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JOINS OF CLOSED SUBLOCALES
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Abstract: Sublocales that are joins of closed ones constitute a frame S∨c(L) em-
bedded as a join-sublattice into the coframe S(L) of sublocales of L. We prove that
in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra
and in fact precisely the Booleanization of S(L). In case of a T1-space X, S∨c(Ω(X))
picks precisely the sublocales corresponding to induced subspaces. In linear L and
more generally if L is also a coframe, S∨c(L) is both a frame and a coframe, but
with trivial exceptions not Boolean and not a subcolocale.
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Introduction

This paper is about sublocales, the natural subobjects in the category of
locales (which one may think about as generalized topological spaces), that
is, in the dual category of the category of frames. Sublocales of a frame L
are well defined subsets of L, and constitute, in the natural inclusion order, a
coframe S(L). One has open and closed sublocales (precisely corresponding
to classical open and closed subspaces, see 1.3 – 1.6 below), complementing
each other.
A separation axiom called subfitness (making sense for classical spaces as

well, slightly weaker than T1) is characterized by the property that every

open sublocale is a join of closed ones, and another, stronger, called fitness
(akin to regularity) is characterized by the fact that every closed sublocale

is an intersection of open ones. These properties sound dual to each other,
but is not quite so: in fact in a fit frame every sublocale whatsoever is an

intersection of open ones which has no counterpart in the subfit case. Now
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what does the property that every sublocale whatsoever is a join of closed

ones mean? In a previous paper [2] it was shown that it characterizes the
so called scattered frames (quite analogous to scattered topological spaces),
formally the L with Boolean S(L) (for more about scatteredness see e.g.
[7, 12, 2]).
This paper is devoted to the study of the system S∨c(L) of all the sublocales

that are joins of closed ones, in the setting of a general frame L. A closer
scrutiny of one of the proofs in [2] shows that S∨c(L) is always a frame, even if
it does not coincide with the whole of S(L). Now the question naturally arises:
since it is a join-sublattice, is it not also a coframe, or even a subcolocale of
S(L)?
In Section 2 we prove the basics about S∨c(L) and in Section 3 we give a

complete answer for subfit frames L. There, indeed, S∨c(L) is a subcolocale
(and in fact this is another characterization of subfitness). Moreover, it is a
Boolean algebra and in fact precisely the Booleanization of S(L). Further, we
have here a frame extension L → S∨c(L) by open sublocales; this is compared
with the well known frame extension L → S(L)op by closed sublocales (the
embedding into the frame of congruences), and the relation is analysed.
In Section 4 we turn to the spatial case, namely to the case of T1-spaces

(in localic representation). Subspaces of a space can be viewed as sublocales
(more precisely, sublocales of the associated frame Ω(X)). But in general
there are more sublocales than subspaces (“a space has typically generalized
subspaces that are not classical induced ones”). Now it turns out that the
classical ones constitute precisely the S∨c(L), and hence the Booleanization
of S(L).
In the ultimate Section 5 we discuss the L that are sort of opposite to the

subfit ones (linear frames and, more generally, frames the duals of which are
frames as well). Here, the S∨c(L) are again both frames and coframes, but
with trivial exceptions not subcolocales of S(L), and not Boolean.

1. Preliminaries

1.1. Notation. As usual, for a subset A of a poset (X,≤) we write

↑A = {x ∈ X | x ≥ a, a ∈ A} and abbreviate ↑{x} to ↑x.

If ↑A = A we speak of an up-set.
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A join (supremum) of a subset A ⊆ (X,≤) – if it exists – will be denoted
by

∨
A, and we write a ∨ b for

∨
{a, b}; similarly we write

∧
A and a ∧ b for

infima.
The smallest element in a poset, if it exists (the supremum

∨
∅), will be

denoted by 0, and the largest one, the infimum
∧
∅, will be denoted by 1.

The dual of a poset (X,≤), that is, the poset with the order on X reversed,
will be denoted by (X,≤)op.

1.2. Adjoint maps. IfX, Y are posets we say that monotone maps f : X →
Y , g : Y → X are adjoint, f to the left and g to the right, and write f ⊣ g, if

f(x) ≤ y iff x ≤ g(y).

