (A1,..., \n) is a composition of n, and b = ()\?1, (A+A)%2, ... nim),
then the Hopf algebra A(b), can be considered as the coordinate algebra of a
quantum parabolic subgroup of GL, g(n, K). Taking b = ¢, we obtain the coor-
dinate algebra A(¢§)q of the quantum negative Borel subgroup of GL, g(n, K).

Quantum parabolic and Borel subgroups were extensively studied by Donkin
in [8] (see also [9]), for the case o = 1,

Consider a = (ai, - ,a,) € n". Then we also denote by K, the 1-
dimensional A(§)4-comodule which is the restriction of the A(§)-comodule
K, defined in (4).

Given a = (ay, -+ ,a,), b= (b1, -+ ,b,) € n", we write b > a if b; > a;, for
© € n. Then we have the following extension of Proposition 4.10
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Proposition 4.13. Suppose b € n" is such that b > all], and b, b—v; are non-
decreasing sequences. Then we have an exact sequence of A(J)q-comodules

0— A(b)a @ K,y —1o A(b)g—~ A — v)g —= 0 , 8)

where f is the comodule homomorphism defined by z @ 1 — z[cip,]p, for any
z € A(b)g, and w is the canonical projection.

Proof: Tt is obvious that  is surjective. Let [d], "z € ker(7), with z € A(b)
and £ € N. Then [d]gfww(x) = 0 in A(b — v;)4. Since [d]p—y, is not a zero
divisor in A(b — v;), we get that m(x) = 0 in A(b — v;). This shows that
x is in the kernel of the projection A(b) — A(b — v;). Since (7) is exact,
we get that there is y ® 1 € A(b) ® K,, such that f(y ® 1) = x. Therefore
f([d];*y ® 1) = [d], *x. This shows that (8) is exact at the second term.
Now, suppose [d];*y ® 1 € ker(f), with y € A(b). Then [d], *yc;,, = 0 in
A(b)g4. Thus yep,, = 0 in A(b). Since ¢;,, is not a zero-divisor in A(b), we get
y =0 in A(b). Therefore f is injective. ]

5. The construction of the preaction

Our next step will be to define a preaction of $H(X,) on the category
Comod-A(d)g.
For any 1 <i <n—1, let m;: Ali]qs = A(J)q be the canonical projection.

We denote the corresponding induction functor Indig;d by 7. For any Ali]g-

comodule M, we also write M for the restricted A(d)4-comodule ; (M).
Define F; as the functor #7 followed by the restriction to A(d)g, i.e,

F, =m m;: Comod-A(6)y — Comod-A(6)g.

Thus every F; is an endofunctor of Comod-A(d)y. Next we will define natural
isomorphisms 7;;, 1 <4 < j < n — 1, and, in Section 6, we will prove that
they satisfy all the necessary commutation relations to define a preaction of
$H(X,) on Comod-A(9)g.

To proceed we will need the following proposition describing the behaviour
of the A(d)g4-comodules K, = Ky and of K,,,, under =;.

Vi4-1

Theorem 5.1. Suppose 1 < i <n—1 then

Rkwao o {Ktr’ k=0

0, k=#£0
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and
RFaK,, =0, k> 0.

Proof: First we reduce the claim of the theorem to the case (a, 5) = (1, q).
Then we will apply results of [8].

Let ¢ := af. Consider the isomorphism of coalgebras ¢: A(n) — A;,(n),
() = o’ defined in Theorem 4.4. By Lemma 2.3 in [10], we have
©(dap) = di 4. Therefore, ¢ can be extended to a map ¢': A(n)g — A14(n)q
by ¢ (df gz) = df o(x). Tt is shown in Theorem 2.4 of [10], that ¢ is an
isomorphism of coalgebras.

The isomorphism ¢ induces isomorphisms of coalgebras

[0]5: Aap(0)a = A1g(0)alz]s + [ (2)]s

Vi+1

and
(05t Aaslila = Avglilalzlapy = [/ (@)]aga)-
Therefore we get the following commutative diagram of coalgebras

Aa,ﬂ[z]d i > Al,q[l]d

) l [¢]s ) l

Aa,ﬁ (6)d = Al,q((s)d-

From this diagram it follows that we have to prove the theorem only for the
case («, B) = (1, q), since the induction of comodules involves only the coal-
gebra and the comodule structures. The case (a, ) = (1, q) was thoroughly
studied in [8], and both claims of the theorem now follow from Lemma 3.1
and Lemma 2.12 therein. ]

Corollary 5.2. The map n: Ky, — 7Ky, 1 = 1 ® 1, is an isomorphism of
Ali]g-comodules.

