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NON-FICKIAN COUPLED DIFFUSION
MODELS IN POROUS MEDIA

S. BARBEIRO, S. BARDEJI, J.A. FERREIRA AND L. PINTO

Abstract: In this paper we propose a numerical scheme to approximate the so-
lution of a non-Fickian coupled model that describes diffusion in porous media.
The model is defined by a system of a quasilinear elliptic equation, which governs
the fluid pressure, and a quasilinear integro-differential equation, which models the
convection-diffusion transport process. The numerical scheme is based on a con-
forming piecewise linear finite element method for the discretization in space. The
fully discrete approximation is obtained with an implicit-explicit method. Estimates
for the continuous in time and the fully discrete methods are derived, showing that
the numerical approximation for the concentration and the pressure are second order
convergent in a discrete L2-norm and in a discrete H1-norm, respectively.

keywords: non-Fickian diffusion, porous media, integro-differential equa-
tion, finite element method, finite difference method, supraconvergence.

1. Introduction
Transport processes in porous media are usually modeled by the classical

convection-diffusion equation

ϕ
∂c

∂t
+∇ · (vc) +∇ · J = q1 in Ω× (0, T ], (1)

where Ω represents the spatial domain, ϕ is the porosity of the medium, c is
the concentration of the diffusion specie, being v its velocity, and J designates
the mass flux defined by Fick’ law

J = −D∇c. (2)

In (2), D denotes the diffusion tensor that depends on the velocity v and is
given by

D(v) = dmϕI + αt∥v∥I + (αℓ − αt)
1

∥v∥
vvT ,

where ∥.∥ denotes the euclidian norm, I is the two dimensional identity ma-
trix, dm is the molecular diffusion coefficient, and αℓ and αt are the transver-
sal and the longitudinal dispersivities, respectively. The parabolic equation
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defined by (1), (2) is usually coupled with the elliptic pressure equation

−∇ ·
(K
µ
∇p

)
= q2 in Ω, (3)

where the permeability tensor K and/or the viscosity µ can depend on the
concentration. The velocity v in equation (1) depends on the pressure p
through Darcy’s law

v = −K

µ
∇p in Ω.

In (1) and (3), q1 and q2 represent source and sink terms.
Despite the popularity of this model, gaps between experimental data and

simulation results were observed in several scenarios. Without being exhaus-
tive we mention [5], [6], [7], [8], [9], [10], [19], [22], and [30]. To overcome the
limitations of traditional diffusion models, several non-Fickian models were
proposed in the literature. For instance, in [26], [32], and [33], hyperbolic
equations were introduced to replace the classical diffusion equations. Con-
tinuous time random walks models were tested, e.g., in [5], [6], [7] and [10].
In the present paper, we consider an integro-differential model identical to
those proposed in [8], [9], and [23], and that have been extensively studied
in the literature. We refer [27] for an overview on non-Fickian models for
diffusion in porous media. It should be noted that integro-differential models
have been also used to describe diffusion in viscoelastic materials ([11], [12],
[17], [21]).
In what follows the diffusion equation (1), (2) is replaced by the following

integro-differential equation

∂c

∂t
−∇·(D∇c)+∇·(Bc) =

∫ t

0

Ker(t−s)∇·(E∇c)(s) ds+q1 in Ω×(0, T ], (4)

where Ker(s) denotes a memory kernel. In this work we use the following
notation: if w : Ω × [0, T ] → IR then by w(t) we denote the function w(t) :
Ω → IR such that w(t)(x) = w(x, t). Equation (4) is established using the
mass conservation law (1) with the mass flux J given by

J = JF + JnF + Jad, (5)

where Jad stands for the advective mass flux, while JF and JnF represent the
Fickian and non-Fickian dispersive mass fluxes, respectively. In (5), JF is
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defined by (2), Jad = Bc, and JnF is the nonlocal in time operator

JnF (t) =

∫ t

0

Ker(t− s)(E∇c)(s) ds,

where E depends on the velocity v and eventually on the concentration c.
Equation (4) for the concentration is coupled with the elliptic equation

−∇ · (A∇p) = q2 in Ω× (0, T ], (6)

which is a natural extension of the pressure equation (3).
As already mentioned, the classical convection-diffusion equation is not

able to capture the behavior of diffusion processes in porous media. For
illustration, we reproduce in Figure 1 some of the results presented in [19].
In that figure, the results of two laboratory tracer experiments described
in [30] (left image) and [5] (right image) are compared with the best-fit
curves obtained with the classical diffusion equation (1), (2), and the integro-

differential equation (4) with Ker(s) =
1

τ
e−

s
τ . The measured concentration

values are represented by dots, and we observe that the integro-differential
model (green line), unlike the classical model (blue line), accurately describes
the experimental data in particular the late-time tails. More details about
Figure 1 can be found in [19].
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Figure 1. Time evolution of the concentration at a specific
point of the domain, as given by (4) (green line) and by (1),
(2) (blue line). The experimental data are represented by dots.
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The development of efficient and accurate numerical methods to solve the
integro-differential equation (4) has attracted the attention of several re-
searchers during the last decades. A significative number of contributions can
be found in the literature. Without being exhaustive we mention [24], [25],
[29], and [35], for the study of semi-discrete finite element approximations,
[28] for the analysis of semi-discrete lumped mass approximations, [13], [14],
and [31], for the construction of semi-discrete finite volume approximations,
and [1], [3], [4], and [20], for finite difference methods presenting the same
qualitative behavior as the continuous integro-differential initial boundary
value problems. We note that the finite difference methods studied in this
last group of papers can be seen as piecewise linear finite element methods
with convenient quadrature rules.
To the best of our knowledge the numerical discretization of the non-

Fickian coupled problem (4), (6) was not yet analysed. In this paper we
introduce finite difference methods for the approximation of the pressure
and the concentration whose errors are second order convergent in discrete
H1 and L2 norms, respectively. From these result we conclude that the nu-
merical velocity is also a second order approximation. In this way, we extend
to non-Fickian coupled problems, the results presented in [18] and [15] for
piecewise linear finite element methods. We point out that these results are
somehow unexpected in the context of finite difference methods as well as
finite element methods. In fact, the truncation errors induced by the spa-
tial discretizations that we consider are only of first order when non-uniform
grids are used and it is also well known that piecewise linear finite element
methods are first order convergent with respect to the H1-norm. Moreover
we note that the analysis in this paper differs from the one used in [18] and
[15], which is based on the definition of a convenient auxiliary problem and
was introduced by Wheeler in [34]. Here, we apply the approach of [20].
The remaining of the paper is organized as follows. Section 2 is devoted to

the construction of the semi-discrete approximation for the solution of the
coupled system (4), (6). In this section we also introduce the variational
formulation and the finite difference scheme. The convergence analysis of
the semi-discrete approximation for the pressure and the concentration is
presented in Section 3. The main result of this section is Theorem 1 which
establishes the second order convergence rate of the numerical scheme for
the pressure and the concentration with respect to discrete versions of the
H1-norm and L2-norm, respectively. An implicit-explicit (IMEX) method to
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compute the fully discrete approximations (in time and space) for the pres-
sure and concentration is studied in Section 4. In Section 5, some numerical
experiments are included and in Section 6 we present some conclusions.

2. Space discretization
Let Ω = (0, 1)×(0, 1). We consider the coupled system (4), (6) with Dirich-

let boundary conditions

p = pb on ∂Ω× (0, T ] , c = 0 on ∂Ω× (0, T ], (7)

and known initial concentration and pressure

c(0) = c0 in Ω, p(0) = p0 in Ω. (8)

In (4), (6) the coefficient functions A, D, and E are second order diagonal
square matrices with entries ai, di, and ei, i = 1, 2, respectively, where ai

depends on c, di and ei depend on c,
∂p

∂x
and eventually on the time and

space variables. The two dimensional vector B has entries b1 and b2 which

depend on
∂p

∂x
and

∂p

∂y
, respectively, and both depend also on c.

By L2(Ω), L2(∂Ω), H1(Ω), and H1
0(Ω) we denote the usual Hilbert spaces.

