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Abstract: This paper makes a comparison between two notions of perfectness for locales
which come as direct reformulations of the two equivalent topological definitions of per-
fectness. These reformulations are no longer equivalent. It will be documented that a locale
may appropriately be calledperfect if each of its open sublocales is a join of countably
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1. Introduction

In this paper we look for the extension to the pointfree setting of what in topol-
ogy is called perfectness. We recall that a topological space is calledperfect if
each open set is a union of countably many closed sets, i.e. open sets areFσ.
This is equivalent to the statement that each closed set is anintersection of count-
ably many open sets, i.e. closed sets areGδ. The two equivalent formulations
of perfectness for spaces have direct reformulations for locales in terms of open
sublocales and closed sublocales. The two resulting concepts, which will be called
Fσ-perfectnessandGδ-perfectness, are no longer equivalent, forGδ-perfectness is
generally stronger thanFσ-perfectness.

The first purpose of this paper is to compare those two non-equivalent con-
cepts. One nice feature ofFσ-perfectness is that the localeOX of all open sets of
an arbitrary perfect spaceX is always Fσ-perfect, but may fail to beGδ-perfect
(Section 3); another one is that it behaves nicely with respect to closed maps
(Section 5). This shows that, with respect to the criterion of conservativeness,Fσ-
perfectness behaves much better thanGδ-perfectness. Moreover,Fσ-perfectness
will be shown to be conservative in a quite large class of spaces (containing all

Received June 24, 2016.

1
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T1-spaces). In the class of normal locales,Fσ-perfectness andGδ-perfectness co-
incide, and are conservative concepts for the class of perfect T0-spaces. Due to all
those circumstances we eventually drop the prefixFσ- and call a localeperfectif
each its open sublocale is a join of countably many closed sublocales.

The second purpose of this paper is to study perfectness in mildly normal locales
(Section 4). One interesting observation is that perfect and mildly normal locales
coincide with the so-called Oz locales extensively studiedin the last decade (cf.
[1, 2, 4, 5]).

2. Preliminaries on locales

For general background regarding locales and frames we refer to [11] or [14].
Here, we present a brief outline of the facts specifically needed for the paper.

A localeor aframeis a complete latticeL in which

a∧
∨

B =
∨

{a∧ b: b ∈ B}

for all a ∈ L andB ⊆ L. The topology of a topological spaceX is a locale and
is denoted byO(X). Being a Heyting algebra, each localeL has the implication
operator

a→ b =
∨

{x ∈ L | x∧ a ≤ b}

satisfying the standard equivalencec ∧ a ≤ b iff c ≤ a → b. Thepseudocom-
plementof an a ∈ L is the elementa∗ = a → 0. An elementa is regular if
a∗∗ = a (equivalently, ifa = b∗ for someb ∈ L). Note that the first De Morgan law
(a∨b)∗ = a∗∧b∗ holds in any locale (actually, more generally, (

∨

A)∗ =
∧

a∈A a∗).
For any elementsa andb in L, a ≺ b (a is well inside b) means thata∧ x = 0

andb∨ x = 1 for somex ∈ L (equivalently,a∗ ∨ b = 1).
A sublocale Sof a localeL is a subsetS ⊆ L such that:

(S1) for everyA ⊆ S,
∧

A is in S, and
(S2) for everys ∈ S and everyx ∈ L, x→s is in S.

The setS(L) of all sublocales ofL forms aco-frame(i.e., the dual lattice is
a frame) under inclusion, in which arbitrary infima coincidewith intersections.
Regarding suprema, there is the formula

∨

i∈I
Si = {

∧

A: A ⊆
⋃

i∈I
Si}

for every{Si ∈ S(L) : i ∈ I }.
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SinceS(L) is the dual of a complete Heyting algebra, it has co-pseudocomplements,
given by the formula

S# = L r S =
⋂

{T ∈ S(L) | S ∨ T = L}.

Note that
(⋂

i∈I
Si
)#
=
∨

i∈I
S#

i , {Si}i∈I ⊆ S(L). (#)

For eacha ∈ L, the sublocales

c(a) = ↑a and o(a) = {a→ b | b ∈ L}

are theclosedandopensublocales ofL induced bya, respectively. We summarize
here the basic properties of sublocales used throughout thepaper:

(P1) For every a∈ L, c(a) ando(a) are complements of each other inS(L).
(P2) For every a, b ∈ L, c(b) ⊆ o(a) if and only if a∨ b = 1 and c(b) ⊇ o(a) iff

a∧ b = 0.
(P3) For every A⊆ L,

∨

a∈A o(a) = o(
∨

A) and
⋂

a∈A c(a) = c(
∨

A).

