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Abstract: Starting from the Compound Poisson INGARCH models ([3]), we in-
troduce in this paper a new family of integer-valued models suitable to describe
count data without zeros that we name Zero Truncated CP-INGARCH processes.
For such class of models, a probabilistic study concerning stationarity, ergodicity
and moments existence is developed. The conditional maximum likelihood method
is used to consistently estimate the parameters of the conditional Poisson subfamily
of models, for which the main asymptotic properties are analyzed. A simulation
study illustrating the finite distance behavior of those estimators and a real-data
application conclude the paper.
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1. Introduction
The usual probability distributions describing the integer-valued models

present in literature assume, in general, that the count data to be modeled
have zero counts, that is zero is a possible value of their supports.
It may however happen that the expected number of zeros according to

the probability distribution of the fitted model is not compatible with those
actually occurring. We have in this case an inflation situation, or deflation, of
the zero value and in order to correct this phenomenon we have to provide for
the possibility to mix such distribution with a point probability. This is for
example the case of integer-valued zero inflated models, studied in particular
by [10], [6] and [3].
There is yet another type of counting series that structurally exclude the

zero value. The number of days of hospitalization in an hospital or the
number of days of travel of tourists from a certain country in a period of
the year are clear examples of count series without zeros. An interesting
and dynamical series of count data without zeros is, for instance, the daily
number of occupied beds in a central hospital inpatient service.
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2 E. GONÇALVES AND N. MENDES LOPES

When the structure of the series is such that it makes no sense the oc-
currence of zeros, the underlying distribution should not include zero in its
support. One possibility to describe such a situation is the truncation of zero
in integer-valued models generally compatible with the situation in study.
A class of integer-valued models recently introduced in the literature is

the class of integer-valued GARCH processes with compound Poisson con-
ditional distribution (CP-INGARCH). This is a very general class of models
that is able to respond to situations compatible with all compound Poisson
laws among which stand out the Poisson, Negative Binomial, generalized
Poisson and Neyman type A laws. In view of the wideness of the family of
distributions associated with these processes it is natural to expect that such
distributions truncated in zero may be compatible with count models with-
out null results. This fact led us to introduce a new class of models based
on the CP-INGARCH class but without the possibility of zeros. We call
these new models CP-INGARCH truncated at zero and denote them briefly
as ZTCP-INGARCH.
In Section 2 we recall the definition of the compound Poisson model with

values in N0 with generalized autoregressive conditional heteroskedasticity
and introduce the integer-valued compound Poisson truncated at zero model
definition (ZTCP-INGARCH). We analyze aspects of its probabilistic struc-
ture, namely the existence of moments, and the strict stationarity and er-
godicity in a general sub-class. We study then the negative binomial ZTCP-
INGARCH model; this model does not belong to that sub-class but, as we
shall see, we are able to establish its second order stationarity.
Section 3 includes the estimation of the parameters of the Poisson ZTCP-

INGARCH model by conditional maximum likelihood and a simulation study
that illustrates the estimation methodology developed. Section 4 concludes
with a real-data application.

2. Zero Truncated CP-INGARCH processes
2.1. Zero truncated compound Poisson law.
Let us recall that a real random variable X follows a compound Poisson

law with parameter λ, λ > 0, if its generating function (of probabilities),
gX(u) = E

(
uX
)
, |u| ≤ 1, is given by

gX(u) = exp(λ(gY (u)− 1))
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with gY the generating function of probabilities of a random variable Y.
Moreover, in this case P (X = 0) = gX(0) = exp(λ(gY (0) − 1)) and gY (0) =
P (Y = 0).
We say that the real random variable Z follows a compound Poisson law

truncated at zero if its generating function is

gZ(u) = E
(
uZ
)

= E
(
uX |X ̸= 0

)
=

+∞∑
k=1

ukP (X = k|X ̸= 0)

=
exp(λ(gY (u)− 1))− exp(λ(gY (0)− 1))

1− exp(λ(gY (0)− 1))

2.2. Zero truncated CP-INGARCH model.
Let X = (Xt, t ∈ Z) be a nonnegative integer-valued stochastic process

and, for t ∈ Z, let X t denote the σ− field generated by (Xt−j, j ≥ 0) .

Definition. ([3]) The process X is said to follow a compound Poisson
GARCH model with values in N0 with orders p and q (p, q ∈ N) if, for all
t ∈ Z, the characteristic function of Xt conditioned on X t−1 is given by

ΦXt|Xt−1
(u) = exp

{
i

λt

φ
′
t (0)

[φt (u)− 1]

}
, u ∈ R,

with

E (Xt|X t−1) = λt = α0 +
p∑

j=1

αjXt−j +
q∑

k=1

βkλt−k

for constants α0 > 0, αj ≥ 0 (j = 1, ..., p), βk ≥ 0 (k = 1, ..., q) and where
(φt, t ∈ Z) is a family of characteristic functions on R, X t−1− measurables,
associated to a family of discrete laws with support in N0 and finite mean
(∗). i represents the imaginary unit.
In a briefly way, we say that X follows a CP − INGARCH(p, q) model.
If q = 1 and β1 = 0, the CP − INGARCH(p, q) model is denoted CP −

INARCH(p).

∗As φt is the characteristic function of a discrete distribution with support in N0 and finite mean,
the derivative of φt (u) at u = 0, φ

′
t (0) , exists and is nonzero.
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As the conditional distribution of Xt on X t−1 is a discrete compound Pois-
son law with support in N0 then for all t ∈ Z and conditioned on X t−1, Xt

can be identified in distribution with the random sum

Xt
d
= Xt,1 + ...+Xt,Nt

where Nt is a random variable following a Poisson distribution with param-
eter λt

E(Xt,j)
and Xt,1...Xt,Nt

are discrete and independent random variables,

with support contained in N0, independent of Nt and having common char-
acteristic function φt, with finite mean. The distribution of Xt,j is called
compounding distribution and we assume Xt equal to zero if Nt = 0.