In L2(Ω) we consider the usual inner product (., .) being the induced norm
represented by ∥ · ∥. By [V ]2 we represent the usual cartesian product of the
vector space V.
Assuming that q1, q2, c0, p0 ∈ L2(Ω), and pb ∈ L2(∂Ω), the weak solution

of the system (4)-(8) can be obtained by solving the following variational
problem: find p(t) ∈ H1(Ω) and c(t) ∈ H1

0(Ω), with p(t) = pb(t) on ∂Ω and
dc

dt
(t) ∈ L2(Ω), such that

(A(c(t))∇p(t),∇w) = (q2(t), w), ∀w ∈ H1
0(Ω), (9)

(
dc

dt
(t), w) + (D(c(t),∇p(t))∇c(t),∇w)− (B(c(t),∇p(t))c(t),∇w)

+

∫ t

0

Ker(t− s)(E(c(s),∇p(s))∇c(s),∇w)ds = (q1(t), w), ∀w ∈ H1
0(Ω),

(10)
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for t ∈ (0, T ]. In the above formulation the kernel function can be defined by

Ker(s) =
1

τ
e−

s
τ , but it is not limited to that case. We remark that the inner

product in [L2(Ω)]2 is also denoted by (., .).
In what follows we derive the semi-discrete approximation for the pressure

and concentration defined by the coupled variational problem (9), (10). We
start by introducing some basic definitions and notations.
In Ω we introduce a non-uniform rectangular grid which is the cartesian

product of two 1D non-uniform grids {xi, i = 0, . . . , Nx}, {yj, j = 0, . . . ,My}.
Let h = (h1, . . . , hNx

) and k = (k1, . . . , kNy
) be vectors of positive entries such

that

Nx∑
i=1

hi =

Ny∑
j=1

kj = 1. Let xi = xi−1 + hi, i = 1, . . . , Nx, with x0 = 0 and

let {yj, j = 0, . . . , Ny} be defined analogously with h replaced by k. By H
we represent the step size vector (h, k). In Ω we define the grid

ΩH = {(xi, yj), i = 0, . . . , Nx; j = 0, . . . , Ny} .

We also introduce the set of grid points ΩH = ΩH ∩ Ω, ∂ΩH = ΩH ∩ ∂Ω.
We consider a sequence of grids ΩH such that the maximal mesh-size

Hmax = max{hi, kj, i = 1, . . . , Nx; j = 1, . . . , Ny} tends to zero. We use
the symbol “Λ” for the sequence of mesh-size vectors and write “H ∈ Λ”
for the convergence when Hmax → 0 and with respect to H running through
this sequence. By WH we represent the space of grid functions defined in
ΩH and by WH,0 the subspace of WH of grid functions vanishing on ∂ΩH . By
RH we denote the operator of pointwise restriction to the grid ΩH . Let TH
be a triangulation of Ω using the set ΩH as vertices. We denote by diam∆
the diameter of the triangle ∆ ∈ TH . By PHvH we denote the continuous
piecewise linear interpolant of vH with respect to TH .
In WH,0 we introduce the inner product

(vH , wH)H =
∑

(xi,yj)∈ΩH

|2i,j|vH(xi, yj)wH(xi, yj), wH , vH ∈ WH,0,

where |2i,j| denotes the area of2i,j with2i,j = (xi−1/2, xi+1/2)×(yj−1/2, yj+1/2)∩

Ω and xi±1/2 = xi±
hi

2
, being yj±1/2 defined analogously. By ∥ · ∥H we denote

the norm induced by this inner product.
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For vH = (v1,H , v2,H), wH = (w1,H , w2,H) ∈ [WH ]
2, we use the notation

(vH , wH)H,+ = (v1,H , w1,H)H,x + (v2,H , w2,H)H,y,

where

(vH , wH)H,x =

Nx∑
i=1

Ny−1∑
j=1

hikj+1/2vH(xi, yj)wH(xi, yj), wH , vH ∈ WH ,

(vH , wH)H,y =

Nx−1∑
i=1

Ny∑
j=1

hi+1/2kjvH(xi, yj)wH(xi, yj), wH , vH ∈ WH .

We define ∥wH∥H,x =
√

(wH , wH)H,x and ∥wH∥H,y =
√
(wH , wH)H,y.

Let D−x and D−y be the usual backward finite difference operators with
respect to the variables x and y, respectively,

D−xwH(xi, yj) =
wH(xi, yj)− wH(xi−1, yj)

hi
,

D−ywH(xi, yj) =
wH(xi, yj)− wH(xi, yj−1)

kj
,

and let ∇H be the discrete version of the gradient operator ∇ defined by
∇HwH = (D−xwH , D−ywH). We introduce the following discrete version of
the H1-norm

∥wH∥1,H =
(
∥wH∥2H + ∥∇HwH∥2H,+

)1/2
,

where

∥∇HwH∥2H,+ = ∥D−xwH∥2H,x + ∥D−ywH∥2H,y.

With these definitions holds the following discrete Poincaré-Friedrichs in-
equality

∥wH∥2H ≤ 1

2
∥∇HwH∥2H,+, ∀wH ∈ WH,0.

In order to define the discrete approximations in space cH(t) and pH(t) we
introduce the following notation:

Mh(wH)(xi, yj) =
wH(xi, yj) + wH(xi−1, yj)

2
,

Mk(wH)(xi, yj) =
wH(xi, yj) + wH(xi, yj−1)

2
,

(MHwH ,∇HvH)H,+ = (Mh(wH), D−xwH)x,+ + (Mk(wH), D−ywH)y,+
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and

DhwH(xi, yj) =
hiD−xwH(xi+1, yj) + hi+1D−xwH(xi, yj)

hi + hi+1
,

being the finite difference operator Dk defined analogously with respect to
the variable y. To approximate the coefficient functions, we introduce the
diagonal matrices AH(t), DH(t) and EH(t) whose entries aℓ,H(t), dℓ,H(t) and
eℓ,H(t), ℓ = 1, 2, respectively, depend on the numerical concentration cH(t)
and pressure pH(t), that are given by

a1,H(t) = a1(Mh(cH(t))), d1,H(t) = d1(Mh(cH(t)), D−xpH(t)),

and
e1,H(t) = e1(Mh(cH(t)), D−xpH(t)).

The vector BH(t) depends on cH(t) and pH(t)

b1,H(t) = b1(cH(t), DhpH(t)).

The entries a2,H(t), d2,H(t), e2,H(t) and b2,H(t) are defined analogously.
We now define the semi-discrete approximations cH(t) and pH(t) for the

solution of (9), (10): find pH(t) ∈ WH and cH(t) ∈ WH,0, with pH(t) =

RHpbH(t) on ∂ΩH and
dcH
dt

(t) ∈ WH,0, such that

(AH(t)∇HpH(t),∇HwH)H,+ = (q2,H(t), wH)H , (11)

for all wH ∈ WH,0,

(
dcH
dt

(t), wH)H + aH(cH(t), wH) +

∫ t

0

bH(s, t, cH(s), wH) ds = (q1,H(t), wH)H ,

(12)
for all wH ∈ WH,0, and

pH(0) = p0,H in ΩH , cH(0) = c0,H in ΩH , (13)

for t ∈ (0, T ], where p0,H and c0,H are approximations for p0 and c0 in WH ,
respectively. In (11) and (12), aH(cH(t), wH) and bH(s, t, cH(s), wH) are given
by

aH(cH(t), wH) = (DH(t)∇HcH(t),∇HwH)H,+−(MH(BH(t)cH(t)),∇HwH)H,+,

bH(s, t, cH(s), wH) = Ker(t− s)(EH(s)∇HcH(s),∇HwH)H,+

and

qℓ,H(xi, yj, t) =
1

|2i,j|

∫
2i,j

qℓ(x, y, t)dxdy, (xi, yj) ∈ ΩH , ℓ = 1, 2.
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We observe that (11) and (12) can also be obtained from the finite element
coupled variational equations

(A(PHcH(t))∇PHpH(t),∇PHwH) = (q2(t), PHwH), ∀wH ∈ WH,0, (14)

(
d

dt
PHcH(t), PHwH) + (D(PHcH(t),∇PHpH(t))∇PHcH(t),∇PHwH)

−(B(PHcH(t),∇PHpH(t))PHcH(t),∇PHwH)

+

∫ t

0

Ker(t− s)(E(PHcH(s),∇PHpH(s))∇PHcH(s),∇PHwH) ds

= (q1(t), PHwH), ∀wH ∈ WH,0 (15)

using suitable quadrature rules (see [16]).

Remark 1. The discrete in space coupled variational problem (11), (12) is
equivalent to the following finite difference method

−∇∗
H · (AH(t)∇HpH(t)) = q2,H(t), (16)

dcH
dt

(t)−∇∗
H .(DH(t)∇HcH(t)) +∇∗

c,H · (BH(t)cH(t))

=

∫ t

0

Ker(t− s)∇∗
H · (EH(s)∇HcH(s))ds+ q1,H(t), (17)

complemented by the initial conditions (13) and the boundary conditions
cH(t) = 0 and pH(t) = RHpb(t) on ∂Ω. Here, ∇∗

HwH = (DxwH , DywH)
and ∇∗

c,HwH = (Dc,xwH , Dc,ywH), where

DxwH(xi, yj) =
wH(xi+1, yj)− wH(xi, yj)

hi+1/2
,

Dc,xwH(xi, yj) =
wH(xi+1, yj)− wH(xi−1, yj)

hi + hi+1
,

with hi+1/2 =
hi + hi+1

2
and the corresponding operators in y-dimension, Dy

and Dc,y, are defined analogously.

