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Abstract: In the literature, most of the descriptions of different classes of Leibniz
superalgebras (L = L0⊕L1, [·, ·]) have been made by given the multiplication table
on the elements of a graded basis B = {vk}k∈K of L, in such a way that for any
i, j ∈ K we have [vi, vj ] = λi,j [vj , vi] ∈ Fvk for some k ∈ K, where F denotes the base
field and λi,j ∈ F. In order to give a unifying viewpoint of all these classes of algebras
we introduce the category of Leibniz superalgebras admitting a multiplicative basis
and study its structure. We show that if a Leibniz superalgebra L = L0⊕L1 admits
a multiplicative basis then it is the direct sum L =

⊕
α Iα with any Iα = Iα,0⊕Iα,1

a well described ideal of L admitting a multiplicative basis inherited from B. Also
the B-simplicity of L is characterized in terms of J-connections.
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1. Introduction and previous definitions
Leibniz superalgebras appear as an extension of Leibniz algebras (see [4, 5,

10, 13, 14, 15, 16, 17]), in a similar way than Lie superalgebras generalize Lie
algebras, motivated in part for its applications in Physics. The present paper
is devoted to the study of the structure of Leibniz superalgebras L admitting
a multiplicative basis over a field F. Since a Leibniz algebra is a particular
case of a Leibniz superalgebra (with L1 = {0}), this work extends the results
exhibited in [6]. We would like to remark that the techniques used in this
paper also hold in the infinite-dimensional case over arbitrary fields, being
adequate enough to provide us a second Wedderburn-type theorem in this
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general framework (Theorems 2.1 and 3.1). Moreover, although we make use
of the ideal I which is deeply inherent to Leibniz theory, we believe that our
approach can be useful for the knowledge of the structure of wider classes of
algebras.

Definition 1.1. A Leibniz superalgebra L is a Z2-graded algebra L = L0⊕L1

over an arbitrary base field F, with its bilinear product denoted by [·, ·],
whose homogenous elements x ∈ Li, y ∈ Lj, i, j ∈ Z2, satisfy

[x, y] ∈ Li+j

[x, [y, z]] = [[x, y], z]− (−1)jk[[x, z], y] (Super Leibniz identity)

for any homogenous element z ∈ Lk, k ∈ Z2.

Remark 1.1. Note that Super Leibniz identity is considered by the right side
in the sense that the multiplication operators on the right by elements in L0

are derivations on the homogeneous elements, as it is done in the references
[4, 5, 10, 13, 17]. However, we could have considered a Super Leibniz identity
in which the multiplication operators on the left by elements in L0 would act
as derivations on the homogeneous elements, as it is the case in the references
[14, 15, 16]. Of course, the development of the present work would have been
similar in this case.

Clearly L0 is a Leibniz algebra. Moreover, if the identity [x, y] = −(−1)ij[y, x]
holds, then Super Leibniz identity becomes Super Jacobi identity and so
Leibniz superalgebras generalize also Lie superalgebras, which is of interest
in the formalism of mechanics of Nambu [12].

The usual concepts are considered in a graded sense. A subsuperalgebra A
of L is a graded subspace A = A0 ⊕ A1 satisfying [A,A] ⊂ A. An ideal I of
L is a graded subspace I = I0 ⊕ I1 of L such that

[I,L] + [L, I] ⊂ I.
The (graded) ideal I generated by

{[x, y] + (−1)ij[y, x] : x ∈ Li, y ∈ Lj, i, j ∈ Z2}
plays an important role in the theory since it determines the (possible) non-
super Lie character of L. From definition of ideal [I,L] ⊂ I and from Super
Leibniz identity, it is straightforward to check that this ideal satisfies

[L, I] = 0. (1)
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Here we note that the usual definition of simple superalgebra lacks of interest
in the case of Leibniz superalgebras because would imply the ideal I = L or
I = 0, being so L an abelian (product zero) or a Lie superalgebra respec-
tively (see Equation (1)). Abdykassymova and Dzhumadil’daev introduced
in [1, 2] an adequate definition in the case of Leibniz algebras (L, [·, ·]) by
calling simple to the ones such that its only ideals are {0}, L and the one
generated by the set {[x, x] : x ∈ L}. Following this vain, we consider the
next definition.

Definition 1.2. A Leibniz superalgebra L is called simple if [L,L] 6= 0 and
its only (graded) ideals are {0}, I and L.

