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1. Introduction

Seifert and Van Kampen’s famous theorem on the fundamental group of a
union of two spaces [66, 71] has been sharpened and extended to other contexts
in many ways [17, 40, 56, 20, 67, 19, 74, 21, 68]. Let us here recall the following
elementary version. Consider a commutative square of pointed topological
spaces and base-point-preserving continuous maps as on the left,

O
j

,2

i
��

B

ιB
��

A ιA
,2 X

π1pOq π1pjq
,2

π1piq
��

π1pBq
π1pιBq

��

π1pAq
π1pιAq,2 π1pXq

where A, B and O are open, path-connected subspaces of X, and� the square is a pushout, X � A �O B is the amalgamated sum of A
and B over O;
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2 MATHIEU DUCKERTS-ANTOINE AND TIM VAN DER LINDEN� the square is a pullback, O � A�X B � AXB is the intersection of A
and B in X.

Then the square on the right obtained by applying the fundamental group
functor is a pushout in the category of groups.

The aim of our article is to present a variation on this result, valid in a
general algebraic context. We prove a Seifert–van Kampen theorem in a non-
additive setting, giving sufficient conditions on a functor F : C Ñ X from
an algebraically coherent [24] semi-abelian [49] category C to an almost abe-
lian [65] category X for its fundamental group functor πF

1 to preserve pushouts
of split monomorphisms. Here C may, for instance, be the category of groups,
rings, crossed modules, or Lie algebras over a field; while X may for example
be a category of modules, Banach spaces or locally compact abelian groups.
When X is abelian, this fundamental group functor πF

1 is precisely the classical
left derived functor L1F of F .

Motivation. This work is part of a long-term project aiming to understand
group (co)homology from a categorical-algebraic perspective. Within this lar-
ger context, our interest in a general Seifert–van Kampen theorem is twofold.
On the one hand, through an analysis of this theorem we are studying which
aspects of group (co)homology are typical for groups, and which arise for pu-
rely formal reasons, so that a categorical argument suffices to comprehend and
apply these in other settings. On the other hand, such an analysis helps us see
what the needs of homological algebra tell us about categories of non-abelian
algebraic structures: we are asking ourselves what are the right conditions on
a category for a given result in homological algebra to hold. These questions
may have unexpected answers—for instance, the one given here which involves
a seemingly unrelated technical condition called algebraic coherence [24].

A special case: preservation of binary sums. In the special case where
the pushout under consideration is a coproduct, our Seifert–van Kampen the-
orem may be seen as a non-abelian version of a fact which is well known in the
abelian case. Indeed, for any additive functor F : C Ñ X between abelian
categories C and X where C has enough projectives, the left derived functors
LnF : C Ñ X are additive [23]. In other words, if F preserves binary coprod-
ucts, then each derived functor of F does. One goal of the article is to explore
how this extends to a general homology coproduct theorem in the sense of [3],
valid in a non-abelian algebraic context.
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Known non-abelian results. Of course several instances of a non-abelian
homology coproduct theorem can already be found in the literature. For exam-
ple, given any two groups X, Y and any n ¥ 0, there is the isomorphism

Hn�1pX � Y,Zq � Hn�1pX,Zq `Hn�1pY,Zq (A)

describing the integral homology of the free product X � Y as the direct sum
of the homologies of X and Y . See [2, 3, 73] for an algebraic proof of this
result, which may also be obtained by using the corresponding isomorphism
for topological spaces (via the classical Seifert–van Kampen theorem). This
may be reinterpreted as an isomorphism

LnF pX � Y q � LnF pXq `LnF pY q
where F is the abelianisation functor ab: GpÑ Ab, which sends a group X to
its abelianisation abpXq � X{rX,Xs.

Similar results hold, for instance, for rational homotopy of topological spaces
[26] and for homology of graded associative algebras [5, 44, 42]; see also [54].
Barr and Beck give several examples of homology coproduct theorems in the
context of comonadic homology [3].

A negative result. Attempting to find a general non-additive homology co-
product theorem for LnF , one is immediately confronted with the following
counterexample, which was obtained in [51] as a test of the homology theory for
varieties of groups established in [53]. If F : Nil2 Ñ Ab is the reflector from the
category of groups of nilpotency class at most two to the category of abelian
groups, so the restriction to Nil2 of the abelianisation functor considered above,
then

L2F pC2 � C2q � C2 ` C2 ` C2 � C2 ` C2 � L2F pC2q `L2F pC2q,
where C2 is the cyclic group of order two.