In the following section we show that the solutions pH(t) and cH(t) of
the finite difference problem (16), (17), or equivalently, the fully discrete in
space piecewise linear finite element solutions of the variational problem (14),
(15), are second order convergent approximations for the pressure p(t) and
concentration c(t).
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3. Convergence analysis
This section is dedicated to derive error estimates for the numerical solu-

tions of our finite difference scheme, namely,

eH,p(t) = RHp(t)− pH(t) and eH,c(t) = RHc(t)− cH(t).

A possible approach could be to follow the procedure introduced byWheeler
in [34] and used, e.g., in [18]. However, this technique requires that the se-
quence of spatial grids is quasi-uniform in the sense that

Hmax

Hmin
≤ C, for H ∈ Λ.

Here we propose a type of analysis that avoids the above smoothness as-
sumption on the spatial grids. In addition, our approach is less restrictive
regarding the regularity of the solutions p and c.
Nevertheless, the convergence analysis that we present still requires some

regularity conditions on p and c as well as in the coefficient functions of the
model. For the coefficients functions we assume the following:

A ∈ C1
B(IR) ∩W 2,∞(IR), dℓ, bℓ, eℓ ∈ C1

B(IR
2) ∩W 2,∞(IR2),

0 < Amin ≤ A in IR, and 0 < Dmin ≤ dℓ in IR2, ℓ = 1, 2.

Here, C1
B(IR) and C1

B(IR
2) represent the space of functions defined in IR and

IR2, respectively, with bounded first order partial derivatives. By W 2,∞(IR)
and W 2,∞(IR2) we denote the usual Sobolev spaces. To simplify the proofs
of the convergence results, we start by introducing some notation. Let ÃH

and A∗
H be defined as A, replacing a1, a2 by ã1, ã2 and a∗1, a

∗
2, respectively,

with

ã1(xi, yj, t) = a1(c(xi−1/2, yj, t)),

ã2(xi, yj, t) = a2(c(xi, yj−1/2, t)),

a∗1(xi, yj, t) = a1(
1

2
(c(xi−1, yj, t) + c(xi, yj, t))),

a∗2(xi, yj, t) = a2(
1

2
(c(xi, yj−1, t) + c(xi, yj, t))).

D̃H and D∗
H are defined in a corresponding way.

In the following, ∥.∥Cq denotes the usual norm in Cq(Ω), q ∈ IN0.
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Proposition 1. If p(t) ∈ H3(Ω), c(t) ∈ H2(Ω), then there exists a positive
constant C such that

∥∇HeH,p(t)∥H,+ ≤ C
(
∥p(t)∥C1∥eH,c(t)∥H + τp(t)

)
, (18)

where

τp(t) =
( ∑

∆∈TH

(diam∆)4
(
∥c(t)∥2H2(∆) + ∥c(t)∥4H1(∆)

))1/2

+
(
∥p(t)∥C1 + 1

)( ∑
∆∈TH

(diam∆)4∥p(t)∥2H3(∆)

)1/2)
. (19)

Proof: We start with the following decomposition

(AH(t)∇HeH,p(t),∇HeH,p(t))H,+ =
3∑

i=1

τ
(i)
A (eH,p(t)),

where

τ
(1)
A (eH,p(t)) = ((AH(t)− A∗

H(t))∇HRHp,∇HeH,p(t))H,+,

τ
(2)
A (eH,p(t)) = ((A∗

H(t)− ÃH(t))∇HRHp,∇HeH,p(t))H,+,

and

τ
(3)
A (eH,p(t)) = (ÃH(t)∇HRHp,∇HeH,p(t))H,+

−
Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

a1(xi−1/2, y, t)
∂p

∂x
(xi−1/2, y, t)dyD−xeH,p(xi, yj, t)

−
Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

a2(x, yj−1/2, t)
∂p

∂y
(x, yj−1/2, t)dxD−yeH,p(xi, yj, t),

with a1(xi−1/2, y, t) = a1(c(xi−1/2, y, t)), a2(x, yj−1/2, t) = a2(c(x, yj−1/2)) to
shorten notation. Since p(t) ∈ H3(Ω) and H3(Ω) is continuously embedded
in C1(Ω), holds ∥∇HRHp(t)∥H,+ ≤ ∥∇p(t)∥C0, and then

|τ (1)A (eH,p(t))| ≤ C∥p(t)∥C1∥eH,c(t)∥H∥∇HeH,p(t)∥H,+.
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To obtain an estimate for τ
(2)
A (eH,p(t)) we observe that, for g(c(xi, yj)) =

Mhc(xi, yj)− c(xi−1/2, yj), one gets

kj+1/2|g(c(xi, yj))| ≤ kj+1/2

∫ yj+1/2

yj−1/2

|g(∂c
∂y

(xi, y))| dy

+

∫ yj+1/2

yj−1/2

|g(c(xi, y))| dy

≤ kj+1/2

∫ yj+1/2

yj−1/2

∫ xi

xi−1

| ∂2c

∂x∂y
| dxdy

+ hi

∫ yj+1/2

yj−1/2

∫ xi

xi−1

|∂
2c

∂x2
| dxdy,

being the last inequality derived using the Bramble-Hilbert Lemma. We note
that

hi+1/2Mkc(xi, yj)− c(xi, yj−1/2)

can be estimated in a similar way,

|τ (2)A (eH,p(t))| ≤ C∥p(t)∥C1

( ∑
∆∈TH

(diam∆)4∥c(t)∥2H2(∆)

)1/2

∥∇HeH,p(t)∥H,+.

To conclude the proof we observe that Lemma 5.1 of [16] can be applied to
establish the estimate,

|τ (3)A eH,p(t))| ≤ C
( ∑

∆∈TH

(diam∆)4
(
∥p(t)∥2C1

(
∥c(t)∥4H1(∆) + ∥c(t)∥2H2(∆)

)
+∥c(t)∥2H1(∆)∥p(t)∥2H2(∆) + ∥p(t)∥2H3(∆)

))1/2

∥∇HeH,p(t)∥H,+.

To simplify notation in the next proposition, we write

d1(xi−1/2, y, t) = d1(c(xi−1/2, y, t),
∂p

∂x
(xi−1/2, y, t)),

d2(x, yj−1/2, t) = d2(c(x, yj−1/2, t),
∂p

∂y
(x, yj−1/2, t)). (20)
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Proposition 2. Assume that p(t), c(t) ∈ H3(Ω) and
∂2p

∂x∂y
(t) =

∂2p

∂y∂x
(t) in

Ω. For the functional

τD(wH) = (DH(t)∇HcH(t),∇HwH)H,+

−
Nx∑
i=1

My−1∑
j=1

hi

∫ yj+1/2

yj−1/2

d1(xi−1/2, y, t)
∂c

∂x
(xi−1/2, y, t)dyD−xwH(xi, yj)

−
Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

d2(x, yj−1/2, t)
∂c

∂y
(x, yj−1/2, t)dxD−ywH(xi, yj),

for wH ∈ WH,0, holds

τD(wH) = −(DH(t)∇HeH,c(t),∇HwH)H,+ + τD,e(wH),

where

τD,e(wH) ≤ C
(
∥c(t)∥C1

(
1 + ∥p(t)∥C1

)(
∥eH,c(t)∥H

+
( ∑

∆∈TH

(diam∆)4∥p(t)∥2H3(∆)

)1/2)
+ (1 + ∥c(t)∥C1)3

( ∑
∆∈TH

(diam∆)4
(
∥c(t)∥2H3(∆) + ∥c(t)∥4H2(∆)

+ ∥p(t)∥2H3(∆) + ∥p(t)∥4H2(∆)

))1/2)
∥∇HwH∥H,+.