3. A comparison betweenFσ-perfectness andGδ-perfectness

Definition 3.1. A localeL is said to be:

(1) Fσ-perfectwhenever any open sublocale ofL is anFσ-sublocale, that is, for
eacha ∈ L there exists a countable family (an)n∈N in L such that

o(a) =
∨

n∈N
c(an).

(2) Gδ-perfectif any closed sublocale is aGδ-sublocale, that is, for eacha ∈ L
there exists a countable family (an)n∈N in L such that

c(a) =
⋂

n∈N
o(an).

By [14, Proposition V.1.4], eachFσ-perfect locale is subfit, and by [14, Propo-
sition V.1.3.2], eachGδ-perfect locale is fit. We recall that a locale is subfit (resp.
fit) if every open (resp. closed) sublocale is a join of closedsublocales (resp. meet
of open sublocales).

SinceS(L) is no longer a (complete) Boolean algebra, it is not surprising that
these two concepts are not equivalent, in general. More specifically, by (#) and
(P1) we have:

Remark 3.2. Each Gδ-perfect locale is Fσ-perfect.
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However, the converse is far from being true. The following example shows that
a Fσ-perfect locale need not even be fit.

Example 3.3.LetN be endowed with the cofinite topology

ON = {∅} ∪ {U ⊆ N | N r U finite}.

For eachU,V ∈ ON we have

U → V =



























N, if U = ∅;

Int (N r U) = ∅, if U , ∅ = V;

Int ((N r U) ∪ V) = (N r U) ∪ V, if U,V , ∅.

Hence

U → V = V ⇐⇒ (U = ∅ andV = N) or (U , ∅ = V) or (U , ∅ andNrU ⊆ V).

Consequently,o(∅) = {N} and, for each∅ , U ∈ ON,

o(U) = {∅} ∪ {V ∈ ON | N r U ⊆ V} = {∅} ∪ {V ∈ ON | U ∪ V = N}.

We shall now prove that
o(U) =

∨

n∈U
c(N r {n}),

for every U ∈ ON. For U = ∅ this is trivial sinceo(∅) = {N} is the bottom
element ofS(ON). Further, let∅ , U ∈ ON andn ∈ U. Then

c(N r {n}) = {N,N r {n}} ⊆ o(U)

and
∨

n∈U c(N r {n}) ⊆ o(U). Conversely, we first notice that

∅ = Int (N r U) = Int
(

⋂

n∈U
(N r {n})

)

=
∧

n∈U
(N r {n}) ∈

∨

n∈U
c(N r {n}).

Finally, for each∅ , V ∈ o(U) we have

V = Int V = Int
(

⋂

n∈NrV
(N r {n})

)

=
∧

n∈NrV
(N r {n}) ∈

∨

n∈U
c(N r {n}).

We conclude thato(U) ⊆
∨

n∈U c (N r {n}) . Henceo(U) =
∨

n∈U c(N r {n}) is an
Fσ-sublocale which shows thatON is anFσ-perfect locale.

On the other hand, the only closed sublocales ofON which are meets of open
sublocales arec(N) andc(∅) and thusON is not fit, hence neitherGδ-perfect.

Let us recall that a localic propertyLP is aconservative extensionof a topolog-
ical propertyP if, given a topological spaceX, the localeO(X) has propertyLP if
and only ifX has propertyP.
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Since the space (N,ON) is perfect (as any countableT1-space does),Gδ-per-
fectness is not a conservative extension of topological perfectness. UnlikeGδ-
perfectness, the following holds:

Proposition 3.4. If a space X is perfect, thenOX is Fσ-perfect.

Proof: Let U ∈ OX. By hypothesis, there exists a countable family (Un)n∈N in OX
such thatU =

⋃

n∈N(X r Un). It follows thatUn ∪ U = X for eachn ∈ N and thus
∨

n∈N c(Un) ⊆ o(U) by (P2). On the other hand, letV ∈ o(U) andVn = Un ∪ V ∈
c(Un) for eachn ∈ N, then

V = U → V = Int ((X r U) ∪ V) = Int
(( ⋂

n∈N
Un
)

∪ V
)

= Int
( ⋂

n∈N
(Un ∪ V)

)

= Int
( ⋂

n∈N
Vn
)

=
∧

n∈N
Vn ∈

∨

n∈N
c(Un).