We have to conclude that a general homology coproduct theorem applicable
to the functor ab: Nil2 Ñ Ab cannot exist. This leaves open essentially only
two courses of investigation:

(1) to study the case n � 1 in a setting wide enough to include the variety
of groups of nilpotency class at most two;

(2) to study the situation for general n, but in a much more restricted
context which includes groups while ruling out the category Nil2.

In the present paper we focus on (1) in order to prove a general homology
coproduct theorem for L1F as a particular case of an algebraic Seifert–van
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Kampen theorem. We hope to come back to (2) in future work; for now, in
Section 5 we make some further remarks about this problem.

Our setting. The situation we consider in this paper is that of a regular
epi–reflection

C

F ,2K X�lr

where C is an algebraically coherent [24] semi-abelian [49] category with enough
regular projectives and X is an abelian category. It is this functor F which
we are going to derive—using simplicial resolutions [69] in the abstract case, or
comonadic resolutions [3] when X is a variety of algebras. Alternatively, the
standard Quillen model structure on the category of simplicial objects in C

may be used [61, 70].

Some examples. In Section 2 we shall recall the definitions of the above-
mentioned categorical-algebraic conditions. For the time being, let us just
mention that any Orzech category of interest [60] is semi-abelian algebraically
coherent, so that we might consider any reflector from such a variety C to an
abelian subvariety X of C . For instance, the reflector from groups to abelian
groups, from groups of a certain nilpotency class to abelian groups, from crossed
modules to abelian crossed modules, from Lie algebras over a field K to K-vector
spaces, from G-actions to ZrGs-modules for a given group G all fit into this
setting. More examples will be given in Section 2 and Section 3.

The fundamental group functor. The proof of our result is based on
categorical Galois theory [46, 47, 48, 9], with in particular the interpreta-
tion [36, 32, 28] of the derived functor L1F as a fundamental group functor πF

1 .
This leads to a slightly more general result, which remains valid even when X

is not abelian, but only almost abelian in the sense of [65].
In the given context, there is the concept of an extension (= a regular epi-

morphism in C ) and that of a normal extension (defined with respect to the
functor F : C Ñ X ). It turns out that the inclusion NExtpC q Ñ ExtpC q of
the category of normal extensions into the category of extensions admits a left
adjoint. This left adjoint functor is called the normalisation functor relative
to F and is denoted F1 : ExtpC q Ñ NExtpC q.

For instance, an extension in the category of groups is just a surjective group
homomorphism. If now F is the abelianisation functor ab: Gp Ñ Ab, then a
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normal extension is the same thing as a central extension: a surjective group
homomorphism f : X Ñ Y for which the elements of the kernel K commute
with all the elements of X. The functor F1 takes an extension f : X Ñ Y and
sends it to the quotient F1pfq : X{rK,Xs Ñ Y . Here the commutator rK,Xs
is generated by the elements of the form kxk�1x�1 where k P K and x P X.

When it exists, the fundamental group functor πF
1 : C Ñ X relative to

the functor F is defined as the pointwise right Kan extension [55]

ExtpC q F1 ,2

Cod
��

NExtpC q
Ker

��

C
πF
1

,2

ñ
X ,

where Cod sends an extension f : X Ñ Y to its codomain Y and Ker sends a
(normal) extension g to its kernel Kerpgq. If C has enough projectives and X

is abelian, then the functor πF
1 corresponds to the first left derived functor of F

obtained via simplicial resolutions: we have an isomorphism πF
1 � L1F , where

the derived functor on the right is as in [3, 69]. In the case of abelianisation
of groups, for instance, we see that πF

1 pXq � H2pX,Zq, the second integral
homology group.

The result. We prove that the first fundamental group functor πF
1 : C Ñ X

preserves pushouts of split monomorphisms, so that—when the derived functor
in question is a fundamental group functor—for any pushout of split mono-
morphisms i and j in C as on the left,

O
j

,2

i
��

B

ιB
��

A ιA
,2 X

L1F pOq L1F pjq
,2

L1F piq
��

L1F pBq
L1F pιBq

��

L1F pAq
L1F pιAq ,2 L1F pXq

the resulting square on the right is a pushout in X . In particular, by taking
O � 0 it follows that for any A and B in C ,

L1F pA�Bq � L1F pAq `L1F pBq.
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Structure of the text. In Section 2 we recall some basic terminology and
sketch the context in which we shall be working. Section 3 recalls Galois-
theoretic notions and results concerning the fundamental group functor. Most
of the real work is done in Section 4 where some technical lemmas having
to do with jointly strongly epimorphic pairs of arrows are proved. Section 5
contains our main result, the Seifert–van Kampen theorem. We obtain two
versions: first, in Theorem 5.1, we consider the case where X is an almost
abelian category [65], and the left adjoint reflector F preserves pullbacks of
split epimorphisms along regular epimorphisms; then we find that πF

1 preserves
pushouts of split monomorphisms. We next restrict the setting to the case
where X is abelian and F is a Birkhoff reflector. Then πF

1 is a genuine left
derived functor of F , and we obtain Theorem 5.2.