Proof: For τD(wH) holds the decomposition

τD(wH) = −(DH(t)∇HeH,c(t),∇HwH)H,+ +
3∑

i=1

τ
(i)
D (wH), (21)

with τ
(1)
D (wH), τ

(2)
D (wH), and τ

(3)
D (wH) defined by

τ
(1)
D (wH) = (

(
DH(t)−D∗

H(t)
)
∇HRHc(t),∇HwH)H,+,

τ
(2)
D (wH) = (

(
D∗

H(t)− D̃H(t)
)
∇HRHc(t),∇HwH)H,+,
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and

τ
(3)
D (wH) = (D̃H(t)∇HRHc,∇HwH)H,+

−
Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

d1(xi−1/2, y, t)
∂c

∂x
(xi−1/2, y)dyD−xwH(xi, yj)

−
Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

d2(x, yj−1/2, t)
∂c

∂y
(x, yj−1/2, t)dxD−ywH(xi, yj).

For τ
(1)
D (wH) we can easily establish the estimate

|τ (1)D (wH)| ≤ C∥c(t)∥C1

(
∥eH,c(t)∥H + ∥eH,p(t)∥1,H

)
∥∇HwH∥H,+.

For τ
(2)
D (wH) we have τ

(2)
D (wH) = τ

(2,1)
D (wH) + τ

(2,2)
D (wH) with

τ
(2,1)
D (wH) =

Nx∑
i=1

Ny−1∑
j=1

hikj+1/2
∂d1
∂x

g1(c(xi, yj, t))D−xc(xi, yj, t)D−xwH(xi, yj)

+

Nx−1∑
i=1

Ny∑
j=1

hi+1/2kj
∂d2
∂x

g2(c(xi, yj, t))D−yc(xi, yj, t)D−ywH(xi, yj),

where g1(c(xi, yj, t) = Mhc(xi, yj, t)−c(xi−1/2, yj, t), g2(c(xi, yj, t) =Mkc(xi, yj, t)−
c(xi, yj−1/2, t), and

τ
(2,2)
D (wH) =

Nx∑
i=1

Ny−1∑
j=1

hikj+1/2
∂d1
∂y

g1(p(xi, yj, t))D−xc(xi, yj, t)D−xwH(xi, yj)

+

Nx∑
i=1

Ny−1∑
j=1

hi+1/2kj
∂d2
∂y

g2(p(xi, yj, t))D−yc(xi, yj, t)D−ywH(xi, yj),

with g1(p(xi, yj, t)) = D−xp(xi, yj, t) − ∂p
∂x(xi−1/2, yj, t) and g2(p(xi, yj, t)) =

D−yp(xi, yj, t)− ∂p
∂y(xi, yj−1/2, t). In τ

(2,ℓ)
D (wH), ℓ = 1, 2, the partial derivatives

of d1 and d2 are evaluated at convenient points.
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Following the steps used to estimate τ
(2)
A (eH,p(t)) on the proof of Proposition

1, it can be shown that

|τ (2,1)D (wH)| ≤ C∥c(t)∥C1

( ∑
∆∈TH

(diam∆)4∥c(t)∥2H2(∆)

)1/2

∥∇HwH∥H,+.

To estimate τ
(2,2)
D (wH) we observe that if p(t) ∈ H3(Ω) then

∂p

∂x
∈ H2(Ω).

Under the previous assumptions for g1, we get

kj+1/2|g1(p(xi, yj, t))| ≤ kj+1/2

∫ yj+1/2

yj−1/2

|g1(
∂p

∂y
(xi, y, t))|dy

+

∫ yj+1/2

yj−1/2

|g1(p(xi, y, t))|dy

≤ kj+1/2

∫ yj+1/2

yj−1/2

∫ xi

xi−1

| ∂3p

∂x2∂y
(t))|dxdy

+ hi

∫ yj+1/2

yj−1/2

|∂
3p

∂x3
(t)|dxdy,

being the last upper bound obtained using the Bramble-Hilbert Lemma. For
g2 holds a similar result, and we obtain

|τ (2,2)D (wH)| ≤ C∥c(t)∥C1

( ∑
∆∈TH

(diam∆)4∥p(t)∥2H3(∆)

)1/2

∥∇HwH∥H,+.

Lemma 5.1 of [16] allows us to deduce the upper bound for τ
(3)
D (wH),

|τ (3)D (wH)| ≤ C(1 + ∥c(t)∥C1)3
( ∑

∆∈TH

(diam∆)4
(
∥c(t)∥2H3(∆) + ∥c(t)∥4H2(∆)

+ ∥p(t)∥2H3(∆) + ∥p(t)∥4H2(∆)

))1/2

∥∇HwH∥H,+.

Finally, taking into account (18) we conclude the proof.

Under the assumptions of Proposition 2 and following its proof we can
derive the next result.
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Proposition 3. For wH ∈ WH,0, the functional

τE(wH) =

∫ t

0

Ker(t− s)(EH(s)∇HcH(s),∇HwH)H,+ds

−
∫ t

0

Ker(t− s)

Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

e1(xi−1/2, y, s)
∂c

∂x
(xi−1/2, y, s) dyds

D−xwH(xi, yj)

−
∫ t

0

Ker(t− s)

Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

e2(x, yj−1/2, s)
∂c

∂y
(x, yj−1/2, s) dxds

D−ywH(xi, yj),

with eℓ, ℓ = 1, 2, defined by (20) with dℓ replaced by eℓ, admits the represen-
tation

τE(wH) = −
∫ t

0

Ker(t− s)(EH(t)∇HeH,c(s),∇HwH)H,+ds

+

∫ t

0

Ker(t− s)τE,e(wH)ds,

where

τE,e(wH) ≤ C
(
∥c(s)∥C1

(
1 + ∥p(s)∥C1

)(
∥eH,c(s)∥H

+
( ∑

∆∈TH

(diam∆)4∥p(s)∥2H3(∆)

)1/2)
+(1 + ∥c(s)∥C1)3

( ∑
∆∈TH

(diam∆)4
(
∥c(s)∥2H3(∆) + ∥c(s)∥4H2(∆)

+∥p(s)∥2H3(∆) + ∥p(s)∥4H2(∆)

))1/2)
∥∇HwH∥H,+.

In the following result we use the abbreviation

b1(xi−1/2, y, t) = b1(c(xi−1/2, y, t),
∂p

∂x
(xi−1/2, y, t)),

b2(x, yj−1/2, t) = b2(c(x, yj−1/2, t),
∂p

∂y
(x, yj−1/2, t)). (22)
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Proposition 4. Let wH ∈ WH,0 and τB be the functional given by

τB(wH) = −(MH(BH(t)cH(t)),∇HwH)H,+

+

Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

b1(xi−1/2, y, t)c(xi−1/2, y, t)dyD−xwH(xi, yj)

+

Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

b2(x, yj−1/2, t)c(x, yj−1/2, t)dxD−ywH(xi, yj).

If p(t) ∈ H3(Ω),
∂2p

∂x∂y
(t) =

∂2p

∂y∂x
(t) in Ω, c(t) ∈ H2(Ω), and the spatial

grid satisfies

kj
kj+1

≤ C,
hi

hi+1
≤ C, (23)

then for τB(wH) we have

τB(wH) = (MH(BH(t)eH,c(t)),∇HwH)H,+ + τB,e(wH),

where

τB,e(wH) ≤ C
(
∥c(t)∥C0

(
1 + ∥p(t)∥C1

)
∥eH,c(t)∥H

+
(
∥c(t)∥C0

(
1 + ∥p(t)∥C1) + 1

)( ∑
∆∈TH

(diam∆)4
(
∥c(t)∥4H1(∆) + ∥c(t)∥2H2(∆)

+ ∥p(t)∥4H2(∆) + ∥p(t)∥2H3(∆)

))1/2)
∥∇HwH∥H,+.

Proof: For τB(wH) holds the representation

τB(wH) = (MH(BH(t)eH,c(t)),∇HwH)H,+ +
3∑

i=1

τ
(i)
B (wH),

where

τ
(1)
B (wH) = (MH((B

∗
H(t)−BH(t))RHc(t)),∇HwH)H,+,

τ
(2)
B (wH) = (MH((B̃H(t)−B∗

H(t))RHc(t)),∇HwH)H,+,
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and

τ
(3)
B (wH) = (MH(B̃H(t)RHc),∇HwH)H,+

−
Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

b1(xi−1/2, y, t)c(xi−1/2, y, t)dyD−xwH(xi, yj)

−
Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

b2(x, yj−1/2, t)c(x, yj−1/2, t)dxD−ywH(xi, yj).

For τ
(1)
B (wH), we can easily establish the following estimate

|τ (1)B (wH)| ≤ C∥c(t)∥C0

(
∥eH,c(t)∥H + ∥∇HeH,p(t)∥H,+

)
∥∇HwH∥H,+.