Henceo(U) ⊆
∨

n∈N c(Un) and we conclude thatOX is anFσ-perfect locale.

The converse implication is not true in general, as shown by the following ex-
ample:

Example 3.5.Let X be aT1 topological space,∞ < X, Y = X ∪ {∞} and

OY = {∅} ∪ {U ∪ {∞} | ∅ , U ∈ OX}.

OY is a topology inY if and only if ∅ is meet-irreducible inOX. In this case
OY andOX are clearly isomorphic locales and consequentlyOY is anFσ-perfect
locale if and only if so isOX. Moreover, the spaceY is perfect if and only ifX
is indiscrete. Consequently, ifX is a non-indiscrete and perfect topological space
such that∅ is meet-irreducible inOX (e.g.N endowed with the cofinite topology),
it follows from Proposition3.4thatOX is anFσ-perfect locale and hence so isOY.
However,Y fails to be perfect.

This construction of spaceY is related with spaceΣ in [6, Problem 4M, page
64]. Note thatΣ is completely normal and extremally disconnected. See also[6,
Problem 6R, page 98] and [14, Example 3.1].

The point of this example is thatY fails to beTD. Recall that a spaceX is TD

if (X \ {x}) ∪ {x} is open for eachx ∈ X. The spaceY in the previous example
is clearlyT0, but fails to beTD since

(

Y \ {∞}
)

∪ {∞} = {∞} is not open inY.
However, if we restrict ourselves toTD-spaces we have the following result:

Proposition 3.6. Let X be a TD-space. Then X is perfect if and only ifOX is
Fσ-perfect.
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Proof: Let U ∈ OX. By hypothesis, there exists a countable family (Un)n∈N in
OX such thato(U) =

∨

n∈N c(Un). Then c(Un) ⊆ o(U) for eachn ∈ N and so
it follows from property (P2) thatU ∪ Un = X for eachn ∈ N. Consequently,
⋃

n∈N(X r Un) ⊆ U.
On the other hand, letx ∈ U. SinceX is TD it follows that there exists an open
V ∋ x such thatW = V r {x} is open as well. We have that

U →W ∈ o(U) =
∨

n∈N
c(Un)

and so there exists a countable family (Vn)n∈N in OX such thatUn ⊆ Vn for each
n ∈ N and

U →W =
∧

n∈N
Vn = Int

( ⋂

n∈N
Vn
)

.

Sincex ∈ U ∩ V it follows thatU ∩ V * W and thusV * U → W, from which it
follows thatx < U →W. Hence

x ∈ X r Int
( ⋂

n∈N
Vn
)

=
⋃

n∈N
(X r Vn).

SinceV is an open neighborhood ofx it follows thatV∩
(⋃

n∈N(XrVn)
)

, ∅. But
U →W ⊆

⋂

n∈N Vn. Hence

x ∈
⋃

n∈N
(X r Vn) ⊆

⋃

n∈N
(X r Un).

In conclusion,Fσ-perfect locales model perfect spaces with the same provisoas
in [14, III.7.2.1 (2) and III.7.3.1 (1)], that is, inside the classof TD-spaces.

Recall that a localeL is normal if a∨ b = 1 implies thata∨ u = 1 = b∨ v for
someu, v ∈ L satisfyingu ∧ v = 0. It follows from [8, Proposition 3.5] that the
classes ofFσ-perfect locales andGδ-perfect locales coincide under normality. We
include a direct proof here for the sake of completeness.

Proposition 3.7.A normal locale is Fσ-perfect if and only if it is Gδ-perfect.

Proof: We only need to prove necessity. LetL be a normalFσ-perfect locale
anda ∈ L. By hypothesis there exists a countable family (an)n∈N in L such that
o(a) =

∨

n∈N c(an). By (P2),a∨ an = 1 for eachn ∈ N. Now, the normality ofL
providesun, vn ∈ L such that

a∨ un = 1 = an ∨ vn and un ∧ vn = 0, n ∈ N.