2. Terminology

Semi-abelian categories were introduced in [49] in order to unify several his-
torically important approaches to a categorical framework for the study of ho-
mological algebra of non-abelian algebraic objects (e.g., [41, 45, 1, 10]). Next to
all abelian categories, any variety of Ω-groups in the sense of [41] is an exam-
ple. So for a variety of algebras to be semi-abelian, it suffices that amongst the
operations and identities of the theory, there is a unique constant and a group
operation. This easily provides us with many examples such as groups, (non-
unitary) rings, associative algebras, Lie algebras, crossed modules, etc. Further
examples of a different kind include loops [7], Heyting semilattices [52], cocom-
mutative Hopf algebras over a field of characteristic zero [38], and the dual of
the category of pointed sets [13].

2.1. Formal definition. A category is semi-abelian [49] when it is pointed,
exact and protomodular with binary coproducts. In presence of the other
axioms, the existence of binary coproducts suffices for the category to be finitely
complete and finitely cocomplete.

Pointed means that there is a zero object, written 0: an initial object which
is also terminal. Often, the zero object is a one-element algebra. A morphism
which factors through the zero object is called a zero map; given any two ob-
jects A and B, a unique such 0: A Ñ B exists. For any morphism f : A Ñ B,
the coequaliser of f and 0 is called the cokernel of f , and written
cokerpfq : B Ñ Cokerpfq. Dually, we write kerpfq : Kerpfq Ñ A for the ker-
nel of f , the equaliser of f and 0. A short exact sequence is a pair of
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morphisms pk, fq where k � kerpfq and f � cokerpkq; this situation is usually
pictured as a sequence

0 ,2 K
� ,2 k ,2 A

f � ,2 B ,2 0.

A morphism which is the cokernel of some morphism is called a normal epi-
morphism, and a morphism which is the kernel of some morphism is called
a normal monomorphism. In many varieties of algebras, normal mono-
morphisms correspond to inclusions of (suitably defined) ideals. The cokernel
of a homomorphism f : A Ñ B may then be obtained as the quotient of B by
the normal closure of the image of f . It is important to notice that not all
monomorphisms need to be normal: indeed, non-normal subgroups exist.

The concept of an image itself is formalised as follows. A morphism is
called a regular epimorphism when it is the coequaliser of some parallel
pair of arrows. In any variety of algebras these are precisely the surjective
homomorphisms—unlike the epimorphisms, which in this context turn out to
play a lesser role. Obviously, by definition, any normal epimorphism is a re-
gular epimorphism; conversely, in a semi-abelian category, the two concepts
may be seen to coincide. A category is regular [1] if it is finitely complete,
every morphism can be factorised as a regular epimorphism followed by a mo-
nomorphism, and regular epimorphisms are stable under pullbacks. The mo-
nomorphism in this (essentially unique) factorisation of a morphism f is called
the image of f .

A relation pR, d1, d2q from A to B is a subobject of the product A�B, re-
presented by a monomorphism xd1, d2y : R Ñ A� B. Relations are naturally
ordered by inclusion. In the context of a regular category, it is possible to
consider the composite of two relations, and then an internal equivalence
relation on an object A may be defined as a relation R which is reflexive
(∆A ¤ R, where ∆A � x1A, 1Ay : A Ñ A � A), symmetric (Rop ¤ R, wherepRop, d

op
1 , d

op
2 q � pR, d2, d1q) and transitive (R�R ¤ R). The kernel rela-

tion or kernel pair pEqpfq, prf1 , prf2q of a morphism f : A Ñ B, which is the
pullback of f along itself, considered as a subobject of A � A, is always an
equivalence relation on A. The converse need not hold in general. Whence the
definition of a (Barr) exact [1] category, which is regular and such that every
internal equivalence relation is the kernel relation of some morphism. It is well
known that all varieties of algebras are Barr exact.
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A pointed category with finite limits is protomodular [10] when the Split
Short Five Lemma holds. This means that whenever we have a diagram

Kerppq � ,2 ,2

k
��

A
p � ,2

a

��

C

c

��

lr
s

lr

Kerpp1q � ,2 ,2 A1 p1 � ,2
C 1lr

s1lr

in which the three squares commute while p�s � 1C and p1�s1 � 1C 1, if the
morphisms k and c are isomorphisms then a is an isomorphism.