An estimate for τ
(2)
D (wH) can be obtained following the approach used to

estimate τ
(2)
D (wH) in the proof of Proposition 2. For this, we must replace

gi, i = 1, 2, (introduced in the construction of the upper bound for τ
(2,2)
D (wH))

by g1(xi, y,t) = Dhp(xi, yj, t) −
∂p

∂x
(xi, yj, t) and g2(xi, y,t) = Dkp(xi, yj, t) −

∂p

∂y
(xi, yj, t), respectively. In this case we obtain

|τ (2)B (wH)| ≤ C∥c(t)∥C0

(( ∑
∆∈TH

(diam∆)4∥c(t)∥2H2(∆)

)1/2

+
( ∑

∆∈TH

(diam∆)4∥p(t)∥2H3(∆)

)1/2)
∥∇HwH∥H,+.

Considering now Lemma 5.5 of [16] we obtain for τ
(3)
B (wH) the estimate

|τ (3)B (wH)| ≤ C
(
∥c(t)∥C0 + 1

)( ∑
∆∈TH

(diam∆)4
(
∥c(t)∥4H1(∆) + ∥c(t)∥2H2(∆)

+ ∥p(t)∥4H2(∆) + ∥p(t)∥2H3(∆)

))1/2

∥∇HwH∥H,+.

Finally, combining the upper bound for |τ (1)B (wH)| with Proposition 1 we
conclude the proof.

Lemma 5.7 of [16] allows us to derive the next proposition.
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Proposition 5. If
dc

dt
(t) ∈ H2(Ω), then there exists a positive constant C

such that

|
((dc

dt
(t)

)
H
, wH

)
H
−
(
RH

dc

dt
(t), wH

)
H
| ≤C

( ∑
∆∈TH

(diam∆)4∥dc
dt
(t)∥2H2(∆)

)1/2

∥∇HwH∥H,+

for all wH ∈ WH,0.

From Propositions 1-5, with the aid of Gronwall’s Lemma, we conclude the
next convergence result.

Theorem 1. If p, c ∈ L∞(0, T,H3(Ω)), p(t) is such that
∂2p

∂x∂y
(t) =

∂2p

∂y∂x
(t)

in Ω, the spatial grids ΩH , H ∈ Λ, satisfy (23), then there exists a positive
constant C such that

∥eH,c(t)∥2H +

∫ t

0

∥∇HeH,c(s)∥2H,+ds ≤ CH4
max, t ∈ [0, T ], (24)

and
∥eH,p(t)∥1,H ≤ CH2

max, t ∈ [0, T ], (25)

Proof: For the error eH,c(t) we have

(
deH,c

dt
, eH,c(t))H = (

dc

dt
(t)−(

dc

dt
(t))H , eH,c(t))H+((

dc

dt
(t))H−dcH

dt
(t), eH,c(t))H ,

(26)
where

|(dc
dt
(t)− (

dc

dt
(t))H , eH,c(t))H | ≤ C

( ∑
∆∈TH

(diam∆)4∥dc
dt
(t)∥2H2(∆)

)1/2

∥∇HeH,c(t)∥H,+

≤ C
1

4ϵ2

∑
∆∈TH

(diam∆)4∥dc
dt
(t)∥2H2(∆) + ϵ2∥∇HeH,c(t)∥2H,+, (27)

being ϵ ̸= 0 an arbitrary constant.

It can be shown that for ((
dc

dt
(t))H − dcH

dt
(t), eH,c(t))H we have

((
dc

dt
(t))H − dcH

dt
(t), eH,c(t))H = τD(eH,c(t)) + τE(eH,c(t)) + τB(eH,c(t)),
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where τD(eH,c(t)), τE(eH,c(t)), and τB(eH,c(t)) are defined in Proposition 2,
Proposition 3, and Proposition 4, respectively. We obtain

((
dc

dt
(t))H − dcH

dt
(t), eH,c(t))H ≤ −(DH(t)∇HeH,c(t),∇HeH,c(t))H,+

−
∫ t

0

Ker(t− s)(EH(s)∇HeH,c(s),∇HeH,c(t))H,+ds

+ (MH(BH(t)eH,c(t)),∇HeH,c(t))H,+

+ C
1

2ϵ2

(
∥c(t)∥2C1

(
1 + ∥p(t)∥2C1

))
∥eH,c(t)∥2H

+ C
1

4ϵ2

∫ t

0

Ker(t− s)2
(
∥c(s)∥2C1

(
1 + ∥p(s)∥2C1

))
ds

∫ t

0

∥eH,c(s)∥2Hds

+ 6ϵ2∥∇HeH,c(t)∥2H,+ + τe,c(t), (28)

where

τe,c(t) = C
1

4ϵ2

(
τ (1)e,c (t) +

∫ t

0

Ker(t− s)2τ (2)e,c (s)ds
)
,

with

τ (1)e,c (t) =
(
1 + ∥c(t)∥2C1

(
1 + ∥p(t)∥2C1

)) ∑
∆∈TH

(diam∆)4∥c(t)∥2H3(∆)

+ ∥c(t)∥2C1

∑
∆∈TH

(diam∆)4∥p(t)∥2H3(∆)

+ ∥c(t)∥2C0

∑
∆∈TH

(diam∆)4
(
1 + ∥c(t)∥2H1(∆) + ∥p(t)∥2H2(∆)

)2
,

and

τ (2)e,c (s) =
(
1 + ∥c(s)∥2C1

(
1 + ∥p(s)∥2C1

)) ∑
∆∈TH

(diam∆)4∥c(s)∥2H3(∆)

+ ∥c(s)∥2C1

∑
∆∈TH

(diam∆)4∥p(s)∥2H3(∆).
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From (26)-(28) we conclude the following

d

dt
∥eH,c(t)∥2H ≤ (−Dmin + 9ϵ2)∥∇HeH,c(t)∥2H,+ (29)

+
1

2ϵ2
∥Ker∥2L2(0,T )

∫ t

0

∥∇HeH,c(s)∥2H,+ds

+ C
1

ϵ2

(1
2
+ ∥c(t)∥2C1

(
1 + ∥p(t)∥2C1

))
∥eH,c(t)∥2H

+
1

2ϵ2
∥Ker∥2L2(0,T )∥c∥2L∞(C1)

(
1 + ∥p∥2L∞(C1)

) ∫ t

0

∥eH,c(s)∥2Hds

+ 2τe,c(t), (30)

where ∥.∥L∞(C1) represents the usual norm in the space L∞(0, T, C1(Ω)). In-
equality (29) leads to

∥eH,c(t)∥2H + 2(Dmin − 9ϵ2)

∫ t

0

∥∇HeH,c(s)∥2H,+ds

≤ ∥eH,c(0)∥2H,+ +
1

2ϵ2
∥Ker∥2L2(0,T )

∫ t

0

∫ s

0

∥∇HeH,c(µ)∥2H,+dµds

+ C
1

ϵ2

(1
2
+ ∥c∥2L∞(C1)

(
1 + ∥p∥2L∞(C1)

)) ∫ t

0

∥eH,c(s)∥2Hds

+ C
1

2ϵ2
∥Ker∥2L2(0,T )∥c∥2L∞(C1)

(
1 + ∥p∥2L∞(C1)

) ∫ t

0

∫ s

0

∥eH,c(µ)∥2Hdµds

+ 2

∫ t

0

τe,c(s)ds.

Let ϵ be such that Dmin − 9ϵ2 > 0. Under the smoothness assumptions on c

and p it can be shown that 2

∫ t

0

τe,c(s) ds ≤ CH4
max. As eH,c(0) = 0, applying

Gronwall’s Lemma we conclude (24).
From Proposition 1 we conclude the error estimate (25) for the pressure

pH(t).