Proof: Consider the injective map n': K, — Koy ® Ali]q defined by 1
1 ® 1. It is easy to see that the image of 7' lies in Ko @4 A[i]; = 77K,.
Therefore we have the monomorphism of A[i]s-comodules n: K, — 77Kp.
Since dim 7Kg is 1, by Therorem 5.1, we get that 7 is an isomorphism. =

Note that for any Hopf algebra H and any H-comodule N, n — n®1 defines
an isomorphism between N and N ® K;,. Now let N be an A[i];-comodule.
We consider the following chain of isomorphisms of A[i]4-comodules

o~

Sl Ko 2 70(N @ Ko) = 7N,

NS NeKy -5 N
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where ¢ is the isomorphism (1) and 7 is defined in Corollary 5.2. Under this
isomorphism we have for every z € N

ZI—>Z®1r—>Z®1®1|—>Z ) ®1® 2 I—)Z

Hence py: N — 7m'N, z = > z0) ® 2 gives an isomorphism of A[i]g-
comodules.
We are now ready to define the natural isomorphism

TiZ‘ZF?—)E, all 1 <7< n—1.

Let M € Comod-A(d)g. Then 7 M is an Ali]z-comodule with the comodule
structure given by

Z 2j @ [j]af) — Z 2 ® [, 1)]ai) ® [%5,2)lafi)
J
where z; € M, and x; € A(n)g4. Therefore, we get for every M € Comod-A(d)4
the isomorphism

prorg: T M — i FEM

10
Z 2j ® [j]af) Z 2 @ [, 1)]ali) ® [, ]ali o
J

By restricting, we can consider preys as a homomorphism of A(d)4-comodules.
From the explicit expression of preps it is obvious that the class of isomor-
phisms (prens) is a natural transformation of functors F; — F7?. We define

the natural isomorphism 7;;: F? — F} as the inverse of (pronr)-
Before defining the isomorphisms 7;; for ¢+ < j, we need to prove the fol-

lowing theorem.

Theorem 5.3. Suppose b € n" satisfies b > 9, the sequences b and b+ v; are
non-decreasing, and b;_1 < b;. Then the map

A(b + Ug)d — ngA(b)d

(11)
oo = Y _[Z0)]s @ [2@)]ap)

is a well defined isomorphism of Alb)]4-comodules, and therefore an isomor-
phism of A(9)q-comodules.
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Proof: By Proposition 4.13, we have an exact sequence of A(J);-comodules

0— A(b + Ul)d ® K — A(b + Ul)d — A(b)d — 0.

Ub;+1

Applying 7 , we get the exact sequence
m (A(b+01)a @Ky, ,,) = 5 A(b+v)g = 75, A(b)g = Rlmy (A(b+0)a®K,, )

with the middle arrow given by
ngA(b + Ug)d — ngA(b)d
Z[$k]b+vz ® [yk]a[bl] = Z[$k]b & [yk]a[bl]. (12)
k k

Note that since b;_1 < b; and b + v; is non-decreasing, the vector b + v; does
not have any component equal to b;. Therefore, by Remark 4.11, A(b + v;)4
is an A[bj]4-comodule. Hence, by the tensor identity (see Theorem 3.2), we
have

Rmp (Ab+u)a® K, ,,) = A+ v)s © RmpK,, .
But, by Theorem 5.1,

Uby+1

R'mK, ., =0,i>0.

Therefore, (12) is an isomorphism. Now, using (1) for H; = A[b]q, Hy =
A(6)g, M = A(b+ v;)q, and N = Ky, we get the isomorphism

A(b+vl)d ®7T§K0 — WEA(Z)—FUZ)

[T]p10, @ 1@ [Ylapy — Z Dotro @ [T@))ap [Yafp)-

Recall that, in Corollary 5.2, we defined the isomorphism of A[b;]4-comodules
n: K — mp Ko
Composing A(b+ v;)q ® n with (13) and (12), we get the isomorphism

A(b+ v1)a ® Ko = 75, A(b)a
oo @ 1) [20)]s @ [22)]ap

Composing this with the natural isomorphism A(b+ v;)g — A(b+ v;)q ® Ky,
we see that (11) is indeed a well-defined isomorphism of A[b;]s-comodules. =

(13)

(14)

To define the isomorphisms 7;;, 7 +2 < j, we proceed as follows. Applying
Theorem 5.3 with [ = 5 and [ = i, respectively, we get the isomorphisms

A(5 + v; + ’Uj)d — W;A((S + Uz‘)d

15
A(5+U¢+Uj)d — WfA(é-FUj)d. ( )
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As 0 +v; = afi] and 6 + v; = a[j], composing the inverse of the first of these
isomorphisms with the second one, we obtain the isomorphism

tiji W;?A[Z']d — 7'('(-)14[ ] .

For i +2 < j, we define 7;;: F;F; — FFj, by (1i)m = M QA tij. Clearly,
the family (7;;) is a natural transformatlon of functors.

