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KZ-MONADIC CATEGORIES AND THEIR LOGIC

JIŘÍ ADÁMEK AND LURDES SOUSA

Abstract: Given an order-enriched category, it is known that all its KZ-monadic
subcategories can be described by Kan-injectivity with respect to a collection of
morphisms. We prove the analogous result for Kan-injectivity with respect to a
collection H of commutative squares. A square is called a Kan-injective conse-
quence of H if by adding it to H Kan-injectivity is not changed.

We present a sound logic for Kan-injectivity consequences and prove that in
”reasonable” categories (such as Pos or Top0) it is also complete for every set H of
squares.

1.Introduction
Scott’s continuous lattices were characterized by Escardó as precisely

those topological T0-spaces that are Kan-injective with respect to all em-
beddings, see [8]. The concept of Kan-injectivity of an objectX of an order-
enriched category with respect to a morphism h : A→ B Escardó defined
as follows: for every morphism f : A→ X we have a commutative triangle

A
h //

f
��

B

f /h���������

X

where f /h is the left Kan-extension of f along h. That is, if g : B→ X fulfils
f ≤ gh, then f /h ≤ g.

Later Carvalho and Sousa [6] extended the above concept from objects
to morphisms: a morphism u : X → X ′ is Kan-injective with respect to h
when X and X ′ are Kan-injective objects and for every morphism f : A→
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X the following triangle

B
f /h

//

(uf )/h
��

X

u~~}}}}}}}}

X ′

commutes. Example: the morphisms of Top0 Kan-injective with respect
to all embeddings are precisely the continuous maps between continuous
lattices preserving all infima. A trivial example: in Pos Kan-injectivity
with respect to

• • � � h // • •
•
�@

defines the subcategory of join-semilattices and their homomorphisms.
Moreover, in locally ranked categories, e.g., in Top0 or Pos, Kan-injectivity

yields a characterization of KZ-monadic categories in the following sense:
given a class H of morphisms, let LInj(H) be the subcategory of all objects
and all morphisms Kan-injective with respect to all members of H. Then

(1) every KZ-monadic subcategory has the form LInj(H) for some class
H of morphisms, see [6],

and

(2) for every set H of morphisms the subcategory LInj(H) is KZ-monadic,
see [4].

The topic of our paper is the logic of Kan-injectivity, generalizing the
logic of orthogonality studied in [1] and [2]. Observe first that given an
ordinary category with its trivial order-enrichment (that is, equality), then
LInj(H) is nothing else than the full subcategory H⊥ on objects X orthogo-
nal to every member h : A→ B of H (that is, each f : A→ X has a unique
factorization through h). The logic of orthogonality aims to characterize
those morphisms h for which orthogonality to H implies that to h, i.e. with
H⊥ = (H∪ {h})⊥. See Section 4 where the simple logic presented in [1] is
recalled.

Analogously, we hoped to present a logic that would characterize, in
order-enriched categories, those morphisms for which Kan-injectivity with
respect to H implies that with respect to h. But we have failed so far. What
saved our effort was the idea to ”enrich” our language by considering, in-
stead of Kan-injectivity with respect to morphisms, Kan-injectivity with
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respect to commutative squares S:

A1
h1 //

a
��

B1

b
��

A2 h2

// B2

An object X is Kan-injective with respect to S if it is Kan-injective with
respect to h1 and h2 and for every morphism f : A2 → X the following
triangle

B1
(f a)/h1

��????????

b
��

B2 f /h2

// X

commutes. And a morphism is Kan-injective with respect to S iff it is
Kan-injective with respect to h1 and h2.

For every class H of commutative squares we thus obtain a (non-full)
subcategory LInj(H) analogously to above. These categories characterize
again KZ-monadicity: we prove in Section 3 below that the above state-
ments (1) and (2) remain valid. In other words, this richer language does
not lead to more examples! However, it enables a formulation of a sound
logic (see Section 4) which for sets of squares is, under mild size condi-
tions, also complete (see Section 5). It is our present impression that this
enrichment of the structure from morphisms to commutative squares is
probably necessary: we suspect that no logic for Kan-injectivity with re-
spect to just morphisms is sound and complete.

2.KZ-monadic subcategories
Assumption 2.1. Throughout the paper X is a category enriched over Pos.
All squares in our paper are commutative, so when stating that something
is a square, we mean a commutative one.

We introduced Kan-injectivity with respect to a morphism and a square
above. Observe that the latter is a generalization of the former: for every
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morphism h : A→ B let S(h) be the following square

S(h) =
A

h // B

A
h
// B

Then Kan-injectivity with respect to h and S(h) is the same concept for
objects and morphisms.

Example 2.2. In Pos consider Kan-injectivity with respect to h : 0 ↪→ 1,
the empty map into the terminal poset. This means the existence (and
preservation) of the least element, ⊥. Kan-injectivity with respect to the
embedding

•
• •
�@⊥

� � k //
•

• •
�@

•
�@

⊥

characterizes existence (and preservation) of joins of pairs having a lower
bound. Combining those two in a square as follows

_�

��

� � h // •⊥
_�

��

•
• •
�@⊥

� �

k
//

•
• •
�@

•
�@

⊥

yields by Kan-injectivity join-semilattices with⊥ and their homomorphisms.
We have already remarked that using squares does not lead to new ex-

amples. Indeed, join-semilattices with ⊥ are also given by Kan-injectivity
with respect to h and the following embedding

• • � � // • •
•
�@

Example 2.3. Which posets are Kan-injective with respect to all order-
embeddings (i.e., regular monomorphisms) in Pos?

As shown in [4], these are precisely the complete lattices, and a mono-
tone map is Kan-injective with respect to order-embeddings iff it preserves
joins. We now characterize all squares S that are Kan-injectivity conse-
quences of order-embeddings. That is, such that every complete lattice
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and every join-preserving map between complete lattices is Kan-injective
with respect to S.

Let us denote by Ω0 the contravariant endofunctor of Pos assigning to
every posed X the posed Ω0X of all ↓-sets of X, and to every monotone
function f : X → Y the function Ω0f : Ω0Y → Ω0X forming preimages.
Observe thatΩ0f has a left adjoint

(Ω0f )∗ :Ω0X→Ω0Y , U 7→↓ f [U ] (for all U ∈Ω0X).

Proposition 2.4. For every square

S =
A′

h //

a
��

B′

b
��

A
k
// B

in Pos the following conditions are equivalent:
(1) S is a Kan-injectivity consequence of order-embeddings;
(2) h and k are order-embeddings such that whenever k(z) ≤ b(y), there

exists x ∈ A′ with h(x) ≤ y and z ≤ a(x);
and

(3) h and k are order-embeddings yielding a (commutative) square

Ω0B
′

(Ω0b)∗
��

Ω0h // Ω0A
′

(Ω0a)∗
��

Ω0B
Ω0k

// Ω0A

Proof. The equivalence of (1) and (2) was proved in [14].
3⇒ 2 The inequality k(z) ≤ b(y) states precisely that

z ∈Ω0k · (Ω0b)∗(↓ y) = (Ω0a)
∗ ·Ω0h(↓ y),

that is, z lies in ↓ a [Ω0h(↓ y)]. This means that an x as in (2) exists.
2⇒ 3 It is easy to verify that the inequality

(Ω0a)
∗ ·Ω0h ≤ (Ω0k) · (Ω0b)∗

holds for every square S. Thus we need to show the opposite inequality
only. Let V be a ↓-set of B′ and z be an element of (Ω0k)(Ω0b)∗(V ), i.e.,
z ∈ k−1 [↓ b [V ]]. Then for some y ∈ V we have k(z) ≤ b(y). Given x as in (2)
we conclude z ∈ (Ω0a)∗Ω0h(V ), establishing the required inequality.
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Example 2.5. The category Top0 of topological T0-spaces is order enriched
via the opposite of the specialization order. Recall that the specialization
order is given by x v y iff x ∈ {y}. Thus, for continuous functions f ,g : X→
Y we define

f ≤ g iff g(x) v f (x) for all x ∈ X.
Escardó and Flagg proved that Kan-injectivite objects with respect to topo-
logical embeddings (= regular monomorphisms) are precisely Scott’s con-
tinuous lattices, see [9]. Recall that a T0-space is a continuous lattice iff for
the specialization order its topology is the Scott’s one, and it is a complete
lattice with

y =
⊔

U∈nbh(y)

(uU ) for all y ∈ X.