Theorem 1 is the main result of this paper and it establishes the second or-
der convergence rate of the finite difference scheme (16), (17), or equivalently,
of the piecewise linear finite element method (14), (15).
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4. Time discretization
Our goal in this section is to propose an IMEX method for the coupled

non-Fickian problem (4), (6). The method is obtained by integrating in time
the ordinary differential equation (17) or equivalently the discrete variational
equation (12).
In the temporal domain [0, T ], let us introduce the uniform time grid {tm =

m∆t, m = 0, . . . ,M}, with tM = T , and where ∆t is a fixed time step. By
pmH and cmH we represent the numerical approximations for p(tm) and c(tm),
respectively, defined by the IMEX method

−∇∗
H · (Am

H∇Hp
m+1
H ) = (q2)

m+1
H , in ΩH , (31)

cm+1
H = cmH +∆t∇∗

H · (Dm,m+1
H ∇Hc

m+1
H )−∆t∇c,H · (Bm,m+1

H cmH)

+ ∆t2
m∑
ℓ=0

Ker(tm+1 − tℓ)∇∗
H · (Eℓ,ℓ+1

H ∇Hc
ℓ
H) + ∆t(q1)

m+1
H , in ΩH ,

(32)

for m = 0, . . . ,M − 1, and with the initial conditions

c0H = c0,H , p
0
H = p0,H in ΩH , (33)

and boundary conditions

cℓH = 0, pℓH = RHpb(tℓ) on ∂ΩH , ℓ = 1, . . . ,M. (34)

Here we used the following notation: the non-null entries of Am
H are given by

a1(Mhc
m
H), a2(Mkc

m
H), the non-null entries of Dm,m+1

H are given by d1(Mhc
m
H ,

D−xp
m+1
H ), d2(Mkc

m
H , D−yp

m+1
H ), being Bm,m+1

H and Eℓ,ℓ+1
H , ℓ = 0, . . . ,m, de-

fined analogously. By D−t we denote the first order backward finite differ-
ence operator with respect to the time variable. We observe that (31), (32)
is equivalent to the coupled discrete variational problem

(Am
H∇Hp

m+1
H ,∇HwH)H,+ = ((q2)

m+1
H , wH)H , for all wH ∈ WH,0, (35)

(D−tc
m+1
H , wH)H = −(Dm,m+1

H ∇Hc
m+1
H ,∇HwH)H,+ + (MH(B

m,m+1
H cmH),∇HwH)H,+

+∆t
m∑
ℓ=0

Ker(tm+1 − tℓ)(E
ℓ,ℓ+1
H ∇Hc

ℓ
H ,∇HwH)H,+

+ ((q1)
m+1
H , wH)H , for all wH ∈ WH,0. (36)
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In what follows we establish bounds for the errors

emH,p = RHp(tm)− pmH and emH,c = RHc(tm)− cmH .

Following the proof of Proposition 1, it can be shown that

∥∇He
m+1
H,p ∥H,+ ≤ C

(
∥p(tm+1)∥C1∥emH,c∥H + τp(tm+1)

+ ∥p(tm+1)∥C1

∫ tm+1

tm

∥RH
dc

dt
(s)∥H ds

)
, (37)

where τp(tm+1) is given by (19) with t = tm+1.
We deduce in what follows several estimates needed to compute an upper

bound for ∥em+1
H,c ∥H . We observe that

(D−tc
m+1
H −

(dc
dt

)
H
(tm+1), e

m+1
H,c )H = −(D−te

m+1
H,c , em+1

H,c )H + τd,IE(e
m+1
H,c ), (38)

where

|τd,IE(em+1
H,c )| ≤ C

(∫ tm+1

tm

∥RH
d2c

dt2
(s)∥H ds∥em+1

H,c ∥H

+
( ∑

∆∈TH

(diam∆)4∥dc
dt
(tm+1)∥2H2(∆)

)1/2

∥∇He
m+1
H,c ∥H,+

)
.

For

τD,d(e
m+1
H,c ) = (Dm,m+1

H ∇Hc
m+1
H ,∇He

m+1
H,c )H,+

−
Nx∑
i=1

My−1∑
j=1

hi

∫ yj+1/2

yj−1/2

d1(xi, y, tm+1)
∂c

∂x
(xi−1/2, y, tm+1) dyD−xe

m+1
H,c (xi, yj)

−
Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

d2(x, yj, tm+1)
∂c

∂y
(x, yj−1/2, tm+1) dxD−ye

m+1
H,c (xi, yj),

(39)

with dℓ(xi, y, tm+1), ℓ = 1, 2, defined by (20) with t = tm+1, we have

τD,d(e
m+1
H,c ) = −(Dm,m+1

H ∇He
m+1
H,c ,∇He

m+1
H,c )H,+ + τD,IE(e

m+1
H,c ), (40)
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where

|τD,IE(e
m+1
H,c )| ≤ τD,e(e

m+1
H,c ) + C∥c(tm+1)∥C1

(
1 + ∥p(tm+1)∥C1

)∫ tm+1

tm

∥RH
dc

dt
(s)∥Hds∥∇He

m+1
H,c ∥H,+,

being τD,e(e
m+1
H,c ) given by

τD,e(e
m+1
H,c ) = C

(
∥c(tm+1)∥C1

(
1 + ∥p(tm+1)∥C1

)(
∥emH,c∥H

+
( ∑

∆∈TH

(diam∆)4∥p(tm+1)∥2H3(∆)

)1/2)
+ (1 + ∥c(tm+1)∥C1)3

( ∑
∆∈TH

(diam∆)4
∑

f∈{c,p}

(
∥f(tm+1)∥2H3(∆)

+ ∥f(tm+1)∥4H2(∆)

))1/2)
∥∇He

m+1
H,c ∥H,+.

For

τB,d(e
m+1
H,c ) = −(MH(B

m,m+1
H cmH),∇He

m+1
H,c )H,+

+

Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

b1(xi, y, tm+1)c(xi−1/2, y, tm+1) dyD−xe
m+1
H,c (xi, yj)

+

Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

b2(x, yj, tm+1)c(x, yj−1/2, t) dxD−ye
m+1
H,c (xi, yj),

(41)

with bℓ, ℓ = 1, 2, given by (22) and t = tm+1, assuming (23), we can prove
that,

τB,d(e
m+1
H,c ) ≤ (MH(B

m,m+1
H emH),∇He

m+1
H,c )H,+ + τB,IE(e

m+1
H,c ), (42)

where

|τB,IE(e
m+1
H,c )| ≤ τB,e(e

m+1
H,c ) + C∥c(tm+1)∥C1

(
1 + ∥p(tm+1)∥C1

)∫ tm+1

tm

∥RH
dc

dt
(s)∥Hds∥∇He

m+1
H,c ∥H,+
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being τB,e(e
m+1
H,c ) equal to

τB,e(e
m+1
H,c ) = C

(
∥c(tm+1)∥C0

(
1 + ∥p(tm+1)∥C1

)
∥emH,c∥H

+
(
∥c(tm+1)∥C0

(
1 + ∥p(tm+1)∥C1) + 1

)( ∑
∆∈TH

(diam∆)4
(
∥c(tm+1)∥4H1(∆)

+∥c(tm+1)∥2H2(∆) + ∥p(tm+1)∥4H2(∆) + ∥p(tm+1)∥2H3(∆)

))1/2)
∥∇He

m+1
H,c ∥H,+.

Finally, we establish an estimate for

τE,d(e
m+1
H,c ) = −∆t

m∑
ℓ=0

Km+1,ℓ
er (Eℓ,ℓ+1

H ∇Hc
ℓ
H ,∇He

m+1
H,c )H,+

+

∫ tm+1

0

Ker(tm+1 − s)

Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

e1(xi, y, s)
∂c

∂x
(xi−1/2, y, s)dyds

(43)

D−xe
m+1
H,c (xi, yj)

+

∫ tm+1

0

Ker(tm+1 − s)

Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

e2(x, yj, s)
∂c

∂y
(x, yj−1/2, s)dxds

(44)

D−ye
m+1
H,c (xi, yj),

(45)

where Km+1,ℓ
er = Ker(tm+1 − tℓ). Using the decomposition

τE,d(e
m+1
H,c ) =

6∑
ℓ=1

τE,i, (46)

with

τE,1 = ∆t
m∑
ℓ=0

Km+1,ℓ
er (Eℓ,ℓ+1

H ∇He
ℓ
H,c,∇He

m+1
H,c )H,+, (47)

τE,2 = ∆t
m∑
ℓ=0

Km+1,ℓ
er ((E∗

H(tℓ, tℓ+1)− Eℓ,ℓ+1
H )∇HRHc(tℓ),∇He

m+1
H,c )H,+, (48)
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with E∗
H(tℓ, tℓ+1) defined as E∗

H(tℓ) but considering the concentration and the
pressure at time levels tℓ and tℓ+1, respectively,

τE,3 = ∆t
m∑
ℓ=0

Km+1,ℓ
er ((ẼH(tℓ, tℓ+1)− E∗

H(tℓ, tℓ+1))∇HRHc(tℓ),∇He
m+1
H,c )H,+,

(49)
with ẼH(tℓ, tℓ+1) defined as ẼH(tℓ) but considering the concentration and the
pressure at time levels tℓ and tℓ+1, respectively,

τE,4 = ∆t
m∑
ℓ=0

Km+1,ℓ
er ((ẼH(tℓ, tℓ)− ẼH(tℓ, tℓ+1))∇HRHc(tℓ),∇He

m+1
H,c )H,+,

(50)

τE,5 =

∫ tm+1

0

Ker(tm+1 − s)(EH(s)∇HRHc(s)ds,∇He
m+1
H,c )H,+

−∆t
m∑
ℓ=0

Km+1,ℓ
er (ẼH(tℓ, tℓ)∇HRHc(tℓ),∇He

m+1
H,c )H,+, (51)

and

τE,6 = −
∫ tm+1

0

Ker(tm+1 − s)(EH(s)∇HRHc(s)ds,∇He
m+1
H,c )H,+

+

∫ tm+1

0

Ker(tm+1 − s)

Nx∑
i=1

Ny−1∑
j=1

hi

∫ yj+1/2

yj−1/2

e1(xi, y, s)
∂c

∂x
(xi−1/2, y, s)dyds

(52)

D−xe
m+1
H,c (xi, yj)

+

∫ tm+1

0

Ker(tm+1 − s)

Nx−1∑
i=1

Ny∑
j=1

kj

∫ xi+1/2

xi−1/2

e2(x, yj, s)
∂c

∂y
(x, yj−1/2, s)dxds

(53)

D−ye
m+1
H,c (xi, yj).