Recall that this is characterized by fg(y) ≤ y and x ≤ gf(x), that fgf = f
and gfg = g, and in particular that

1.2.1. if f ⊣ g then f (resp. g) preserves all the existing suprema

(resp. infima), and

1.2.2. if X, Y are complete lattices then an f : X → Y preserving

all suprema (resp. a g : Y → X preserving all infima) has a
right (resp. left) adjoint.

1.3. Frames and coframes. A frame, resp. coframe, is a complete lattice
L satisfying the distributivity law

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A}, (frm)

resp. (
∧
A) ∨ b =

∧
{a ∨ b | a ∈ A}, (cofrm)

for all A ⊆ L and b ∈ L; a frame (resp. coframe) homomorphism preserves
all joins and all finite meets (resp. all meets and all finite joins). The lattice
Ω(L) of all open subsets of a topological space is a typical frame, and a
typical frame homomorphism is obtained from a continuous f : X → Y by
setting Ω(f)(U) = f−1[U ].

1.3.1. Note. In a frame, (cofrm) generally does not hold, similarly (frm)
does not hold in a coframe. But

if b is complemented, then both (frm) and (cofrm) hold in any frame and any

coframe

(see [4, 9]; for a complemented element see 1.5 below).
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1.4. The (co)Heyting structure. The equality (frm) states that the
maps (x 7→ x ∧ b) : L → L preserve all joins. Hence, by 1.2.2, every frame is
a Heyting algebra with the Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b→c.

Similarly, every coframe is a coHeyting algebra with the coHeyting operation
r (which will be referred to as the difference) satisfying

ar b ≤ c iff a ≤ b ∨ c.

From 1.2.1 we immediately obtain the following rules.

1.4.1. (1) b→(
∧

i ci) =
∧

i(b→ci) and (
∨
ai)r b =

∨
i(ai r b),

(2) (
∨

i bi)→c =
∧

i(bi→c) and ar (
∧

i bi) =
∨

i(ar bi).

1.5. Pseudocomplements, supplements and complements. The Hey-
ting resp. coHeyting structure yields in a frame the pseudocomplement
a∗ = a → 0 (=

∨
{x | x ∧ a = 0}) and in a coframe the supplement

a# = 1r a (=
∧
{x | x ∨ a = 1}).

An element a is said to be complemented if there exists a b such that
a ∧ b = 0 and a ∨ b = 1; this b will be referred to as the complement

of a. In a distributive lattice (in particular, in a frame or a coframe) the
complement, if it exists, is uniquely determined, and is simultaneously the
pseudocomplement and the supplement of a. Therefore we will also denote
it by a∗ (it will be always clear we have in mind a complement which in the
case in question happens to exist). The following is standard.

1.5.1. Fact. Let a be complemented in a frame resp. coframe. Then a→b =
a∗ ∨ b resp. br a = b ∧ a∗.

1.6. Sublocales and nuclei. A meet-subset in a complete lattice L is a
subset S ⊆ L such that for every M ⊆ S the meet

∧
M is in S. The set of

all meet-sets of L will be denoted by

M(L).

Obviously, for every subset A ⊆ L there is the least meet-subset containing
it, namely m(A) = {

∧
M | M ⊆ A}. It is easy to check that M(L) is a

complete lattice with intersections for meets, and the joins defined by
∨

Si = {
∧
M | M =

⋃
i

Si} = m(
⋃
i

Si).
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Now let L be a frame. A sublocale of L is a meet-subset S such that

∀s ∈ S ∀x ∈ L, x→s ∈ S. (∗)

Every sublocale S of L is a frame; the joins in S typically differ from those
in L, but the meets, and hence by (∗) also the Heyting operation, obviously
coincide. Sublocales are the natural subobjects in the category of locales,
the dual of the category of frames; see e.g. [8, 9]).
Sublocales of L constitute a complete sublattice of M(L). It will be de-

noted by

S(L)

(as for the join, recall 1.4.1(2)). An important fact is that it is a coframe

(see, e.g., [5, 9]). Note that the zero of S(L), the least sublocale, is O = {1}.
In particular we have the open sublocales o(a) = {a → x | x ∈ L} =

{x | x = a→ x} and the closed sublocales c(a) = ↑a (corresponding to the
Isbell’s open and closed parts from [4]). We will also speak of the ↑a in a
general complemented lattice as of closed meet-sets. The following holds.

