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ABSTRACT: In the literature, most of the descriptions of different classes of Leibniz
superalgebras (£ = £5® £1, [+, -]) have been made by given the multiplication table
on the elements of a graded basis B = {vg}rex of £, in such a way that for any
i,j € K we have [v;,vj] = A j[vj, v;] € Fuy, for some k € K, where F denotes the base
field and \; ; € F. In order to give a unifying viewpoint of all these classes of algebras
we introduce the category of Leibniz superalgebras admitting a multiplicative basis
and study its structure. We show that if a Leibniz superalgebra £ = £5® £1 admits
a multiplicative basis then it is the direct sum £ = @, Z, with any Z, = Ia,6 bL ol
a well described ideal of £ admitting a multiplicative basis inherited from B. Also
the B-simplicity of £ is characterized in terms of J-connections.
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1. Introduction and previous definitions

Leibniz superalgebras appear as an extension of Leibniz algebras (see [4, 5,
10, 13, 14, 15, 16, 17]), in a similar way than Lie superalgebras generalize Lie
algebras, motivated in part for its applications in Physics. The present paper
is devoted to the study of the structure of Leibniz superalgebras £ admitting
a multiplicative basis over a field F. Since a Leibniz algebra is a particular
case of a Leibniz superalgebra (with £ = {0}), this work extends the results
exhibited in [6]. We would like to remark that the techniques used in this
paper also hold in the infinite-dimensional case over arbitrary fields, being
adequate enough to provide us a second Wedderburn-type theorem in this
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general framework (Theorems 2.1 and 3.1). Moreover, although we make use
of the ideal J which is deeply inherent to Leibniz theory, we believe that our
approach can be useful for the knowledge of the structure of wider classes of
algebras.

Definition 1.1. A Leibniz superalgebra £ is a zo-graded algebra £ = £5® £
over an arbitrary base field F, with its bilinear product denoted by [-, ],

whose homogenous elements = € £;,y € £5, 1,] € Zy, satisfy

[z, y] € &5

[z, [y, 2]] = [[&.y], 2] = (=1)*[[x,2],4] (Super Leibniz identity)

for any homogenous element z € SE,E € Zo.

Remark 1.1. Note that Super Leibniz identity is considered by the right side
in the sense that the multiplication operators on the right by elements in £;
are derivations on the homogeneous elements, as it is done in the references
[4, 5, 10, 13, 17]. However, we could have considered a Super Leibniz identity
in which the multiplication operators on the left by elements in £5 would act
as derivations on the homogeneous elements, as it is the case in the references
[14, 15, 16]. Of course, the development of the present work would have been
similar in this case.

Clearly £5is a Leibniz algebra. Moreover, if the identity [z, y] = —(—1)%[y, x]
holds, then Super Leibniz identity becomes Super Jacobi identity and so
Leibniz superalgebras generalize also Lie superalgebras, which is of interest
in the formalism of mechanics of Nambu [12].

The usual concepts are considered in a graded sense. A subsuperalgebra A
of £ is a graded subspace A = Ay ® As satisfying [A, A] C A. An ideal T of
£ is a graded subspace Z = 75 @ Z7 of £ such that

17,2 +[L,TI]CT.
The (graded) ideal J generated by
{[x,y] + (—I)E[yym] X e S;,y € S;,E,j - ZQ}

plays an important role in the theory since it determines the (possible) non-
super Lie character of £. From definition of ideal [J, £] C J and from Super
Leibniz identity, it is straightforward to check that this ideal satisfies

,3] = 0. (1)
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Here we note that the usual definition of simple superalgebra lacks of interest
in the case of Leibniz superalgebras because would imply the ideal 7 = £ or
J = 0, being so £ an abelian (product zero) or a Lie superalgebra respec-
tively (see Equation (1)). Abdykassymova and Dzhumadil’daev introduced
in [1, 2] an adequate definition in the case of Leibniz algebras (L, [-,-]) by
calling simple to the ones such that its only ideals are {0}, L and the one
generated by the set {[z,z] : * € L}. Following this vain, we consider the
next definition.