Observe that we can write
L = I⊕ ¬I

where ¬I = ¬I0 ⊕ ¬I1 is a linear complement of I = I0 ⊕ I1 in L (here we
adapt this notation in order to standardize the one already used in [7, 8, 9]).
Actually ¬I is isomorphic as linear space to L/I, the so called corresponding
Lie superalgebra of L. In general, ¬I is not an ideal of L from [I,¬I] ⊂ I.
Then the multiplication in L is represented in the table

I0 ¬I0 I1 ¬I1

I0 0 I0 0 I1

¬I0 0 I0 ⊕ ¬I0 0 I1 ⊕ ¬I1

I1 0 I1 0 I0

¬I1 0 I1 ⊕ ¬I1 0 I0 ⊕ ¬I0

Hence, by taking BIi and B¬Ii bases of Ii and ¬Ii, for i ∈ Z2, respectively,
then

B = (BI0∪̇BI1︸ ︷︷ ︸
BI

)∪̇(B¬I0∪̇B¬I1︸ ︷︷ ︸
B¬I

)

is a basis of L.

Definition 1.3. A basis B = {vk,i : k ∈ K, i ∈ Z2} of L is said to be

multiplicative if for any k1, k2 ∈ K, i, j ∈ Z2 we have [vk1,i, vk2,j] ∈ Fvk,i+j for
some k ∈ K.

Example 1.1. Consider the 5-dimensional Z2-graded vector space L = L0⊕
L1, over a base field F of characteristic different from 2, with basis BI1 =
{e1, e2},B¬I0 = {ua, ub, uc}; where the products on these elements are given
by:

[ub, ua] = −uc, [ua, ub] = uc, [ua, uc] = −2ua,
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[uc, ua] = 2ua, [uc, ub] = −2ub, [ub, uc] = 2ub,

[e1, ub] = e2, [e1, uc] = −e1, [e2, ua] = e1, [e2, uc] = e2,

and where the omitted products are equal to zero. Then L = L0⊕L1 becomes
a (non-Lie) Leibniz superalgebra admitting B = BI1∪̇B¬I0 as multiplicative
basis.

Example 1.2. Let us denote by N∗ the set of non-negative integers. Consider
the infinite-dimensional complex Z2-graded vector space L = L0 ⊕ L1 with
basis BI1 = {e(n,k) : n, k ∈ N∗ and k ≤ n}, B¬I0 = {e(n,−1), e(n,−2), e(n,−3) :
n ∈ N}; with the following table of multiplication:

[e(n,−1), e(n,−3)] = 2e(n,−1), [e(n,−3), e(n,−1)] = −2e(n,−1),

[e(n,−2), e(n,−3)] = −2e(n,−2), [e(n,−3), e(n,−2)] = 2e(n,−2),

[e(n,−1), e(n,−2)] = e(n,−3), [e(n,−2), e(n,−1)] = −e(n,−3),

[e(n,k), e(n,−3)] = (n− 2k)e(n,k), for 0 ≤ k ≤ n;

[e(n,k), e(n,−2)] = e(n,k+1), for 0 ≤ k ≤ n− 1;

[e(n,k), e(n,−1)] = k(k − n− 1)e(n,k−1), for 1 ≤ k ≤ n;

and where the omitted products are equal to zero. Then L = L0 ⊕ L1 is
a (non-Lie) Leibniz superalgebra admitting B = BI1∪̇B¬I0 as multiplicative
basis.

Remark 1.2. Observe that if we write

BIi = {en,i}n∈Ii and B¬Ii = {ur,i}r∈Ji, for i ∈ Z2.

Since I is an ideal together with Equation (1) we know that the only possible
non-zero products among the elements in B are:

(1) For n ∈ Ii, r ∈ Jj and i, j ∈ Z2 we have [en,i, ur,j] ∈ Fek,i+j for some
k ∈ Ii+j.

(2) For r ∈ Ji, s ∈ Jj and i, j ∈ Z2 we have either [ur,i, us,j] ∈ Ful,i+j for
some l ∈ Ji+j or [ur,i, us,j] ∈ Fen,i+j for some n ∈ Ii+j.

Lemma 1.1. Let (L, [·, ·]) be a Leibniz superalgebra over a base field F of
characteristic different to 2. If B = {vk}k∈K is a graded basis of L such that
for any k1, k2 ∈ K we have [vk1, vk2] = λk1,k2[vk2, vk1] ∈ Fvk for some k ∈ K
and some λk1,k2 ∈ F then L admits B as multiplicative basis.
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Proof : By the definition of I we see that it is generated as linear space by
{vj : j ∈ J}, for some subset J of K. So we can find a basis BI of I
formed by elements of B and a basis B¬I := B \ BI of ¬I which make of B a
multiplicative basis.