It follows by (P2) thatc(an) ⊆ o(vn). Moreover,vn ≺ a and therefore, by (P3),

o(a) =
∨

n∈N
c(an) ⊆

∨

n∈N
o(vn) = o(

∨

n∈N
vn) ⊆ o(a).
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Hencea =
∨

n∈N vn with vn ≺ a for eachn ∈ N. Finally, by (P2) and (P3),

c(a) ⊆
⋂

n∈N
o(un) ⊆

⋂

n∈N
c(vn) = c(

∨

n∈N
vn) = c(a).

After all these considerations we drop the prefixFσ and introduce the following:

Definition 3.8. We call a localeperfectif each open sublocale is a join of count-
able many closed sublocales.

Then, we have the following (cf. [8, Propositions 3.5 and 4.2]):

Proposition 3.9.The following are equivalent for any locale L:

(1) L is perfectly normal.
(2) L is a normal and perfect locale.
(3) For each a∈ L there is a countable family(bn)n∈N in L such that a=

∨

n∈N bn

and bn ≺ a for all n ∈ N.

Remarks 3.10.(1) Perfect normality in pointfree topology was first considered
by Charalambous [3] in the context ofσ-frames. In [7], Gilmour observed that in
the class ofσ-frames perfect normality and regularity are equivalent concepts.

(2) Condition (3) was taken as the definition of a perfectly normal locale in [8]. In
the terminology of [9], it says that every element in the locale isregular-Fσ (i.e., a
countable join of elements well inside it). Note that, for any topological spaceX,
the regular-Fσ elements of the localeOX consist exactly of the regular-Fσ subsets
of X (the complements of the usual regular-Gδ subsets ofX [13]). It should be
also noted that in the definition of a regular-Fσ one may assume that eachbn is
regular. Indeed,bn ≺ a impliesbn

∗∗ ≺ a and hence

a =
∨

n∈N

bn ≤
∨

n∈N
bn
∗∗ ≤ a.

(3) For each regular-Fσ elementa, the closed sublocalec(a) is aGδ-sublocale (and
therefore the open sublocaleo(a) is anFσ-sublocale). Indeed, ifa =

∨

n∈N bn with
bn
∗ ∨ a = 1 for eachn ∈ N then by (P2) and (P3) we get

c(a) ⊆
⋂

n∈N
o(bn

∗) ⊆
⋂

n∈N
c(bn) = c

(∨

n∈N
bn
)

= c(a).

It is also easy to check that if we add normality to Proposition 3.6, then we can
conclude (underT0) that pointfree perfect normality, as normality, is a conserva-
tive extension of the classical notion, that is, aT0 topological spaceX is perfectly
normal if and only ifOX is perfectly normal:



8 J. GUTÍERREZ GARĆIA, T. KUBIAK AND J. PICADO

Proposition 3.11.Let X be a topological space.

(1) If X is perfectly normal, thenOX is perfectly normal.
(2) If X is T0, thenOX is perfectly normal if and only if X is perfectly normal.

Proof: (1) follows from Proposition3.4. Regarding (2), we first note that ifOX is
perfect and normal, then it is subfit and thus, by [10, Lemma 2.4], it is aT1 space
(henceTD). Finally, it follows from Proposition3.6thatX is perfectly normal.

4. Variants of normality and Oz locales

Now recall that a localeL is almost normal(resp. mildly normal) if for any
a, b ∈ L satisfyinga ∨ b = 1, with a regular (resp.a andb regular), there exist
u, v ∈ L such thatu ∧ v = 0 anda ∨ u = b ∨ v = 1 (note that it is redundant to
impose hereu andv to be regular sinceu∧ v = 0 iff u∗∗ ∧ v∗∗ = 0).

We can now prove the following result which is directly related to Proposi-
tion 3.7:

Proposition 4.1.Let L be a locale and let a be a regular element in L.

(1) If L is almost normal, thenc(a) is a Gδ-sublocale if and only if it is an Fσ-
sublocale.

(2) If L is mildly normal, thenc(a) =
⋂

n∈N o(an), with all an regular, if and only if
o(a) =

∨

n∈N c(an).

Proof: In both cases the proof of sufficiency follows the lines of that of Proposi-
tion 3.7replacing normality by almost and mild normality, respectively.

By Proposition3.9, a frameL is perfectly normal if and only if any element in
L is regular-Fσ. We say now that a localeL is perfectly mildly normal(or pm-
normal for short) if any regular element inL is regular-Fσ. Hence, pm-normal
locales are to perfectly normal locales the same as mildly normal locales are to
normal locales. Note that all the variants of normality we have considered are
conservative extensions of their topological counterparts.