The morphisms Kan-injective with respect to topological embeddings are
precisely the continuous functions preserving meets, see [6]. We charac-
terize the squares which are injectivity consequences of topological em-
beddings. Let Ω : Top0→ Posop be the functor assigning to a space X the
poset ΩX of open sets and to a continuous function f : X→ Y the preim-
age functionΩf :ΩY →ΩX. By (Ωf )∗ we denote the right adjoint ofΩf :
to an open set U it assigns the union of all openV ⊆ Y with f −1(V ) ⊆U .

Proposition 2.6. A square

S =
A′

h //

a
��

B′

b
��

A
k
// B

in Top0 is a Kan-injectivity consequence of topological embeddings iff h and k
are topological embeddings yielding the following (commutative) square

ΩA
(Ωk)∗ //

Ωa
��

ΩB

Ωb
��

ΩA′
(Ωh)∗

// ΩB′

Proof : (a) Sufficiency. For every continuous latticeX and every embedding
f : A→ X the Kan-extension f /k is, as proved in [9], given by

f /k(z) = t{uU ;U ∈ΩX and z ∈ (Ωk)∗[Ωf (U )]}, (1)
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and analogously for (f a)/h. We are to prove

(f /k) · b = (f a)/h.

Indeed, given b ∈ B′, then b(y) ∈ (Ωk)∗[Ωf (U )] means that y belongs
to (Ωb)(Ωk)∗[Ωf (U )], and, by the commutativity of the last square, this
means that y ∈ (Ωh)∗[Ω(f a)(U )]. Consequently, taken into account the
definitions of (f /k)(b(y)) and ((f a)/h)(y) given by (1), we conclude the de-
sired equality.

(b) Necessity. Since the Sierpińsky space S is Kan-injective with respect
to S, k and h are topological embeddings (see 4.3 and 4.4 of [6]). We verify
the above square.

Every V ∈ΩA defines the corresponding characteristic function fV : A→
S and, using the formula (1) above, we get (by setting V = {1})

(fV /k)(z) = 1 iff z ∈ (Ωk)∗(V ).

Since fV · a = fΩa(V ), the characteristic function of a−1(V ), we analogously
get

(fV · a)/h(x) = 1 iff x ∈ (Ωh)∗(Ωa(V )).
Thus, our formula (fV · a)/h = (fV /k) · b reads:

x ∈ (Ωh)∗(Ωa(V )) iff b(x) ∈ (Ωk)∗(V )

for all x ∈ B′. That is,

(Ωh)∗(Ωa(V )) =Ωb((Ωk)∗(V )),

as desired.

Remark 2.7. A slight modification: Scott continuous domains are, as proved
by Escardó [8], precisely the T0-spaces Kan-injective with respect to dense
embeddings. And the morphisms Kan-injective with respect to dense em-
beddings are the continuous functions preserving nonempty meets (see
[6]). The above corollary holds analogously, just h and k are required to be
dense embeddings.

Example 2.8. Let Loc be the category of locales and localic maps. Thus,
the objects of Loc are complete lattices with the infinite distributive law

a∧
∨

B =
∨
{a∧ b |b ∈ B},

and the morphisms are the monotone maps f which preserve all infima
and whose left adjoint f ∗ preserves finite meets. We recall that a localic
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map h is an embedding provided that h∗h = id. Johnstone characterized
the stably locally compact locales as the locales injective with respect to
flat embeddings, i.e. those preserving finite joins, see [10]. Moreover, with
convenient morphisms, stably locally compact locales are precisely LInj(H)
for H = flat embeddings (see [10] and [7]).

Proposition 2.9. A square

A′
h //

a
��

B′

b
��

A
k
// B

in Loc is a Kan-injectivity consequence of flat embeddings iff h and k are flat
embeddings yielding the following (commutative) square

A
k //

a∗
��

B

b∗
��

A′
h
// B′

Proof : Let F0, F1 and F2 be the free frames generated by the empty set,
1 = {0} and 2 = {0,1}, respectively, and let fi : Fi→ F1, i = 0,2, be the localic
maps determined by f0(⊥) = 0, f2(0∨1) = 0 and f2(x) =⊥ for x ,⊥, 0∨1. In
[7] flat embeddings were characterized as precisely those morphisms with
respect to which both f0 and f2 are Kan-injective. Furthermore, it was
shown there that for every finitely generated free frame F, in particular
for every Fi (i = 0,1,2), given a flat embedding h : A→ B and a morphism
f : A→ F, the map (hf ∗)∗ is localic and

f /h = (hf ∗)∗. (2)

(a) Necessity: suppose the given square is a Kan injectivity consequence
of flat embeddings. Since we already know that flat embeddings are char-
acterized by means of f0 and f2, we only need to prove ha∗ = b∗k.

Given x ∈ A, we want to show that b∗k(x) = ha∗(x). Let g : F1 → A be
the frame homomorphism sending 0 to x. By hypothesis, the localic map
g∗ : A→ F1 satisfies (g∗/k) · b = (g∗a)/h, that is, by (2), (kg)∗b = h(g∗a)∗ = ha∗g.
Consequently, by applying the operator −∗ to the localic maps (kg)∗, b and
ha∗g, we obtain b∗kg(0) = ha∗g(0), i.e., b∗k(x) = ha∗(x).
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(b) Sufficiency: if the lower square commutes, we prove that, given f :
A→ Fi, (f a)/h = (f /k)b. Indeed, from (2), deduce that

(f a)/h = [(h(f a)∗]∗ = (ha∗f ∗)∗ = (b∗kf ∗)∗ = (kf ∗)∗b = (f /k) · b.

Remark 2.10. (a) Given an order-enriched category X, by a right adjoint
retraction we mean a morphism r : X → Y with r∗ : Y → X satisfying rr∗ =
id and r∗r ≥ id.

(b) Recall that a KZ-monad over X is a monad T for which

T η ≤ ηT .
Then T-algebras are precisely the right adjoint retractions of ηA : A→ TA.
Thus, XT is a (non-full) subcategory of X.

(c) In [4] we proved that KZ-monadic subcategories are precisely the
subcategories K which are

(1) reflective, i.e., the embedding has a left adjoint,
(2) inserter-ideal, i.e., contain the inserter ins(u,v) of every parallel pair

(u,v) with u in Mor(K),
and

(3) closed under right adjoint retractions.
For the last condition recall that a subcategory is closed under right adjoint
retractions if with every morphism p : X → Y it contains all morphisms
p : X → Y for which there exists a square with right adjoint retractions x
and y as follows

X
p
//

x
��

Y
y
��

X p
// Y

(3)

(d) Every KZ-monadic subcategory K has the form K = LInj(H) for some
class H of morphisms of X ([6]). And we proved that, conversely, for “rea-
sonable” categories X (such as Top0 and Pos), every set H of morphisms de-
fines a KZ-monadic subcategory LInj(H). (The latter is not true for proper
classes H in Top0 as demonstrated by an example in [4]).

Lemma 2.11. For every class H of squares the category LInj(H) is inserter-ideal
and closed under right adjoint retractions.
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Proof : A. Given a pair of morphisms u,v : X→ Y and a square

A′

a
��

h′ // B′

b
��

A
h
// B

(4)

with respect to which u is Kan-injective, we prove that so is the inserter
i = ins(u,v) : I → X. We have already proved in [4] that the fact that u is
Kan-injective with respect to h and h′ implies that so is the morphism i. It
remains to show that, for every f : A→ I , (f /h)b = (f a)/h′, or equivalently,
since i is mono, i(f /h)b = i(f a)/h′. But the last equality follows immediatly
from the fact that i is Kan-injective with respect to both h and h′ and X is
Kan-injective w.r.t. the above square.