Definition 1.2. A Leibniz superalgebra £ is called simple if [£, £] # 0 and
its only (graded) ideals are {0},J and £.

Observe that we can write

=707
where =3 = =35 @ —J7 is a linear complement of J = J5 @ J7 in £ (here we
adapt this notation in order to standardize the one already used in [7, 8, 9]).
Actually =7 is isomorphic as linear space to £/7, the so called corresponding
Lie superalgebra of £. In general, =7 is not an ideal of £ from [J,-J] C 7.
Then the multiplication in £ is represented in the table

I 3 O 0%
3% 10 ;0 op
=I5 0 Jg@—Tg 0 Iy -J;
310 3 0 T
=300 Jr@ I 0 Jgd Ty

Hence, by taking By. and B3 bases of J; and —J;, for 1 € Zs, respectively,
then
B = (BJGUBJT)U(BﬁjaUBﬁjT)
—_—— N——
B; B_s
is a basis of £.

Definition 1.3. A basis B = {v,; : k € K, © € Zy} of £ is said to be
multiplicative if for any ki, ks € K1, ] € Zo we have [Uk:l,% UkQJ] € Fuy 7,7 for
some k € K.

Example 1.1. Consider the 5-dimensional Zs-graded vector space £ = £5®
£1, over a base field F of characteristic different from 2, with basis By =
{e1, e2}, By, = {uq, up, uc}; where the products on these elements are given
by:

[Up, Ug) = —Ue,  [Ug, Up] = Uy [Ug, U] = —2uq,
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[Ue, U] = 2Uq, (e, up] = —2up, [up, uc] = 2uy,

le1, up] = €2, [e1,uc] = —e1, [ea,uq] = €1, [ea, uc] = e,
and where the omitted products are equal to zero. Then £ = £5® £1 becomes
a (non-Lie) Leibniz superalgebra admitting B = B3 UB-5. as multiplicative
basis.

Example 1.2. Let us denote by N* the set of non-negative integers. Consider
the infinite-dimensional complex Zs-graded vector space £ = £5 & £ with
basis B’jT = {e(n’k) 'n, k€ N* and k < n}, Bﬁja = {e(n’_l),e(n,_g),e(n,_g,) :
n € N}; with the following table of multiplication:

[€(n,—1)s €(n,—3)] = 2€(n,—1), [€(n,—3)s E(n,—1)] = —2€(n,—1),
[€(n,—2)» €(n,—3)] = —2€(n,—-2); [€(n,—3)> €(n,—2)] = 2€(n,—2),
[etn,—1) €(n,—2)] = €(n,—3); [e(n,—z) Cln,—1)] = —€(n,—3);
[e(n,k), €(n7_3)] (n — 2/€) cfor 0 <k <mnm;

[e(n,k)a 6(n,—2)] €(n,k+1)» for 0<k<n-—1;
leni)s €n,—1)] = k(k —n — 1)ep 1), for 1 <k < n;

and where the omitted products are equal to zero. Then £ = £5 ® £7 is
a (non-Lie) Leibniz superalgebra admitting B = B3 UB-5, as multiplicative
basis.

Remark 1.2. Observe that if we write
sz_ = {enj}ngj2 and Bﬁj{ = {ung}re(]g, for i € L.

