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AsstraAcT: This paper makes a comparison between two notions of firees for locales
which come as direct reformulations of the two equivaleptogical definitions of per-
fectness. These reformulations are no longer equivalewill be documented that a locale
may appropriately be calleperfectif each of its open sublocales is a join of countably
many closed sublocales. Certain circumstances are exthititwhich both reformulations
coincide. This paper also studies perfectness in mildlynaddocales. It is shown that
perfect and mildly normal locales coincide with the Oz lesaéxtensively studied in the
last decade.
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1. Introduction

In this paper we look for the extension to the pointfree sgtaf what in topol-
ogy is called perfectness. We recall that a topological spacalledperfectif
each open set is a union of countably many closed sets, i.en sgts ard-.
This is equivalent to the statement that each closed setirgensection of count-
ably many open sets, i.e. closed sets@ge The two equivalent formulations
of perfectness for spaces have direct reformulations falés in terms of open
sublocales and closed sublocales. The two resulting césagpich will be called
F,-perfectnesandG;-perfectnessare no longer equivalent, f@;-perfectness is
generally stronger tha, -perfectness.

The first purpose of this paper is to compare those two nonalgnt con-
cepts. One nice feature &f.-perfectness is that the local¥X of all open sets of
an arbitrary perfect space is always F.-perfect, but may fail to b&;-perfect
(Section 3); another one is that it behaves nicely with retspe closed maps
(Section 5). This shows that, with respect to the criteribcomservativeness;,, -
perfectness behaves much better t@gfperfectness. MoreoveF,,-perfectness
will be shown to be conservative in a quite large class of epdcontaining all
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Ti-spaces). In the class of normal localEs;perfectness an@;-perfectness co-
incide, and are conservative concepts for the class of gtéifespaces. Due to all
those circumstances we eventually drop the priefixand call a localgerfectif
each its open sublocale is a join of countably many closetbsales.

The second purpose of this paper is to study perfectnesddiymormal locales
(Section 4). One interesting observation is that perfedtrardly normal locales
coincide with the so-called Oz locales extensively studiethe last decade (cf.
[1, 2, 4, 5]).

2. Preliminaries on locales

For general background regarding locales and frames weteefé1] or [14].
Here, we present a brief outline of the facts specificallydeelfor the paper.
A localeor aframeis a complete latticé in which

an\/B=\{aAb:be B}

foralla € L andB C L. The topology of a topological spacéis a locale and
is denoted byD(X). Being a Heyting algebra, each locadléhas the implication
operator

a—->b=\{xelL|xAaa<h

satisfying the standard equivalence a < biff c < a — b. The pseudocom-
plementof ana € L is the element* = a — 0. An elementa is regular if
a™ = a(equivalently, ifa = b* for someb € L). Note that the first De Morgan law
(avb)* = a* Ab* holds in any locale (actually, more generally, 8)* = A zca &).
For any elementaandbin L, a < b (ais well inside ) means thab A x =0
andb v x = 1 for somex € L (equivalentlya® v b = 1).
A sublocale Sof a localeL is a subse® C L such that:

(S1) foreveryAC S, A AisinS, and
(S2) for everyse S and everyx € L, x—sisin S.

The setS(L) of all sublocales oL forms aco-frame(i.e., the dual lattice is
a frame) under inclusion, in which arbitrary infima coincwéh intersections.
Regarding suprema, there is the formula

\/Si ={ANA: AC US,}
iel il

for every{S; € S(L): i € I}.
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SinceS(L) is the dual of a complete Heyting algebra, it has co-psenapéements,
given by the formula

S*=L\S=N{TeSL)|ISVT=L}.

Note that
(NS = VS {Sika € S, (#)

i€l

For eacha € L, the sublocales
(@ =T1a and o@={a—b|bel}

are theclosedandopensublocales of. induced bya, respectively. We summarize
here the basic properties of sublocales used throughoptiper:

(P1) For every ac L, ¢(a) ando(a) are complements of each other${L).

(P2) For every ab € L, ¢(b) € o(a) if and only if av b = 1 and ¢(b) 2 o(a) iff
anb=0.

(P3) For every AC L, \/aea0() = o(\/ A) and(Mgea ¢(@) = c(\/ A).