The previous definition may be rewritten in terms of the generating func-
tion of the law of Xt conditioned on X t−1 :

GXt|Xt−1
(u) = exp

{
λt

g
′
t (1)

[gt (u)− 1]

}
,

with (gt, t ∈ Z) the family of generating functions associated to the discrete
laws of the compounding variables.

We can now introduce the definition of the nonzero integer-valued (or zero
truncated) generalized autoregressive conditional heteroscedastic compound
Poisson model, briefly ZTCP − INGARCH(p, q).

Definition. The stochastic process Z = (Zt, t ∈ Z) follows a ZTCP −
INGARCH(p, q) model if, for any t ∈ Z, the generating function of Zt

conditioned on Zt−1 is given by

GZt|Zt−1
(u) =

exp
{

λt

g
′
t(1)

[gt (u)− 1]
}
− exp

{
λt

g
′
t(1)

[gt (0)− 1]
}

1− exp
{

λt

g
′
t(1)

[gt (0)− 1]
}

with

λt = α0 +
p∑

j=1

αjZt−j +
q∑

k=1

βkλt−k.

If q = 1 and β1 = 0, the ZTCP − INGARCH(p, q) model is denoted
ZTCP − INARCH(p).
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In order to assure that λt is Zt−1− measurable we consider, in what follows,
q∑

k=1

βk < 1.

In the following Figures 1 and 2 we present the trajectories and the ba-
sic descriptives of a series X following a CP − INGARCH(1, 1) model with
Poisson conditional law with λt = α0+α1Xt−1+β1λt−1, and of a Z process fol-
lowing the ZTCP −INGARCH(1, 1) model with λt = α0+α1Zt−1+β1λt−1,
where α0 = 0.8, α1 = 0.5 and β1 = 0.3, which illustrate the probabilistic
changes related with the zero truncation.

0

4

8

12

16

20

100 200 300 400 500 600 700 800 900 1000 1100

X

0

40

80

120

160

200

0 2 4 6 8 10 12 14 16

Series: X
Sample 1 1100
Observations 1100

Mean       3.901818
Median   3.000000
Maximum  16.00000
Minimum  0.000000
Std. Dev.   2.512461
Skewness   0.841259
Kurtosis   3.772667

Jarque-Bera  157.1110
Probability  0.000000

Figure 1. X series following a CP − INGARCH model: the
time plot and its principal descriptive summaries
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Figure 2. Z series following a ZTCP−INGARCH model: the
time plot and its principal descriptive summaries

From the relations between the generating function and the moments of
the corresponding probability law we deduce

E (Zt|Zt−1) =
λt

1− exp
{

λt

g
′
t(1)

[gt (0)− 1]
}
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E
(
Z2
t |Zt−1

)
=

λ2
t + λt

g
′′
t (1)

g
′
t(1)

+ λt

1− exp
{

λt

g
′
t(1)

[gt (0)− 1]
} .

2.3. Probabilistic structure.
The general probabilistic study presented in the subsections 2.3.1 and

2.3.2 is developed within the subclass of ZTCP − INGARCH models for
which gt, t ∈ Z, are deterministic functions. In subsection 2.3.3 a particular
ZTCP − INGARCH model with random gt functions is considered.

2.3.1 Moments

Property. E (Zt) exists if and only if E (λt) exists.

Proof. Let us assume that E (λt) exists. As gt (0) is a probability value,
g

′

t (1) > 0 and λt ≥ α0, we deduce

E

 λt

1−exp

{
λt

g
′
t(1)

[gt(0)−1]

}
 ≤ E

 λt

1−exp

{
α0

g
′
t(1)

[gt(0)−1]

}
 = 1

1−exp

{
α0

g
′
t(1)

[gt(0)−1]

}E (λt)

and so

E (Zt) = E [E (Zt|Zt−1)] = E

 λt

1−exp

{
λt

g
′
t(1)

[gt(0)−1]

}


exists.
Otherwise, if E (Zt) exists it is enough to take into account that

λt ≤ λt

1−exp

{
λt

g
′
t(1)

[gt(0)−1]

}
to conclude that E (λt) exists.

Moreover, it is clear that if the k order moment, k ∈ N, of one of the pro-
cesses, Z or λ, exists so does the k order moment of the other. We note that
the existence of such moments requires a priori the k− order differentiability
of the gt function.
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2.3.2 Strict stationarity and ergodicity

In order to study the stationarity of the truncated process let us assume
that the determinist functions gt are independent of t. In these conditions and

if
p∑

j=1

αj +
q∑

k=1

βk < 1, the CP − INGARCH model has a strictly stationary

and ergodic solution ([3], Theorem 5), X∗ = (X∗
t , t ∈ Z) , with generating

function of the law of X∗
t conditioned on X∗

t−1 given by

GX∗
t |X∗

t−1
(u) = exp

{
λ∗
t

g
′
t (1)

[gt (u)− 1]

}
with conditioned expectation E (X∗

t |X∗
t−1) = λ∗

t = α0+
p∑

j=1

αjX
∗
t−j+

q∑
k=1

βkλ
∗
t−k

and we can define the process Z∗ = (Z∗
t , t ∈ Z) such that

Z∗
t = X∗

t |X∗
t > 0. (†)