Since J is an ideal together with Equation (1) we know that the only possible
non-zero products among the elements in B are:

1) For n € L,r € J; and i,] € Zy we have [e
j

k € Ii—i—j

(2) For r € J;, s € J; and i,j € Zy we have either [u,;,u,5] € Fu);,5 for

TZ’
some [ € Jg 45 or [u uys| € Fe for some n € ;-

nz+j i+

ni> Up5) € Fey .5 for some

7"27

Lemma 1.1. Let (£,[-,-]) be a Leibniz superalgebra over a base field F of
characteristic different to 2. If B = {vg}rex is a graded basis of £ such that
for any ki, ke € K we have [vg,, Vi,] = Aiy ko [Vkys Uk, ] € Fug for some k € K
and some A, r, € F then £ admits B as multiplicative basis.
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Proof: By the definition of J we see that it is generated as linear space by
{v; : j € J}, for some subset J of K. So we can find a basis By of J
formed by elements of B and a basis By := B\ By of =J which make of B a
multiplicative basis. |

The preceding lemma shows that all commutative (up to a scalar) Leibniz
superalgebras admit a multiplicative basis. For instance, this is the case of
null-filiforms Leibniz superalgebras, Leibniz superalgebras of maximal nilin-
dex or Leibniz superalgebras with nilindex n +m + 1 (see [3, 10, 11]).

The paper is organized as follows. In §2 inspired by the connections of roots
developed for split Leibniz algebras and superalgebras in [7, 8], we introduce
similar techniques on the index set of the multiplicative basis B. Our purpose
is to obtain a powerful tool for the study of this class of superalgebras. By
making use of these results we see that any Leibniz superalgebra £ admitting
a multiplicative basis is of the form £ = &, Z,, where every Z, is a well
described ideal having a multiplicative basis inherited from B. In §3 the
B-simplicity of these ideals is characterized in terms of the J-connection.

2. Decomposition as direct sum of ideals

In what follows £ = (J5® —J5) ® (J7 @ —J7) denotes a Leibniz superalgebra
over a base field F admitting a multiplicative basis

B = (B3,UB;5.)U(B-3,UB-3.) (2)
where By, = {e,;tner. and B3, = {u,;}res, for i € Zy, and where, by
renaming if necessary, we can suppose K; N P; = ) for any K, P € {I,J},
1,] € Z9 and K{# P}

We begin this section by developing connection techniques among the ele-
ments in the index sets [{UUJ5UJ7 as the main tool in our study. Now,
for each k € IjUI;UJ3UJ;, a new assistant variable k ¢ IgULUJ5UJ; is
introduced and we denote by

E::{ﬁ:nelg} andj;::{?:re J-},
for 1 € Zs, the sets consisting of all these new symbols. Also, given any
ke K., Ke{I, J}, i€ Zy, we denote

o~

(k) == k.
Finally, we write by P(A) the power set of a given set A.
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Next, we consider an operation which recover, in some sense, certain mul-
tiplicative relations among the elements of the basis B:

w1 (LULEUJRUTE) x (EULUEURULEUEUTUT) — PILULU LU T),
where for any i, j € Zy is defined by
oFornE];,mE];,

nxm := ()
e For n € I; and r € J5,
0, if e, 7,u,5] =0
" {m}, 1f07é[eng,um]€ emir; With m € I 5

oFornEI;andﬁzefj,

nxm:={r € J;:0# e, u.;.5 €Fe,;}
eforne ;and 7 € j;,

nxr:={s € J5:0#[u.;u.; €Fe,;}U

{te‘]ﬂ—; 0#[utz—|—]7 ]eFenz}U{mE[i—i—} 0#[6’”124—] ]E]FG }
.FOI.TEJi,SGJj,

0, if [u,5,u,5] =0
rxs:=< {t}, if0# [um,u 7l € Fuyz;
{n}, if 0# [u,;,u,;] € Fe, ;.5
oForTGJ;andﬁefj,
rxmn =
e For r € J; and s € j*
ras = {t € Ji5:0# [uzig.uj) € Fu3U{q € Jij: 0 # [ug5,ug5,5] € Fu, 3}

The mapping * is not still adequate to use in an iterative process necessary
for our purposes and so we need to introduce the following one:

¢ P(LULUTUT) X (LUEUEUFULOEUTUT)) — PO,
as
° ¢(®, I@U[TUJﬁLJJTUf@UfTUj@UJT)) = @,



LEIBNIZ SUPERALGEBRAS ADMITTING A MULTIPLICATIVE BASIS 7
e Forany () # K € P(I;UI;UJ50J;) and a € IUIUJ;0J0 LU0,
S(K,a) == | J(kxa)U(axk).

keK

Lemma 2.1. For any K € P(I;ULUJ;UJT) and a € IgU[TUJgUJTUIN@UINTUj@Uj{),
k€ ¢(K,a) if and only if p({k},a) N K # 0. (3)
Proof: Tt is straightforward to observe that for any ki, ko € I3UI;UJ5UJt and
a € IUUJ3UJOIUI0J500;

we have ko € k1 xa U a x k; if and only if k; € ky x a. [

Definition 2.1. Let k and &’ be elements in the index set I;U{UJ;UJr. We
say k is connected to k' if either k = k’ or there exists a subset

{ki, ko, .. kn_1, kn} C LULUJUJUL U0 J500
with n > 2 such that the following conditions hold:
1. ky = k.

2. o({k1}, ko) # 0,
o(o({k1}, 'Z€'2)7 k3) # 0,

(6 (SR} Ka), -+ ), Kia), bno) # 0.
3. K € ¢(¢( o (QS({]CI}) k?)? T )7 kn—l)a kn)

The subset {k1, ko, ..., kn_1,kn} is called a connection from k to k',

Proposition 2.1. The relation ~ in I[jUIUJ3UJ;, defined by k ~ k' if and
only if k is connected to K, is an equivalence relation.

Proof: By definition k£ ~ k, that is, the relation ~ is reflexive. Let us see
the symmetric character of ~: If & ~ k' with & # k' then there exists a
connection

{kla k?? ey knfla kn}
from k to k' satisfying Definition 2.1. Let us show that the set

(K K ke, ... ks, ko)
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gives rise to a connection from k' to k. Indeed, by taking

K — ¢( .. (¢({]€1}, kg), T )7 kn—l)

we can apply the relation given by (3) to the expression

K e ¢(K, k)

to get B

Sk} k) VK # 0
and so N

O({k'} k) # 0.

By taking

he ¢({k'} k) MK,
then

heK= ¢( o (¢({k1}7 k2)7 T )7 kn—l),
by the relation given by (3) we get

S({h}, k1) N (- ({1}, ko), -+ ), k) # 0,
but h € ¢({k'}, ky), therefore {h} C ¢({k'}, k,) and consequently

S O(K Y, En), k1) N G( - (S({k} ko), -+ ), Kona) # 0.

By iterating this process we get

H(O(- - (SR} Kn)y ) onrit) Kony)
qb( (( ({k1}7k2)>"')7kn—r—2)7 n—r—l)?’é(b

for 0 <r <n — 3. Observe that this relation in the case r = n — 3 reads as

S(D(- - (PR} Fn), - ), k), k) N (LK}, k2) #0.

Since ky = k, if we write K := ¢(¢(- - - (¢ ({k’} kn),---), k4), ks), the previous

observation allows us to assert ¢({k},ks) N K # (). Hence the relation (3)
applies to get

k€ (o (6L} Kn), -+ ), Ks), o)

and concludes ~ is symmetric.

Finally, let us verify the transitive character of ~. Suppose k ~ k' and
K~ K' Itk =Fk or ¥ = k" it is trivial, so suppose k # k' and k' # K"
and write {ki, ..., k,} for a connection from k to k¥’ and {k'y,... K, } for a
connection from k' to k”. Then we clearly see that {ki,...,k,, K'o, ..., K'}
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is a connection from k' to k”. We have shown the connection relation is an
equivalence relation. |

By the above proposition we can consider the next quotient set on the index
set [6UITUJGUJT7

(I@U[TUjﬁUJT)/ ~= {[k}] ke [6U]TUJ60JT}7
becoming [k] the set of elements in I{UI{UJ5UJ; which are connected to k.