The preceding lemma shows that all commutative (up to a scalar) Leibniz
superalgebras admit a multiplicative basis. For instance, this is the case of
null-filiforms Leibniz superalgebras, Leibniz superalgebras of maximal nilin-
dex or Leibniz superalgebras with nilindex n+m+ 1 (see [3, 10, 11]).

The paper is organized as follows. In §2 inspired by the connections of roots
developed for split Leibniz algebras and superalgebras in [7, 8], we introduce
similar techniques on the index set of the multiplicative basis B. Our purpose
is to obtain a powerful tool for the study of this class of superalgebras. By
making use of these results we see that any Leibniz superalgebra L admitting
a multiplicative basis is of the form L =

⊕
α Iα, where every Iα is a well

described ideal having a multiplicative basis inherited from B. In §3 the
B-simplicity of these ideals is characterized in terms of the J-connection.

2. Decomposition as direct sum of ideals
In what follows L = (I0⊕¬I0)⊕ (I1⊕¬I1) denotes a Leibniz superalgebra

over a base field F admitting a multiplicative basis

B = (BI0∪̇BI1)∪̇(B¬I0∪̇B¬I1) (2)

where BIi = {en,i}n∈Ii and B¬Ii = {ur,i}r∈Ji, for i ∈ Z2, and where, by
renaming if necessary, we can suppose Ki ∩ Pj = ∅ for any K,P ∈ {I, J},
i, j ∈ Z2 and Ki 6= Pj.
We begin this section by developing connection techniques among the ele-
ments in the index sets I0∪̇I1∪̇J0∪̇J1 as the main tool in our study. Now,

for each k ∈ I0∪̇I1∪̇J0∪̇J1, a new assistant variable k̃ /∈ I0∪̇I1∪̇J0∪̇J1 is
introduced and we denote by

Ĩi := {ñ : n ∈ Ii} and J̃i := {r̃ : r ∈ Ji},
for i ∈ Z2, the sets consisting of all these new symbols. Also, given any

k̃ ∈ K̃i, K ∈ {I, J}, i ∈ Z2, we denote

(̃k̃) := k.

Finally, we write by P(A) the power set of a given set A.
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Next, we consider an operation which recover, in some sense, certain mul-
tiplicative relations among the elements of the basis B:

? : (I0∪̇I1∪̇J0∪̇J1)× (I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1)→ P(I0∪̇I1∪̇J0∪̇J1),

where for any i, j ∈ Z2 is defined by

• For n ∈ Ii, m ∈ Ij,
n ? m := ∅

• For n ∈ Ii and r ∈ Jj,

n ? r

{
∅, if [en,i, ur,j] = 0
{m}, if 0 6= [en,i, ur,j] ∈ Fem,i+j with m ∈ Ii+j

• For n ∈ Ii and m̃ ∈ Ĩj,

n ? m̃ := {r ∈ Ji+j : 0 6= [em,j, ur,i+j] ∈ Fen,i}

• For n ∈ Ii and r̃ ∈ J̃j,

n ? r̃ := {s ∈ Ji+j : 0 6= [ur,j, us,i+j] ∈ Fen,i}∪

{t ∈ Ji+j : 0 6= [ut,i+j, ur,j] ∈ Fen,i} ∪ {m ∈ Ii+j : 0 6= [em,i+j, ur,j] ∈ Fen,i}.
• For r ∈ Ji, s ∈ Jj,

r ? s :=


∅, if [ur,i, us,j] = 0
{t}, if 0 6= [ur,i, us,j] ∈ Fut,i+j
{n}, if 0 6= [ur,i, us,j] ∈ Fen,i+j

• For r ∈ Ji and ñ ∈ Ĩj,

r ? ñ := ∅
• For r ∈ Ji and s̃ ∈ J̃j,

r?s̃ := {t ∈ Ji+j : 0 6= [ut,i+j, us,j] ∈ Fur,i}∪{q ∈ Ji+j : 0 6= [us,j, uq,i+j] ∈ Fur,i}.