Lemma 4.2. Suppose that a, b ∈ L satisfy a∨ b = 1 and that there exist two
countable families(an)n∈N and(bn)n∈N of regular elements such that

∨

n∈N
an ∨ b = 1 = a∨

∨

n∈N
bn,

with an ≺ a and bn ≺ b for every n∈ N. Then there exist u, v ∈ L such that
u∧ v = 0 and a∨ u = 1 = b∨ v.
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Proof: Let

u =
∨

n∈N

(

bn ∧
n
∧

i=1
ai
∗
)

and v =
∨

n∈N

(

an ∧
n
∧

i=1
bi
∗
)

.

Then

a∨ u =
∨

n∈N

(

a∨
(

bn ∧
n
∧

i=1
ai
∗
))

=
∨

n∈N

(

(a∨ bn) ∧
( n
∧

i=1
(a∨ ai

∗)
))

=
∨

n∈N
(a∨ bn) = 1.

Similarly b∨ v = 1. On the other hand,

u∧ v =
∨

n∈N

∨

m∈N

(

bn ∧
n
∧

i=1
ai
∗ ∧ am∧

m
∧

i=1
bi
∗
)

= 0

since, for each pair of naturalsn,m,

bn ∧
n
∧

i=1
ai
∗ ∧ am∧

m
∧

i=1
bi
∗ ≤ bn ∧

m
∧

i=1
bi
∗ ≤ bn ∧ bn

∗ = 0

in casen ≤ m and

bn ∧
n
∧

i=1
ai
∗ ∧ am∧

m
∧

i=1
bi
∗ ≤

n
∧

i=1
ai
∗ ∧ am ≤ am

∗ ∧ am = 0

otherwise.

Lane proved in [12] that any pm-normal topological space is mildly normal.
In our pointfree (and conservative!) setting we prove more with a much simpler
proof.

Proposition 4.3.The following are equivalent for any locale L:

(1) L is pm-normal.
(2) L is mildly normal and for each regular element a in L there exists a countable

family (an)n∈N of regular elements in L such thatc(a) =
⋂

n∈N o(an).
(3) L is mildly normal and for each regular element a in L there exists a countable

family (an)n∈N of regular elements in L such thato(a) =
∨

n∈N c(an).

Proof: (1) =⇒ (2): Let a andb be regular elements inL such thata∨ b = 1. By
pm-normality,

a =
∨

n∈N
xn and b =

∨

n∈N
yn with xn ≺ a and yn ≺ b for everyn ∈ N.

Obviously the elementsan = xn
∗ and bn = yn

∗ satisfy the conditions of the
Lemma4.2and thus there existu, v ∈ L such thatu∧ v = 0 anda∨ u = 1 = b∨ v.
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HenceL is mildly normal. On the other hand, for each regular elementa ∈ L, by
pm-normality,a =

∨

n∈N xn with xn ≺ a for everyn ∈ N. Hence, by (P2) and (P3),

c(a) ⊆
⋂

n∈N
o(xn

∗) ⊆
⋂

n∈N
c(xn) = c

(∨

n∈N
xn
)

= c(a).

(2)⇐⇒ (3): This follows from Proposition4.1(2).

(3) =⇒ (1): Leta be a regular element inL. By hypothesis there exists a countable
family (an)n∈N of regular elements inL such thato(a) =

∨

n∈N c(an).Hencea∨an =

1 for eachn ∈ N. SinceL is mildly normal, it follows that there existun, vn ∈ L
such thatun ∧ vn = 0 anda∨ un = 1 = an ∨ vn for eachn ∈ N. Consequently (by
(P2) and (P3) again),

o(a) =
∨

n∈N
c(an) ⊆

∨

n∈N
o(vn) ⊆

∨

n∈N
c(un) ⊆ o(a).

Locales where each regular element is a cozero element are called Oz locales
and are the natural pointfree counterpart of Oz spaces. Theywere introduced in
[2] and further studied in [1]. Recall that, by Proposition 2.3 of [1], a locale is Oz
if and only if every element of the form

∨

n∈N(an ∧ bn) with all an andbn being
regular is a countable union of elements well inside it.

The next result, which seems to have escaped to the authors of[1], shows that
the class of Oz locales contains that of perfectly normal locales.

Proposition 4.4.A locale is Oz if and only if it is pm-normal.