1.6.1. Facts. (1) o(a) and c(a) are complements of each other.

(2) o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨

i ai) =
∨

i o(ai), c(0) =
L, c(1) = O, c(a ∧ b) = c(a) ∩ c(b), c(

∨
i ai) =

⋂
i o(ai).

(3) Each sublocale S can be represented as S =
⋂

i(o(ai) ∨ c(bi)).

1.6.2. Nuclei. A nucleus on a frame L is a monotone map ν : L → L such
that a ≤ ν(a), νν(a) = ν(a) and ν(a ∧ b) = ν(a) ∧ ν(b). Nuclei are in a
one-one correspondence with sublocales, given by

S 7→ νS, νS(x) =
∧
{s | x ≤ s, s ∈ S} and ν 7→ Sν = ν[S].

The restriction of ν to a map L → Sν is a frame homomorphism, and it is
the left adjoint to the embedding j : Sν ⊆ L.

1.6.3. Booleanization. The Booleanization of L is the sublocale B(L) =
{x ∈ L | x = x∗∗} = {x∗ = 0→x | x ∈ L}; it is associated with the nucleus
(x 7→ x∗∗). Note that each sublocale containing 0 has to contain the whole
of B(L).

1.6.4. Dually. In the context of a coframe L we speak about a subcolocale

S ⊆ L if it is closed under joins and if for all s ∈ S and x ∈ L, srx ∈ S, and
of a conucleus κ : L → L if a ≥ κ(a), κκ(a) = κ(a) and κ(a∨b) = κ(a)∨κ(b).
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1.7. Regularity, fitness and subfitness. Write x ≺ y if x∗ ∨ y = 1. A
frame L is regular if

∀a ∈ L, a =
∨
{x | x ≺ a}, (reg)

subfit if

∀a, b a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c, (sfit)

and fit if every sublocale S of L is subfit.
If X is a space then Ω(X) is regular in the sense above iff X is regular.
A frame is subfit iff every open sublocale is a join of closed ones, and it

is fit iff every closed sublocale is a meet of open ones (these characteristics
were in fact the original definitions of subfitness and fitness in [4]). We have
the implications

(reg) ⇒ (fit) ⇒ (sfit).

(For more about fitness and subfitness see e.g. [10, 11, 13, 14].)
A frame L is zero-dimensional if each a ∈ L is a join of complemented

elements. Thus, for instance, because of 1.6.1(3),

the frame S(L)op is zero-dimensional.

Obviously every zero-dimensional frame is regular (and hence subfit).

1.7.1. It is a standard fact that every sublocale of a regular frame is regular.

1.7.2. A rather surprising formula. (See, e.g., [2, 11].) If L is fit then

for every a ∈ L,

a∗ =
∧
{x | a ∨ x = 1}.

Note that it formally coincides with the formula for supplement; for it being
really the supplement we would need the coframe distributivity. Anyway,
from this observation we obtain

1.7.3. Corollary. If L is subfit (in particular, regular) frame which is also

a coframe then it is a Boolean algebra.

For more about frames see e.g. [5, 9].
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2. The frame S∨c(L)

2.1. Let L be a complete lattice. Consider the frame

U(L) = {A ⊆ L | ∅ 6= A = ↑A}

(ordered by inclusion) and the adjunction

U(L)
m //

M(L)
u

oo

with m(A) = {
∧
M | M ⊆ A} and u(A) = {x | ↑x ⊆ A}. Checking that

m(A) ⊆ B iff A ⊆ u(B)

is straightforward.

2.2. Proposition. um is a nucleus on U(L) and hence um[U(L)] is a frame.

Proof : By the adjunction we have A ⊆ um(A) and um(A)(um(A)) = um(A),
hence we have to prove that um preserves finite intersections. Since u is a
right adjoint the point is in proving that u(m(A ∩ B)) ⊇ um(A) ∩ um(B) =
u(m(A) ∩m(B)).
Let x ∈ u(m(A) ∩ m(B)), that is, ↑x ⊆ m(A) ∩ m(B). In particular,

x ∈ m(A) and x =
∧

i∈I ai for some ai ∈ A. As ai ∈ ↑x ⊆ B we have
ai =

∧
j∈Jj

bij for some bij ∈ B. Since A,B are up-sets we obtain that

x =
∧

i∈I,j∈Ji
bij in m(A ∩ B). Now we can conclude that ↑x ⊆ m(A ∩ B)

applying this reasoning to an arbitrary y ∈ ↑x.