The mapping ? is not still adequate to use in an iterative process necessary
for our purposes and so we need to introduce the following one:

φ : P(I0∪̇I1∪̇J0∪̇J1)× (I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1))→ P(I0∪̇I1∪̇J0∪̇J1),

as

• φ(∅, I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1)) := ∅,
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• For any ∅ 6= K ∈ P(I0∪̇I1∪̇J0∪̇J1) and a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1,

φ(K, a) :=
⋃
k∈K

(k ? a) ∪ (a ? k).

Lemma 2.1. For any K ∈ P(I0∪̇I1∪̇J0∪̇J1) and a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1),

k ∈ φ(K, a) if and only if φ({k}, ã) ∩K 6= ∅. (3)

Proof : It is straightforward to observe that for any k1, k2 ∈ I0∪̇I1∪̇J0∪̇J1 and

a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1

we have k2 ∈ k1 ? a ∪ a ? k1 if and only if k1 ∈ k2 ? ã.

Definition 2.1. Let k and k′ be elements in the index set I0∪̇I1∪̇J0∪̇J1. We
say k is connected to k′ if either k = k′ or there exists a subset

{k1, k2, . . . , kn−1, kn} ⊂ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1

with n ≥ 2 such that the following conditions hold:

1. k1 = k.

2. φ({k1}, k2) 6= ∅,
φ(φ({k1}, k2), k3) 6= ∅,

...
φ(φ(· · · (φ({k1}, k2), · · · ), kn−2), kn−1) 6= ∅.

3. k′ ∈ φ(φ(· · · (φ({k1}, k2), · · · ), kn−1), kn).

The subset {k1, k2, . . . , kn−1, kn} is called a connection from k to k′.

Proposition 2.1. The relation ∼ in I0∪̇I1∪̇J0∪̇J1, defined by k ∼ k′ if and
only if k is connected to k′, is an equivalence relation.

Proof : By definition k ∼ k, that is, the relation ∼ is reflexive. Let us see
the symmetric character of ∼: If k ∼ k′ with k 6= k′ then there exists a
connection

{k1, k2, . . . , kn−1, kn}
from k to k′ satisfying Definition 2.1. Let us show that the set

{k′, k̃n, k̃n−1, . . . , k̃3, k̃2}
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gives rise to a connection from k′ to k. Indeed, by taking

K := φ(· · · (φ({k1}, k2), · · · ), kn−1)

we can apply the relation given by (3) to the expression

k′ ∈ φ(K, kn)

to get

φ({k′}, k̃n) ∩K 6= ∅
and so

φ({k′}, k̃n) 6= ∅.
By taking

h ∈ φ({k′}, k̃n) ∩K,
then

h ∈ K = φ(· · · (φ({k1}, k2), · · · ), kn−1),

by the relation given by (3) we get

φ({h}, k̃n−1) ∩ φ(· · · (φ({k1}, k2), · · · ), kn−2) 6= ∅,

but h ∈ φ({k′}, k̃n), therefore {h} ⊂ φ({k′}, k̃n) and consequently

φ(φ({k′}, k̃n), k̃n−1) ∩ φ(· · · (φ({k1}, k2), · · · ), kn−2) 6= ∅.
By iterating this process we get

φ(φ(· · · (φ({k′}, k̃n), · · · ), k̃n−r+1), k̃n−r)∩

φ(φ(· · · (φ({k1}, k2), · · · ), kn−r−2), kn−r−1) 6= ∅
for 0 ≤ r ≤ n− 3. Observe that this relation in the case r = n− 3 reads as

φ(φ(· · · (φ({k′}, k̃n), · · · ), k̃4), k̃3) ∩ φ({k1}, k2) 6= ∅.

Since k1 = k, if we write K̃ := φ(φ(· · · (φ({k̃′}, k̃n), · · · ), k̃4), k̃3), the previous

observation allows us to assert φ({k}, k2) ∩ K̃ 6= ∅. Hence the relation (3)
applies to get

k ∈ φ(φ(· · · (φ({k′}, k̃n), · · · ), k̃3), k̃2)

and concludes ∼ is symmetric.
Finally, let us verify the transitive character of ∼. Suppose k ∼ k′ and

k′ ∼ k′′. If k = k′ or k′ = k′′ it is trivial, so suppose k 6= k′ and k′ 6= k′′

and write {k1, . . . , kn} for a connection from k to k′ and {k′1, . . . , k′m} for a
connection from k′ to k′′. Then we clearly see that {k1, . . . , kn, k

′
2, . . . , k

′
m}
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is a connection from k′ to k′′. We have shown the connection relation is an
equivalence relation.