(54)

For τE,1 we easily establish the upper bounds



NON-FICKIAN COUPLED DIFFUSION MODELS IN POROUS MEDIA 27

|τE,1| ≤ C
(
∆t

m∑
ℓ=0

(Km+1,ℓ
er )2

)1/2(
∆t

m∑
ℓ=0

∥∇He
ℓ
H,c∥2H

)1/2

∥∇He
m+1
H,c ∥H,+

≤ C
(
∥Ker∥2L2(0,T ) + T∆t∥K ′

er∥2L2(0,T )

)1/2(
∆t

m∑
ℓ=0

∥∇He
ℓ
H,c∥2H

)1/2

∥∇He
m+1
H,c ∥H,+

≤ C
√
1 + ∆t∥Ker∥H1(0,T )

(
∆t

m∑
ℓ=0

∥∇He
ℓ
H,c∥2H

)1/2

∥∇He
m+1
H,c ∥H,+. (55)

Using (37), it can be shown that

|τE,2| ≤ C
(
∆t

m∑
ℓ=0

(Km+1,ℓ
er )2

)1/2(
∆t

m∑
ℓ=0

∥c(tℓ)∥2C1

(
1 + ∥p(tℓ+1)∥C1

)2∥eℓH,c∥2H

+∆t
m∑
ℓ=0

∥c(tℓ)∥2C1

(
τp(tℓ+1)

2 +∆t

∫ tℓ+1

tℓ

∥RH
dc

dt
(s)∥2H ds

))1/2

∥∇He
m+1
H,c ∥H,+

≤ C
(√

1 + ∆t∥Ker∥H1(0,T )

(
∥c∥2C0(C1)(1 + ∥p∥C0(C1)))

2∆t
m∑
ℓ=0

∥eℓH,c∥2H

+∥c∥2C0(C1)∆t
m∑
ℓ=0

τp(tℓ+1)
2 +∆t

∫ tℓ+1

tℓ

∥RH
dc

dt
(s)∥2H ds

)1/2

∥∇He
m+1
H,c ∥H,+,

(56)

where ∥.∥Cq(Cr) denotes the usual norm in Cq(0, T, Cr(Ω)), q, r ∈ IN0.

Following the steps used in the proof of Proposition 2 to estimate τ
(2)
D (wH),

we obtain

|τE,3| ≤ C
(
∆t

m∑
ℓ=0

(Km+1,ℓ
er )2

)1/2(
∆t

m∑
ℓ=0

∥c(tℓ)∥C1

( ∑
∆∈TH

(diam∆)4
(
∥c(tℓ)∥2H2(∆)

+ ∥p(tℓ+1)∥2H2(∆)

)))1/2

∥∇He
m+1
H,c ∥H,+

≤ C
√
1 + ∆t∥Ker∥H1(0,T )∥c∥C0(C1)

( ∑
∆∈TH

(diam∆)4
(
∥c∥2C0(H2)

+ ∥p∥2C0(H3)

)1/2

∥∇He
m+1
H,c ∥H,+. (57)
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For τE,4 we easily get

|τE,4| ≤ C
(
∆t

m∑
ℓ=0

(Km+1,ℓ
er )2

)1/2(
∆t2

m∑
ℓ=0

∥c(tℓ)∥2C1

∫ tℓ+1

tℓ

∥RH
∂2c

∂t∂x
(s)∥2H ds

)1/2

(58)

∥∇He
m+1
H,c ∥H,+

≤ C∆t
√
1 + ∆t∥Ker∥H1(0,T )∥c∥C0(C1)∥c∥H1(C1)∥∇He

m+1
H,c ∥H,+, (59)

where ∥.∥Hq(Cr) denotes the usual norm in Hq(0, T, Cr(Ω)), q, r ∈ IN0.
As τE,5 represents the error of the left-rectangular rule, we deduce that

|τE,5| ≤ C∆t
(
∥K ′

er∥L2(0,T )∥c∥L2(C1) (60)

+ ∥Ker∥L2(0,T )

(
∥c∥C0(C1)

(
∥c∥H1(C0) + ∥p∥H1(C1)

)
+ ∥c∥H1(C1)

))
∥∇He

m+1
H,c ∥H,+

≤ C∆t∥Ker∥H1(0,T )

(
∥c∥C0(C1)

(
1 + ∥c∥H1(C0) + ∥p∥H1(C1)

)
(61)

+ ∥c∥H1(C1)

)
∥∇He

m+1
H,c ∥H,+. (62)

At last, for τE,6 holds the following

|τE,6| ≤ C

∫ tm+1

0

Ker(tm+1 − s)(1 + ∥c(s)∥C1)3( ∑
∆∈TH

(diam∆)4
( ∑

f∈{c,p}

(
∥f(s)∥4H2(∆) + ∥f(s)∥2H3(∆)

)
+ 1

))1/2

ds

(63)

∥∇He
m+1
H,c ∥H,+

≤ C∥Ker∥L2(0,T )(1 + ∥c∥C0(C1))
3( ∑

∆∈TH

(diam∆)4
( ∑

f∈{c,p}

(
∥f∥4L4(H2) + ∥f∥2L2(H3)

)
+ 1

))1/2

ds

(64)

∥∇He
m+1
H,c ∥H,+ (65)

Now we assume the following smoothness conditions: c ∈ C2(0, T, C0(Ω))∩
H1(0, T,H3(Ω)), p ∈ H1(0, T,H3(Ω)), and Ker ∈ H1(0, T ).
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From (36)-(63) it is a straightforward task to prove the existence of positive
constants Ci, i = 1, 2, 3, such that, for m = 0, . . . ,M − 1, the following holds

∥em+1
H,c ∥2H +Dmin∆t∥∇He

m+1
H,c ∥2H,+ ≤ ∥emH,c∥2H

+ C1∆t
(
∥emH,c∥2H + ∥em+1

H,c ∥2H +∆t
m∑
ℓ=0

∥∇He
ℓ
H,c∥2H,+

)
+ τm+1

e,d ,

(66)

where

|τm+1
d,e | ≤ C2∆t

(
∆t

∫ tm+1

tm

(
∥RH

d2c

dt2
(s)∥2H + ∥RH

dc

dt
(s)∥2H

)
ds+∆t2

)
+ C3∆t

∑
∆∈TH

(diam∆)4
(
∥dc
dt
(tm+1)∥2H2(∆) +

∑
f∈{c,p}

(
∥f(tm+1)∥4H2(∆)

+ ∥f(tm+1)∥2H3(∆)

)
+ 1

)
.