2.3. Now we have the situation as in the following diagram

U(L)
m //

σ

��

M(L)
u

oo

κ′

��

um[U(L)]
m̃ //

mu[M(L)]
ũ

oo

j′=⊆

OO

with σ resp. κ′ restrictions of um resp. mu, and m̃, ũ restrictions of m, u.
m̃ and ũ are obviously mutually inverse isomorphisms, and hence

S∨c(L) = mu[M(L)]
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is also a frame (the notation comes from“joins of closeds” and will be ex-
plained shortly). The mapping σ is a frame homomorphism, and the nature
of κ′ and in particular its restriction κ (see 2.4 below) is one of the main
objectives of this paper.
Recall the formula for supremum in M(L) in 1.6. We have, for a meet-set

S, mu(S) = m(
⋃
{↑a | ↑a ⊆ A}) =

∨
{↑a | ↑a ⊆ A}. Thus,

mu(S) is the largest join of closed meet-set contained in S (2.3.1)

and

S∨c(L) is the system of all joins of closed meet-sets. (2.3.2)

Now j′κ′(S) = mu(S) ⊆ S and for T ∈ S∨c(L), and hence T = mu(T ),
j′κ′j′(T ) = j′mu(T ) = j′(T ). Since j′ is one- one, we have κ′j′(T ) = T and
conclude that κ′ is adjoint to the right to j′ and hence

κ′ preserves meets. (2.3.3)

(preserving joins by j′ is obvious anyway).

2.4. Now let us restrict ourselves to frames L and consider the coframe
S(L), a complete sublattice of M(L). Using the notation from [2], that is,
defining U : S(L) → U(L) and J : U(L) → S(L) by

U(S) = {a | ↑a ⊆ S} =
⋂
{↑a | ↑a ⊆ S} and

J(A) =
∨
{a | ↑a ⊆ S} = {

∧
B | B ⊆ A}.

we obtain an adjunction J ⊣ U restricting the m ⊣ u (by straightforward
checking we see that UJ = um) and we get (recall 2.3) that

κ(S) = JU(S) is the largest join of closed sublocales contained in S and

S∨c(L) is the system of all joins of closed sublocales.

The situation is depicted in the following diagram:
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M(L)

u

tt κ′

��

yy
U(L)

m

44

J //

σ

��

S(L)
U

oo

κ

��

99

σ[U(L)]
J̃=m̃ // S∨c(L)
Ũ=ũ

oo

j=⊆

OO j′=⊆

BB

(the adjoint situation between S(L) and M(L) is not of interest here and is
indicated just for completeness).
The main objective now is the nature of the mapping κ. Similarly as in

2.3 (and obviously) it is the right adjoint to the embedding j and hence
κ preserves meets.

In the sequel we will discuss the question when we have more, in particular,
when S∨c(L) is a coframe and κ preserves finite joins (in other words, when j

is an embedding of a subcolocale, and JU = jκ the corresponding conucleus).

2.4.1. Note. The question merits explanation. Of course, once we have more
on the left hand side (σ preserves finite meets) one would like to have, by
symmetry, a dual property on the right hand side. But the point is deeper.
Recall the category of join-lattices from [6]. We can think of it as a relaxed
category of frames (or, rather, think of frames as natural geometric spe-
cialization of join-lattices). The morphisms are join-preserving maps (right
adjoints), and M(L) is the lattice of natural subobjects (objects embedded
by meet-preserving maps). Then S∨c(L) is embedded into M(L) by a join-

preserving map is a generalization of a natural embedding of a coframe into
M(L). Thus, our question amounts to whether j is such an embedding in
the frame setting – and if not, when it is.

3. The case of subfit L

3.1. Subfit frames are characterized by the fact that each open sublocale
is a join of closed ones. Further, the standard facts from 1.6.1 make the
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mapping

o = (a 7→ o(a)) : L → S∨c(L)

a frame embedding (and o is a frame embedding only for subfit L).

3.2. Lemma. Let L be subfit. Then for any T ∈ S(L) and x ∈ L, we have

↑xr T ∈ S∨c(L).