Finally, we will define now the natural transformations 7;;.;. Applying
Theorem 5.3 with [ =i, we get the isomorphisms

A(5 + 2v; + Uz‘Jrl)d — 7T§+1A(5 +v; + U¢+1)d

16
A(5 +v; + Uz‘Jrl)d — 7TZOA(5 + Uz‘+1)d~ ( )

Therefore, we have the isomorphism of A(9)4-comodules
A8 + 205 4 vig1)a = Ali + 1] @10 Afi]; @49 Afi 4 1], (17)

Since comultiplication is coassoative on A(n)q, the explicit formula for (17)
is given by

[Z]6+ 20400 Z[SU ali+1] ® [T@]api) ® [T(3)]afi+1)-
Proposition 5.4. The map
P A + 20+ vig1)a = Alila @O Ali 4 1] @4 Al
(s s2utus = Y lEmat) © [@)afisn) © [a)]a

is a well defined isomorphism of A(J)4-comodules.

(18)

Proof: The idea of the proof is to exhibit an isomorphism that identifies (18)
with (17).

Without loss of generality we can assume that ¢ := (04/8)% € K. In fact,
if (18) is not an isomorphism, then it will not be an isomorphism upon field
extension either.

By Theorem 4.4 the map ¢: A,p(n) — A,.(n), defined by ¢(c¥) =
(aﬁfl)%J @)@ is an isomorphism of coalgebras. Using Proposition 4.2, we
see that ¢ induces an isomorphism of vector spaces ¢,: A p(a) = Agzq(a)
for every non-decreasing sequence a € n". If a is of the form

(A, O+ X)),

then A, p(a) and A, (a) are coalgebras and we see that ¢, is an isomor-
phism of coalgebras. This is the case of the sequences ¢, a[i], a[i + 1] and
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b= 04 2v; + vj11. So we get the following commutative diagram

Aa,ﬁ(b) = Aq,q(b)

. .

Qtoa[i] .
Agq [4]

a.51] /
Aapli +1] o Aaali 1]
~ 1/ ~

Aa,ﬁ (5) = Aq,q((s)

where all the maps are homomorphisms of coalgebras and the horizontal
arrows are isomorphisms.

From [10, Lemma 2.3], we get that ¢,|dasla = [dgqla- Thus the above
diagram remains commutative upon localization. This shows that we have
the following commutative diagram, whose vertical arrows are isomorphisms

Ao p(b)a =5 Ag glilg @40 Ay gli + 1]g @450 A, iy
@bl l@a[i]®@a[i+1]®@a[i}

Pa.q . . .
Agq(b)g —— Ay qlila @000 Agqli +1]a ®@Aaa0) Agqlila-

Therefore it is enough to prove the proposition in the case (o, 8) = (g, q).
In this case we can use the results of Parshall and Wang in [13].  Propo-
sition 3.7.1(3) of that work says that the map h sending c;s to ¢pt1-sn+1-i
extends to an anti-automorphsims of A, ,(n) considered both as a coalgebra
and an algebra. It is not difficult to check that
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Thus if ¥ = § + 2v,_;_1 + v,—;, we get the commutative diagram

hy

Agq(b) Ag ()
\ hali) \ 10p
Aqqlt] / Agqln — ]
Agqli+1] hapi] Agqln —i— 17
\ - \ ]
Agq(0) Agq(0)7

where all the horizontal arrows are isomorphisms of coalgebras, and all
slanted arrows are natural projections preserving comultiplication. It is
shown in [13, Lemma 4.2.3], that h(d,,) = d,,. Therefore, we have a similar
diagram with all the bialgebras replaced by their localizations with respect
to [d],, for a suitable a. We get then the commutative diagram

Aq,q(b)d — Aq,qmd ®Aq’q(5)d Aq,q[i + 1]d ®Aq’q(5)d Aq,qmd

hp lha[i]®ha[i+1]®ha[i]

/

o Pq, 10! o . 0! o 10,
Aq,q(b/)dp = Aggln — Z]dp @400 Aggln —i — 1]dp ®40a0)d Aggln — Z]dp'

whose vertical arrows are isomorphisms and the map pj , is given by

P;,q3 mb"—> Z[%:ﬂ)]a[nﬂ‘] 029 [x(2)]a[n—i—1] 029 [$(1)]a[n4]-

Thus it is enough to prove that P;,q is an isomorphism. It follows, from
Remark 3.1, that the linear isomorphism

Aggln =il @ Aggln —i =177 @ Agy[n — il = Aggln —ila ® Aggln —i —1]a @ Ay y[n —ila
given by
a1 Qaz @ azg— az @ as @ ay

induces a linear isomorphism v between
0P > Ag 4 (8)F . 0p Ay q(8)F -10p
Aggln — il @7 erd Ay g[n — i — 1] @%ea%d Ay g [n —i];

and

Agqln —ila @4ee(0) Aggln —i—1]q ®@4ee(d Agqln —ia-
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Therefore we get the commutative diagram

/

op Pa. 10 o . 0 o 10
Agg(V)d —= Agqln =13 @Aaa ) Agqln —i = 1] @700 (0)d’ Agqln — i3

: i

/!
Pa,q

Agg(V)a —— Agqln — ila ®Aaal® Aggln —i—1]g @%@ A, [n — g,

9,9

where p . is the isomorphism (17). This shows that p; , is an isomorphism,
and the result follows.
|

We define the map ¢;,11 as the composition of the inverse of (17) followed
by (18). Therefore

tiivn: Ali 1) @492 Afi]y @40 Ali +1]3 — Ali]g @O Afi 4 1] 4@ Ad],.