3. A comparison betweerfF -perfectness andss-perfectness

Definition 3.1. A locale L is said to be:
(1) F,-perfectwhenever any open sublocalelofs anF -sublocale, that is, for
eacha € L there exists a countable familg{.«v in L such that

o(@) =V c(an).

neN

(2) Gs-perfectif any closed sublocale is Gs-sublocale, that is, for each € L
there exists a countable familg,{nav in L such that
(@ = N ofan).
neN

By [14, Proposition V.1.4], eack -perfect locale is subfit, and by 4, Propo-
sition V.1.3.2], eaclG;s-perfect locale is fit. We recall that a locale is subfit (resp.
fit) if every open (resp. closed) sublocale is a join of closellocales (resp. meet
of open sublocales).

SinceS(L) is no longer a (complete) Boolean algebra, it is not suimpyishat
these two concepts are not equivalent, in general. Morefgly, by (#) and
(P1) we have:

Remark 3.2. Each G-perfect locale is E-perfect.
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However, the converse is far from being true. The followirgraple shows that

a F,-perfect locale need not even be fit.

Example 3.3.Let N be endowed with the cofinite topology
ON = {2} U{U C N | N\ U finite}.

For eachJ, V € ON we have
N, if U=g;
U->V=<Int(N\U) =02, ifU+o=V,;
INt(N\U)uV)=N~\U)UV, ifUV +a.

Hence
U->V=V & (U=gandV=N)or(U=+g=V)or (U # @andN\U C V).

Consequently(2) = {N} and, for eaclw # U € ON,
o(U)={a}U{VeON|N\NUCV}={o}u{VeON|UUV =N}

We shall now prove that
o(U) = \/U ¢(N N {n}),
ne
@ this is trivial sinceo(@) = {N} is the bottom

for everyU € ON. ForU
element ofS(ON). Further, letz # U € ON andn € U. Then

(NN {n}) = {N,N\ {n}} C o(U)

and\/ ey ¢(N \ {n}) C o(U). Conversely, we first notice that
2 =Int(N\U) =Int( N\ (n))= AN e V @ ().
neU neU

neU

Finally, for eacho # V € o(U) we have
(NN} e V (N A{n}).
\Y neU

V=intV=Int( N\ @x{n))= A
neN\V neN\

We conclude that(U) € ey c(N N {n}). Henceo(U) = /ey (N \ {n}) is an

F,-sublocale which shows thélN is anF-perfect locale.
On the other hand, the only closed sublocale®Sfwhich are meets of open

sublocales arg(N) and¢(@) and thusON is not fit, hence neith€s;-perfect.

Let us recall that a localic propertyP is aconservative extensiaf a topolog-
ical propertyP if, given a topological spack, the localeD(X) has property_P if

and only if X has propertyp.
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Since the spacaY,ON) is perfect (as any countable-space does)zs-per-
fectness is not a conservative extension of topologicdeparess. UnlikeGs-
perfectness, the following holds:

Proposition 3.4.1f a space X is perfect, thadX is F,-perfect.

Proof: LetU € OX. By hypothesis, there exists a countable famiiy)geay in OX
such that = [J,en(X N\ Up). It follows thatU, U U = X for eachn € N and thus
Ve ¢(Un) € o(U) by (P2). On the other hand, lete o(U) andV, = U, UV €
¢(Uy,) for eachn € N, then

V=U=V=Int(X~U)UV) =Int(( O Uy UV) = Int( N (UnUV))
neN neN

neN neN neN
Henceo(U) C /oy ¢(Un) and we conclude th&X is anF-perfect locale. m

The converse implication is not true in general, as showrhbyfallowing ex-
ample:

Example 3.5.Let X be aT; topological spaceyp ¢ X, Y = X U {c0} and
OY ={g}U{U U{c} | @ #+ U € OX}.

OY is a topology inY if and only if @ is meet-irreducible irOX. In this case
OY andOX are clearly isomorphic locales and conseque@tYyis anF,-perfect
locale if and only if so i99X. Moreover, the spac¥ is perfect if and only ifX
Is indiscrete. Consequently, X is a non-indiscrete and perfect topological space
such that is meet-irreducible i®X (e.g.N endowed with the cofinite topology),
it follows from Propositior8.4thatOX is anF,-perfect locale and hence sad¥.
However,Y fails to be perfect.

This construction of spac¥ is related with spac® in [6, Problem 4M, page
64]. Note tha is completely normal and extremally disconnected. Seelé&lso
Problem 6R, page 98] and4, Example 3.1].