This process Z∗ = (Z∗
t , t ∈ Z) is a solution of the ZTCP − INGARCH

model with λt = α0+
p∑

j=1

αjZ
∗
t−j +

q∑
k=1

βkλt−k and, as Z∗
t is a measurable func-

tion of a strictly stationary and ergodic process, Z∗ is also strictly stationary
and ergodic. In fact, we note that Z∗ = (Z∗

t , t ∈ Z) is a stochastic process
whose conditional law is the law of X∗

t |Z∗
t−1 conditioned on X∗

t > 0. So,

E (Z∗
t |Z∗

t−1) = E (X∗
t |X∗

t > 0 | Z∗
t−1) = E [E (X∗

t |X∗
t > 0 | X∗

t−1) | Z∗
t−1]

= E

[
λ∗
t

P X∗
t−1 (X∗

t > 0)
| Z∗

t−1

]

= E


α0 +

p∑
j=1

αjX
∗
t−j +

q∑
k=1

βkλ
∗
t−k

1− exp
{

λ∗
t

g
′
t(1)

[gt (0)− 1]
} | Z∗

t−1



=

α0 +
p∑

j=1

αjZ
∗
t−j +

q∑
k=1

βkλt−k

1− exp
{

λt

g
′
t(1)

[gt (0)− 1]
} .

† In particular, we know that E (X∗
t ) exists if and only if E (λ∗

t ) exists and this happens if and

only if
p∑

j=1
αj +

q∑
k=1

βk < 1. Moreover, E (λ∗
t ) = E (X∗

t ) is independent of t.



8 E. GONÇALVES AND N. MENDES LOPES

Thus E (Z∗
t |Z∗

t−1) =
λt

1−exp

{
λt

g
′
t(1)

[gt(0)−1]

} .
From the equality λt = α0 +

p∑
j=1

αjZt−j +
q∑

k=1

βkλt−k we deduce that(
1−

q∑
k=1

βkL
k

)
λt = α0 +

p∑
j=1

αjZt−j

that is,

λt =
α0

1−
q∑

k=1

βk

+
+∞∑
n=0

(
q∑

k=1

βk

)n p∑
j=1

αjZt−j−kn.

We may now present the following property.

Property. A process Z following a ZTCP-INGARCH model has a strictly

stationary and ergodic solution if
p∑

j=1

αj+
q∑

k=1

βk < 1. Moreover, if Z is strictly

stationary and ergodic then λ is also a strictly stationary and ergodic process.

If Z is stationary in mean the same happens to λ and we have the following
relation between the corresponding means:(

1−
q∑

k=1

βk

)
E(λt) = α0 +

p∑
j=1

αjE(Zt)

⇔ E(λt) =
α0

1−
q∑

k=1

βk

+

p∑
j=1

αj

1−
q∑

k=1

βk

E(Zt).

Example. It is clear that every ZT process associated to a strictly sta-
tionary and ergodic process is also strictly stationary and ergodic. In par-
ticular, the ZT processes associated to the models INGARCH (gt (u) = u),
NB-DINARCH (with gt the generating function of the logarithmic law with
parameter α−1

α , α > 0), NTA-INGARCH (where gt is the generating function
of the Poisson law with parameter ϕ, ϕ > 0) and GEOMP2-INGARCH (with
gt the generating function of the geometric law with parameter p, p ∈ ]0, 1[)

such that
p∑

j=1

αj +
q∑

k=1

βk < 1 have strictly stationary and ergodic solutions as
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they correspond to models with deterministic and independent of t generating
functions gt ([3]).

2.3.3 Zero truncated NB-INGARCH model

In this subsection we present a zero truncated CP-INGARCH model, not
belonging to the general subclass previously considered, for which some prob-
abilistic properties, namely the second order stationarity, may be established.
As this model is based on the negative binomial law we begin by recalling
that this law is a compound Poisson one.

a) Presentation
The negative binomial law (NB) belongs to the class of compound Poisson

laws. In fact, given r ∈ N and p ∈ ]0, 1[ , let (Yj, j ≥ 1) be a sequence of i.i.d.
random variables with logarithmic distribution with parameter 1 − p, that
is, with probability function given by

P (Yj = y) = − (1−p)
y

y ln p , y = 1, 2, ...

and let N be a random variable following a Poisson distribution with mean
−r ln p and independent of (Yj, j ≥ 1). Then the random variable X =
Y1 + ...+ YN follows a negative binomial law with parameters (r, p), that is,

P (X = x) =
(
x+r−1
r−1

)
pr (1− p)x , x = 0, 1, ...

In these conditions, the generating function of X is

gX(u) = exp {−r [ln (1− (1− p)u)− ln p]} =
(

p
1−(1−p)u

)r
taking into account that λ = −r ln p and gY (u) =

ln(1−(1−p)u)
ln p . In particular,

the geometric law with parameter p appears when r = 1.

The NB-INGARCH process ([9]) is obtained considering, conditionally on
X t−1,

Xt = Yt,1 + ...+ Yt,Nt

where Yt,1, Yt,2, ... are i.i.d. random variables with logarithmic distribution

with parameter λ∗
t

1+λ∗
t
, independents of the random variable Nt which follows

the Poisson law with parameter r ln (1 + λ∗
t ).

The generating function of the compounding variables is given by
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gYt
(u) =

ln
(
1− λ∗t

1+λ∗t
u
)

ln
λ∗t

1+λ∗t

.

This function is X t−1- measurable and dependent of t. Nevertheless, as we
will see, it is possible to study the stationarity of the corresponding truncated
NB-INGARCH model. We note that

gYt
(0) = 0, g

′

Yt
(1) = − λ∗

t

ln 1
1+λ∗t

, g
′′

Y (1) = − λ∗2
t

ln 1
1+λ∗t

.