Now the natural transformations 7; ;. are defined by (7;i+1)p = M @40
ti,i+1; i.e.,

FinFiFi M — FF M

D g @wy = Y my @ by (wy),
k k
all mp € M, wy, € A[”L + 1]d ®A(5)d A[Z]d ®A(5)d A[Z + 1]d-

6. The commutativity of the preaction diagrams

We will show now that the natural isomorphisms 7;;, defined in the previous
section, satisfy all the necessary relations so that (F;,1 <i<n—1;7;,1<
i < j <mn-—1)is a preaction (in the sense of Section 2) of $(X,) on the
category Comod-A(9)q.

We start by describing the notation used in the diagrams below. First of
all, note that if M is an A(J)s-comodule, then

F, ... F,M =M @ Alij]; @40 ... @40 A[j],.
Suppose that A = (A, -+, \;) is a composition of n, and

b= (A", (A + o), ).
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Then, using the coassosiativity of the comultiplication on A(n)y, we get the
map

Ab)g — ﬁ(b)d @40 ... A0)d A(b)@

k times

x]b = Z[x(l)]b K- [x(k;)]b

Suppose now that b, ... b*) € n” satisty 6§ < b < b, for 1 < i < k.
Composing (19) with the canonical projections A(b)y — A(b'¥))4, we get the
map

(19)

Pb:b) .. pk) - A(b)d — A(b(l))d ®A(5)d L ®A(6)d A(b(k))d

.....

[x]b = Z[$(1)]b(1) K- ® [$(k)]b(k).
Remark 6.1. In the case k = 2, b = bM) = b = a[i], we recover
(Tﬁl)M = M @0 Pb;p 1) p2) -

For k = 2, b = 6+ v +v;, bW = afi] 0 = alj]), and 8@ = a[j]
(b = afi]), we get isomorphisms, since (15) are isomorphisms. For k = 3,
b:5+2w+vi+1, b(l) = b(g) = v, b(2) = Vjy1, WE get that Pb;b<1>,b<2>,b<3>
is an isomorphism by Proposition 5.4. For k = 3, b = 0 + 2v; + v;.q,
b = pB) = Vit1, b2 = v;, we get that Php p2 p) 1S an isomorphism,
since (17) is an isomorphism.

In the diagrams below we will skip M and write:

i) 47" ... 4" for A(0 + 22:1 axv;,)a, where 1 < 4; < --- <4 <n—1, and
I <oap <n—i

ii) dot . for @400,
iii) py, for pypm ), and p for py.
For example,
(i+1)i(+1) L2060+ 2i(i+1)4, ijLij>ji,

LAp L.

(i4+1).a.(i+1). 24 2(1+ 1) ) (i41).1. i.0.] = 1.4j —1.J.1,
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denote, respectively, 7; 11, 75, FiTiip1 and 7 F;.

Note that all the diagrams below are commutative, since comultiplication
in A(n) is coassociative. Moreover, the maps at the boundaries are isomor-
phisms by Remark 6.1.

We have to check that two paths going from the upper-left vertex to the
down-right vertex produce equal maps. For this it is enough to check that
all the maps which are not at the boundary are also isomorphisms.

In the diagram

L. b
2.0.0 <~ 1.1

p-i T T p
S
1.0 <—1
there is nothing to check since there are no arrows except the boundary ones.
In the diagrams

(i4+1).i.p p.i.(i+1)
(i4+ 1) +1).(i4+1) ~——— (i +1)0(i+1) G+1).(+1)0(i4+1) ~——— (i +1)i(i+1)
p3-(i+1) (i+1).p3
P26+ 1.6+ 1) ps (i +1).4%3+1) rs
P P
PS-(’L‘F\ (i+1).p3 \
i.(i+1).(+ 1) i2(i+1) (i4+1)a.(i4+1).4 P2+ 1)
i.p3 / 035 /
P P
4233 + 1) P3 P2+ 1) p3
i.p3 P31
(i4+1).4 i.(i+1).
Qi+ 1) ’ Qi+ 1) i(i+ 1) ’ Qi+ 1)

the invertibility of non-boundary maps follows from the commutativity of
the upper and lower trapezoids.
In the diagrams

p-J

Q. ij
i.pT TP
.. P ..
1.1) 1)

. P
Z.pl / lp
pi L. N I 2

1.7.1 1j4 — - Jbd g1

1.p

i.j.j i.j

J ;
AT P ..
t3-J tj
. p

p.jl / lp
B VA N 2
J.1.) =— ].1]) — 7.1 J.1
J-p



AN ACTION OF THE HECKE MONOID

27

the invertibility of non-boundary arrows follows from the commutativity of
the upper rectangles and the commutativity of the lower-down triangles.