B. Given a square (3) with the left adjoints x∗ and y∗, respectively, and
such that the morphism p : X → Y is Kan-injective with respect to the
square (4), we prove that also p is Kan-injective with respect to this square.

(a) X is Kan-injective with respect to the above square, and for every
morphism f : A→ X we have: f /h = x([x∗f ]/h).

A′

a
��

h′ // B′

b
��

A
f
��

h
// B

(x∗f )/h
��

X
x∗
//___ X

xoo

This last formula was proved in [6]. Analogously one proves (f a)/h′ =
x([x∗f a]/h′). Consequently, since the Kan-injectivity of X yields

[x∗f a]/h′ = ([x∗f ]/h)b

we conclude (f a)/h′ = (f /h)b.
(b) Y is Kan-injective. This is completely analogous.
(c) p is Kan-injective with respect to h and h′. This was also proved in

[6].



KZ-MONADIC CATEGORIES AND THEIR LOGIC 11

3.The reflection chain
Throughout the rest of the paper X denotes an order-enriched category

with weighted colimits. Given a set H of squares, we associate with every
object X a transfinite chain starting in X. For “reasonable” categories we
then prove that there exists a connecting morphism from X in our chain
which is the reflection of X in the subcategory LInj(H).

Definition 3.1. Let H be a set of squares. For every object X define a
transfinite chain Xi (i ∈Ord) with connecting morphisms called xij or sim-
ply Xid Xj (for i ≤ j). We proceed by transfinite recursion. In the isolated
steps, given i we define Xi d Xi+1 d Xi+2, therefore, we can assume that
i is an even ordinal (that is, i = 2n or i = i0 + 2n for n < ω and i0 a limit
ordinal).

(a) Initial step. X0 = X.
(b) Limit steps. If i is a limit ordinal then

Xi = colim
j<i

Xj

is the colimit of the previous chain with Xj d Xi forming the colimit co-
cone.

(c) Isolated step i 7→ i + 1 (i even). Consider all pairs (S,f ) where

S =

A1
h1 //

a
��

B1

b
��

A2 h2

// B2

(5)

is a member of H and f : Ar → Xi a morphism with r = 1 or 2. Form the
pushout of hr along f :

Ar
hr //

f
��

Br

f̄
��

Xi
hr

// Qf

(6)

Define Xid Xi+1 as the wide pushout of all the morphisms hr :
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Xi

���
�
�

hr // Qf

qf}}zzzzzzzz

Xi+1

(7)

ranging over all the above pairs (S,f ).
Notation: put

f �hr : Br
f
−−→ Qf

qf
−−→ Xi+1 (8)

This “approximates” the desired Kan extension f /hr in the following sense:
we get a (commutative) square

Ar
f
��

hr // Br
f �hr
��

Xi //___ Xi+1

(9)

(d) Isolated step i + 1 7→ i + 2 (i even). Consider all triples (S,f ,g) con-
sisting of S ∈ H, as above, and two morphisms forming an inequality as
follows:

Ar
f
��

hr //

≤
Br
g
��

Xi //___ Xi+1

(r = 1 or 2)
(10)

For every decomposition of f as follows

f ≡ Ar
f ′

−→ Xj d Xi (j ≤ i even) (11)

form the coinserter of Ar
f ′�hr−−−−→ Xj+1d Xi+1 and g:

cf ,g = coins(xj+1,i+1[f ′�hr], g) : Xi+1→ Cf ,g . (12)

And in case r = 1 for every decomposition of f as follows

f ≡ A1
a−→ A2

f ′

−→ Xi (13)

form the coinserter of B1
b−→ B2

f ′�h2−−−−→ Xi+1 and g:

cf ,g = coins([f ′�h2].b,g). (14)
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Define Xi+1d Xi+2 as the wide pushout of all cf ,g above:

Xi+1

���
�
�

cf ,g
// Cf ,g

tf ,g||yyyyyyyy

Xi+2

(15)

Lemma 3.2. Given a morphism p0 : X0 → P where P is Kan-injective with
respect to H, there exists a unique cocone pi : Xi→ P (i ∈Ord) of the reflection
chain such that for all pairs (S,f ) in step i 7→ i + 1 the following triangle

Ar
f �hr

��

(pif )/hr

!!BBBBBBBB

Xi+1 pi+1
// P

(16)

commutes.

Proof : We only need to prove the isolated step of the transfinite induction.
Given pi, i even, we obtain pi+1 as follows. From the following square

Ar
f
��

hr // Br
(pif )/hr
��

Xi pi
// P

we conclude that the pushout (6) yields a unique factorization morphism
pf : Qf → P . These morphisms pf form a cocone of the wide pushout (7).
Define pi+1 as the unique factorization morphism

pi+1 · qf = pf .

It fulfils pi+1 · (f �hr) = pi+1.qf · f = pf .f = (pif )�hr . Conversely, whenever
the above triangle commutes, then pi+1 is a factorization map of the wide
pushout (7).

Next we define pi+2: since Xi+1 d Xi+2 is a wide pushout of epimor-
phisms, pi+2 is unique. And for the proof of existence we only need to
verify that pi+1 factorizes through each cf ,g . That is:
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(a) In case of (11) we want to verifiy the inequality

Br
f ′�hr

��

g
//

≤

Xi+1

pi+1

��

Xj+1

���
�
�

Xi+1 pi+1
// P

The lower passage is, due to pj+1 = pi+1 ·xj+1,i+1 and (16), equal to (pj .f ′)/hr .
By composing (10) with pi+1 we get

pjf
′ ≤ pi+1ghr

hence,
(pjf

′)/hr ≤ pi+1g

(b) In case of (13) we want to verify the inequality

B1

b
��

g
//

≤

Xi+1

pi+1

��

B
f ′�h2

��

Xi+1 pi+1
// P

Indeed, the lower passage is, due to (16) and injectivity of P with respect
to S, equal to

[(pif
′)/h2]b = (pif

′a)/h1 = (pif )/h1.

By composing (10) with pi+1 we get pif ≤ pi+1.g.h1. This proves (pif )/h1 ≤
pi+1.g as desired.

Recall that in a category with a factorization system (E,M) an object is
said to have rank λ (a regular cardinal) if its hom-functor preserves λ-
directed colimits of morphisms in M. We use the following concept intro-
duced in [4]:

Definition 3.3. Let X be an order-enriched category with a factorization
system (E,M) such that E ⊆ Epi and M ⊆ Order-Mono (i.e., given m ∈M
then mu ≤mv implies u ≤ v). We call X locally ranked if
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(i) it has weighted colimits,
(ii) it is E-cowellpowered,

and
(iii) every object has a rank.

Example 3.4. Pos is locally ranked w.r.t. E = Epi and M = Order-Embedding.
Top0 is locally ranked w.r.t. E = surjective morphisms and M = subspace
embeddings.

Remark 3.5. Let X be locally ranked and let (Xi) be a transfinite chain with
connecting morphisms Xi d Xj(i ≤ j). By Proposition 4.1 of [11] there
exists a chain (Yi) of monomorphisms in M, a join-preserving function
ϕ : Ord→Ord and natural transformations

Xi
γi−→ Yi

βi−→ Xϕ(i+1) (i ∈Ord)

such that for all i:
(1) βiγi is the connecting morphism Xid Xϕ(i+1);

(2) the composite Yi
βi−→ Xϕ(i+1)d Xj lies in M for all j ≥ ϕ(i + 1);

and
(3) if i is a limit ordinal, then a colimit of the chain (Yj)j<i is given by

the following cocone

Yj
βj
−→ Xϕ(j+1)d Xϕ(i)

Moreover, given such a function ϕ, every join-preserving function ϕ′ ≥ ϕ
works too. Consequently, we can clearly choose ϕ so that ϕ(i) is even for
all ordinals i.