By the above proposition we can consider the next quotient set on the index
set I0∪̇I1∪̇J0∪̇J1,

(I0∪̇I1∪̇J0∪̇J1)/ ∼= {[k] : k ∈ I0∪̇I1∪̇J0∪̇J1},
becoming [k] the set of elements in I0∪̇I1∪̇J0∪̇J1 which are connected to k.

Our next goal in this section is to associate an ideal I[k] of L to any [k].
Fix k ∈ I0∪̇I1∪̇J0∪̇J1, we start by defining the linear subspaces I[k] = I[k],0⊕
I[k],1 ⊂ I and ¬I[k] = ¬I[k],0 ⊕ ¬I[k],1 ⊂ ¬I as follows

I[k],i :=
⊕

l∈[k]∩Ii

Fel,i ⊂ Ii,

¬I[k],i :=
⊕

h∈[k]∩Ji

Fuh,i ⊂ ¬Ii

for any i ∈ Z2. Finally, we denote by I[k] the direct sum of the two subspaces
above, that is,

I[k] := (I[k],0 ⊕ I[k],1)⊕ (¬I[k],0 ⊕ ¬I[k],1)

Definition 2.2. Let L be a Leibniz superalgebra admitting a multiplicative
basis B. A subsuperalgebra A ⊂ L admits a multiplicative basis BA inherited
from B if BA is a multiplicative basis of A satisfying BA ⊂ B.

Proposition 2.2. For any k ∈ I0∪̇I1∪̇J0∪̇J1, the linear subspace I[k] is an
ideal of L admitting a multiplicative basis inherited from the one of L.

Proof : We can write

[I[k],L] = [I[k] ⊕ ¬I[k], (
⊕
n∈I0

Fen,0)⊕ (
⊕
m∈I1

Fem,1)⊕ (
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1)].

In case [el,i, ur,j] 6= 0 for some l ∈ [k] ∩ Ii, r ∈ Jj and i, j ∈ Z2, we have
0 6= [el,i, ur,j] ∈ Fep,i+j with p ∈ Ii+j and so p ∈ φ({l}, r) = l ? r, therefore
the connection {l, r} gives us l ∼ p, so p ∈ [k] and then 0 6= [el,i, ur,j] ∈ I[k].
Hence we get

[I[k], (
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1)] ⊂ I[k] ⊂ I[k].
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In a similar way we have [¬I[k], (
⊕

r∈J0
Fur,0) ⊕ (

⊕
s∈J1

Fus,1)] ⊂ I[k] and

taking into account Equation (1) we conclude

[I[k],L] ⊂ I[k].

On the other hand,

[L, I[k]] = [(
⊕
n∈I0

Fen,0)⊕ (
⊕
m∈I1

Fem,1)⊕ (
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1), I[k] ⊕ ¬I[k]]

and in case 0 6= [en,i, uh,j] for some n ∈ Ii, h ∈ [k] ∩ Jj and i, j ∈ Z2 we
have [en,i, uh,j] ∈ Fep,i+j with p ∈ Ii+j. Then p ∈ φ({h}, n) = h ? n and
we see that the connection {h, n} gives us h ∼ p and so [(

⊕
n∈I0

Fen,0) ⊕
(
⊕

m∈I1
Fem,1),¬I[k]] ⊂ I[k] ⊂ I[k]. In a similar way

[(
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1),¬I[k]] ⊂ I[k]

and by Equation (1) then
[L, I[k]] ⊂ I[k].

Hence I[k] is an ideal of L.
Finally, observe that the set

BI[k] := {en,0 : n ∈ [k] ∩ I0}∪̇{em,1 : m ∈ [k] ∩ I1}∪̇

{ur,0 : r ∈ [k] ∩ J0}∪̇{us,1 : s ∈ [k] ∩ J1}
is a multiplicative basis of I[k] satisfying BI[k] ⊂ B. Hence we see that I[k]

admits a multiplicative basis inherited from the one of L.

Corollary 2.1. If L is simple, then there exists a connection between any
couple of elements in the index set I0∪̇I1∪̇J0∪̇J1.

Proof : The simplicity of L implies [L,L] 6= 0 and so ¬I 6= ∅, then at least
there exists r0 ∈ Ji, i ∈ Z2, such that {ur0,i} ⊂ B¬Ii. Applying Proposition
2.2, I[r0] is an ideal and by its construction I[r0] 6⊂ I, therefore I[r0] = L being
then [r0] = I0∪̇I1∪̇J0∪̇J1. That is, any couple of elements in I0∪̇I1∪̇J0∪̇J1

are connected.