Inequality (66) leads to

(1− C1∆t)∥em+1
H,c ∥2H +Dmin∆t

m+1∑
ℓ=0

∥∇He
ℓ
H,c∥2H,+ ≤ ∥e0H,c∥2H (67)

+Dmin∆t∥∇He
0
H,c∥H,+

+ C1∆t
( m∑

ℓ=0

∥eℓH,c∥2H +∆t
m∑
ℓ=0

ℓ∑
j=0

∥∇He
j
H,c∥

2
H,+

)
+

m+1∑
ℓ=1

τ ℓe,d. (68)

Considering now the discrete Gronwall’s Lemma we conclude that, for ∆t
such that 1− C1∆t > 0,

∥em+1
H,c ∥2H +∆t

m+1∑
ℓ=0

∥∇He
ℓ
H,c∥2H,+ ≤ 1

min{1− C1∆t,Dmin}

(m+1∑
ℓ=1

τ ℓe,d

+ C2∆t
m∑
ℓ=0

ℓ+1∑
j=1

τ je,de
C2t(m−ℓ+1)∆t

)
, (69)
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with C2 =
C1

min{1− C1∆t,Dmin}
for m = 0, . . . ,M − 1. Finally, we remark

that the error estimate (69) leads to

∥em+1
H,c ∥2H +∆t

m+1∑
ℓ=0

∥∇He
ℓ
H,c∥2H,+ ≤ C

(
H4

max+∆t2
)
, m = 0, . . . ,M − 1, (70)

while from (37) we get

∥∇He
m+1
H,p ∥H,+ ≤ C

(
H4

max +∆t2
)
, m = 0, . . . ,M − 1. (71)

5. Numerical results
This section is dedicated to some numerical experiments. We start by

presenting two examples that illustrate the convergence result established in
the previous section.
For emH,p = RHp(tm) − pmH and emH,c = RHc(tm) − cmH we compute the error

indicators

Errorp = max
m=1,...,M

∥emH,p∥1,H ,

and

Errorc = max
m=1,...,M

(
∥emH,c∥2H +∆t

m∑
ℓ=1

∥∇He
ℓ
H,c∥2H,+

)1/2

,

where p and c are solutions of the coupled problem (4), (6) with boundary
and initial conditions (7), (8), respectively, and where pmH and cmH are numer-
ical solutions obtained with the IMEX method (31)-(34). To evaluate the
convergence rate we use the formula

Rateg =

log
(Errorg,1
Errorg,2

)
log

(H1,max

H2,max

) ,

for g = p, c, and where H1 and H2 are two grid vectors with Errorg,1 and
Errorg,2 the corresponding errors. The initial grid ΩH is randomly generated.
The new grids are defined considering the midpoints of the intervals [xi−1, xi]
and [yj−1, yj]. Moreover, we fix T = 0.01 and ∆t = 10−7.
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Example 1. In this example, we consider the system (4), (6) with the fol-
lowing coefficients

A(c) =

[
1 + c 0
0 2 + c

]
, D(c,∇p) =

 1 + 2c+
∂p

∂x
0

0 1 + c+ 2
∂p

∂y

 ,

B(c,∇p) =


c
∂p

∂x

3c
∂p

∂y

 , E(c,∇p) =

 −∂p

∂x
0

0 −∂p

∂y

 , and Ker(s) = e−s.

We choose q1, q2, and the initial conditions (8) so that the exact solution is

p(x, y, t) = etxy(x− 1)(y − 1) sin(xy) and c(x, y, t) = etxy(x− 1)(y − 1).

In Table 1 we present the results of our simulation. We observe that the
solutions p and c belong to H3

0(Ω) and the numerical results illustrate the
convergence estimates (70) and (71).

Hmax Errorp Ratep Errorc Ratec Nx Ny

1.316e-01 2.615e-04 1.981 2.841e-05 1.975 9 8
6.579e-02 6.625e-05 1.995 7.227e-06 1.993 18 16
3.290e-02 1.662e-05 1.999 1.815e-06 2.000 36 32
1.645e-02 4.158e-06 2.000 4.538e-07 2.009 72 64
8.224e-03 1.040e-06 2.000 1.127e-07 2.018 144 128
4.112e-03 2.600e-07 - 2.783e-08 - 288 256

Table 1. Numerical errors and convergence rates for Example 1.

For further illustration, we solve Example 1 using a considerable number of
randomly generated spatial grids. In Figure 2 we plot the logarithmic norm
of all errors Errorg, g = p, c, versus the logarithmic norm of all Hmax. The
slop of the least-square straight line (shown in green) is an approximation of
the convergence order, and the values obtained, which are also displayed in
Figure 2, again confirm the convergence estimates (70) and (71).

In the next example we consider that p(t) ∈ H2
0(Ω) but it doesn’t belong

to H3
0(Ω). Following the lines of Theorem 1 and using the results of [16], we
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Figure 2. From left to right: Plot of log(Errorp) and log(Errorc)
versus log(Hmax).

anticipate that the second order convergence rate will be lost for both p(t)
and c(t)

Example 2. We now consider system (4), (6) with the coefficient functions
used in Example 1 but we choose q1, q2, and the initial conditions (8) so that
the exact solution is

p(x, y, t) = et2xy(x2−1)(y2−1)|x−0.5|2.1 and c(x, y, t) = etxy(x−1)(y−1).

The numerical results presented in Table 2 agree with expectations, since the
convergence rate for both p and c is of order O(Hmax).

Hmax Errorp Ratep Errorc Ratec Nx Ny

1.381e-01 9.708e-03 1.050 7.783e-05 1.293 8 10
6.906e-02 4.688e-03 1.051 3.177e-05 1.121 16 20
3.453e-02 2.263e-03 1.079 1.461e-05 1.084 32 40
1.726e-02 1.071e-03 1.093 6.888e-06 1.086 64 80
8.632e-03 5.024e-04 1.009 3.246e-06 1.001 128 160
4.316e-03 2.497e-04 - 1.622e-06 - 256 320

Table 2. Numerical errors and convergence rates for Example 2.

In Figure 3, we repeat the same type of experiments plotted on Figure 2.
The slop of the least-square straight line, close to one, again confirms the
first order convergence rate for Example 2.
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Figure 3. From left to right: Plot of log(Errorp) and log(Errorc)
versus log(Hmax).

In what follows we present one example that intent to illustrate not only the
differences between Fickian and non-Fickian models, in the case of miscible
displacement in porous media, but also the fact the non-Fickian model can
replicate key properties observed in real world experiments.

Example 3. Let us consider the miscible displacement problem in porous
media. We suppose that the resident fluid and the injected fluid are fully
miscible and flow together as a unique fluid. We assume that there are no
source or sink terms, i.e., q1 = q2 = 0, and that the initial distribution of
the injected fluid is as given in Figure 4 (on the right). In the pressure
equation (3) we take K = I, µ = 1, and the Dirichlet boundary conditions:
0.4 (bottom boundary), 0.2 (left and right boundaries) and 0 (top boundary).
The obtained pressure field is shown in Figure 4 (on the left). Let c represent
the concentration of the injected fluid. For both Fickian and non-Fickian
model we define the diffusion tensor D = dmϕI with dm = 5 × 10−3 and
ϕ = 1, meaning that the longitudinal (αℓ) and transversal (αt) dispersivity
coefficients are zero. For the non-Fickian model we also take τ = 10−1 and
E = dm,nF I with dm,nF = 10−2. The coupled problem is complemented with
Dirichlet homogeneous boundary conditions for the concentration. This is
equivalent to assume that the fluid is removed when it reaches the boundary.
In Figure 5 we show the evolution of the concentration in the Fickian and

non-Fickian case. As can be seen from the figures, the non-Fickian model
is able to reproduce key features reported in experimental studies, such as
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Figure 4. From left to right: Pressure and initial concentration.

highly asymmetric plumes with steep fronts and long and low concentration
tails. Note that, for simplicity, in this example we omit physical units.

Figure 5. From left to right: Fickian concentration (first row)
and non-Fickian concentration (second row) at time 0.15, 0.5,
and 1.

6. Conclusion
This paper deals with the numerical approximation of a coupled initial

boundary value problem formed by the elliptic equation (6) and the integro-
differential equation of Volterra type (4). This system can be used to describe
diffusion in porous media where a memory effect in time is present.



NON-FICKIAN COUPLED DIFFUSION MODELS IN POROUS MEDIA 35

To solve the coupled system (6), (4) we proposed the IMEX method (31),
(32) which can be seen as a fully discrete in time and space piecewise linear
finite element method (35), (36). The convergence properties of the method
were studied. We proved in particular that the numerical pressure and con-
centration are second order convergent in space with respect to a discrete
H1-norm and L2-norm, respectively. The convergence estimates (70) and
(71) are somehow unexpected because (31), (32) is a finite difference method
with first order truncation error with respect to the L∞-norm. Moreover, we
also proved that the IMEX method (31), (32) is first order accurate in time.
We point out that the convergence analysis was made avoiding the usual

approach, introduced by Wheeler in [34], and where the error is split into
two terms with the aid of an auxiliary stationary problem. This alternate
technique relies on the analysis of a convenient error equation and allows to
relax the smoothness assumptions required by the technique in [34].
Numerical experiments were also performed. The results of Example 1 illus-

trate the error estimates (70) and (71), while Example 2 shows the sharpness
of these estimates, since the reduction of the smoothness of the solutions p,
c imply losing the second order convergence rate. At last, in Example 3, we
used the problem of miscible displacement in porous media to highlight the
differences between Fickian and non-Fickian model.
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