Theorem 3.6. Let X be a locally ranked order-enriched category. For every set
H of squares the subcategory LInj(H) is reflective: the reflection of every object
X is given by Xd Xk (in Definition 3.1) where k is a suitable cardinal.

Proof : Apply the above remark to the chain of Definition 3.1, using nota-
tion î = ϕ(i + 1). Since H is a set, there exists a cardinal λ such that for
every square in H all the four objects involved have rank λ. The cardinal
k of our theorem is chosen to be

k = ϕ(λ).



16 JIŘÍ ADÁMEK AND LURDES SOUSA

(1) We first prove that the objectXk is Kan-injective with respect to every
square in H:

S =

A1

a
��

h1 // A2

b
��

B1 h2

// B2

(a) Kan extensions modulo h1 and h2 exist. Indeed, every morphism
f0 : Ar → Xk (r = 1,2) has, since Ar has rank λ, a factorization f through
some colimit injection of the colimit Xk = colim

j<λ
Yj of Remark 3.5(3):

Ar
f

tthhhhhhhhhhhhhhhhhhhhhhhhhhhhh

f ′xxrrrrrrrrrrrrrr

f0
��

Yj
βj

// Xĵ //______ Xk

Put f ′ = βjf . We use Notation (8) and prove that the desired Kan extension
is

f0/hr ≡ Ar
f ′�hr−−−−→ Xĵ+1d Xk. (17)

Indeed, from (9) we get f0 = (f0/hr) · hr via f ′ = (f ′�hr) · hr :

(f0/h) · hr ≡ Ar
f ′

−→ Xĵ+1d Xk

Next, let g0 = Br → Xk fulfil

f0 ≤ g0hr .

Since Br has rank λ, we can find an analogous factorization:

Br
g

tthhhhhhhhhhhhhhhhhhhhhhhhhhhhh

g ′xxqqqqqqqqqqqqqq

g0
��

Yi βi
// Xî //______ Xk
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for some ordinal i < k. Without loss of generality, j ≤ i. The above inequal-
ity yields the following one:

Ar

f

��

hr // Br
g
// Yi

βi
��

≤ Xî

���
�
�

Yj

yji

��

βj
// Xĵ

���
�
�

//___ Xk

Xî

??�
�

�
�

Yi
βi

>>~~~~~~~~

Since by Remark 3.5 the colimit morphisms lie in M, (thus, they are order-
monomorphisms) this proves

yji · f ≤ g · hr

which by composition with βi yields the inequality

Ar
f ′
��

hr // Br

g ′

��
Xĵ

���
�
�

≤ Xî

���
�
�

Xî //_______ Xî+1

This is an instance of (10) and (11) with respect to xî ,î+1 · g ′. Let cf ,g ′ be
the corresponding coinserter (12). Since the map Xî+1 d Xî+2 factorizes
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through cf ,g ′ , we obtain the following inequality

Br

f ′�hr
��

g ′
// Xî //___ Xî+1

���
�
�
�
�
�
�
�

Xĵ+1

���
�
�

≤

Xî+1
//________ Xî+2

Composed with Xî+2d Xk this states that

xĵ+1,k · (f ′�hr) ≤ xîk · g ′

which is the desired inequality

f0/hr ≤ g0.

(b) It remains to prove that for every f0 : A2→ Xk we have

(f0a)/h1 = (f0/h2)b.

Put f̂0 = f0a and factorize it analogously as f0 above, assuming (without
loss of generality) that the same colimit injection can be applied:

Ar
f̂

tthhhhhhhhhhhhhhhhhhhhhhhhhhhhh

f̂ ′xxrrrrrrrrrrrrrr

f̂0
��

Yj
βj

// Xĵ //______ Xk

Thus the equality to be proved is, due to (16), the following square

B1

b
��

f̂ ′�h1// Xĵ+1

���
�
�
�
�
�
�
�

B2

f ′�h2
��

Xĵ+1 //___ Xk

(18)

Since xĵk · βj is monic by Remark 3.5, the equality f̂0 = f0a clearly implies
f̂ = f · a which multiplied by βj yields f̂ ′ = f ′ · a. From (9) we thus get the
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square

A1

a
��

h1 // B1

f̂ ′�h1

��

A2

f ′
��

Xĵ //___ Xĵ+1

This is an instance of (10) and (13). Let cf ,g be the corresponding coin-
serter. Since the map Xĵ+1 d Xĵ+2 factorizes through it, we obtain the
following inequality

B1

b
��

f̂ ′�h1 //

≤

Xĵ+1

���
�
�
�
�
�
�

B2

f ′�h2
��

Xĵ+1 //______ Xĵ+2

which multiplied by Xĵ+2 d Xk yields ”almost” the desired square (18):
indeed, the opposite inequality (f0/h2) · b ≥ (f0a)/h1 is trivial.

(2) For every morphism p : X0→ P where P lies in LInj(H) we prove that
the morphism pk : Xk→ P in Lemma 3.2 is Kan-injective with respect to H.
The proof is entirely analogous to that of Part (2) of the proof of Theorem
6.10 of [4]. The proof that the extension of the morphism p via X d Xk is
unique in LInj(H) is entirely analogous to Part (3) of the proof mentioned
above.

Remark 3.7. (a) The ordinal k above depends on the choice of the object
X. However, given two objects X and X̃, we can find an ordinal k such that
both of the reflection chains for X and X̃ yield reflections in LInj(H) after k
steps. This follows from the choice k = ϕ(λ) made in the above proof, since
the same function ϕ can be used for both chains. (This can be deduced
from the fact that we can always use any function ϕ′ ≥ ϕ preserving joins.)

(b) Denote by

R : X→ LInj(H)
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the reflector, i.e., the left adjoint of the embedding. And by ηX : X → RX
the reflection morphisms. We have just proved that for all objects X we
have

ηX ≡ Xd Xk
How is R characterized on morphisms u : X→ X̃?

We prove below that
Ru = uk : Xk→ X̃k

for the following natural transformation ui : Xi → X̃i (i ∈ Ord). Here X̃i
denotes the reflection chain for X̃ (and we use the obvious notation Q̃f ,
C̃f ,g , etc.).

Notation 3.8. Let u : X → X̃ be a morphism of X. We define a natural
transformation ui : Xi→ X̃i (i ∈Ord) of the reflection chains of X and X̃ by
the following transfinite induction:

Initial step: u0 = u.

Limit step: this is automatic from naturality.

Isolated step i 7→ i+1 (i even): every pair (S,f ) with respect to Xi defines
a pair (S,ui · f ) with respect to X̃i. For the corresponding pushouts Qf and
Q̃uif , see (6), we get a unique factorization f ∗ as follows:

Ar
f
��

hr // Br

f
��

Br

ũif

��

Xi

ui
��

hr

// Qf
f ∗

!!BBBBBBBB

X̃i
h̃r

// Q̃uif

(19)

Then (q̃uif · f
∗)h̄r = x̃i,i+1 · ui is independent of f . Therefore we can define

ui+1 via the following squares (for all (S,f )):

Qf

qf
��

f ∗
// Q̃uif

q̃uif
��

Xi+1 ui+1
// X̃i+1

(20)
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Observe also that (uif )�hr is the composite of f �hr and ui+1:

Br

f
��

?>

89

f �hr

//

Br

ũif ��

=<

:;

(uif )�hr

oo

Qf

qf
��

f ∗
// Q̃uif

q̃uif
��

Xi+1 ui+1
//___ X̃i+1

(21)