Theorem 2.1. A Leibniz superalgebra L admitting a multiplicative basis de-
composes as the direct sum

L =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

I[k],
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where any I[k] = I[k] ⊕ ¬I[k] is one of the ideals, admitting a multiplicative
basis inherited from the one of L, given in Proposition 2.2.

Proof : Since we can write L = I⊕ ¬I and

I =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

I[k], ¬I =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

¬I[k].

From I[k] = I[k] ⊕ ¬I[k] by definition, we clearly have

L =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

I[k].

Example 2.1. Consider the Leibniz superalgebra L = L0 ⊕ L1 presented in
Example 1.1. We have I1 = {1, 2} and J0 = {a, b, c}. From the multiplication
table of L it is not difficult to write the operation ? in a concrete way. For
instance, we have

1 ? c = 2 ? a = {1}
1 ? b = 2 ? c = {2}

a ? b = b ? a = {c}
a ? c = c ? a = {a}

Then, we can also obtain an explicit expression of the mapping

φ : P(I0∪̇I0∪̇J0∪̇J1)× (I0∪̇I0∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ0∪̇J̃0∪̇J̃1) −→ P(I0∪̇I0∪̇J0∪̇J1).

Observe that the connection {1, b} gives 1 ∼ 2, with the connection {a, b} we
have a ∼ c and considering {b, a} we obtain b ∼ c. Since 1 ? 2̃ = {b} we
get 1 ∼ b and therefore (I0∪̇I0∪̇J0∪̇J1)/ ∼= {[1]} where [1] = {1, 2, a, b, c}.
By Theorem 2.1 we see that L = I[1], where I[1] is an ideal of L with a
unique (multiplicative) basis {1, 2, a, b, c}. In fact, since L is a simple (non-
Lie) Leibniz superalgebra, by Corollary 2.2 all elements in I0∪̇I1∪̇J0∪̇J1 are
connected and we just have one ideal.

Example 2.2. Let L = L0 ⊕ L1 be the Leibniz superalgebra considered in
Example 1.2. We have I = {(n, k) : n ∈ N, 0 ≤ k ≤ n} and J =
{(n,−1), (n,−2), (n,−3) : n ∈ N}. From the multiplication table of L it
is not difficult to express the operation ? completely. For instance, we have

(n, k) ? (n,−3) = {(n, k)} k ∈ I
(n, k) ? (n,−2) = {(n, k + 1)} k ∈ {0, . . . , n− 1}
(n, k) ? (n,−1) = {(n, k − 1)} k ∈ {1, . . . , n}
(n,−1) ? (n,−2) = (n,−2) ? (n,−1) = {(n,−3)}
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(n,−1) ? (n,−3) = (n,−3) ? (n,−1) = {(n,−1)}
(n,−2) ? (n,−3) = (n,−3) ? (n,−2) = {(n,−2)}

From here, we can also obtain an explicit expression of the mapping

φ : P(I0∪̇I0∪̇J0∪̇J1)× (I0∪̇I0∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ0∪̇J̃0∪̇J̃1) −→ P(I0∪̇I0∪̇J0∪̇J1).

Observe that the connection {(n,−1), (n,−2)} gives (n,−1) ∼ (n,−3), with

the connection {(n,−2), ˜(n,−2)} we get (n,−2) ∼ (n,−3), the connection

{(n, k + 1), ˜(n, k)} let us assert (n, k + 1) ∼ (n,−2) and considering the

connection {(n, k−1), ˜(n, k)} we have (n, k−1) ∼ (n,−1), for k ∈ {0, . . . , n−
1} and k ∈ {1, . . . , n}, respectively. Hence,

(I0∪̇I1∪̇J0∪̇J1)/ ∼= {[(n, 0)] : n ∈ N}
where any

[(n, 0)] = {(n, k) : 0 ≤ k ≤ n} ∪ {(n,−1), (n,−2), (n,−3)}
and so Theorem 2.1 allows us to assert

L =
⊕
n∈N

I[(n,0)]

being any I[(n,0)] = I[(n,0)],0⊕I[(n,0)],1, with I[(n,0)],0 = span{e(n,−1), e(n,−2), e(n,−3)}
and I[(n,0)],1 = span{e(n,k) : 0 ≤ k ≤ n}, an ideal admitting a (multiplicative)
basis inherited from the one of L.