It is not difficult to conclude, by a recursive argument, that in the next
diagrams it is enough to check that one of the radial arrows is invertible to
conclude that all the radial arrows are isomorphisms.

In the diagram

(t4+1)a.(i+1)0.(i+ 1)
(i+1).3.p3
(i +1).0.4%(i + 1)
(i+1).i.p3
(t+1)d4.(i+ 1)
(i+1).p.(i+1).4
(i+1).(i+ 1)
p3.i

i2(i+1).

p3.4.(i+1)
Lot

3

p3.1

20+ 1)+ 1) 22 G G 1)+ 1)
i.(i+1).p.(i+1)
. i+ 1)+ 1)
t.p3

4 Q20+ 1)

1.p3

0.4 1)

p-(i+1).i

i.(i+1).p

i.(i 4 1) i(i41).

the 5 o’clock map ps: i%(i + 1) — i.(i + 1).7 is invertible, by Remark 6.1.

In the diagram

i.(i—1).p

i.(i—1).p

i(i — 1).ij i(i— 1)
i.p.i
i.(t—1)j.
i.p.i
’ i.g.(i—1).
p-(i—1).i
7 ij.(t— 1)

i.(t—1).d.g
p3-J
(i —1)%.5
p3-J
(i—1)4
(i—1).i.p
(i —1).
(i—1).i.p
(1—1)4.5.(i —1)
(i=1).p.(i-1)
(1 —1).aj.(i — 1)
(i—1).p.(i—1)

(i—1).ji.(i — 1)

P3

pi.(i—1)

p3 J-p3

J.(1 —1)%

J.p3

(= 1) — 1) —22 D G 1) — 1)
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the 10 o’clock map p: (i — 1)%j — (i — 1)%.5 is an isomorphism, by Theo-
rem o.3.
In the diagram

GGG+ 1) <2 G )G+ ) =2 GGG+ )
i.p3 (G+1).p.(+1)
i.5%(j + 1) (J+1).5.(+1)
i.p3 p3 G+1).p.(G+1)
i+ 1) ¢ ’ (G +1)4i(G+1)
p-(j+1).j (G+1).4.p
ij.(j +1)-j = i+ 1) = (G +1).4.i(j +1)
p.(+1).5 (+1)-5p
ji.(G+1).j ’ L G+ + 1)
j.p.g p3 p3.i
(g +1). J3(j + 1)
j.pj p3.i
GG A1) =Gy PTG 1)

the 4 o’clock map p: ij2(j + 1) — j2(j + 1).i is an isomorphism, by Theo-
rem 5.3.
In the diagram

p.k

1.9.k ]Zk‘<—]Zk4p>jk‘Z
b \ )
1.9k jk.i
Z..pl/ / \ lp_i
. . p-J p-J k.p o
1.k.g 1k.g k‘zg<—kzg k.g.a

for example, the map p: ijk — ij.k is an isomorphism, by Theorem 5.3.

In the diagram depicted in Figure 1, we write j = ¢+ 1 and k = ¢ + 2.
In this diagram the 11 o’clock map py: i3(i + 1)%(i + 2) — j%k.i.j.k is an
isomorphism, since it is the following composition of isomorphisms defined
in Theorem 5.3

252k — 2%k k — i5%k.g.k — j2k. gk
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FIGURE 1.

k.j.p.g.k k.j.p.g.k k.j.i.ps3

kgkigk —2200 kgikgk

k.jik.jk k.j.i.5%k
p3.5.5.k k.j.i.p3
2k.i.g.k k.jij.k.j
J.k.j.i.7. k.i%j.k.j
g.k.%5.k d4.g.0.k.g

jkig.p

jki.j.p

j.piki p.jk.ij

ij.pgi

ik ik
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This concludes the proof that the collection of functors F;, 1 <7 <n — 1,
and of natural isomorphisms 7;;, 1 <4 < 7 < n — 1, defines a preaction of

$H(X,) on Comod-A(d)g.

7. A (pre)action of $(X,) on S_ 4(n,7)-Mod

In this section we show that the preaction of $(3,) on Comod-A(¢)y in-
duces a preaction (and so an action) of $(2,) on the category of S™(n,r)-
modules, where S™(n,r) = S, 5(n,r) is the quantum negative Borel-Schur
algebra.

We prove first that the preaction of H(3,) on Comod-A(d)y; can be re-
stricted to Comod-A(4d). For each 1 <i < n — 1, define F: Comod-A(d) —
Comod-A(d) by

M — M @4 A[].

Let ¢: A(0) — A(d)q be the canonical inclusion. Then we have the associated
restriction functor ¢, : Comod-A(d) — Comod-A(d)g.

Proposition 7.1. The inclusion v;: Ali] — Alilq induces a natural isomor-
phism Yo F] — Fi,.