Proof: Necessity is obvious. For sufficiency, leta =
∨

n∈N(an ∧ bn) with all an

andbn being regular. By pm-normality, each regular elementL is regular-Fσ and
therefore

an =
∨

{x ∈ L∗ | x ≺ an} and bn =
∨

{y ∈ L∗ | y ≺ bn} for eachn ∈ N.

Then
a =
∨

n∈N

∨

{x∧ y | x, y ∈ L∗, x ≺ an, y ≺ bn}.

For each suchx andy, we have thatx∧y ≤ (x∧y)∗∗ ∈ L∗ and (x∧y)∗∗ ≺ (an∧bn) ≤
a, since

(x∧ y)∗ ∨ (an ∧ bn) ≥ (x∗ ∨ an) ∧ (y∗ ∨ bn) = 1.

Hencea =
∨

{z ∈ L∗ | z≺ a}.

Remarks 4.5.(1) Cozero elements are regular-Fσ, sincea ∈ CozL if and only if
a =
∨

n∈N an for somean ≺≺ a (where≺≺ denotes the really inside relation [11]).
The converse is obviously true in Oz locales.
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(2) If ≺ is interpolative (e.g., ifL is a normal locale), then regular-Fσ elements are
cozero elements also. More generally, in any almost normal locale, each regular-
Fσ element belongs to CozL. In fact, fora =

∨

n∈N an with an ≺ a andan regular,
by almost normality there existun andvn such thatun ∧ vn = 0 anda∗n ∨ un = 1 =
v∗n ∨ a, hencean ≺ un ≺ a (sinceu∗n ∨ a ≥ vn ∨ a = 1). Thenan ≺≺ a.

5. Images of perfect locales

In this final section, we show that, as happens with normality, perfectness is an
invariant property under closed maps, providing more evidence for our choice in
Definition 3.8.

We start by recalling from [14] that alocalic mapis a mapf : L→ M satisfying

(1) f (
∧

S) =
∧

f (S) for anyS ⊆ L,]
(2) f (a) = 1 implies thata = 1, and
(3) f ( f ∗(b)→ a) = b→ f (a) for everya ∈ L andb ∈ M,

wheref ∗ denotes the left adjoint off , that exists by condition (1). This left adjoint
is a frame homomorphism(i.e., it preserves arbitrary joins and finite meets). A
localic mapf is closedwhenever the image of each closed sublocale of the domain
is closed. In that case,f [c(a)] = c( f (a)).

Each localic mapf : L→ M induces theimage map

f [−] : S(L)→ S(M),

left adjoint to thepreimage map

f −1[−] : S(M)→ S(L).

Open sublocales are preserved by preimages. More specifically:

f −1[o(b)] = o( f ∗(b)) for everyb ∈ M.

Furthermore, iff is surjective then the compositef f −1 satisfies

f f −1[o(b)] = o(b) for everyb ∈ M.

Indeed: the inclusion “⊆” follows from the adjunctionf [−] ⊣ f −1[−]; moreover,
for eachb→ y in o(b), we have

b→ y = b→ f (a) = f ( f ∗(b)→ a)

for somea ∈ L (by ontoness off ) where f ∗(b)→ a ∈ o( f ∗(b)) = f −1[o(b)].
We can now prove that perfectnes is invariant under closed localic maps.
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Proposition 5.1.Let f : L → M be a surjective localic map. If f is closed and L
is perfect, then M is also perfect.

Proof: Let b ∈ M. SinceL is perfect it follows thatf ∗(b) =
∨

n∈N c(an) for some
countable family (an)n∈N in L. Then, sincef [−] preserves arbitrary joins, we have

o(b) = f f −1[o(b)] = f [o( f ∗(b))] = f [
∨

n∈N
c(an)] =

∨

n∈N
f [c(an)] =

∨

n∈N
c( f (an)).

Remark 5.2. Note that in generalf [−] does not preserve countable meets, so that
the previous argument does not work if we replace perfectness byGδ-perfectness.
This gives us one more argument for choosingFσ-perfectness as the right way to
extend the topological notion of perfectness to the pointfree setting.

Corollary 5.3. Let f : L→ M be a surjective localic map. If f is closed and L is
perfectly normal, then M is also perfectly normal.

Proof: Just combine the proposition above with the fact, proved in[9, Corollary
9.4], that normality is also invariant under closed localicmaps.
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