Let us consider the ZT NB-INGARCH model, Z = (Zt, t ∈ Z). The gen-
erating function of Zt conditioned on Zt−1 is then

GZt|Zt−1
(u) =

exp
{

λt

g
′
t(1)

[gt (u)− 1]
}
− exp

{
λt

g
′
t(1)

[gt (0)− 1]
}

1− exp
{

λt

g
′
t(1)

[gt (0)− 1]
}

=

exp

{
− ln

(
1

1+λt

)[
ln(1− λt

1+λt
u)

ln( 1
1+λt

)
− 1

]}
− exp

{
ln
(

1
1+λt

)}
1− exp

{
ln
(

1
1+λt

)}
=

u

1 + λt − λtu

with λt = α0 +
p∑

j=1

αjZt−j +
q∑

k=1

βkλt−k.

b) Stationarity
Let us begin by noting that the moments of orders 1 and 2 of the law of

Zt conditioned on Zt−1 are given by

E (Zt|Zt−1) = λt + 1
E
(
Z2
t |Zt−1

)
= (2λt + 1) (λt + 1) ,

expressions that coincide with those coming from the general formula of
GZt|Zt−1

previously presented.

Taking into account that E (Zt|Zt−1) = λt + 1, it is easy to establish that
the truncated NB-INGARCH model Z is stationary in mean if and only if

p∑
j=1

αj +
q∑

k=1

βk < 1.
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Under this condition, the processes λ e Z are both stationary in mean and
the corresponding (non conditional) means are

E (Zt) = µZ =

α0 + 1−
q∑

k=1

βk

1−
p∑

j=1

αj −
q∑

k=1

βk

E (λt) = µZ − 1 =

α0 +
q∑

k=1

αk

1−
p∑

j=1

αj −
q∑

k=1

βk

.

Let us now analyze the second order stationarity of Z. Without lost of
generality, we take p = q (the coefficients in excess are considered zero). We
have

E (Zt−jλt−k) = E
[
E
(
Zt−j|Zt−j−1

)
λt−k

]
, if k ≥ j

= E (λt−jλt−k) + E (λt−k)

E (Zt−jλt−k) = E [Zt−j (E (Zt−k|Zt−k−1)− 1)]

= E (Zt−jZt−k)− E (Zt−j) , if k < j.

By developing E (ZtZt−h) = E [E (Zt|Zt−1)Zt−h] = E [(λt + 1)Zt−h] for
h ≥ 1, E (λtλt−h) for h ≥ 0, and using the stationarity in mean of Z, we get

E
(
Z2
t

)
= C + 2[

p∑
j=1

α2
jE
(
Z2
t−j

)
+

p∑
j,k=1
j ̸=k

αjαkE
(
Zt−jZt−k

)
+

+2
p∑

j=1

p∑
k=1

αjβkE
(
Zt−jλt−k

)
+

p∑
k=1

β2
kE
(
λ2
t−k

)
+

p∑
j,k=1
j ̸=k

βjβkE
(
λt−jλt−k

)
]

where C = 3µλ + 1 + 2α2
0 + 4α0 (µλ − α0) . We note that

E
(
Z2
t

)
= E

(
2λ2

t + 3λt + 1
)

⇔ E
(
Z2
t

)
= 2E

(
λ2
t

)
+ 3µλ + 1

⇔ E
(
λ2
t

)
=

E(Z2
t )−3µλ−1

2

⇔ E
(
λ2
t

)
=

E(Z2
t )

2 − 3µZ−2
2
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and from this we deduce that Z is a second order process if and only if the
same occurs with λ.
Analogously to what is done in [3], Proposition 1, we obtain

i) E
(
Z2
t

)
= b0 + 2

p∑
j=1

(
α2
j +

β2
j+2αjβj

2

)
E
(
Z2
t−j

)
+

+4
p−1∑
j=1

p∑
k=j+1

αk (αj + βj)E
(
Zt−jZt−k

)
+4

p−1∑
j=1

p∑
k=j+1

βk (αj + βj)E
(
λt−jλt−k

)
]

ii) E (ZtZt−h) = b1,h +
(
αh +

βh

2

)
E
(
Z2
t−h

)
+

h−1∑
j=1

(αj + βj)E
(
Zt−jZt−h

)
+

+
p∑

j=h+1

αjE
(
Zt−jZt−h

)
+

p∑
j=h+1

βjE (λt−jλt−h) , h ≥ 1

iii) E (λtλt−h) = b2,h +
αh+βh

2 E
(
Z2
t−h

)
+

p∑
j=h+1

αjE (Zt−jZt−h)+

+
h−1∑
j=1

(αj + βj)E (λt−kλt−h)+
p∑

j=h+1

βjE (λt−jλt−h) , h ≥ 1

with

b0 = (3 + 4α0) (µZ − 1) + 1− 2α2
0 −

(
3µZ−2

2

) p∑
k=1

(
β2
k + 2αkβk

)
+

+2 (µZ − 1)
p∑

j,k=1
j≤k

αjβk − 2µZ

p∑
j,k=1
j<k

αkβj

b1,h = µZ

(
1 + α0 −

h−1∑
k=1

βk

)
+ (µZ − 1)

p∑
k=h

βk − 3µZ−2
2 βh

b2,h = (µZ − 1)

(
α0 +

h∑
j=1

αj

)
− µZ

p∑
j=h+1

αj − 3µZ−2
2 (αh + βh) .

From these calculations, it is easy to see that the vector Wt with dimension
p+ q − 1,
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Wt =



E
(
Z2
t

)
E (ZtZt−1)
...
E
(
ZtZt−(p−1)

)
E (λtλt−1)
...
E
(
λtλt−(q−1)

)


satisfy an autoregressive equation of order max(p, q)

Wt = b+
max(p,q)∑

k=1

BkWt−k (1)

with b = [bj]j=1,...,p+q−1 a real p+ q − 1 dimensional vector such that

bj =



b0, j = 1(
1 + α0 −

j−2∑
k=1

βk

)
µX + (µX − 1)

p∑
k=j−1

βk − 3µX−2
2

βj−1, j = 2, ..., p(
α0 +

j−p∑
k=1

αk

)
(µX − 1)− µX

p∑
k=j−p+1

αk − 3µX−2
2

(αj−p + βj−p) , j = p+ 1, ..., p+ q − 1

and Bk (k = 1, ..., max(p, q)) real square p+ q−1 dimensional matrices. The
coefficientes of these matrices are equal to those of the matrices obtained for
the corresponding nontruncated model ([3]).