3. The B-simple components
In this section our target is to characterize the minimality of the ideals

which give rise to the decomposition of L in Theorem 2.1, in terms of con-
nectivity properties in the index set I0∪̇I1∪̇J0∪̇J1. Taking into account Defi-
nition 1.2 we introduce the next concept in a natural way.

Definition 3.1. A Leibniz superalgebra L admitting a multiplicative basis B
is called B-simple if [L,L] 6= 0 and its only ideals admitting a multiplicative
basis inherited from B are {0}, I and L.

As in the previous section, L = (I0 ⊕¬I0)⊕ (I1 ⊕¬I1) denotes a Leibniz
superalgebra over an arbitrary base field F and of arbitrary dimension, admit-
ting a multiplicative basis B = (BI0∪̇BI1)∪̇(B¬I0∪̇B¬I1) where BIi = {en,i}n∈Ii
and B¬Ii = {ur,i}r∈Ji, for i ∈ Z2, and where Ki∩Pj = ∅ for any K,P ∈ {I, J},
i, j ∈ Z2 and Ki 6= Pj.
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We have the opportunity of restricting the connectivity relation to the set
I0∪̇I1 and to the set J0∪̇J1 by just allowing that the connections are formed

by elements in J0∪̇J1∪̇J̃0∪̇J̃1. Then we say two indexes of Υ0∪̇Υ1, where
either Υ ∈ {I, J}, are J-connected.

Definition 3.2. Let k and k′ be two elements in Υ0∪̇Υ1 with either Υ = I
or Υ = J . We say k is J-connected to k′ and we denote by k ∼J k′, if either
k = k′ or there exists a connection {r1, r2, . . . , rn} from k to k′ (in the sense
of Definition 2.1) such that

r2, . . . , rn ∈ J0∪̇J1∪̇J̃0∪̇J̃1.

We also say the set {r1, r2, . . . , rn} is a J-connection from k to k′.

We observe that it is straightforward to verify the arguments in Proposition
2.1 allow us to assert that the relation ∼J is an equivalence relation in I0∪̇I1

and in J0∪̇J1. Therefore

(Υ0∪̇Υ1)/ ∼J= {[k]J : k ∈ Υ0∪̇Υ1}

becoming [k]J the set of elements in Υ0∪̇Υ1 which are J-connected to k, with
either Υ = I or Υ = J .

Let us introduce the notion of ?-multiplicativity in the framework of Leibniz
superalgebras with multiplicative bases, in a similar way to the ones of closed-
multiplicativity for split Leibniz algebras, split Leibniz superalgebras and
graded Leibniz algebras (see [7, 8, 9] for these notions and examples). From

now on, for any j̃ ∈ J̃i, i ∈ Z2, we denote uj̃ = 0.

Definition 3.3. A Leibniz superalgebra L = I⊕¬I admits a ?-multiplicative
basis B = {vk,i : k ∈ K, i ∈ Z2}, which decomposes as in Equation (2), if it is

multiplicative and for any k, r ∈ I0∪̇I1∪̇J0∪̇J1 and a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ0∪̇J̃0∪̇J̃1

such that k ∈ r ? a, then vk,i ∈ [vr,j,Li+j].

Proposition 3.1. Suppose L admits a ?-multiplicative basis B. If J0∪̇J1 has
all of their elements J-connected, then any nonzero ideal I ⊂ L with a mul-
tiplicative basis inherited from B such that I 6⊂ I satisfies I = L.

Proof : Since I 6⊂ I we can take some r0 ∈ Ji0 such that

0 6= ur0,i0 ∈ I. (4)
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for certain i0 ∈ Z2. We know that J0∪̇J1 has all of their elements J-connected.
If J0∪̇J1 = {r0} trivially ¬I ⊂ I. If |J0∪̇J1| > 1 we take s ∈ Jj (with j ∈ Z2)
different from r0, being then 0 6= Fus,j, we can consider a J-connection

{r0, r2, . . . , rn} ⊂ J0∪̇J1∪̇J̃0∪̇J̃1 (5)

from r0 to s.
We know that

φ({r0}, r2) 6= ∅
and so we can take a1 ∈ φ({r0}, r2) = r0 ? r2. Now, taking into account
Equation (4) and the ?-multiplicativity of B we get, if a1 ∈ Ji0+j

0 6= ua1,i0+j ∈ F[ur0,i0, ul2,j] ⊂ I
or, if a1 ∈ Ii0+j

0 6= ea1,i0+j ∈ F[ur0,i0, ul2,j] ⊂ I
for l2 = {r2, r̃2} ∩ Jj and j ∈ Z2.