Proof : By 1.6.1(3)

T =
⋂
i

(o(ai) ∨ c(bi))

and therefore, by 1.4.1(1)(2),

↑xr T = c(x)r
⋂
i

(o(ai) ∨ c(bi)) =
∨
i

(c(x)r (o(ai) ∨ c(bi)))

=
∨
i

(c(x) ∧ c(ai) ∧ o(bi)) =
∨
i

(c(x ∨ ai) ∧ o(bi))

Now let L be subfit. Then, for each i, o(bi) =
∨

j c(d
i
j) and hence

↑xr T =
∨
i

(c(x ∨ ai) ∧
∨
j

c(dij)) =
∨
i,j

c(x ∨ ai ∨ dij).

3.3. Theorem. Let L be subfit (in particular, regular). Then S∨c(L) is a

subcolocale of S(L) (with JU from 2.4 the associated conucleus), and it is a

Boolean algebra.

Proof : Let S =
∨

i ↑xi be in S∨c(L). Since S∨c(L) is closed under joins, we
need to prove that

∀T ∈ S(L), S r T ∈ S∨c(L).

By 1.4.1(1)

S r T =
∨
(↑xi r T ).

By 3.2, all the ↑xirT are in S∨c(L), and we see that S∨c(L) is a subcolocale.
We have already observed in 2.4 that κ : S(L) → S∨c(L) is the left adjoint
to the embedding, hence it is a coframe homomorphism, and JU = jκ is the
associated conucleus.
Now by 1.7, S(L)op is regular and hence (recall 1.7.1) its sublocale S∨c(L)

op

is a regular frame which is also a coframe, hence by 1.7.3 a Boolean algebra.

3.4. Theorem. Let L be subfit. Then κ : S(L) → S∨c(L) is the Booleanization

of S(L). In particular, κ = (S 7→ S##).
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Proof : By 3.3, for every sublocale S ∈ S(L), S# = Lr S ∈ S∨c(L).
Now S∨c(L), as a subcolocale of S(L), is closed under the difference, and

hence in particular under the supplement. By 3.3 again, we know that S∨c(L)
is a Boolean algebra and hence the restriction of the supplement from S(L)
is the complement in S∨c(L). Thus, for S ∈ S∨c(L), S = (S#)# and we
conclude that

S∨c(L) = {S# | s ∈ S(L)} = βS(L),

the Booleanization.
(S 7→ S##) : S(L) → S∨c(L) is (as always) the left adjoint to the embed-

ding; but from 2.4 we know that the left adjoint to j is here κ and hence
κ = (S 7→ S##).

3.5. Theorem. The following statements about a frame L are equivalent.

(1) L is subfit.

(2) κ : S(L) → S∨c(L) is the Booleanization of L.
(3) S∨c(L) is a subcolocale of S(L).
(4) S∨c(L) is Boolean.

Proof : (1)⇒(2) is in 3.4 and (2)⇒(3)&(4) is trivial.

(3)⇒(1) immediately follows from preserving the co-Heyting operation in
subcolocales. We have L ∈ S∨c(L) and hence L r S in S∨c(L) for all S; in
particular every o(a) = L r c(a) is a join of closed sublocales, that is, L is
subfit.

(4)⇒(1): The joins in S∨c(L) and S(L) coincide. Now denote by S ⊓ T the
meet in S∨c(L). For closed sublocales we have c(a) ⊓ c(b) = c(a) ∩ c(b) =
↑(a∨ b), that is, the same meet as in S(L). Consequently, if S =

∨
c(bi) and

if c(a) ⊓ S = O we have by distributivity

O =
∨

(c(a) ⊓ c(bi)) =
∨

(c(a) ∩ c(bi)) = c(a) ∩ S.

Hence the complement S of c(a) in S∨c(L) has to be also the complement of
c(a) in S(L), that is, it coincides with o(a). So, again, every open sublocale
is a join of closed ones.