The point of this example is that fails to beTp. Recall that a spack is Tp
if (X'\ {x}) U {x} is open for eactx € X. The spacer in the previous example
is clearly Ty, but fails to beTp since(Y \ {oo}) U {0} = {0} iS not open inY.

However, if we restrict ourselves T-spaces we have the following result:

Proposition 3.6.Let X be a B-space. Then X is perfect if and onlyQiX is
F,-perfect.
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Proof: Let U € OX. By hypothesis, there exists a countable famil,)qex in
OX such thato(U) = \/paoc(Un). Thence(U,) € o(U) for eachn € N and so
it follows from property (P2) that u U, = X for eachn € N. Consequently,
Une(X N Up) C U.
On the other hand, let € U. SinceX is Tp, it follows that there exists an open
V 3 x such thaWW = V \ {x} is open as well. We have that

U->WeolU) =YV «(Up

nelN

and so there exists a countable fami )y IN OX such thatU,, € V, for each
ne N and

U->W= A V,=Int( V).
neN neN

Sincex € U NV it follows thatU NV ¢ W and thusv ¢ U — W, from which it
follows thatx ¢ U — W. Hence

xeX~\Int(N Vo) = UK\ V).
neN neN

SinceV is an open neighborhood &fit follows thatV N (Upen(X \ Vy)) # @. But
U—->WC (V- HENCE
xe UMXN\Vy)c UMXNUy). |
neN neN

In conclusionF-perfect locales model perfect spaces with the same pragiso
in[14, 111.7.2.1(2) and 111.7.3.1 (1)], that is, inside the cla#sTp-spaces.

Recall that a localé& is normalif av b = 1 impliesthatavu=1= b v for
someu,v € L satisfyingu A v = 0. It follows from [8, Proposition 3.5] that the
classes of,-perfect locales an@;-perfect locales coincide under normality. We
include a direct proof here for the sake of completeness.

Proposition 3.7.A normal locale is G-perfect if and only if it is G-perfect.

Proof: We only need to prove necessity. Letbe a normalF -perfect locale
anda € L. By hypothesis there exists a countable famdy){.v in L such that
0(@) = Vney ¢(an). By (P2),aV a, = 1 for eachn € N. Now, the normality ofL
providesu,, v, € L such that

avu,=1=a,vVuv, and u,Av,=0, neN.
It follows by (P2) that:(a,) C o(vn). Moreoverp, < a and therefore, by (P3),
o(@ =V (@) < V o(vn) = o(\/ vn) € 0(a).

neN neN neN
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Hencea = \/ oy vn With v, < afor eachn € N. Finally, by (P2) and (P3),
c@ < M o(un) € N c(on) = c(V vn) = c(a). u

neN neN neN
After all these considerations we drop the pré&fjxand introduce the following:

Definition 3.8. We call a localeperfectif each open sublocale is a join of count-
able many closed sublocales.

Then, we have the following (cf3[ Propositions 3.5 and 4.2]):

Proposition 3.9. The following are equivalent for any locale L

(1) L is perfectly normal.

(2) L is a normal and perfect locale.

(3) For each ac L there is a countable familb,)nev in L such that a= \/ o by
and b, < aforallneN.

Remarks 3.10.(1) Perfect normality in pointfree topology was first coresed
by Charalambous?] in the context ofr-frames. In [], Gilmour observed that in
the class otr-frames perfect normality and regularity are equivalemoapts.

(2) Condition (3) was taken as the definition of a perfectlynmmal locale in B]. In
the terminology of §], it says that every element in the localeegular-F, (i.e., a
countable join of elements well inside it). Note that, foy aopological spac,
the regularF, elements of the local@X consist exactly of the reguldf; subsets
of X (the complements of the usual reguay-subsets oiX [13]). It should be
also noted that in the definition of a regulas-one may assume that ealbhis
regular. Indeedy, < aimpliesb,™ < aand hence

neN neN

(3) For each regulaF, element, the closed sublocal€a) is aGs-sublocale (and
therefore the open sublocal@) is anF-sublocale). Indeed, & = \/ ; by With
b," va=1foreachn € N then by (P2) and (P3) we get

(@ < M o(bn’) € N c(bn) = c(V bn) = c(a).

neN neN neN

It is also easy to check that if we add normality to Proposiics, then we can
conclude (undefp) that pointfree perfect normality, as normality, is a comae
tive extension of the classical notion, that is@opological spac& is perfectly
normal if and only ifOX is perfectly normal:
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Proposition 3.11.Let X be a topological space.