Since s ∈ J0∪̇J1, necessarily φ({r0}, r2) ∩ (J0∪̇J1) 6= ∅ and we have

0 6=
⊕

r∈φ({r0},r2)∩Ji

Fur,i ⊂ I. (6)

for any i ∈ Z2. Since
φ(φ({r0}, r2), r3) 6= ∅

we can argue as above, taking into account Equation (6), to get

0 6=
⊕

r∈φ(φ({r0},r2),r3)∩Ji

Fur,i ⊂ I

for i ∈ Z2. By reiterating this process with the J-connection (5) we obtain

0 6=
⊕

r∈φ(φ(···(φ(r0,r2),··· ),rn−1),rn)∩Ji

Fur,i ⊂ I.

Since s ∈ φ(φ(· · · (φ(r0, r2), · · · ), rn−1), rn) ∩ Jj we conclude us,j ∈ I for all

s ∈ Jj \ {r0} and j ∈ Z2 and so

¬I =
⊕

p∈J0,q∈J1

(Fup,0 ⊕ Fuq,1) ⊂ I. (7)

Considering I ⊂ [I,¬I] + [¬I,¬I] by ?-multiplicativity, Equation (7) allows
us to assert

I ⊂ I. (8)
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Finally, since L = I⊕ ¬I, Equations (7) and (8) give us I = L.

Proposition 3.2. Suppose L admits a ?-multiplicative basis B. If I0∪̇I1

has all of its elements J-connected, then any nonzero ideal I ⊂ L with a
multiplicative basis inherited from B such that I ⊂ I satisfies I = I.

Proof : Taking into account I ⊂ I we can fix a some n0 ∈ Ii0 satisfying

0 6= en0,i0 ∈ I

for certain i0 ∈ Z2. Since I0∪̇I1 has all of its elements J-connected, we can
argue from n0 with the ?-multiplicativity of B as it is done in Proposition
3.1 from r0 to get I ⊂ I and then I = I.

Theorem 3.1. Suppose L admits a ?-multiplicative basis B. Then L is B-
simple if and only if I0∪̇I1 and J0∪̇J1 have respectively all of their elements
J-connected.

Proof : Suppose L is B-simple. We take n ∈ I0∪̇I1 and we observe that the
linear space⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1) is an ideal of L with a multiplicative basis

inherited from B. Indeed, we have trivially[
L,

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)
]

+
[ ⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1), I
]
⊂

⊂ [L, I] = 0.

We only need to prove[ ⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1), ur,0 ⊕ us,1
]
⊂

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)

for any r ∈ J0, s ∈ J1. In fact, given any en0,i0 ∈
⊕

m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0⊕Fel,1)

such that 0 6= [en0,i0, ut,j] = ep,i0+j, for ut,j ∈ {ur,0, us,1} and some p ∈ Ii0+j.
We have p ∈ n0 ? t and so {n0, t} is a J-connection meaning that n0 ∼J p.
By the symmetry p ∼J n0 and by transitivity of p ∼J n0 ∼J n, and we get

ep,i0+j ∈
⊕

m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1).
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Hence [en0,i0, ut,j] ⊂
⊕

m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1) as desired. We conclude

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)

is an ideal of L endowed with a multiplicative basis inherited from B (trivial
by construction) and so, by B-simplicity, necessarily

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0⊕

Fel,1) = I and consequently any couple of indexes in I are J-connected.
Consider now any r ∈ J and the linear subspace

I⊕
⊕

s∈J0∩[r]J ,t∈J1∩[r]J

(Fus,0 ⊕ Fut,1).

Using a similar argument to the above one we see this linear subspace is
actually an ideal of L which admits a multiplicative basis inherited from B.
From B-simplicity,

I⊕
⊕

s∈J0∩[r]J ,t∈J1∩[r]J

(Fus,0 ⊕ Fut,1) = L

which implies in particular

I⊕
⊕

s∈J0∩[r]J ,t∈J1∩[r]J

(Fus,0 ⊕ Fut,1) = I⊕
⊕

r∈J0,q∈J1

(Fur,0 ⊕ Fuq,1)

and so we get any couple of indexes in J are also J-connected.

Conversely, consider I a nonzero ideal of L admitting a multiplicative basis
inherited by the one of L. We have two possibilities for I, either I 6⊂ I or
I ⊂ I. In the first one, Proposition 3.1 gives us I = L, while in the second
one Proposition 3.2 shows I = I. Therefore in both cases L is B-simple.
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