3.6. S∨c(L) and the extension of L to the congruence frame. It is
a well-known fact S(L)op is isomorphic to the frame of congruences on L
and that the mapping c = (a 7→ c(a)) : L → S(L)op is universal for frame
homomorphisms f : L → M such that each element of f [L] is complemented
in M .
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Hence, if L is subfit, because each o(a) is in S∨c(L) and o(a)∗ = Lr o(a) =
c(a) ∈ S∨c(L), we have a frame homomorphism h : Sop(L) → S∨c(L) such that
h · c = o. Since we have h(c(a)) = o(a), we obtain by complementation that
h(o(a)) = c(a).
The joins in S∨c(L) coincide with those in S(L) and hence we have for a

general element
∨

i c(ai) of S
∨
c(L),

∨
i

c(ai) = h(
∨
i

o(ai)) = h(
⋂
i

o(ai)))

(the last intersection understood in the coframe S(L)). Thus, h is an onto
homomorphism, and hence a representation of a sublocale in Sop(L).

3.6.1. Consider the mappings

κop : S(L)op → S∨c(L)
op, jop : S∨c(L)

op → S(L)op

carried by the same mappings as κ, j, the anti-isomorphism

δ : S(L)op → S(L)

carried by the identity, and the anti-isomorphism

∗ : S∨c(L)
op → S∨c(L)

defined by ∗(S) = S∗ (we already know that S∨c(L) is a Boolean algebra).
They are indicated in the following diagram.

L
c //

o

55

S(L)op

h

##G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

δ //

κop

��

S(L)

κ

��

S∨c(L)
op

jop

OO

∗ // S∨c(L)

j=⊆

OO

Proposition. We have h = ∗ · κop and hence h · j = ∗.

Proof : ∗ · κop is a frame homomorphism (it should not confuse us that also
κop is one). Indeed, we have

∗κop(
⋂
Si) = ∗κ(

⋂
Si) = ∗

∧
κ(Si) =

∨
∗κ(Si)
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(note that
∧

Si is the join in S(L)op and ∗ is the complement in S∨c(L)), and

∗κop(S ∨ T ) = ∗κ(S ∨ T ) = ∗κ(s) ∧ ∗κ(T ).

We have

∗κop
c(a) = ∗c(a) = o(a) = hc(a) that is, ∗ ·κop · c = h · c

and since c is an epimorphism in the category of frames (see e.g. [5, 9]) we
obtain that ∗ · κop = h. Since κop · jop is the identity, the second equality
follows.

3.6.2. Proposition. The sublocale of S(L)op associated with the onto homo-

morphism h is

{T ∗ | T ∈ S∨c(L)}.

Consequently we also have a subcolocale {T ∗ | T ∈ S∨c(L)} of S(L) isomor-

phic with S∨c(L).

Proof : We have h(S) = ∗κop(S) ≤ T in S∨c(L) iff κop(S) ≥ T ∗ in S∨c(L),
that is, κop(S) ≤ T ∗ in S∨c(L)

op, iff S ≤ jop(T ∗) in S(L)op. Thus, the right
adjoint to h is (T 7→ j(T ∗) = T ∗).

4. T1-spatial frames

If X is a T1-space then it (resp. the frame Ω(X)) is subfit. Hence the
subcolocale and Booleanization facts of 4.3 and 4.5 below follow from the
results in Section 3. The point of this section is in providing some concrete
formulas and explaining the mechanisms in this particular spatial case.

4.1. Recall that a frame is spatial if it is isomorphic to Ω(X) for some
topological space X. Not every spatial L can be represented using a T1-
space X. If this can be done we speak of a T1-spatial frame.
A spatial frame L is characterized by the fact that every element a ∈ L is a

meet of prime elements (p 6= 1 is prime if p ≤ x∧ y implies that either p ≤ x
or p ≤ y; the set of primes of L will be denoted by Prime(L)) while in a T1-
spatial frame each a is a meet of maximal elements (that is, p < 1 such that
p < x only for x = 1; the set of such p will be denoted by Max(L)). It should
be noted that in his famous theorem on spatiality of subfit compact frames
([4], see also [10]), Isbell in fact proved that these frames are T1-spatial.
A spatial frame typically has sublocales that are not spatial. But even a

spatial sublocale of Ω(X) is not necessarily Ω(Y ) for a subspace Y . Of those
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that are we speak as of induced subspaces. Induced subspaces of T1-spatial
frames are obviously T1-spatial. The spaces such that all sublocales of Ω(X)
are (induced) subspaces are precisely the scattered ones ([7, 9]).