So, we may write the following property.

Property. A zero truncated NB-INGARCH process, Z, stationary in
mean is second order stationary if and only if

P (L) = Ip+q−1 −
max(p,q)∑

k=1

BkL
k

is a polinomial matrix such that detP (z) has all its roots outside the unit
circle, where Ip+q−1 is the identity matrix of p+q−1 order and Bk (k = 1, ...,
max(p, q)) are the matrices present in the autoregressive equation (1).

c) Particular cases
Let us analyze some particular cases of the zero truncated NB-INGARCH

model, namely those with small orders.
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c.1) If p = q = 1 and α1 + β1 < 1, the matrix B1 reduce to the scalar

2
(
α2
1 +

β2
1+2α1β1

2

)
and the necessary and sufficient condition of weak station-

arity of Z becomes α2
1 + (α1 + β1)

2 < 1.
In this case we have

E (Zt) = µZ = α0+1−β1

1−(α1+β1)

and from E
(
Z2
t

)
= b0 +B1E

(
Z2
t−1

)
we get

E
(
Z2
t

)
= b0

1−B1

with b0 =
(
3 + 4α0 − α1β1 − 3

2β
2
1

)
µZ − 2 (α0 + 1)2 + β2

1 and B1 = α2
1 +

(α1 + β1)
2 .

Moreover, for h ≥ 1,

E (ZtZt−h) = (1 + α0)µZ + α1E (Zt−1Zt−h) + β1

(
E
(
λ2
t

)
+ E (λt−h)

)
= (1 + α0)µZ + β1 (µZ − 1) + β1

(
E (Z2

t )

2
− 3µZ − 2

2

)
+ α1E (Zt−1Zt−h)

and we deduce

E (ZtZt−h) =

[
(1 + α0)µZ + β1 (µZ − 1) +

β1

2
E
(
Z2

t

)
− β1

2
(3µZ − 2)

](
1− αh

1

1− α1

)
+ αh

1E
(
Z2

t

)
=

[
(1 + α0 + β1)µZ − 3β1

2
µZ

](
1− αh

1

1− α1

)
+

[
β1

2

(
1− αh

1

1− α1

)
+ αh

1

]
E
(
Z2

t

)
=

(
1 + α0 −

β1

2

)(
1− αh

1

1− α1

)
µZ +

[
β1 + (−2α1 − β1 + 2)αh

1

2 (1− α1)

]
E
(
Z2

t

)
.

The autocovariance function of Z, γ(h) = Cov (ZtZt−h) , h ≥ 0, follow from
these equalities.

Remark. We point out that the expressions obtained may be used to
estimate the parameters of the model by the moments method in a simple
but consistent way. If β1 = 0, for example, the estimators of α0 and α1 are

α̂0 = Z (1− α̂1)− 1, α̂1 =

√
Z
(
1− Z

)
+ S2

Z

2S2
Z

where Z and S2
Z denote, respectively, the empirical mean and variance of a

n-sample (Z1, ..., Zn) of the process Z.
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c.2) If p = q = 2, B1 and B2 are 3− order matrices equal to

B1 =

 2α2
1 + β2

1 + 2α1β1 4α2 (α1 + β1) 4β2 (α1 + β1)

α1 +
β1

2 α2 β2
α1+β1

2 α2 β2


B2 =

 2α2
2 + β2

2 + 2α2β2 0 0
0 0 0
0 0 0


and we get

detP (z) = 1−
(
(α1 + β1)

2 + α2 + β2 + α2
1

)
z +

+
(
(α1 + β1)

2 (α2 + β2) + (α2 + β2)
2 + α2

2 − α2
1β2 + α2

1α2 + 2α1α2β1

)
z2 +

+
(
(α2 + β2)

3 + α2
2 (α2 + β2)

)
z3.

If, in particular, α1 = β1 = 0 then the roots of detP (z) = 0 are

z1 =
1

α2+β2
, z2 =

1√
(α2+β2)

2
+α2

2

, z3 = −z2,

and the necessary and sufficient condition of weak stationarity of Z becomes
(α2 + β2)

2 + α2
2 < 1.

3. Parameter estimation
3.1. Conditional maximum likelihood.
Using the conditional maximum likelihood methodology we estimate in this

Section the parameter vector of a stochastic process Z following a ZTCP-
INGARCH(p, q) model for which g(u) = u, that is, the conditional law is a
ZT Poisson one.
The generating function of Zt conditioned on Zt−1 is then

GZt|Zt−1
(u) =

exp (λt (u− 1))− exp (−λt)

1− exp (−λt)

with λt = α0 +
p∑

j=1

αjZt−j +
q∑

k=1

βkλt−k. Thus, the probability function of the

conditioned law is

P (Zt = k | Zt−1) =
G

(k)
Zt|Zt−1

(0)

k! = exp(−λt)(λt)
k

(1−exp(−λt))k!
, k = 1, 2, ...