A category which is pointed, regular and protomodular is said to be homolo-
gical [7]. In a homological category, the basic lemmas of homological algebra,
such as the Short Five Lemma, the 3� 3 Lemma and the Snake Lemma hold.
Such a category is Barr exact if and only if the image of a composite p�k,
where p is a normal epimorphism and k is a normal monomorphism, is again
a normal monomorphism. Then it suffices that binary coproducts exist for the
category to be semi-abelian.

Examples are given below in 2.10. For now, let us just recall the following

Lemma 2.2. [22, Theorem 5.7] In a semi-abelian category, let us consider a
square of regular epimorphisms

X
pB � ,2

pA
_��

B

b_��

A a
� ,2 O.

The comparison morphism xpA, pBy : X Ñ A�O B to the pullback of a and b

is a regular epimorphism if and only if the square is a pushout.

2.3. The category of points. Protomodularity may be reformulated in more
abstract terms as follows.

Let C be a category with pullbacks of split epimorphisms along any morphism.
A point in C is a pair pp : A Ñ C, s : C Ñ Aq of morphisms in C such that
p�s � 1C : it is a split epimorphism p with a chosen splitting s. (Equiva-
lently, of course, a point pp, sq may be considered as a split monomorphism
s with a chosen splitting p.) The category of points PtpC q has as ob-
jects points in C . Morphisms are natural transformations between those.
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More precisely, an arrow

f : pp : A Ñ C, s : C Ñ Aq Ñ pp1 : A1 Ñ C 1, s1 : C 1 Ñ A1q
is a pair f � pf1 : A Ñ A1, f0 : C Ñ C 1q such that p1�f1 � f0�p and f1�s � s1�f0.

We write Pt2pC q for the category PtpPtpC qq. Its objects are split epi-
morphisms of split epimorphisms with chosen splittings: squares such as (D)
below.

The forgetful codomain functor

Cod: PtpC q Ñ C : pp : A Ñ C, s : C Ñ Aq ÞÑ C, f � pf1, f0q ÞÑ f0

is a fibration (see [6] for instance) which is called the fibration of points.
We write PtXpC q for the fibre over X, which is the subcategory of PtpC q
determined by the morphisms f such that Codpfq � 1X . The objects of this
category are called points over X in C .

For any morphism f : A Ñ B in C , pulling back a point pp, sq along the
morphism f induces a change-of-base functor

f � : PtBpC q Ñ PtApC q.
It is not very difficult to see that the category C is protomodular if, and only if,
all change-of-base functors f � are conservative, which means that they reflect
isomorphisms.

When C is homological, there is [15] a concept of internal action which
induces an equivalence between “split extensions” and “actions”—formally, this
is the monadicity of the functor Cod: PtpC q Ñ C . For us right now, it suffices
to understand the following interpretation of this fact. Any point pp, sq induces
a split extension

0 ,2 K
� ,2
kerppq

,2 A
p � ,2

C ,2lr
s

lr 0.

This split extension corresponds to an internal action ξ of C on K in the sense
of [15] via a general semi-direct product construction: there is a split extension

0 ,2 K
� ,2
kerppξq

,2 K �ξ C
pξ � ,2

C ,2lr
sξ

lr 0

which turns out to be isomorphic to the given split extension.
In other words, a point pp, sq over C in C may be seen as some kind of a “non-

abelian Beck module” [4] via the internal C-action it induces on the kernel K
of p. Protomodularity thus amounts to the condition that any morphism of
C-actions which induces an isomorphism K Ñ K 1 on the underlying objects
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(= kernels) K and K 1 necessarily is an isomorphism itself. This point of view
may help better understanding the definition in 2.8 below.

2.4. Epimorphisms. A morphism f : A Ñ B in a finitely complete cate-
gory C is� an extremal epimorphism if, for every commutative triangle as on

the left with m a monomorphism, m is an isomorphism;

I
��
m

��

A
f

,2

9D

B

A

f
��

w ,2 D
��
m

��

B v
,2

t
9D

E� a strong epimorphism if, for every commutative square as on the right
with m a monomorphism, there exists a (unique) morphism t : B Ñ D

such that v � m�t (and t�f � w).