4.2. Recall that a subset {p, 1} of a frame is a sublocale iff p is prime
[9]. Hence, induced spatial sublocales of a spatial frame L are precisely the
sublocales of the form

S =
∨
{P = {p, 1} | p ∈ X} with X ⊆ Prime(L),

and since {p, 1} with p < 1 is an up-set iff p is maximal, the induced sublo-
cales of the T1-representation are then precisely the

S =
∨
{P = {p, 1} | p ∈ X} with X ⊆ Max(L), (4.2.1)

the T1-subspaces of L in the terminology of 4.1.

4.3. Theorem. Let L be T1-spatial. Then every S in S∨c(L) is of the form

S =
∨
{↑m | m ∈ M} for some M ⊆ Max(L). Consequently, S∨c(L) is

precisely the set of all T1-subspaces of L (and hence, it is a Boolean algebra).

Proof : Let S be in S∨c(L). Then we have

S =
∨
{↑a | a ∈ A}

where the A ⊆ L can be assumed an up-set. For x ∈ L set

Mx = ↑x ∩Max(L).

Since L is T1-spatial we have x =
∧
Mx. Since, obviously, ↑a =

∨
{↑x | x ≥ a}

we have ↑a =
∨
{↑m | m ∈ Mx, x ≥ a} so that, taking into account that A

is an up-set,

S =
∨
{↑m | m ∈

⋃
{Ma | a ∈ A}} (4.3.1)

(if b =
∧
N with N ⊆ A then Mn ⊆ A for all n ∈ N and we have

b =
∧
n∈N

∧
Mn =

∧
(
⋃
{Mn | n ∈ N})

with
⋃
{Mn | n ∈ N} ⊆

⋃
{Ma | a ∈ A}; obviously

⋃
{Ma | a ∈ A} ⊆ A).

On the other hand, since the points {p, 1} with p ∈ Max(L) are closed, by
(4.2.1) each T1-subspace is in S∨c(L).

4.3.1. Observation. If S =
∨
{↑m | m ∈ M} for some M ⊆ Max(L) then

M = Max(L) ∩ S.
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Proof : Each m ∈ M is in S, hence M ⊆ Max(L)∩S. On the other hand, let
s ∈ Max(L) ∩ S. Then s =

∧
imi for some mi ∈ M . Since s ≤ mi and since

it is maximal and mi 6= 1, we have s = mi ∈ M .

4.4. Proposition. Let L be T1-spatial. Let S be in S∨c(L) and let T be in

S(L). Then we have for the difference (co-Heyting operation in S(L))

S r T =
∨
{↑x | x ∈ Max(L), x ∈ S, x /∈ T}.

Proof : Set V =
∨
{↑x | x ∈ Max(L), x ∈ S, x /∈ T}. Suppose U ∨ T ⊇ S.

Let x ∈ S be maximal and x /∈ T . Then x = u ∧ t with u ∈ U and t ∈ T ,
hence x ≤ u, t and by maximality and since x 6= t ∈ T , t = 1 and x = u ∈ U ,
and finally ↑x ⊆ U . Thus, U ⊇ W .
On the other hand, let U ⊇ W . Since S ∈ S∨c(L) it suffices to prove that

for every s ∈ S such that ↑s ⊆ S, s ⊆ U ∨ T . Take such an s; like every
element of L it is

∧
{x | x ∈ Max(L), x ≥ s}. Write it as

s =
∧
{x | x ∈ Max(L), x ≥ s, x /∈ T} ∧

∧
{x | x ∈ Max(L), x ≥ s, x ∈ T}.

Since ↑s ⊆ S the first factor is in W and hence in U , and the second one is
in T , hence s ∈ U ∨ T .

Now we have a very explicit formula for S r T and obtain, like in 3.3,

4.4.1. Theorem. Let L be T1-spatial. Then S∨c(L) is a subcolocale of S(L)
(with κ : S(L) → S∨c(L) and JU from 2.4 the associated frame homomor-

phism and conucleus respectively).

4.5. Theorem. Let X be a T1-space. Then the Booleanization of S(Ω(X))
consists precisely of the classical subspaces of X. The homomorphism κ from

2.4 is again the Booleanization map S 7→ S## and can be written as κ(S) =∨
{↑x | x ∈ Max(L) ∩ S}.

Proof : By 4.4, we have the formula for the supplement

S# = Lr T =
∨
{↑x | x ∈ Max(L)− S}

(“−” stands for the standard difference of subsets). Further,

S## = Lr S# =
∨
{↑x | x ∈ Max(L)− S#}.