Proof: Let M € Comod-A(§). Then the natural transformation in question
is given by

M @4©) A[i] — YoM @40 A[],

ij‘ ®£Ej —> ij‘ ®¢Z(£Cj)
J

Since we have M = M @40) A(9), and the cotensor product is associative,
to prove the proposition it is enough to show that

A(8) @4 A1) — 1. A(8) @4 Alil,

sz' ®l‘j — sz' ®¢@($3)

J
is an isomorphism. Precomposing this with the isomorphism

AM%M&AWMﬂ

HZ 5®[:C
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we get the map
Ali] — A(6) @O Ald],
[CU]a[z] = Z[iﬁ(n]é ® [90(2)]a[z']-

Thus all that is left to check is that (20) is an isomorphism. For this, consider
the exact sequence (7), for b = ali] and [ = 1,

(20)

0= Alil @K, B — Ali] = A(9) — 0.

Vi+1

It can also be considered as a sequence of A(§)s-comodules. Proceeding as
in the proof of Theorem 5.3 (with b = § and [ = ), using Theorem 5.1 and
Theorem 3.2, we see that (20) is an isomorphism of A(9)s-comodules. |

Note that, since ¢: A(J) — A(d)4 is @ monomorphism of coalgebras over a
field, the functor 1), is full and faithful. Therefore, for any M € Comod-A(J),

we have an isomorphism
Comod-A(8)((E)2M, F/M) = Comod-A(8)q(F2pe M, Fipo M),

for every 1 < i < n — 1. Hence we can define (7/;)5; as the map that cor-
responds to (7;;)y under this isomorphisms. It is clear that 7/, is a natural
transformation from (F})? to F/. Similarly, one can define the natural trans-
formations 7/ ; for i < j. Since (F,7) is a preaction on Comod-A(d)q4, we get
that (F',7') is a preaction on Comod-A().

Let r be a natural number. Then the subset A(d;r) of r-homogeneous
elements in A(9) is a finite dimensional subcoalgebra of A(d). Similarly, the
set A(ali];r) of r-homogeneous elements in A[i] is a finite dimensional sub-
coalgebra of A[i]. Let M be an A(d;r)-comodule. Then from the definition
of the cotensor product we get

M @40 A[i] = M @42 A(a[i]; 7).

Thus F/M is an A(d;r)-comodule. Hence the preaction (F’,7') defines a
preaction of $(X,) on Comod-A(4; 7).

As it is well known, see e.g. [8], [9], the associative algebra S™(n,r) =
S s(n,r) dual to A(d;r) is called the (negative) quantised Borel-Schur al-

o,
gebra. As usual, we have a canonical equivalence between the categories

S~ (n,r)-Mod and Comod-A(d;r). Therefore we get that (F”’,7") induces an
action of $(3,) on S™(n,r)-Mod.
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8. Examples

In this section we consider some explicit examples of the application of the
functors Fy, to A(d)g-comodules. For simplicity, we will work within the non-
quantised setting over an infinite field. In particular, the coordinate variables
¢ij commute with each other.

We will need some additional notation. We denote by K|[T}] the coordinate
algebra of the subgroup of diagonal matrices in GL,(K). The canonical
projection m: A(6)q — KI[T,] is defined by

wmﬁ{%’Z:”

0, otherwise.

It is straightforward to verify that 7 is a homomorphism of coalgebras. There-
fore, every A(9)g-comodule (M, p) can be considered a K[T},]-comodule with
the coaction given by

pr(z) = (id@7)(p(2)),
for all z € M. For every a € Z" we define the one-dimensional K[T},]-
comodule K, by

p(l):=1®c...cm.
It is well-known that every finite dimensional indecomposable comodule over
K[T,] is isomorphic to K, for some a € Z". Given a finite dimensional

A(6)g-comodule M, we can write M = &, M,, where each M, is the K[T,,]-
submodule of M satisfying

pr(x) =z ® ...l
for all x € M,. The subspaces M, of M are called weight subspaces of M.
We will say that the elements of M, have weight a.
Fix ¢ € n. We will write K[G;] for the coordinate algebra of the Levi
subgroup
G, := GL(K)"Y x GLy(K) x GLy(K)"==b,

Thus K[G,] is the localization of K|ci1, ¢a2, .- ., Cans Ciiit1, Cit1,4) With respect
to

C11 - - -Cze1,z>1(Cz‘z'Cz'+1,z‘+1 - Cz’,i+1ci+1,z‘)ci+2,i+2 - Cpn-
Note that Ali], is the coordinate algebra of the corresponding parabolic sub-

group in GL,(K). Since the Levi subgroup G; is a quotient of the corre-
sponding parabolic subgroup we get a well defined homomorphism of Hopf
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algebras
G- K[Gy| — Alilq
determined by
Gi(ew) = e,
where k =1 € n or {k,l} = {i,i+ 1}. Thus every K[G;]-comodule can be
considered as an Ali]s-comodule via (.