It turns out that the two concepts are equivalent and that, when C is semi-
abelian, both concepts coincide with the notions of regular and of normal epi-
morphism, so with the surjective homomorphisms in case C is a variety of
algebras. However, to be a split epimorphism is a stronger condition, and to
be an epimorphism is weaker.

2.5. Cospans. Let C be a finitely complete category. A cospan in C is a
pair pf, gq

A
f

,2 B C
g

lr (B)

of morphisms in C . We will make use of the category CospanpC q of cospans.
A morphism pa, b, cq : pf 1, g1q Ñ pf, gq is a commutative diagram

A1 f 1
,2

a
��

B1
b

��

C 1g1
lr

c
��

A
f

,2 B C.g
lr

(C)

A cospan such as pf, gq in (B) is said to be
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on the left with m a monomorphism, m is an isomorphism;

I
��
m

��

A
f

,2

9D

B Cg
lr

Ze

C

�%@
@@

@@
@@

g

��

A ,2

f
�%@

@@
@@

@@
D

��
m

��

B v
,2

t
9D

E� jointly strongly epimorphic if, for every commutative diagram of
solid arrows as on the right with m a monomorphism, there exists a
(unique) morphism t : B Ñ D such that v � m�t.

As above in 2.4, the two concepts are actually equivalent. We may view such a
cospan as a way of surjectively covering the object B with the objects A and C.

It is easily seen that a jointly strongly epimorphic pair pf, gq in a regular
category with binary coproducts is the same thing as a regular epimorphismpf gq : A�C Ñ B with a coproduct A�C as domain. Consequently, in such a
category, the full subcategory of CospanpC q determined by the jointly strongly
epimorphic pairs is closed under regular quotients. There is also the following,
closely related result, which follows easily from the definitions:

Lemma 2.6. In a finitely complete category, consider a commutative diagram
such as (C). If a and c are strong epimorphisms and the pair pf, gq is jointly
strongly epimorphic, then b is a strong epimorphism.

Proof : Pulling any monomorphism m through which the cospan pf �a, g�cq
would factor back along the morphisms f and g, then using that the morphisms
a, c and the pair pf, gq are extremally epimorphic, it is easily shown that b is
an extremal epimorphism as well.

A projective presentation p : P Ñ A of an object A is a regular epi-
morphism where the object P is projective (with respect to the class of regular
epimorphisms). A category C has enough projectives when for every object
a projective presentation exists. For instance, in a variety of algebras we may
always take the canonical homomorphism LUpAq Ñ A, from the free algebra
LUpAq on the underlying set UpAq of A, to the given algebra A.

Proposition 2.7. Let C be finitely (co)complete with enough projectives. Any
pushout of split monomorphisms in C may be covered by a pushout in ArrpC q
of split monomorphisms of presentations.
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Proof : Given a pushout of split monomorphisms as on the left

O
,2

j
,2

��

i

��

B
��

ιB

��

b

�lr

A ,2
ιA

,2

a

_LR

A�O B
pA�lr

pB

_LR
R

,2
ι1 ,2

��

ι2

��

R �Q
��

ιR�Q

��

p1R bq�lr

P � R ,2
ιP�R

,2

pa 1Rq_LR

P � R �Q
�lr

_LR

we consider projective presentations p : P Ñ A, q : Q Ñ B and r : R Ñ O, and
construct the pushout on the right. Note that all objects in it are projective.
Since the squares of solid arrows

R
,2

ι2 ,2

r

_��

P � Rpp i�rq
_��

pa 1Rq�lr

O ,2
i

,2 A
a�lr

and

R
,2

ι1 ,2

r

_��

R�Qpj�r qq
_��

p1R bq�lr

O ,2
j

,2 B
b�lr

commute, Lemma 2.6 tells us that the induced arrow between the pushoutspp i�rq�r pj�r qq : P �R �QÑ A�O B is a projective presentation.
We let a and b be liftings in the diagram

P
a ,2

p
_��

R

r
_��

Q
blr

q
_��

A a
,2 O B.

b
lr

These make the two above squares commute to the left, so that the original
pushout square of split monomorphisms is covered by a pushout of projectives
in a way which is compatible with the given splittings.