By 4.3.1, Max(L) ∩ S# = Max(L)− S and hence

Max(L)− S# = Max(L)− (Max(L) ∩ S#)

= Max(L)− (Max(L)− S) = Max(L) ∩ S.
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Now it is also straightforward to see directly that
∨
{↑x | x ∈ Max(L) ∩ S} =

∨
{↑x | ↑x ⊆ S}.

4.6. Remark. The question naturally arises what about the spaces X that
are subfit but not T1. In this case, of course, 3.4 still holds and we have that
S∨c(L) is the Booleanization od S(L). But it is not any more the system of all
subspaces. Representing X as a part of the spectrum (see [9, 11]) we cannot
do with taking just the maximum elements p for representing the points. For
a p that is prime but not maximum, that has to appear in the representation
of one of the one-point sets, the associated sublocale {p, 1} is not closed, and
for trivial reasons cannot be written as a join of closed ones.
But there is a deeper reason. If the space is not TD ([1]), subspaces are not

perfectly represented by special sublocales anyway (see, e.g., [3, 11]), while
if a space is TD and subfit then it is automatically T1.

5. Some very simple, and different, cases

5.1. Proposition. If L is linear then S∨c(L) ∼= Lop. Then S∨c(L) is the set

of all closed sublocales ordered by inclusion and hence it is both a frame and

a coframe (but with the exception of L = {0} and L = {0, 1} not a Boolean

algebra).

Proof : We have
∨
{↑a | a ∈ A} = ↑

∧
A so that S∨c(L) is the lattice of all

the closed sublocales ordered by inclusion.

5.2. The fact in the previous proposition is a part of a more general one.

Theorem. Let L be both a frame and a coframe. Then S∨c(L) is the set of

all closed sublocales ordered by inclusion, hence S∨c(L) ∼= Lop (and it is both

a frame and coframe).

Proof : We have ∨
↑ai = ↑(

∧
ai).

Indeed, obviously
∧

ai is the least element of
∨

↑ai and hence
∨
↑ai ⊆

↑(
∧
ai). Now let x ≥

∧
ai. Then x = x ∨

∧
ai =

∧
(x ∨ ai) (we are in

a coframe) and x ∨ ai ∈ ↑ai so that x ∈
∨
↑ai.
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5.3. Another, this time non-linear, case included in 5.2 is the following.

Corollary. If L is quasidiscrete (Alexandroff ), that is, the topology of up-sets
of a poset, then S∨c(L) ∼= Lop.

5.4. In all the cases in this section, S∨c(L) are, as in the previous ones, not
only frames but also coframes. But there is a fundamental difference: they
are typically not Boolean, and, what is more important, not subcolocales.

5.4.1. Observations. (1) If L is linear then for any two sublocales, S ∨T =
S ∪ T.
(2) If L is linear then S is a sublocale iff it is a meet-set.

(3) If L is linear then the difference of two closed sublocales is ↑a r ↑b =
〈a, b) ∪ {1}.

Proof : (1) S ∨ T = {s ∧ t | s ∈ S, t ∈ T} and s ∧ t ∈ {s, t}.
(2) x→s is either 1 or s.
(3) 〈a, b) ∪ {1} = (↑a − ↑b) ∪ {1} where “−” designates, again, the set-
theoretical difference (note that the right hand side is really a meet-set and
hence a sublocale). Now for any subset U ⊆ L we have ↑a − ↑b ⊆ U iff
↑a ⊆ U ∪ ↑b and hence by Observations (1) and (3), for any sublocale U ,
↑ar ↑b ⊆ U iff ↑a ⊆ U ∨ ↑b.

5.4.2. Proposition. Let L be linear and let it contain at least four elements.

Then S∨c(L) is not a subcolocale of S(L).

Proof : Take a chain a < b < x < 1 in L. By Observation (3), the difference
↑ar ↑b in S(L) does not contain x and hence it is not an up-set, unlike the
difference in S∨c(L).

5.5. Note. The S∨c(L)’s in this section were not subcolocales of S(L) (and
not Boolean, either) but they were still both frames and coframes. An ex-
ample of an S∨c(L) that is not a coframe (or proving that it is always one)
remains an open problem.
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