Our next goal in this section is to associate an ideal Zy; of £ to any k]
Fix k € I[jUI{UJ;UJg, we start by defining the linear subspaces ] = I oD
j[k],T C J and ﬁ’J[k] = _'j[kz} 0 SP) _'j[ k), 1 C —J as follows

@ Fe, ; C T,

ﬂI
@ ]Fuhz _'J7
helk]NJ;

for any i € Z,. Finally, we denote by T}y the direct sum of the two subspaces
above, that is,

Zity = Tpo @ Ipyr) © ("Ipw0 © ~Tpgy 1)

Definition 2.2. Let £ be a Leibniz superalgebra admitting a multiplicative
basis B. A subsuperalgebra A C £ admits a multiplicative basis B4 inherited
from B if B4 is a multiplicative basis of A satisfying B4 C B.

Proposition 2.2. For any k € I[JUUJ;UJ;, the linear subspace Ly is an
ideal of £ admitting a multiplicative basis inherited from the one of £.

Proof: We can write
Zi, £ = Oy @ ~Ipg, (D Fep) @ (EP Fe,1) @ (P Fu,p) & (D Fu, 1))
nely mely rcJy seJg

In case [e;7,u,5] # 0 for some [ € [k] N [;;r € J; and i,j € Zy, we have
0 # [e;5,u,5] € Fe, 777 with p € I; 5 and so p € ¢({l},r) = [ xr, therefore
the connection {l,r} gives us [ ~ p, so p € [k] and then 0 # [e;7,u,5] € Tp.

Hence we get
[J[k],(@Fu @Fusl ] C I[ K]-

reJy seJt
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In a similar way we have [=Jp, (D, s Fu,5) & (Dyes Fuy1)] C Iy and
taking into account Equation (1) we conclude

[I ] C I[k].
On the other hand,

[svz[k]] - [(@ ]Fen,ﬁ) D (@ Femj) D (@ Fu @Fus 1 ,J @ _'J[ ]]

nely mely redy seJg

and in case 0 # [e, 7,u;,5] for some n € I;h € [k] N J; and 1,5 € Zy we
have [e,7,u;,5] € Fe,;,5 with p € IH} Then p € ¢({h},n) = hxn and
we see that the connection {h,n} gives us h ~ p and so [(D,cr Fe,5) ®

(@mEIT Fe,.1), " Jm) C Iy C I[k]. In a similar way

(EDFu,q) @ (@D Fu,; | C Iy,

rcJg seJg
and by Equation (1) then
[S,I[k]] C Z[k].
Hence Zy, is an ideal of £.
Finally, observe that the set

Bz, = {e,5:n € [k] N [5}U{e,1:m € [k] N [;}U

{'U/,r.,ﬁ cr e [klN J@}U{Usj s € [k] N Jp}
is a multiplicative basis of Zy; satisfying Bz, C B. Hence we see that Zj
admits a multiplicative basis inherited from the one of £. |

Corollary 2.1. If £ is simple, then there exists a connection between any
couple of elements in the index set I;UI{UJ5UJr.

Proof: The simplicity of £ implies [£, £] # 0 and so =T # (), then at least
there exists ry € J;,i € Zs, such that {u,, 7} C B-3,. Applying Proposition
2.2, Ij,) is an ideal and by its construction Zy,,; ¢ J, therefore Z, ) = £ being
then [rg] = IJUUJ;UJr. That is, any couple of elements in IfUIUJ5UJt
are connected. |

Theorem 2.1. A Leibniz superalgebra £ admitting a multiplicative basis de-
composes as the direct sum

&= D I

[k] € (IgUITUJﬁLJ JT) /N
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where any Ly = T © —Jpy is one of the ideals, admitting a multiplicative
basis inherited from the one of £, given in Proposition 2.2.

Q.