2.8. Algebraically coherent categories. A category C is algebraically
coherent [24] when it is finitely complete and for every morphism f : A Ñ B

in C , the change of base functor

f � : PtBpC q Ñ PtApC q
is coherent, which means that it preserves finite limits and jointly strongly
epimorphic pairs. In the semi-abelian context, a simple argument shows that
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this condition is equivalent to the coherence of the “kernel functors”

Ker �!�B : PtBpC q Ñ Pt0pC q � C

forgetting the B-action, which can be expressed quite easily as follows.

Proposition 2.9. A semi-abelian category C is algebraically coherent if and
only if given any cospan of points over any object B

K 1 h ,2
_��

kerpp1q
��

K_��
kerppq

��

K2
_��
kerpp2q

��

klr

A1 f
,2

p1
_��

A

p
_��

A2
p2

_��

g
lr

B

LRs1 LR

B

LR
s

LR

B

LRs2 LR

where the pair pf, gq is jointly strongly epimorphic in C , the pair ph, kq is also
jointly strongly epimorphic in C .

In other words, if a B acts on K, K 1 and K2, and the objects K 1 and K2
cover K in the category of B-actions in C , then K 1 and K2 cover K in the
underlying category C .

Algebraically coherent semi-abelian categories have good stability properties.
For instance, categories of diagrams and categories of regular epimorphisms in
an algebraically coherent category are also algebraically coherent, as is any re-
gular epi–reflective subcategory. Furthermore, as explained in [24], algebraic
coherence has important categorical-algebraic consequences, such as the Smith
is Huq property [57], normality of Higgins commutators [25], or strong proto-
modularity [12, 62].

2.10. Examples. Any additive category, in particular any almost abelian ca-
tegory, is semi-abelian and algebraically coherent. On the other hand, not every
semi-abelian category is: for instance, the categories of loops and of Jordan al-
gebras are not. Examples of algebraically coherent semi-abelian categories are
the categories of groups, associative algebras, Lie algebras, Leibniz algebras,
Poisson algebras over a commutative ring with unit, all Neumann varieties of
groups [59], all Orzech categories of interest [60], next to the categories of rings,
crossed modules, and cocommutative Hopf algebras over a field of characteristic
zero [38].



14 MATHIEU DUCKERTS-ANTOINE AND TIM VAN DER LINDEN

2.11. Almost abelian categories. A category C is almost abelian [65]
when both C and C

op are homological [64]. The original definition is the fol-
lowing: C is almost abelian if it is additive, every morphism has a kernel and
a cokernel, normal epimorphisms are stable under pullbacks and normal mono-
morphisms are stable under pushouts. Examples of almost abelian categories
are the categories of locally compact abelian groups, normed vector spaces,
Banach spaces (with morphisms the bounded linear maps) and Fréchet spaces.

In such a category, every regular monomorphism (equaliser of some pa-
rallel pair of morphisms) is a normal monomorphism (a kernel).

We will use the following proposition (see [11] and [63, Lemma 1.8]):

Proposition 2.12. Let C be an almost abelian category and

A
f1

� ,2

p
_��

A1
p1

_��

lr
s1lr

C
f0

� ,2

LR
s

LR

C 1lr
s0lr

LR
s1LR

(D)

be an object of Pt2pC q, so that every square in (D) commutes and

f1�s1 � 1A1, f0�s0 � 1C 1, p�s � 1C , p1�s1 � 1C 1.
Then the square f0�p � p1�f1 is a pullback if and only if s�s0 � s1�s1 is
a pushout. Consequently, in a diagram as above, the comparison morphismxp, f1y : A Ñ C �C 1 A1 always has a section ν : C �C 1 A1 Ñ A such that

s � ν�x1C , s1�f0y, s1 � ν�xs0�p1, 1A1y.
Then the square f0�p � p1�f1 is a pullback precisely when the pair ps, s1q is
jointly epimorphic.

3. Fundamental group functors and derived functors

Our proof of the Seifert–van Kampen theorem is based on an interpretation
of the first left derived functor L1F of a given functor F : C Ñ X as a funda-
mental group functor relative to F , defined via categorical Galois theory. Thus
the context where our result applies is, first of all, limited by the scope of the
latter general framework. We consider a fixed adjunction

C

F ,2K X
H

lr (E)
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with unit η : 1C ñ H�F and counit ǫ : F �H ñ 1X such that� C is semi-abelian and algebraically coherent with enough projectives;� X is almost-abelian;� ηC : C Ñ HF pCq is a regular epimorphism for all C in C ;� ǫX : FHpXq Ñ X is an isomorphism for all X in X ;� F preserves pullbacks of split epimorphisms along regular epimorphisms.