(1) If X is perfectly normal, the®X is perfectly normal.
(2) If X is Ty, thenOX is perfectly normal if and only if X is perfectly normal.

Proof: (1) follows from Propositior3.4. Regarding (2), we first note thatGiX is
perfect and normal, then it is subfit and thus, by, [Lemma 2.4], it is a'; space
(henceTp). Finally, it follows from Propositior8.6that X is perfectly normal. m

4. Variants of normality and Oz locales

Now recall that a locald is almost normal(resp. mildly norma) if for any
a,b € L satisfyinga v b = 1, with a regular (resp.a andb regular), there exist
u,v € LsuchthatuAv =0andavu=Dbvv=1(note that it is redundant to
impose heral andv to be regular sinca A v = 0 iff U™ A v™* = 0).

We can now prove the following result which is directly reldtto Proposi-
tion 3.7

Proposition 4.1.Let L be a locale and let a be a regular element in L.

(1) If L is almost normal, then(a) is a Gs-sublocale if and only if it is an
sublocale.

(2) If L is mildly normal, thert(a) = (Nnev 2(an), With all a, regular, if and only if
0(@) = Vnay ¢(an)-

Proof: In both cases the proof of ficiency follows the lines of that of Proposi-
tion 3.7 replacing normality by almost and mild normality, respesty. |

By Proposition3.9, a frameL is perfectly normal if and only if any element in
L is regularF,. We say now that a locale is perfectly mildly normalor pm-
normal for short) if any regular element ih is regularF,. Hence, pm-normal
locales are to perfectly normal locales the same as mildiynablocales are to
normal locales. Note that all the variants of normality weehaonsidered are
conservative extensions of their topological countespart

Lemma 4.2. Suppose that,d € L satisfy av b = 1 and that there exist two
countable familiega,)nen and (bn)nay Of regular elements such that
Vavb=1=av \ by,
neN neN

with a, < a and Iy, < b for every ne N. Then there exist,u € L such that
uUAv=0andavu=1=bvu.
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Proof: Let

n n

u=V (bhAAa®) and o=\ (an A AbY)

neN i=1 neN i=1
Then

avu=\ (av(bnAigla*)) _

neN

V (@V by) A (Z\l(av a’))= V(avby) =1

neN neN
Similarly b v v = 1. On the other hand,

n

m
unv=\ V (bn/\./\a*-*/\am/\l/\bi*):o
neN meN i=1 i=1
since, for each pair of naturabsm,
n m m
bhA ANag"AamA AB"<b,A AL <byAby"=0
i=1 i=1 i=1

in casen < mand

n m n
bnA_Ala*AamA_/\lbi*s_/\la;*/\amsam*/\amzo
1= 1= 1=
otherwise. u

Lane proved in 7] that any pm-normal topological space is mildly normal.
In our pointfree (and conservative!) setting we prove moith & much simpler
proof.

Proposition 4.3. The following are equivalent for any locale L

(1) L is pm-normal.

(2) Lis mildly normal and for each regular element a in L thereséxia countable
family (an)nen Of regular elements in L such thg@) = (e 2(an).

(3) L is mildly normal and for each regular element a in L thereséxia countable
family (an)nen Of regular elements in L such thafa) = \/ v ¢(an).

Proof: (1) = (2): Leta andb be regular elements b such tha v b = 1. By
pm-normality,

a=\/ X and b=\ y, with x,<a and y,<b foreveryneN.
neN neN

Obviously the elements, = x,* andb, = y,* satisfy the conditions of the
Lemma4.2 and thus there exist v € L suchthauAv=0andavu=1=bVvo.
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HenceL is mildly normal. On the other hand, for each regular elenaeat_, by
pm-normality,a = \/ a0 Xn With X, < afor everyn € N. Hence, by (P2) and (P3),
(@< N o(x) € N eX) =c(V Xn) = ().

neN neN neN
(2) < (3): This follows from Propositiod.1(2).