Proof: Since we can write £ =7 & —J an

= D wI= D W

[k] € (IGUITUJaLJJT)/N [k] E(IGUITUJUUJT)/N

From Zy; = Ty & —J) by definition, we clearly have

L= b Ty

[k‘] € (IgUITUJﬁLJ JT) /N
|

Example 2.1. Consider the Leibniz superalgebra £ = £5 @ L1 presented in
Ezxample 1.1. We have I7 = {1,2} and Jy = {a, b, c}. From the multiplication
table of £ it is not difficult to write the operation * in a concrete way. For
instance, we have

1*6:2*@:{1} a*b:b*a:{C}

lxb=2xc={2} axc=c*a={a}
Then, we can also obtain an explicit expression of the mapping
¢+ P(IUIUJ500;) x (Ig0IgUJs0J0I0I0 T30 dy) — P(IUIUJ50J5).
Observe that the connection {1,b} gives 1 ~ 2, with the connection {a, b} we
have a ~ ¢ and considering {b,a} we obtain b ~ c. Since 1 %2 = {b} we
get 1 ~ b and therefore (IUIUJ;UJy)/ ~= {[1]} where [1] = {1,2,a,b, c}.
By Theorem 2.1 we see that £ = Zp), where Ly is an ideal of £ with a
unique (multiplicative) basis {1,2,a,b,c}. In fact, since £ is a simple (non-
Lie) Leibniz superalgebra, by Corollary 2.2 all elements in [{UI{UJ;UJr are
connected and we just have one ideal.

Example 2.2. Let £ = £5 ®© £1 be the Leibniz superalgebra considered in
Example 1.2. We have I = {(n,k) : n € NJO < k < n} and J =
{(n,—1),(n,—2),(n,—3) : n € N}. From the multiplication table of £ it
18 not difficult to express the operation x completely. For instance, we have

(n,k)*(n,—3) ={(n,k)} kel
(n,k)*(n,—2) ={(n,k+1)} ke{0,...,n—1}
En, k) * (n,—1) _{(n,k—l)} ke{l,...,n}

n,—1) x (n, —2)_ (n, —2) % (n,—1) = {(n,—3)}
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(n,—1)x (n,—3) = (n,—3) x (n,—1) ={(n,—1)}
(n,—2) * (n,—3) = (n,—3) x (n,—2) = {(n, —2)}

From here, we can also obtain an explicit expression of the mapping
¢+ P(IUI0J5007) x (Ig0I0 500000 J507) — PIGUIUJ50Ty).
Observe that the connection {(n,—1), (n,—2)} gives (n,—1) ~ (n,—3), with
the connection {(n,—2),(n,—2)} we get (n,—2) ~ (n,—3), the connection
{(n,k +1),(n,k)} let us assert (n,k + 1) ~ (n,—2) and considering the
connection {(n,k—1), (n, k)} we have (n,k—1) ~ (n,—1), fork € {0,...,n—
1} and k € {1,...,n}, respectively. Hence,
(lULUJgUJr)/ ~= {[(n,0)] : n € N}
where any
(9,0)] = {(m,5) : 0 < & < 0} U{(m, —1), (n,~2), (n, ~3)}

and so Theorem 2.1 allows us to assert

£ =P o

neN
being any ZLin.0)) = Zi(,0),0P L0017 With Ly 005 = sPan{e(, 1), €(n,—2): €(n.-3) }
and Ly, o1 = span{ep) 1 0 < k < n}, an ideal admitting a (multiplicative)
basis inherited from the one of £.

3. The B-simple components

In this section our target is to characterize the minimality of the ideals
which give rise to the decomposition of £ in Theorem 2.1, in terms of con-
nectivity properties in the index set IfUI{UJ;UJ7. Taking into account Defi-
nition 1.2 we introduce the next concept in a natural way.

Definition 3.1. A Leibniz superalgebra £ admitting a multiplicative basis B
is called B-simple if [£, £] # 0 and its only ideals admitting a multiplicative
basis inherited from B are {0},J and £.