Such an adjunction naturally gives rise to a closed Galois structure Γ; in
the sense of [47]. We call the regular epimorphisms in C extensions and we
denote by ExtpC q the full subcategory of the category ArrpC q of arrows in C

determined by the extensions; morphisms are commutative squares between
them. Since the condition on ǫ makes X a reflective subcategory of C , we
shall sometimes omit the right adjoint inclusion H. It is well known that the
condition on the ηC being regular epimorphisms is equivalent to X being closed
under subobjects in C .

3.1. Trivial and normal extensions. With respect to a closed Galois struc-
ture Γ as above, an extension f : A Ñ B is said to be trivial if the naturality
square

A
ηA � ,2

f
_��

HF pAq
HF pfq

_��

B ηB

� ,2 HF pBq
is a pullback, and normal if the first projection pr

f
1 � f �pfq : Eqpfq Ñ A of

the kernel pair of f is trivial. We write NExtpC q for the category of normal
extensions, considered as a full subcategory of ExtpC q. Any trivial extension is
a normal extension, and any split epimorphism which is a normal extension is
automatically a trivial extension (see [29, Lemma 11] or [16, Corollary 2.11]).
Normal extensions should not be confused with normal epimorphisms (coker-
nels), since by definition extensions and normal epimorphisms are precisely
the same thing, whereas normal extensions are introduced in order to model
concepts such as central extensions of groups.

3.2.Normalisation. The inclusion functor H1 : NExtpC q Ñ ExtpC q has a left
adjoint F1, called the normalisation functor. The component of the unit at
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an extension f : A Ñ B is of the form pρ1f , 1Bq
A

ρ1f � ,2

f
_��

F1rf s
F1pfq_��

B B

where ρ1f is a regular epimorphism. Furthermore, F pρ1fq is an isomorphism. As
a consequence:

Proposition 3.3. The full subcategory NExtpC q determined by the normal
extensions is a regular epi–reflective subcategory of the category ExtpC q.

See [28] for a more complete account. This allows us to prove the following
lemma, needed in Section 4.

Lemma 3.4. If n : N Ñ K is a split monomorphism and k : K Ñ A is the
kernel of a trivial extension, then the composite monomorphism k�n : N Ñ A

is also the kernel of a trivial extension.

Proof : Let f : A Ñ B be a trivial extension of which k is the kernel, and let
us consider the commutative diagram

N.s{
n

s{nnnnnnnnnnnnn #+
k�n

#+PPPPPPPPPPPPP

0 ,2 K
� ,2

k
,2 A

ηA

_��

f � ,2

q

� #+

B

ηB

_��

,2 0

N.s{
n

s{nnnnnnnnnnnnn � #+
ηA�k�nPPP

#+PPP
P

Q

f̂
. 3;

ηQ

_��

0 ,2 K
� ,2

kerpHF pfqq ,2 HF pAq HF pfq � ,2

HF pqq � #+

HF pBq ,2 0

HF pQq HF pf̂q. 3;

where q is the cokernel of the composite k�n. Since f is a trivial extension,
the bottom right square is a pullback, which implies that the kernel of HF pfq
is ηA�k : K Ñ HF pAq. In particular, the object K lies in X . Since X is
closed under subobjects in C , also N is in X . Hence ηN � 1N , so that
F pk�nq � ηA�k�n. This latter composite ηA�k�n is a normal monomorphism
as a composite of two regular monomorphisms (kerpHF pfqq and n) in the
cohomological category X . Since the left adjoint F preserves cokernels,

F pqq � cokerpF pk�nqq � cokerpηA�k�nq.
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As a consequence, ηA�k�n is the kernel of HF pqq. It follows that k�n is the
kernel of q, since q is a trivial extension, so that the square ηQ�q � HF pqq�ηA
is a pullback.

This latter claim still remains to be shown. On the one hand, it is easily veri-
fied by hand that the square ηQ�q � HF pqq�ηA is a pushout. Hence Lemma 2.2
tells us that the comparison morphism xηA, qy : A Ñ HF pAq �HF pQq Q is a re-
gular epimorphism. On the other hand, since the square ηB�f � HF pfq�ηA
is a pullback, the pair pηA, fq is jointly monomorphic. Hence also ηA and q

are jointly monomorphic, so that xηA, qy is an isomorphism, and the claim
follows.

3.5. First fundamental group functor and Hopf formula. As explained
in the introduction, the first fundamental group functor is defined as a pointwise
right Kan extension: πF

1 � RanCodpKer �F1q,
ExtpC q F1 ,2

Cod
��

NExtpC q
Ker

��

C
πF
1

,2

ñ
X .