For every composition g = (1, ..., ftn) such that p; = p; 11, we denote by
K,, the one-dimensional A[i];-comodule with coaction given by

_ 1 Hi—1 i HHih2 n
p(l)=1®c ... Cz‘f1,z‘f1(0ii0i+1,i+1 — Cii1Civ1)" Cit2,i+2 - Copy-

From [8, Section 3|, we know that K[c;;, ¢;;41] is a K[G;]-subcomodule
of the regular K[G;]-comodule K[G;]. For a natural number m, we denote
by Yi, the mth homogeneous component of K[c;;, ¢;it1]. Then Y, is a
K[Gj]-subcomodule of the K[G;]-comodule K|c;;, ¢;it1]. We write Y, for
Y m considered as A[i]4-comodule via (.

It follows from Lemma 3.1 and Lemma 2.12 in [8] that

1) IfA = (A1, . .., Ay) ds such that A — Xy = m > 0, then 79Ky 2 K, @Y,
where

n = (}\17 coey )\i—la )‘i+17 )‘H-l? coey )\n)

and RkTFEK)\ =0 for k> 1.
2) If \i — N\iy1 = —1, then R*1 Ky, 20 for all k > 0.

From now on we fix n = 3. Using the above facts we will give an explicit
description of the A(§)4-comodules F,K( ; ), for all w € $(23).

As Yy is the trivial A[1];-comodule, we get that
T K110 = Ka)-
Hence F1K (1 10) = K(1,1,0)- This implies that FoF1K; 1 0) = F2K(q 1) and
F 1 FoK 10y = FiFaF1K 100 & F1FK 1 10). (21)

Thus, to know all the A(d)g-comodules F,K(; 1), we only have to compute
FoK i 1,0) and F1FK (g 1 ).

We start by studying F3K( ;). For this, consider }72,1. It has K-basis
{c99, co3} and A[2]4-comodule structure given by

p(ca2) = oo ® Ca2 + o3 @ €32, p(Ca3) = o2 @ Cag + Ca3 @ C33.
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Let us compute the A[2];-comodule structure on
5K 1,100 = K100 ® Ya1.
Since p(z) = x ® c11 for x € Ky 0), we get in K 90) ® }72,1
P(1® ca) = (1 ®caz) @ i + (1 @ ca3) ® cr1632
P(1® co3) = (1 ® ca2) ®crrcaz + (1 ® ca3) ® cress.

Therefore, the A(d)g-comodule F5K(y 1 9y = maomK(y00) is two-dimensional,
with basis {1 ® 2,1 ® co3} and A(§)4-comodule structure given by

P(1 ® ca2) = (1 ® caz) @ crrcan + (1 ® ca3) @ cricse
P(1® co3) = (1 ® ca3) ® c11C33.

It is now easy to determine the weight subspace structure of F5K(; ;). This
structure will be useful to study FiFoK 1 ).
From (22), we get

pr(l @ co) = (1 ®ca2) @ cricaa,  pr(l ®ca3) = (1 ® c23) @ cryess.
This implies that
(FQK(LLO))(LLO) = <1 ® 022> ) (F2K(1’170))(1,0,1) — <1 ® 023> .

Moreover, from (22) it also follows that (1 ® co3) is an A(J)g-subcomodule of
F5K (1 1,0y isomorphic to K o 1). The corresponding quotient has the following
A(9)g-coaction

(22)

P([1 ® c22]) = [1 @ c22] @ cr1ca0

and so it is isomorphic to K ). Thus we get a short exact sequence of
A(6)g4-comodules

0— K(l,O,l) — FQK(LLO) — K(LLO) — 0. (23)

Next we will study the A(d)4-comodule structure of FyF>K(; ). For this
we will exhibit first its weight subspaces, and then determine the A(6)4-
coaction on a weight basis of F1F3K (). We start by applying 77 to (23).
As RlﬂfK(l’Ovl) = 0, we get from the long exact sequence that

0— 7T(1)K(1,071) — 7T(1)F2K(1,1,0) — 7T(1)K(171,0) — 0
is an exact sequence of A[l];-comodules. Applying 71, and taking into ac-
count that F1K( 1,0 = K1) we get the exact sequence

0— FlK(l,O,l) — FlFQK(LLO) — K(LLO) — 0 (24)
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of A(9)g-comodules.
By a computation similar to the case of FolK(y 1), we can see that F1K g 1)

has basis {1 ® ¢11, 1 ® ¢12} and A(§)4-comodule structure

P(l @ Cll) = (1 & 611) X c11C33 + (1 X 012) & €91C33 (25)
p(l ® 012) — (1 ® C12) X C929C33.

Hence

pr(1®@ci) = (1®@ci) @criess,  pr(l ®ciz) = (1 X ci2) @ caacss,

and therefore
(FlK(lvoal))(l,O,l) = <1 & Cll> 3 (FIK(l,O,l))(O’Ll) — <1 @ 012> .