As in the previous section, £ = (J; & —J5) & (I1 ® —J1) denotes a Leibniz
superalgebra over an arbitrary base field IF and of arbitrary dimension, admit-
ting a multiplicative basis B = (By,UBs,)U(B-3,UB-3;) where By. = {e,;}ner.
and B3 = {u,;}res, for i € Zy, and where K;NP; = forany K, P € {I, ]},
1,] € Zso and K; + Pj



LEIBNIZ SUPERALGEBRAS ADMITTING A MULTIPLICATIVE BASIS 13

We have the opportunity of restricting the connectivity relation to the set
I5UI; and to the set J;UJt by just allowing that the connections are formed
by elements in JyUJUJsUJ;r. Then we say two indexes of YgUTy, where
either T € {I, J}, are J-connected.

Definition 3.2. Let k& and k&’ be two elements in TgUY7 with either T = I
or T =J. We say k is J-connected to k' and we denote by k ~; k', if either
k = k' or there exists a connection {ry,rs,...,r,} from k to &’ (in the sense
of Definition 2.1) such that

ro,...,Tp € J@UJTUj@UjT
We also say the set {ry,79,...,7,} is a J-connection from k to k'.

We observe that it is straightforward to verify the arguments in Proposition
2.1 allow us to assert that the relation ~ is an equivalence relation in I;Ul;
and in JyUJ7. Therefore

(YoUYy)/ ~y={[k]s : k € TUT1}

becoming [k]; the set of elements in YUY which are J-connected to k, with
either Y =7 or T = J.

Let us introduce the notion of x-multiplicativity in the framework of Leibniz
superalgebras with multiplicative bases, in a similar way to the ones of closed-
multiplicativity for split Leibniz algebras, split Leibniz superalgebras and
graded Leibniz algebras (see [7, 8, 9] for these notions and examples). From
now on, for any :7v € jg, 1 € Zo, we denote Uz = 0.

Definition 3.3. A Leibniz superalgebra £ = J® -7 admits a x-multiplicative
basis B = {v; : k € K, 1 € Zy}, which decomposes as in Equation (2), if it is
multiplicative and for any k,r € I;U{UJ;UJy and a € IUIUJ5U JTUI%U]%U j@L'JjT
such that k € r x a, then v ; € [v,7, £,5].

Proposition 3.1. Suppose £ admits a x-multiplicative basis B. If J3UJt has
all of their elements J-connected, then any nonzero ideal I C £ with a mul-
tiplicative basis inherited from B such that T ¢ J satisfies T = £.

Proof: Since T ¢ J we can take some ry € J; such that

0#£u, : €. (4)

T0,%0
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for certain iy € Zy. We know that J5UJt has all of their elements J —conllected.
If J5UJr = {ro} trivially =3 C Z. If [ 5UJ7| > 1 we take s € J; (with j € Zs)
different from ry, being then 0 # Fu, >, we can consider a J-connection
{ro,ra, .. rn} C JUJUTUT; (5)
from r( to s.
We know that

o({ro},m2) # 0

and so we can take a1 € ¢({ro},r9) = ro*ro. Now, taking into account
Equation (4) and the x-multiplicativity of B we get, if a; € J; |5

O # U’al,go—f—j € F[“To,ig? ulg,j] C I
or, if a; € I; .5

O # 6a1,go+3 € ]F[u’l“o,go’ ulQJ] C I
for Iy = {ry, 72} N J7 and j € Zo.

Since s € JyUJy, necessarily ¢({ro},r2) N (JgUJy) # 0 and we have
0# € Fu,;cT (6)
re¢({ro},ro)NJ;

for any i € Z,. Since

¢(¢({T0}7 TQ)? 7’3) 7é 0

we can argue as above, taking into account Equation (6), to get

0 # b Fu,; C T

reg(p({ro},r2),rs)NJ7
for i € Z,. By reiterating this process with the J-connection (5) we obtain
0 # D Fu,; C Z.