Isolated step i + 1 7→ i + 2 (i even). Every triple (S,f ,g) in the definition of
Xi+2 yields a triple (S, f̃ , g̃) with respect to X̃i+2 as follows:

f̃ ≡ Ar
f
−→ Xi

ui−→ X̃i and g̃ = Br
g
−→ Xi+1

ui+1−−−→ X̃i+1

The naturality of (uj) guarantees that every factorization (11) of f yields
the corresponding factorization

f̃ ≡ Ar
f ′

−→ Xj
uj
−→ X̃j d X̃i

of f̃ . And we prove below that this leads to a unique morphism df ,g form-
ing the following square

Xi+1

ui+1
��

cf ,g
// Cf ,g

df ,g
��

X̃i+1 c̃f̃ ,g̃

// C̃f̃ ,g̃

(22)

Analogously, every factorization (13) of f yields one for f̃ and we again ob-
tain a square (22). We define ui+2 via the following squares (for all (S,f ,g)):

Cf ,g

tf ,g
��

df ,g
// C̃f ,g

t̃f̃ ,g̃
��

Xi+2 ui+2
// X̃i+2

(23)

Proposition 3.9. The above natural transformation ui : Xi → X̃i (i ∈ Ord) is
well defined, and uk = Ru for every morphism u : X→ X̃.
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Proof : (1) Firstly, given an even ordinal i, the morphisms quif · f
∗ form

a cocone of the wide pushout (7) defining Xi d Xi+1, hence, in (21) the
morphism ui+1 is unique. We need to verify the naturality square. For that
observe that the following diagram

Xi

���
�
�
�
�
�
�
�

hr

  BBBBBBBBB

ui // X̃i
h̃r

}}zzzzzzzzz

���
�
�
�
�
�
�
�

Qf

qf~~}}}}}}}}}

f ∗
// Q̃uif

q̃uif !!DDDDDDDD

Xi+1 ui+1
// X̃i+1

commutes.

(2) Next we verify the existence of df ,g in (22). In case (11) this is equiv-
alent to proving that c̃f̃ ,g̃ ui+1 satisfies the following inequality:

Ar

f ′�hr
��

g
// Xi+1

ui+1
��

Xj+1

���
�
�

≤ X̃i+1

c̃f̃ ,g̃
��

Xi+1 ui+1
// X̃i+1 c̃f̃ ,g̃

// C̃f̃ ,g̃

Indeed, this follows from the definition of c̃f̃ ,g̃ and (21). And in case (13)
we need the inequality

B1

b
��

g
// Xi+1

ui+1
��

B

f ′�h2
��

≤ X̃i+1

c̃f̃ ,g̃
��

Xi+1 ui+1
// X̃i+1 c̃f̃ ,g̃

// C̃f̃ ,g̃
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which also follows from the definition of c̃f̃ ,g̃ and (21). The morphisms

Cf ,g
df ,g
−−−→ C̃f̃ ,g̃

t̃f̃ ,g̃
−−→ X̃i+2

form a cocone of the wide pushout (15) due to (22):

t̃f̃ ,g̃ · df ,g · cf ,g = tf̃ ,g̃ · c̃f̃ ,g̃ ·ui+1 = x̃i+1,i+2 ·ui+1.

Thus (23) defines ui+2 uniquely. Moreover, the naturality square now fol-
lows:

Xi+1

���
�
�
�
�
�
�
�
�

cf ,g

!!CCCCCCCCC

ui+1 // X̃i+1
c̃f̃ ,g̃

}}{{{{{{{{

���
�
�
�
�
�
�
�

Cf ,g

tf ,g}}{{{{{{{{{

df ,g
// C̃f̃ ,g̃

t̃f̃ ,g̃

!!CCCCCCCC

Xi+1 ui+2
// X̃i+2

(3) Consequently, for every morphism u : X→ X̃ the ordinal k of Theorem
3.6 provides a square

X

u
��

ηX // RX Xk
uk
��

X̃ ηX̃
// RX̃ X̃k

To prove uk = Ru, we only need to verify that uk is a morphism of LInj(H).
That is, for every square

A1

a
��

h1 // B1

b
��

A2 h2

// B2

in H and every morphism f0 : Ar → Xk the triangle

Br

(ukf0)/hr ��???????

f0/hr // Xk
uk
��

X̃k
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commutes. We use (17) for f0/hr , and we assume without loss of generality
that the same ordinal j can be used for (ukf0)/hr . Then the triangle above
commutes due to (21):

Ar

(uĵf
′)�hr   AAAAAAAA

f ′�hr// Xĵ+1

uĵ+1
��

//___ Xk

uk
��

X̃ĵ+1
//___ X̃k

Remark 3.10. In the following diagram (see (19))

Ar
f
��

hr // Br

f
��

Xi

ui
��

hr // Qf

f ∗
��

X̃i
h̃r

// Q̃uif

the lower square is a pushout. This follows from the fact that both the
composite and the upper square are pushouts.

4.Kan-injectivity logic
We now introduce a sound logic for deriving a square S from a given

class H of squares of X. (Recall that “square” means a commutative one
throughout.) Soundness means that every object and every morphism
Kan-injective with respect to members of H is also Kan-injective with re-
spect to squares derived from H. In the subsequent section we prove that
our logic is also complete if H is small and the base category is locally
ranked.

Since for ordinary categories Kan-injectivity w.r.t. a morphism is just
the usual orthogonality, it is not surprising that our logic is very close
to the orthogonality logic presented in [1]. Let us recall this logic here
shortly. Firstly, every isomorphism s has the property that all objects are
orthogonal to s. Hence that logic has one axiom
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AXIOM
s

for s an isomorphism.

The deduction rules are such that whenever an object is orthogonal to the
assumptions (above the horizontal line), then it is orthogonal also to the
conclusion. We have the following deduction rules:

COMPOSITION
h1 h2
h2 · h1

for morphisms
h1 //

h2 //

PUSHOUT
h
k

for a pushout

h //

�� ��

k
//

WIDE PUSHOUT
hi (i ∈ I)

k
for a wide pushout

hi //

k ��???????

h̄i
��

(i∈I)

COEQUALIZER
k
c

for a coequalizer
k
��
g2 //

g1
//

c //

and a morphism k with g1k = g2k

WEAK CANCELLA-

TION

h3 · h2 h2 · h1
h1

for morphisms
h1 //

h2 //
h3 //

This logic is sound in every category X with colimits. And for small sets
of morphisms H it is complete, i.e., every morphism h such that H⊥ =
(H ∪ {h})⊥ can be derived from H (and the isomorphisms) provided that
X is locally ranked, see [1]. This means that for some factorization system
(E,M)

(a) X is cocomplete and E-cowellpowered

and

(b) every objectX has a rank, i.e., an infinite cardinal λ such that X(X,−)
preserves λ-directed colimits of M-monics.

The logic presented below deals with collections H of squares and the
following concept:
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Definition 4.1. A square S is said to be a Kan-injectivity consequence of a
class H of squares provided that every object and every morphism Kan-
injective with respect to the members of H is also Kan-injective with re-
spect to S. Shortly:

LInj(H) = LInj(H∪ {S}).

Example 4.2. If H = ∅, we are speaking about squares w.r.t. everything is
Kan-injective. Let us call a square

A1
h1 //

a
��

B1

b
��

A2 h2

// B2

(24)

split if h1 and h2 are left adjoint sections and the Beck-Chevalley condition
holds. That is, we have a commutative square

A1

a
��

B1
h∗1oo

b
��

A2 B2h∗2

oo

(25)

with h∗ihi = id and hih∗i ≤ id for i = 1,2.
Each such square has the property that every object is Kan-injective with

respect to it. Indeed, given f : Ar → X for r = 1,2 the formula for the Kan
extension is easily seen to be

f /hr = f · h∗r

from which this fact is obvious. Moreover, this formula implies also that
every morphism is Kan-injective w.r.t. S.

This explains why in the following deduction system the split squares
can serve as axioms.

The following logic has as formulas (commutative) squares in a given
category. Recall that every morphism h : A → B is represented by the
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square

S(h) =
A

h // B

A
h
// B

.