The conditional likelihood function associated to n observations Z1, ..., Zn

conditionally to the initial values is
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L (Θ) =
n∏

t=1

exp(−λt)(λt)
Zt

(1−exp(−λt))Zt!

where Θ = (α0, α1, ..., αp, β1, ..., βq)
T = (θ0, θ1, ..., θp, θp+1, ..., θp+q)

T

The log-likelihood function is given by

L (Θ) = logL (Θ) =
n∑

t=1

[Zt log (λt)− λt − log (Zt!)− log (1− exp (−λt))]

=
n∑

t=1

lt (Θ)

with lt (Θ) = Zt log (λt)− λt − log (Zt!)− log (1− exp (−λt)) .
The first derivatives of lt in order to θi, i = 0, ..., p+ q are

∂lt
∂θi

= Zt
∂λt

∂θi

1

λt
− ∂λt

∂θi
−

− exp (−λt)
(
−∂λt

∂θi

)
1− exp (−λt)

=
∂λt

∂θi

(
Zt

λt
− 1− exp (−λt)

1− exp (−λt)

)
=

∂λt

∂θi

(
Zt

λt
− 1

1− exp (−λt)

)
(2)

and the second derivatives are

∂2lt
∂θi∂θj

=
∂2λt

∂θi∂θj

(
Zt

λt

− 1

1− exp (−λt)

)
+

∂λt

∂θi

[
−Zt

λ2
t

∂λt

∂θj
+ (1− exp (−λt))

−2 exp (−λt)
∂λt

∂θj

]
=

∂2λt

∂θi∂θj

(
Zt

λt

− 1

1− exp (−λt)

)
+

[
−Zt

λ2
t

+
exp (−λt)

(1− exp (−λt))
2

]
∂λt

∂θi

∂λt

∂θj
(3)

for 0 ≤ i, j ≤ p+ q. Moreover,

∂λt

∂α0
= 1 +

q∑
k=1

βk
∂λt−k

∂α0
;

∂λt

∂αi
= Zt−i +

q∑
k=1

βk
∂λt−k

∂αi
, i = 1, ..., p;

∂λt

∂βj
= λt−j +

q∑
k=1

βk
∂λt−k

∂βj
, j = 1, ..., q.
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Following [8] we deduce that the conditional maximum likelihood estima-

tor, Θ̂, is strongly consistent for Θ0, the true value of Θ, and asymptotically
normal. Namely, if n is large enough, the distribution of Θ̂ may be ap-
proached by the following distribution:

Θ̂
•∼ N

(
Θ0, [nI (Θ0)]

−1
)

where I (Θ0) is the information matrix evaluated at Θ0.

In order to estimate the asymptotic covariance matrix of Θ̂, let us consider

W T
t = (1, Zt−1, ..., Zt−p, λt−1, ..., λt−q)

and let ∇f denote the gradient of any function f . We have

∇λt = Wt +
q∑

k=1

βk∇λt−k.

The equation (2) may now be written as

∇lt =
(
Zt

λt
− 1

1−exp(−λt)

)
∇λt

and the equation (3) becomes

Ht =
(
Zt

λt
− 1

1−exp(−λt)

)
∇
(
∇Tλt

)
−
[
Zt

λ2
t
− exp(−λt)

(1−exp(−λt))
2

]
∇λt∇Tλt.

Taking expectations in both sides of the equation (3) we obtain

E
(

∂2lt
∂θi∂θj

|Zt−1

)
=

= E

[
∂2λt

∂θi∂θj

(
Zt

λt

− 1

1− exp (−λt)

)
−
(
Zt

λ2
t

− exp (−λt)

(1− exp (−λt))
2

)
∂λt

∂θi

∂λt

∂θj
|Zt−1

]
=

∂2λt

∂θi∂θj
E

(
Zt

λt

− 1

1− exp (−λt)
|Zt−1

)
− E

(
Zt

λ2
t

− exp (−λt)

(1− exp (−λt))
2 |Zt−1

)
∂λt

∂θi

∂λt

∂θj
.

But from E (Zt|Zt−1) =
λt

1−exp(−λt)
we deduce

E

(
Zt

λt
|Zt−1

)
=

1

1− exp (−λt)

and

E

(
Zt

λ2
t

|Zt−1

)
=

1

λt (1− exp (−λt))
.

So

E
(

∂2lt
∂θi∂θj

|Zt−1

)
= −

(
1

λt(1−exp(−λt))
− exp(−λt)

(1−exp(−λt))
2

)
∂λt

∂θi
∂λt

∂θj
.

Consequently
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−E
(

∂2lt
∂θi∂θj

)
= E

[(
1

λt(1−exp(−λt))
− exp(−λt)

(1−exp(−λt))
2

)
∂λt

∂θi
∂λt

∂θj

]
.

In an analogous way, from (2) we get

E
(

∂lt
∂θi

∂lt
∂θj

|Zt−1

)
= E

(
∂λt

∂θi
∂λt

∂θj

(
Zt

λt
− 1

1−exp(−λt)

)2
|Zt−1

)
.

Taking into account that E
(
Z2
t |Zt−1

)
= λ2

t+λt

1−exp(−λt)
we deduce

E

(
∂lt
∂θi

∂lt
∂θj

|Zt−1

)
=

∂λt

∂θi

∂λt

∂θj
E

((
Zt

λt

)2

− 2Zt

λt (1− exp (−λt))
+

(
1

1− exp (−λt)

)2

|Zt−1

)

=
∂λt

∂θi

∂λt

∂θj

[
1 + 1

λt

1− exp (−λt)
− 2

(
1

1− exp (−λt)

)2

+

(
1

1− exp (−λt)

)2
]

=
∂λt

∂θi

∂λt

∂θj

[
λt + 1

λt (1− exp (−λt))
−
(

1

1− exp (−λt)

)2
]
.

Consequently

E

(
∂lt
∂θi

∂lt
∂θj

)
= E

[
∂λt

∂θi

∂λt

∂θj

(
λt + 1

λt (1− exp (−λt))
− 1

(1− exp (−λt))
2

)]
= E

[
∂λt

∂θi

∂λt

∂θj

(
1

1− exp (−λt)
+

1

λt (1− exp (−λt))
− 1

(1− exp (−λt))
2

)]
= E

[
∂λt

∂θi

∂λt

∂θj

(
− exp (−λt)

(1− exp (−λt))
2 +

1

λt (1− exp (−λt))

)]
.