Tefb((b('”(d)(r()vr?)v”')arn—l)arn)ﬂ‘]{
Since s € ¢(d(- - (@(ro,72), ), Tu-1),7n) N J5 we conclude u,; € T for all
s € J;\ {ro} and j € Zy and so

= P (Fu,;®Fu,;) . (7)
pEJ@qGJT

Considering J C [J, =3] + [=7, =J] by *-multiplicativity, Equation (7) allows
us to assert
JcZ (8)
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Finally, since £ = J @& =7, Equations (7) and (8) give us Z = £. u

Proposition 3.2. Suppose £ admits a *-multiplicative basis B. If I;Ul;
has all of its elements J-connected, then any nonzero ideal I C £ with a
multiplicative basis inherited from B such that T C J satisfies T = 7.

Proof: Taking into account Z C J we can fix a some ng € [; satisfying
0 # €noio € z

for certain ig € Zs. Since I3UIT has all of its elements J-connected, we can
argue from ny with the x-multiplicativity of B as it is done in Proposition
3.1 from 7y to get I C Z and then Z = 7. |

Theorem 3.1. Suppose £ admits a x-multiplicative basis B. Then £ is B-
simple if and only if IUI7 and JyUJ7 have respectively all of their elements
J-connected.

Proof: Suppose £ is B-simple. We take n € IjUI; and we observe that the
linear space
&y (Fe,,5 © Fe;1) is an ideal of £ with a multiplicative basis

melzN(n]s,lelyNin];
inherited from B. Indeed, we have trivially

[E, @ (Fe,,5® Feu)} + { @ (Fe,,g®Fe;1),T3| C

melzN[n]s,lel;Nn]s melzNin]s,lel;Nn]y

C [£,T7]=0.

We only need to prove

{ b (Fen,5® Fey1),u,5 @ us,l} C ) (Fe,,5 @ Fe; 1)
melgNin|slelzN[n]; melzNin]s,lelzN(n];
for any r € Jg, s € Jr. In fact, given any e, 7 b (Fe,,5®Fe; 1)

melzN[n]s,lel;Nn]s
such that 0 # [e, 7, u; 5] = e,7 .5, for u, 5 € {u,5,u,7} and some p € [; 5.
We have p € ng+t and so {ng,t} is a J-connection meaning that ny ~; p.
By the symmetry p ~; ng and by transitivity of p ~j ng ~; n, and we get

Cpio+] = @ (]Fem,ﬁ S Feli)'

melzNin|s,lelyNn]
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Hence [e,, 7, u;3] C &P (Fe,, 5 ® Fe 1) as desired. We conclude

melzN[n]s,lelzNin]s

) (Fe,5® Fe; 1)

melgNnin]ylelN[n],

n0,i0°

is an ideal of £ endowed with a multiplicative basis inherited from B (trivial

by construction) and so, by B-simplicity, necessarily &y (Fe,,5®
mEIaﬂ[n]J,ZGITﬂ[n]J
Fe;7) = T and consequently any couple of indexes in I are J-connected.

Consider now any r € J and the linear subspace

S5 o (Fu,p @ Fuyz).

seJgNr] s teJN(r] s

Q2

Using a similar argument to the above one we see this linear subspace is
actually an ideal of £ which admits a multiplicative basis inherited from 5.
From B-simplicity,

J® & (Fu,p @ Fu,1) = £
SGJEQ[’/‘]J,tEJTﬁ[T]J
which implies in particular

P (b (Fu,g ®Fu,1) =@ P (Fu,5® Fu,y)

SEJ@Q[T]J,tEJTﬁ[T]J TEJ@,QEJT

(]

and so we get any couple of indexes in J are also J-connected.

Conversely, consider Z a nonzero ideal of £ admitting a multiplicative basis
inherited by the one of £. We have two possibilities for Z, either Z ¢ J or
Z C J. In the first one, Proposition 3.1 gives us Z = £, while in the second
one Proposition 3.2 shows Z = J. Therefore in both cases £ is B-simple. =
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