Definition 4.3. The Kan-injectivity Logic consists of one

AXIOM
S for split squares S

and the following deduction rules:

COMPOSITION
S1 , S2
S

for a composite S, horizontal or
vertical, of S1 and S2

PUSHOUT

h1 //

�� ��

h2

//

hr //

a
�� ��//

for a pushout of hr , r = 1 or 2,
along an arbitrary morphism a

WIDE PUSHOUT

h //

bi (i∈I)
��

bih
//

h //
bj
//

b̄j��

h
//

k
//

for any wide pushout

h
�� bi //

k ��???????

b̄i
��

(i∈I)
and any j ∈ I
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COINSERTER S , S0 , S
k′ //

c
��

k′
//

c
//

for a coinserter
k
��
g2 //

g1
//

c // , a

morphism k with g1k ≤ g2k,
and a commutative diagram

S

k //

��

g1 //

��

S0

//

S

// c //

h0

OO OO

k′
OO

RIGHT

CANCELLATION

S , S(h) , S(k)
S0

for S =
//

S0��

h //

�� ��//
k
//

UPPER

CANCELLATION

Si , S i (i ∈ I)

S

for S i =

hi //
ai Si�� bi��//

a S�� b��

h
//

with (bi)i∈I collectively epic

By a deduction of a square S from a collection H of squares is, as usual,
meant a sequence of squares obtained by the application of the above rules
where S is the last square and the assumptions are (a) members of H, (b)
axiom instances or (c) squares already deduced.

Proposition 4.4. (Soundness of the Kan-Injectivity Logic) Let X have weigheted
colimits. Every square deduced from a class of squares is a Kan-injectivity con-
sequence of that class.

Proof : For the soundness of axiom see Example 4.2. Therefore, all we need
to prove is that for every deduction rule in Definition 4.3 the deduced
square S is a Kan-injectivity consequence of the assumptions of that rule.
To do so we take an object X Kan-injective with respect to each of the
assumptions and verify that X is Kan-injective with respect to S. By doing
so we actually give a formula for the Kan extensions needed.

We leave out the verification that also morphisms u : X → X ′ Kan-
injective with respect to all assumptions are Kan-injective with respect
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to S. Indeed, due to the formula presented for objects this verification is
in each case trivial.

(1) composition. (a) Horizontal composition:

A1

a
��

h // B1

b
��

h′ // C1

c
��

A2

f
��

k
// B2

f /k
~~|||||||| k′

// C3

(f /k)/k′
vvnnnnnnnnnnnnnnnnn

X

Let X be Kan-injective with respect to both of the above squares. We prove
for all f : A2→ X the formula

f /(k′k) = (f /k)/k′.

Clearly,
[(f /k)/k′]k′k = f .

Given g with f ≤ gk′k, we conclude f /k ≤ gk′, hence (f /k)/k′ ≤ g. Analo-
gously,

f /(h′h) = (f /h)/h′ for all f : A1→ X.

The formula [f a] /(h′h) = [f /(k′k)] · c easily follows.
(b) For a vertical composition:

A′′

a1

��

h′′ //

S1

B′′

b1

��

A′

a2

��

h′ //

S2

B′

b2

��

A

f
��4444444444 h

// B

f /h
��











X

we prove that (f a2a1)/h′′ = (f /h)b2b1 easily from (f a2)/h′ = (f /h)b2 and
[(f a2)a1] /h′′ = [(f a2)/h′] · b1.
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(2) Pushout. (a) Suppose X is Kan-injective w.r.t.

h1 //

�� ��

h2

//
. Let r = 1 and

f : A1→ X be given:

A1

a

��

h1 // B1

b

��
(f a)/h1

��/
///////////////////////////

A1

f

''OOOOOOOOOOOOOOOOOOOOOOOOOOOO
h1

// B1

_�

f /h1

��???????????????

X

For the square formed by f and (f a)/h1 we have a unique factorization, let
us call it f /h1. This is justified by the lower triangle above together with
the implication

f ≤ gh1 implies f /h1 ≤ g

which we verify easily. The above pushout is conical so to prove f /h1 ≤ g
we only need a verification when precomposed by h1 (this is our assump-
tion) and by b. To prove (f /h1)b ≤ gb, that is, (f a)h1 ≤ gb, we just observe
that our assumption implies f a ≤ gbh1 due to bh1 = h1a.

The required rule (f /h1)/b = (f a)/h1 is the right-hand triangle above.
(b) The proof for r = 2 is completely analogous.
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(3) Wide pushout. Let X be Kan-injective w.r.t. each of the squares
h //

bi��

bih
//

. Given a morphism f : A→ X

A
h // B

bi // Bi
bi
��

A
f
��

h
// B

k
// P

X

we know that f /h and f /(bih) exist and fulfil

(f /(bih))bi = f /h.

Consequently, for the given wide pushout P there exists a unique mor-
phism

f̂ : P → X with f̂ bi = f /(bih) for i ∈ I.
We prove

f /(kh) = f̂ .

Firstly

f̂ kh = f̂ bibih = [f /(bih)]bih = f .

Next if f ≤ gkh, we prove f̂ ≤ g. It suffices to observe that for all i we have
f̂ bi ≤ gbi, and use that our wide pushout is conical. Indeed, we have

f̂ bi = f /(bih) ≤ gbi
or, equivalently,

f ≤ gbibih
by assumption.

The desired formula

(f /(kh)) · bj = f /(bjh)

now follows from f̂ bj = f /(bjh).
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(4) coinserter. We are given a diagram

A
k // B

g2 //

g1
// C

c // D

with g1k ≤ g2k and c = coins(g1, g2), and a commutative diagram

A

S

k //

a
��

B
g1=h′b

//

b
��

C

A0

S0

h // B0

S

h′ // C

R

h0

OO

R

OO

R

k′

OO

Observe that k′ = h′hh0. If X is Kan-injective with respect to S, S0 and S,
we prove Kan-injectivity with respect to the following square:

R
h0 // A0

h // B0
h′ // C

c
��

R
h0 // A0

h // B0
h′ // C

c // D

Kan-injectivity with respect to S yields

f̂ = f /(h′hh0) with f̂ h′ = f /(hh0) (26)

We prove below that
f̂ g1 ≤ f̂ g2 (27)

which means that f̂ factorizes through c = coins(g1, g2). This concludes the
proof: the factorization

f̃ : C→ X with f̂ = f̃ c

is the desired f /(ch′hh0). Indeed,

f̃ ch′hh0 = f̂ (h′hh0) = f

and given t with f ≤ tch′hh0, then f̂ = f /(h′hh0) ≤ tc. Thus f̃ c ≤ tc which
implies f̃ ≤ t. The desired equality

[f /(ch′hh0)] · c = f /(h′hh0)
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in other words
f̂ = f̃ c = f /(h′hh0)

is the definition of f̂ .
In order to prove (27) first recall that X is Kan-injective with respect to

S0 and S, hence, f /h0 and (f /h0)/h exist. From this we easily deduce

f /(hh0) = (f /h0)/h

and then (26) yields
f̂ h′ = (f /h0)/h. (28)

By Kan-injectivity with respect to S this implies

f̂ g1 = f̂ h′b = [(f /h0)/h] · b = [(f /h0) · a] /k. (29)

Next recall that coinserter also assumes g1k ≤ g2k, thus f̂ g1k ≤ f̂ g2k, and
then, using (29), we obtain (27).

(5) Right cancellation. Let X be Kan-injective with respect to the
squares

S =
A′

a
��

k′ // B′

b
��

k // C ′

c
��

A
h′
// B

h
// C

, S(h) =
B

h // C

B
h
// C

and S(k) =
B′

k // C ′

B′
k
// C ′

.