Denote by u the image of 1 ® ¢q9 in F1F5K(1,1,0) under the monomorphism
in (24), and by v the image of 1 ® ¢;; under the same map. Since the
monomorphism in (24) is a homomorphism of A(J)s-comodules, from (25),
we get

p(u) = u® coocss, p(v) =v @ cric33 + U @ ca1633.

Note that u has weight (0,1,1) and v has weight (1,0, 1)
The sequence (24) splits if considered as a sequence of K[T3]-comodules.
Thus

F1E5K11,0) = Ko1,1) @ Ka0,1) @ Ki10)

as K[T3]-comodules. In particular, every weight subspace of FiFyK( 1) is
one-dimensional and

(F1FKa10) 01 = (W), (F1FKa10) 0,01 = (v) -

From the explicit description (25) of the A(4)4-coaction on F1K g 1), we
get the short exact sequence

0 — K1, = F1Ku,01) = K,01) — 0. (26)
As R%;K(LOJ) = ( for all £ > 0, applying 75 to (26), we get that
oy F1K 10,1) = mK0,1,1) = Ko,1,1)
RFms iK1 = RMmsKo) =0, k> 1.
So applying 75 to (24), we get the short exact sequence of A[2]s-comodules

0— K(O,l,l) — 7T§F1F2K(1,1,0) — W;K(LL()) — 0.
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As Ty, is exact and Fy = w5 we obtain the short exact sequence
0— K(O,l,l) — FQFlFQK(LLO) — FZK(LLO) — 0 (27)

of A(d)g-comodules. In view of (21), the short exact sequence (27) becomes

0
0— K(O,l,l) — FlFQK(LLO) — FQK(LLO) — 0. (28)

Let © be the image of v in F5K(j ) under the epimorphimsm 6 in (28).
Since v has weight (1,0,1), the same is true for v. As the weight sub-
space (F2K(1,1,0))(1,01) is one-dimensional and is spanned by 1 ® cy3, there is
a non-zero v € K such that o = v ® ce3. The epimorphism 6 in (28) in-
duces an isomorphism between the weight subspaces (F1F5K( 10))(1,1,0) and
(F2K1,1,0))(1,1,0) = (1 ® ca2). We denote by w the element in (F1F2K(i 1.0))(1,1,0)
that corresponds to v ® cg9 under this isomorphism. Then by (22)

p(0(w)) = vp(1 ® co2) = (7 ® c22) @ cr1622 + (7 @ €23) @ 1630 (29)

We have that (FlFQK(LLO))(“O) = (w) and that {u,v,w} is a basis of
F1 5K 110y Therefore, there are unique h and f in A(J)g such that

pw) =w®cpc+v@h+u® f (30)
and w(h) = 7(f) = 0. Thus
(0 @id)p(w) = (7 ® c22) @ cr1can + (7 © c23) @ h. (31)

Since (®id)p = pb, compairing (29) and (31), we get that h = ¢j1¢32. Hence
it is left to determine f.

As K110y is an A(J;2)-comodule, we get from the considerations at the
end of Section 7, that F1FbK( 1) is an A(J;2)-comodule. Therefore f is an
element of degree two in A(d) = Kleyy, €2, ¢33, €21, C31, €3]

From (30), we get

(p®@id)p(w) = w @ c11¢92 @ C11C22 + v @ (11632 ® Cr1C22 + C11C33 @ C11C32)
+u® (f ® cricon + c21633 ® 11632 + Caae33 @ f);

(id ® A)p(w) = w @ c11¢22 @ C11C22 + V @ (C11C32 @ C11C22 + C11C33 @ €11C32)
+u® A(f).

As (p®id)p = (id ® A)p we obtain that f satisfies the equation
A(f) = f ® crico + ca1c33 @ 11032 + 22033 @ f. (32)
Denote by V' the subspace of A(d;2) ® A(d;2) spanned by
{cijen®cjsen |1>7>s, k>1>1t}. (33)
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From the definition of the comultiplication in A(J), we get that A(A(d;2)) C V.

Suppose c¢;;jcr has non-zero coefficient in the expansion of f with respect
to the monomial basis of A(d;2). Note that c;jcy # ci1C22, Cijcr # c22C33 as
7(f) = 0. Then from (32), we see that ¢;jci ® ci1¢20 and coocss ® ¢;jcp have
non-zero coefficients in the expansion of A(f) € A(A(d;2)) C V with respect
to the basis (33) of V. Thus {j,{} = {1,2} and {i,k} = {2,3}. Therefore
the only basis elements of A(d;2) that can have non-zero coefficients in the
expansion of f are cs1c3g and cooc3y. Direct computation now shows that the
only linear combination of ¢o1c32 and ceocs; that satisfy (32) is

J = co1c32 — Caac3y.
Therefore we get a full description of A(J)4-comodule structure on F1 F5Kq 1 y:

p(u) = u ® cxpcsz, p(v) =v & cricss + u @ cpic33,

p(w) = w ® c11629 + v @ 11632 + U @ (C21C39 — C22C31).
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