We deduce that this ZT model satisfy the information matrix equality:

−E
(

∂2lt
∂θi∂θj

)
= E

(
∂lt
∂θi

∂lt
∂θj

)
,

and so the matrices

Ŝn = 1
n

n∑
t=1

∇lt∇T lt

and

D̂n = − 1
n

n∑
t=1

∇
[
∇T lt

]
are consistent estimates for the information matrix. Thus, both can be used
to estimate the asymptotic covariance matrix of the conditional maximum
likelihood estimator.
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3.2. Simulation study.
To implement the estimation methodology and analyze its performance

in a concrete situation we consider now a stochastic process Z following a
ZTCP-INGARCH(1, 1) model with g(u) = u and λt = 0.8+0.5Zt−1+0.3λt−1.
We generate 1100 observations. In order to minimize the effect of the initial

conditions we discard the first 100 observations. The estimates obtained for
the parameters using the conditional maximum likelihood method for samples
of 200, 600 and 1000 observations are presented in the Table 1. When the
number of observations increase we observe an increasing proximity between
the estimates and the true values of the model parameter vector, as the
standard errors reveal. Moreover this estimation improvement is also assessed
by the significant decrease in the mean square error, given by

RMS2 =
1

n

n∑
t=1

Zt −
λ̂t

1− exp
(
−λ̂t

)
2

.

Table 1. Maximum likelihood estimates of the parameters of the model ZTCP-INGARCH(1,1)
with λt = 0.8 + 0.5Zt−1 + 0.3λt−1, the corresponding standard errors and probabilities and
the root mean square error (n = 200, 600 and 1000).

ZTCP INGARCH(1,1) Estimates RMS

n = 200

Coefficient Std. Error Prob.
α̂0 0.934752 0.450732 0.0381
α̂1 0.573235 0.071171 0.0000

β̂1 0.168460 0.127505 0.1864

1.964743

n = 600

Coefficient Std. Error Prob.
α̂0 0.751109 0.244264 0.0021
α̂1 0.508055 0.043687 0.0000

β̂1 0.294458 0.070838 0.0000

1.945211

n = 1000

Coefficient Std. Error Prob.
α̂0 0.804141 0.188584 0.0000
α̂1 0.495506 0.035423 0.0000

β̂1 0.280772 0.055280 0.0000

1.911525

We study also the effect of modeling the same observations (n = 1000) by
other models of the class ZTCP-INGARCH with orders different from the
true ones. For the comparison we use the log-likelihood function and Akaike
and Schwarz criteria values.
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Table 2. Conditional maximum likelihood estimates of the parameters of the models, with
the corresponding standard errors and probabilities, the log-likelihood function and Akaike
and Schwarz criteria.

Model Estimates Log L Akaike Schwarz
criterion criterion

ZTCP-INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 0.729979 0.197370 0.0002
α̂1 0.493813 0.036731 0.0000

β̂1 0.337999 0.056966 0.0000

2672.787 -5.339575 -5.324851

ZTCP-INARCH(1)

Coeff. Std. Error Prob.
α̂0 1.643538 0.131514 0.0000
α̂1 0.620958 0.028528 0.0000

2652.876 -5.301753 -5.291937

ZTCP-INARCH(2)

Coeff. Std. Error Prob.
α̂0 1.241163 0.145437 0.0000
α̂1 0.502453 0.036001 0.0000
α̂2 0.205675 0.034193 0.0000

2672.180 -5.338359 -5.323636

ZTCP-INGARCH(1,2)

Coeff. Std. Error Prob.
α̂0 0.773800 0.217414 0.0004
α̂1 0.494038 0.036828 0.0000

β̂1 0.371542 0.072992 0.0000

β̂2 -0.043666 0.068497 0.5238

2673.008 -5.338017 -5.318386

CP-INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 1.008047 0.204170 0.0000
α̂1 0.469816 0.037518 0.0000

β̂1 0.320104 0.058181 0.0000

2646.227 -5.286453 -5.271730

Comparing the results with those of the ZTCP-INGARCH(1,1) model
used to generate the observations (line 2 of Table 2), we note that in the
two ZTCP-INARCH models considered (lines 3 and 4 of Table 2) the log-
likelihood function has smaller values. We also point out the expected non
significance of the last parameter estimate in the ZTCP-INGARCH(1,2)
model (line 5 of Table 2). Moreover the minimum values of the Akaike and
Schwarz criteria are obtained for the ZTCP-INGARCH(1, 1). However we
note that the ZTCP-INARCH(2) model competes well with the true model
which is certainly related with the great coefficient of Zt−1 in the evolution
of λt.
We also study the effect of modeling the same observations by a CP-

INGARCH(1,1) model and the results, reported in the last line of Table 2,
although not very different from the previous ones, present the smallest value
of the log-likelihood function and the greatest one for Akaike and Schwarz
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criteria for the five models considered. The small differences between the
standard and the zero-truncated Poisson models may be explained by the
value of the mean of the count response variable ([5]), greater than 4, which
corresponds to a negligible probability for the occurrence of zero values. In
order to see the influence of the mean, we repeat the analysis considering
now 1000 observations from a ZTCP-INGARCH(1, 1) model with a smaller
mean by considering λt = 0.5 + 0.3Zt−1 + 0.2λt−1.

Table 3. Conditional maximum likelihood estimates of the parameters of the models, with
the corresponding standard errors and probabilities, the log-likelihood function and Akaike
and Schwarz criteria (λt = 0.5 + 0.3Zt−1 + 0.2λt−1).