(3) = (1): Letabe aregular element in By hypothesis there exists a countable
family (an)nen Of regular elements ib such thab(a) = \/ oy ¢(an). Henceava, =
1 for eachn € N. SinceL is mildly normal, it follows that there exist,, v, € L
such thau, A v, = 0anda v u, = 1 = a, Vv v, for eachn € N. Consequently (by
(P2) and (P3) again),
o(@ =V ¢(a) € V o(un) € V c(un) € o(a). O
neN neN neN

Locales where each regular element is a cozero element ked €z locales
and are the natural pointfree counterpart of Oz spaces. Whey introduced in
[2] and further studied inll]. Recall that, by Proposition 2.3 of], a locale is Oz
if and only if every element of the forny ««(an A by) with all a, andb, being
regular is a countable union of elements well inside it.

The next result, which seems to have escaped to the authpry ehows that
the class of Oz locales contains that of perfectly normallex

Proposition 4.4. A locale is Oz if and only if it is pm-normal.

Proof: Necessity is obvious. For ficiency, leta = \/o(an A by) with all a,
andb, being regular. By pm-normality, each regular elemlerg regularF, and
therefore

a,=\V{xel'|x<ay} and b,=V{yel |y<b, foreachneN.

Then

a=\V VIXAy|Xyel’, Xx<an y < b
neN

For each suck andy, we have thakAy < (XAy)™ € L* and KA y)*™ < (apAby) <
a, since

(XAy)" V(anAbn) = (X Va) Ay vby)=1
Hencea= \/{ze L" | z< a}. [ |
Remarks 4.5.(1) Cozero elements are regulag; sincea € CozL if and only if

a = \nay @ for somea, << a (where<< denotes the really inside relationl]).
The converse is obviously true in Oz locales.
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(2) If <isinterpolative (e.g., iL is a normal locale), then regul&; elements are
cozero elements also. More generally, in any almost noraallé¢, each regular-
F, element belongs to Cdz In fact, fora = \/, v @, With a, < a anda, regular,
by almost normality there exis, andv, such thau, A v, =0 anda;vu,=1=
vi V a, hencea, < u, < a(sinceu;,va>uv,Vva=1). Thena, << a.

5. Images of perfect locales

In this final section, we show that, as happens with normalgyfectness is an
invariant property under closed maps, providing more awedor our choice in
Definition 3.8,

We start by recalling from1[4] that alocalic mapis a mapf : L — M satisfying
(1) f(AS) = A f(S)foranyS C L,]
(2) f(a) = 1 implies thata = 1, and
(3) f(f*(b) » a) = b — f(a) foreveryae L andb € M,
wheref* denotes the left adjoint df, that exists by condition (1). This left adjoint
Is aframe homomorphisr(i.e., it preserves arbitrary joins and finite meets). A
localic mapf is closedwhenever the image of each closed sublocale of the domain
Is closed. In that casé[c(a)] = ¢(f(a)).

Each localic magd : L — M induces themage map

fl-1: S(L) — S(M),
left adjoint to thepreimage map
f-]: S(M) = S(L).
Open sublocales are preserved by preimages. More spdgifical
fo(b)] = o(f*(b)) for everybe M.
Furthermore, iff is surjective then the compositd ~! satisfies
ffo(b)] = o(b) foreveryb e M.

Indeed: the inclusion¢” follows from the adjunctionf[-] 4 f~1[-]; moreover,
for eachb — y in o(b), we have

b-y=b- f(a)=f(f*(b) —» a)

for somea € L (by ontoness of ) wheref*(b) — a € o(f*(b)) = f[o(b)].
We can now prove that perfectnes is invariant under closealitomaps.
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Proposition 5.1.Let f: L — M be a surjective localic map. If f is closed and L
Is perfect, then M is also perfect.

Proof: Letb € M. SincelL is perfect it follows thatf “(b) = \/ ey ¢(@n) for some
countable family &,)nav Iin L. Then, sincef[—] preserves arbitrary joins, we have

o(b) = f 7 [o(b)] = f[o(f"(0))] = LV dan] =V fld@)] =V «f(a). =

Remark 5.2. Note that in general[—] does not preserve countable meets, so that
the previous argument does not work if we replace perfesthg&;-perfectness.
This gives us one more argument for choodtgperfectness as the right way to
extend the topological notion of perfectness to the paetietting.

Corollary 5.3. Let f: L — M be a surjective localic map. If f is closed and L is
perfectly normal, then M is also perfectly normal.

Proof: Just combine the proposition above with the fact, proveld,irCorollary
9.4], that normality is also invariant under closed locatiaps. |
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