Given a morphism f : A→ X, put

f /h′ = [f /(hh′)] · h.
Then (f /h′) · h′ = f is clear. And if f ≤ gh′, then, recalling Kan-injectivity
with respect to S(h), we get g = (g/h)h, hence

f ≤ (g/h)(hh′)

which implies
f /(hh′) ≤ g/h

and yields
[f /(h′h)] · h ≤ g

as desired. Analogously, (f a)/k′ = [(f a)/(kk′)] · k and this yields

(f /h′) · b = (f a)/k′

as required.
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(6) Upper cancellation. Let X be Kan-injective w.r.t. the squares Si and
composites of Si with S (i ∈ I). Given a morphism f as follows

Ai
ai
��

hi //

Si

Bi
bi
��

A
a
��

k //

S

B

b
��

A′

f

��2
2222222222222 h

// B′

f /h

����������������

X

we have f /h satisfying

(f /h)bbi = (f aai)/hi (i ∈ I).

The desired equality

(f a)/k = (f /h) · b

follows, since (bi) is collectively epic, from

[(f a)/k] · bi = (f aai)/hi by Kan-injectivity with respect to S
= (f /h)(bbi) by Kan-injectivity with respect to the composite.

This concludes the proof of soundness.

Lemma 4.5. The following deduction rules are consequences of the Kan-injectivity
Logic:

S-RULE

h1 //

�� ��

h2

//

S(hr)

for r = 1 or 2

and
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TRANSFER

//

�� ��

h
//

//

��
h
��

h
//

Proof : S-rule is a special case of pushout: S(hr) is a pushout square. Trans-

fer follows by applying right cancellation as follows:

S(h) = h
��

h //

h
//

Lemma 4.6. The following deduction rule is a consequence of the Kan-Injectivity
Logic:

COEQUALIZER

k //

a
�� b1��

h
//

k //

a
�� b2��

h
//

h //

c
��

ch
//

for c = coeq(b1,b2)

Proof : Form coinserters

k1 = coins(b1,b2) and k2 = coins(b2,b1).

Then we apply coinserter to the following diagrams

k //

a S��
bi��

bi //

A
h //

S0

B B

A A

h

OO

A

hS
OO

(i = 1,2)

where S0 follows by transfer and S by S-rule, and we deduce the squares
below from the above assumptions:
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A
h // B

k1
��

A
k1h
// K1

and

A
h // B

k2
��

A
k2h
// K2

The coequalizer c is clearly a pushout of k1 and k2:

B
k1

~~}}}}}} k2

  AAAAAA

c

��

K1

  @@@@@@
K2

~~~~~~~~

C

By applying wide pushout with s = h we derive

h //

c
��

ch
//

Remark 4.7. Let Xi (i < λ) be an α-chain with connecting maps xij . We can
construct its colimit using wide pushouts as follows:

First form a wide pushout of all x0i

X0

p0   BBBBBBBB

x0i // Xi
pi
��

(i < α)

P

(30)

For all pairs i ≤ i ′ < α form the following coequalizer

Xi
pi //

pi′xii′
// P

cii′ // Cii′ (31)

Finally, the wide pushout of all these coequalizers is formed

P

g   AAAAAAAA

cii′ // Cii′

cii′
��

K

(32)



KZ-MONADIC CATEGORIES AND THEIR LOGIC 37

Then K is the colimit of the given diagram with the following colimit co-
cone:

Xi
pi−→ P

g
−→ K (i < α).

Indeed, since g merges the parallel pair in (31), all gpi form a cocone.
Let yi : Xi → Y (i < α) be another cocone. Then the unique y : P → Y

with yi = ypi (i < α) clearly merges the parallel pair of (31). Hence, y
factorizes through each cii′ . Consequently, y = yg for a unique y : K → Y .
This is the desired factorization:

yi = ypi = y(gpi) for i < α.

The uniqueness of this factorization is easy to verify.

Lemma 4.8. (Transfinite Composition) Let (Xi)i∈α be an α-chain with con-
necting morphisms Xi d Xj and a colimit ki : Xi → K (i < α). The following
deduction rule follows, for every j < α, from the Kan-Injectivity Logic.

TRANSFINITE

COMPOSITION

X0
//___ Xj

���
�
�

X0
//___ Xk

(j ≤ k ≤ α)

X0
//___ Xj

kj
��

X0 k0

// K

Proof : We can assume ki = gpi for all i, see the above remark. By applying
wide pushout to the premisses of our rule we get, for every i < α, the
deduction of the square

X0
//___ Xi

pi
��

X0 p0
// P

(33)

This makes it possible to apply coequalizer to (30) to derive

Xb
p0 // P

cii′
��

X0 cii′p0
// Cii′

(34)
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for all i ≤ i ′ < α. Next apply wide pushout to (34) with h = p0 to derive

X0
p0 // P

cii′ // Cii′

cii′
��

X0 p0
// P g

// K

.

For i = i ′ = j we can put cjj = id in (31), thus g = cjj in (32). Hence we have
derived the following square

X0
p0 // P

g
��

X0 p0
// P g

// K

Vertical composition with (33) (for i = j) yields the desired square:

X0
//___ Xj

hj=gpj
��

X0 h=gp0

// K

5.Proof of Completeness
Throughout this section H is a set of squares in a locally ranked order-

enriched category X. We prove that the Kan-Injectivity Logic is complete.
First a preliminary result. Recall the reflection chain from Section 3.

Lemma 5.1. For all ordinals m ≤ i the squares

X0
//___ Xm

���
�
�

X0
//___ Xi

(35)

can be deduced from H.

Proof : We proceed by transfinite induction in i.
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Initial step. Use axiom on the split square

X0 X0

X0 X0

Limit step. This follows from transfinite composition, see Lemma 4.8.
For m = i, S(X0d Xi) is obtained by S-rule (Lemma 4.5).
Isolated step i 7→ i + 1 (i even). Given a square

A1

a
��

h1 //

S

B1

b
��

A2 h2

// B2

in H and a morphism f : Ar → Xi (r = 1 or 2), we have the following
deduction:

S
pushout

f
��

hr //

f
��

hr

//
(36)

transfer

(Lemma 4.5)

Xi Xi
hr��

Xi
hr

// Qf

wide pushout

Xi
hr // Qf

qf
��

Xi //___ Xi+1

(37)
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transfer

(Lemma 4.5)

Xi Xi

���
�
�

Xi //___ Xi+1

(38)

By induction hypothesis, (35) are given. Our task is to verify, for every
m ≤ i + 1, the corresponding square. Horizontal composition of (38) with
(35) for m = i deduces

X0
//___ Xi

���
�
�

X0
//___ Xi+1

and vertical composition of (38) with (35),m ≤ i, yields the desired square

X0
//___ Xk

���
�
�

X0 Xi

���
�
�

X0
//___ Xi+1

(39)

For m = i + 1, we deduce the square S(X0 d Xi+1) by (39) via S-rule

(Lemma 4.5).
Isolated step i + 1 7→ i + 2 (i even). We first observe that the square (9) of

Definition 3.1 is deduced from H by composition applied to (36) and (37):

Ar
f
��

hr // Br

f
��

f �hr

��

Xi
hr

// Qf

qf
��

Xi //___ Xi+1

(40)
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For every coinserter (12) we can thus apply coinserter to k = hr and the
following diagram

Ar
hr //

f ′ S
��

Br //

f ′�hr
��

Xj //___ Xj+1 //___ Xi+1
cf ,g

// Cf ,g

X0

S0

OO�
�
�

X0

S
OO�
�
�

X0

OO�
�
�

Indeed, the assumptions are S, by (40), S0, which is (35) for m = j and
i = j + 1, and S, which is (35) with m = j + 1 and i + 1 in the place of i.
Consequently, we deduce the square

X0
//_________ Xi+1

cf ,g
��

X0
//___ Xi+1 cf ,g

// Cf ,g

(41)

For every coinserter (14), first observe that the square

S =

A1
h1 //

a S ′
��

B1

b
��

A2 h2

//

f ′
��

B2

f ′�h2
��

Xi //___ Xi+1

is deduced from S ′ and (40) by composition. We apply coinserter to k =
h1 and the following diagram

A1
h1 //

S
��

B1
//

��

Xi+1

Xi //___ Xi+1 Xi+1
cf ,g

// Cf ,g

X0

S0

OO�
�
�

X0

S
OO�
�
�

X0

OO�
�
�
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where the second and last assumptions of coinserter are just instances of
(35) which are deduced from H by induction hypothesis. Thus we again
deduce the square (41).

Apply wide pushout to (15) with h ≡ X0d Xi+1 to deduce all the squares

X0
//___ Xi+1

cf ,g
// Cf ,g

tf ,g
��

X0
//___ Xi+1

//___ Xi+2

(42)

A vertical composition with (41) deduces

X0
//___ Xi+1

���
�
�

X0
//___ Xi+2

which vertically composed with (39) yields

X0
//____ Xm

���
�
�
�
�

for all m ≤ i + 1.

X0
//___ Xi+2

The remaining case m = i + 2 is then deduced by S-rule.

Theorem 5.2. (Kan-Injectivity Logic is Complete and Sound) A square is a
Kan-injectivity consequence of a set of squares iff it can be deduced from that
set.

Proof : For soundness see Proposition 4.4. Let H be a set of squares and let
the following square

S ≡
A1

a
��

h1 // B1

b
��

A2 h2

// B2

be a Kan-injectivity consequence of H. We find a deduction of S from H.
LetR : X→ LInj(H) denote the reflector, RX = Xk andRu = uk (see Propo-

sition 3.9).
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(1) We first use the fact that RA1 and RA2 are Kan-injective with respect
to S, thus, ηA1

/h1 and ηA2
/h2 exist, and we prove that they form a square

as follows:

B1

b
��

ηA1 /h1
// RA1

Ra
��

B2 ηA2 /h2

// RA2

Indeed, the morphism Ra is Kan-injective with respect to h1, thus

Ra · (ηA1
/h1) = (Ra · ηA1

)/h1 = (ηA2
· a)/h1

and, since RA2 is Kan-injective with respect to S, we have

(ηA2
· a)/h1 = (ηA2

/h2) · b.

(2) The morphism Rh1 : RA1 → RB1 is a left adjoint section. (This was
proved in [6] but we include the short proof for he convenience of the
reader.) Indeed, since RA1 is Kan-injective with respect to h1 (being Kan-
injective with respect to S), using the universal property of ηA1

, we have
ηA1

/h1 = h∗1 · ηB1

A1

ηA1

��

h1 // B1

ηA1 /h1

}}zzzzzzzzzzzzzzz

ηB1

��

RA1

Rh1 // RB1
h∗1

oo

for a unique h∗1 in LInj(H). This is the desired morphism with

h∗1 ·Rh1 = id and Rh1 · h∗1 ≤ id.

Indeed, both composites lie in LInj(H), thus, it is sufficient to verify (a)
h∗1 ·Rh1 · ηA1

= ηA1
- see the above diagram, and (b) Rh1 · h∗1 · ηB1

≤ ηB1
. We

use the trivial inequality (ηB1
· h1)/h1 ≤ ηB1

and the above diagram to see
that (b) holds.
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(3) The square

R(S) ≡
RA1

Ra
��

Rh1 // RB1

Rb
��

RA2 h2

// RB2

splits. (This is Lemma 3.4 in [14]; here we present a different proof.) In-
deed, we have h∗1 : RB1 → RA1 in (2) and, analogously, h∗2 : RB2 → RA2. It
remains to verify the following square

RB1

Rb
��

h∗1 // RA1

Ra
��

RB2 h∗2

// RA2

It lies in LInj(H), thus, it is sufficient to prove that it commutes when
precomposed by ηB1

:

RB1

Rb

��

h∗1 // RA1

Ra

��

B1

ηB1

aaCCCCCCCC

b
��

ηA1 /h1

==zzzzzzzz

B2ηB2

}}{{{{{{{{ ηA2 /h2

!!DDDDDDDD

RB2 h∗2

// RA2

Indeed, use the square in (1) above.
(4) In part (5) we are going to prove that every naturality square of η, in

particular

A1

a
��

ηA1 // RA1

Ra
��

A2 ηA2

// RA2
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can be deduced from H. Due to axiom, the square R(S) of part (3) is also
deducible, and their horizontal composite yields

A1

a
��

ηA1 // RA1
Rh1 // RB1

Rb
��

A2 ηA2

// RA2 Rh2

// RB2

which is the same square as the following composite

A1

a
��

h1 //

S

B1

b
��

ηB1 // RB1

Rb
��

A2 h2

// B2 ηB2

// RB2

Thus, S is deduced via right cancellation, since the right-hand square
is deducible (being, again, a naturality square of η). This concludes the
proof.

(5) To prove that naturality squares of η are deducible from H, we con-
sider the squares

X

u
��

//___ Xi
ui
��

X̃ //___ X̃i

(43)

for all ordinals i and prove their deducibility by transfinite induction. By
Proposition 3.9 the case i = k is the desired square.

Initial step: the square

X
u
��

X
u
��

X̃ X̃

is split, we can apply axiom .
Limit step: Given a limit ordinal i, such that (43) is deducible for every

m < i in place of i, compose (43) vertically with (35) to get a deducible
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(outward) square as follows:

X0
//___ Xm

���
�
�

X

u
��

//___ Xi
ui
��

X̃ //___ X̃i

The upper square is deducible by Lemma 5.1, and all Xmd Xi are collec-
tively epic, hence, the desired lower square is deduced by upper cancel-

lation .
Isolated step i 7→ i + 1 (i even). We are going to derive the square

Xi
ui
��

//___ Xi+1

ui+1
��

X̃i
//___ Xi+1

and compose it horizontally with the square assumed by induction hy-
pothesis.

For that take all pairs (S,f ) defining the step i 7→ i + 1. Then we apply
upper cancellation to the following diagram

Xi
hr // Qf

qf
��

Xi
ui
��

//___ Xi+1

ui+1
��

X̃i
//___ X̃i+1

The upper squares are deduced, see (37), and all qf are collectively epic,
thus, we only need a deduction of the composite square. This is, by the
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definition of ui+1 in Remark 3.7 the square

Xi

ui

��

hr // Qf

f ∗
��

Q̃uif

q̃uif
��

X̃i
//___ X̃i+1

(44)

Now in order to derive (44), recall the pushout

Xi

ui S0
��

hr // Q′f

f ∗
��

X̃i
h̃r

// Q̃uif

from Notation 3.8 and compose it vertically with the square

X̃i
h̃r // Q̃uif

q̃uif
��

X̃i
//___ X̃i+1

The former square can be deduced from (36) via pushout, for the latter
one see (37). Thus (44) is deducible.

Isolated step i + 1 7→ i + 2 (i even). Using (42), we can again apply upper

cancellation :

X //___ Xi+1
cf ,g

// Cf ,g
cf ,g
��

X

u
��

//_________ Xi+2

ui+2
��

X̃ //_________ X̃i+2

(45)

We only need to deduce the composite square.
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The following composite

X

u
��

//___ Xi+1

ui+1
��

X̃ //___ X̃i+1

���
�
�

X̃ //___ X̃i+2

is deducible due to Lemma 5.1, and the right-hand vertical morphism is

Xi+1

cf ,g
−−−→ Cf ,g

df ,g
−−−→ C̃f̃ ,g̃

t̃f̃ ,g̃
−−→ X̃i+2

by (22). Thus we have deduced the following composite

X //_________ Xi+1

cf ,g
��

X

u

��

//___ Xi+1 cf ,g
// Cf g

df ,g
��

C̃f̃ ,g̃
t̃f̃ ,g̃
��

X̃ //_________ X̃i+2

The upper square is (41). Moreover, cf ,g is an epimorphism (being a coin-
serter). Thus upper cancellation yields the deduction of the lower square.
This is the desired composite square (45): indeed, see (23).
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