Model Estimates Log L Akaike Schwarz
criterion criterion

ZTCP-INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 0.462356 0.194389 0.0174
α̂1 0.245658 0.050299 0.0000

β̂1 0.285840 0.146120 0.0504

-498.9299 1.003860 1.018583

CP-INGARCH(1,1)

Coeff. Std. Error Prob.
α̂0 1.187953 0.269543 0.0000
α̂1 0.176817 0.066177 0.0075

β̂1 0.207045 0.197160 0.2937

-751.0212 1.508042 1.522766

We note that in this case the differences between the true model and the
non truncated one are significant, namely in which concerns the closeness
between the parameters estimates and the true values as the standard errors
reinforce. Moreover, taking into account all the criteria used, we verify that
in this case the CP-INGARCH(1,1) model gives clearly worse results than
the ZTCP- INGARCH(1,1) one. We conclude that the standard model is not
so adequate as the ZT one introduced in this paper to reproduce the zero
truncation characteristic of the initial observations.

4. Real-data example

In this section, we want to assess the improvement provided with real data
when using a model ZTCP-INGARCH instead of a standard CP-INGARCH.
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In order to do this let us consider the time series of the quarterly counts
of poliomyelitis cases in the United States of America starting from Janu-
ary 1970 and ending in December 1983 (56 observations), obtained in the
Forecasting Principles site (http:// www.forecastingprinciples.com).
Figure 3 presents the original series and its principal descriptive summaries.

In Figure 4 the empirical autocorrelations and partial autocorrelations are
displayed.
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Series: POLIO_TRIM
Sample 1970Q1 1983Q4
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Mean       4.035714
Median   3.000000
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Minimum  1.000000
Std. Dev.   3.672820
Skewness   1.797611
Kurtosis   6.144988

Jarque-Bera  53.23868
Probability  0.000000

Figure 3. Quarterly poliomyelitis series: the time plot and its
principal descriptive summaries

We have in fact a strictly positive integer-valued time series which values
are relatively low. The empirical mean and variance of the series are 4.0357
and 13.4896. The empirical analysis of autocorrelation functions show a serial
dependence at order 2 of this time series.

Figure 4. Quarterly poliomyelitis series: the sample autocorre-
lations and partial autocorrelations

The data are thus fitted by the ZTCP-INARCH(2) and CP-INARCH(2)
models. Conditional maximum likelihood parameter estimates and their
standard errors are summarized in Table 4. The lower values of the stan-
dard errors for the ZTCP-INARCH(2) led, in this case, to more accurate
estimates. Moreover, the Akaike and Schwarz criteria and the values of the
log-likelihood function allow us to conclude that the zero truncated model
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provide a better fit than the CP-INARCH one to the quarterly poliomyeli-
tis data. This improvement is naturally due to the nature of the data that
describes a rare phenomenon which occurs effectively with some regularity.

Table 4. Conditional maximum likelihood estimates of the parameters, with the correspond-
ing standard errors and probabilities, the log-likelihood function and Akaike and Schwarz
criteria for the quarterly poliomyelitis cases.

Model Estimates Log L Akaike Schwarz
criterion criterion

ZTCP-INARCH(2)

Coeff. Std. Error Prob.
α̂0 1.778501 0.323187 0.0000
α̂1 0.282240 0.051970 0.0000
α̂2 0.224450 0.054547 0.0000

89.59489 -3.207218 -3.096719

CP-INARCH(2)

Coeff. Std. Error Prob.
α̂0 2.043173 0.344851 0.0000
α̂1 0.264551 0.052925 0.0000
α̂2 0.207091 0.056697 0.0003

87.53110 -3.130782 -3.088166

5. Conclusion

Compound Poisson INGARCH processes are a wide family of integer-
valued models, recently introduced, that are able to describe simultaneously
characteristics of count data like different kinds of conditional heteroscedas-
ticity or overdispersion. But, these kind of processes all assume that the
count data in analysis have zero counts.
Many times the count systems to be modeled structurally exclude zeros; so,

in order to model such data properly, the underlying probability distribution
should preclude null outcomes. The potential of compound Poisson prob-
ability distributions to describe huge different characteristics of count data
justify the introduction of the new class of zero truncated models inspired in
the CP-INGARCH ones but amended to exclude zeros.
We point out that the main subfamily of models here studied, namely

the class of ZTCP-INGARCH processes with gt deterministic and indepen-
dent of t, may accommodate a significant number of models useful in ap-
plications. As relevant examples we should refer the ZT Poisson and the
ZT Neyman Type A ones, corresponding respectively to gt(u) = u and
gt(u) = exp (ϕ (u− 1)) Furthermore, according to the Pseudo-Conditional
Maximum Likelihood methodology, the estimator obtained for the parameter
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vector of a ZT Poisson-INGARCH (1,1) model is also a consistent estimator
of the corresponding vector of a general ZTCP-INGARCH (1,1) model.
In conclusion, the probabilistic and statistical study developed, although

restricted to a subclass of the wide family considered, is enough consistent
for using these models in applications related to rare phenomena but with
effective occurrences, as we hope having illustrated with the simulation and
real data studies presented.

Acknowledgement. This work was partially supported by the Centre for
Mathematics of the University of Coimbra – UID/MAT/00324/2013, funded
by the Portuguese Government through FCT/MEC and co-funded by the
European Regional Development Fund through the Partnership Agreement
PT2020.

References
[1] R. Ferland, A. Latour, D. Oraichi, Integer-valued GARCH models, Journal of Time Series

Analysis 27 (2006) 923-942.
[2] Ch.Francq, J.M. Zakoian, GARCH models, Structure, Statistical inference and Financial ap-

plications, Wiley, 2010.
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