Its value in some object A can be described by a so-called Hopf formula—first
obtained in [43, 18, 34, 27, 33, 30], then extended to the present context in [28].

Given a projective presentation p : P Ñ A of A, we have

πF
1 pAq � Kerppq XKerpηP q

Kerpρ1pq .

Using this, we easily find that

πF
1 pAq � Kerpuq XKerpηUq (F)

for u � F1ppq : U Ñ A, so that there is an exact sequence

0 ,2 πF
1 pAq � ,2 ,2 Kerpuq ,2 HF pUq. (G)

Actually, there exist morphisms of short exact sequences

0 ,2 Kerppq � ,2 ,2

_��

P
p � ,2

ρ1p
_��

A ,2 0

0 ,2 Kerpuq � ,2 ,2 U u
� ,2 A ,2 0
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and

0 ,2 KerpηP q � ,2 ,2

_��

P
ηP � ,2

ρ1p
_��

HF pP q ,2 0

0 ,2 KerpηUq � ,2 ,2 U ηU

� ,2 HF pUq ,2 0

so that by using some standard compositions / cancelations of pullbacks, we
may see that (F) holds.

3.6.Birkhoff subcategories. When the subcategory X is closed under regu-
lar quotients, so that X is a Birkhoff subcategory [48] of C , results of [30]
show that the first fundamental group functor is the left derived functor of
the reflector F : we have an isomorphism πF

1 � L1pF q. An important class
of examples occurs when F is the reflector from a semi-abelian algebraically
coherent variety C to an abelian subvariety X of C . For instance, the reflec-
tor from groups to abelian groups, from groups of a certain nilpotency class
to abelian groups, from crossed modules to abelian crossed modules, from Lie
algebras over a field K to K-vector spaces, from G-actions to ZrGs-modules for
a given group G.

By Corollary 9 and Example 13 in [8] combined, the condition that X is a
Birkhoff subcategory of C is equivalent to its exactness. That is to say, X is
abelian (= additive + exact, by Tierney’s result [1]) if and only if it is Birkhoff.
Note, furthermore, that any Birkhoff reflector preserves pullbacks of regular
epimorphisms along split epimorphisms [37, 33].

Other (non-Birkhoff) examples are, for instance, the reflection of Gp to the
category of torsion-free abelian groups, or the “reflection” from the category of
cocommutative Hopf algebras over a field of characteristic zero to the category
of abelian groups (considered as group Hopf algebras).

4. Some results on jointly strongly epimorphic pairs

Here we prove some technical results having to do with the preservation of
jointly strongly epimorphic pairs by kernel functors in algebraically coherent
categories. We start with Proposition 4.3, a variation on Proposition 2.9.



A SEIFERT–VAN KAMPEN THEOREM IN NON-ABELIAN ALGEBRA 19

Lemma 4.1. [25, Lemma 2.6] In a semi-abelian category, consider a point with
chosen kernel as in the bottom row of the diagram

0 ,2 K 1
_��

κ
��

� ,2 ,2 X 1
��

� ,2
Ylrlr ,2 0

0 ,2 K
� ,2

k
,2 X

f � ,2
Ylr

s
lr ,2 0

and a monomorphism κ : K 1 Ñ K such that k�κ is a normal monomorphism.
Then this point lifts along κ to yield a morphism of points with chosen kernels.
Moreover, this process is functorial in the data given.

The functoriality in the above lemma implies the following.

Lemma 4.2. In a semi-abelian category, given a morphism of split extensions
such as

0 ,2 K 1
_��

κ
��

� ,2 ,2 Z

z
��

� ,2
T

t
��

lrlr ,2 0

0 ,2 K
� ,2

k
,2 X

f � ,2
Ylr

s
lr ,2 0

where k�κ is a normal monomorphism, this morphism factors as a composite

0 ,2 K 1 � ,2 ,2 Z

��

� ,2
T

t
��

lrlr ,2 0

0 ,2 K 1
_��

κ
��

� ,2 ,2 X 1
��

� ,2
Ylrlr ,2 0

0 ,2 K
� ,2

k
,2 X

f � ,2
Ylr

s
lr ,2 0.

Proof : The needed factorisation is induced by Lemma 4.1 as in the square of
split extensions of Figure 1.

Proposition 4.3. In an algebraically coherent semi-abelian category, consider
a cospan of split extensions

0 ,2 K 1
��

κ
��

� ,2 ,2 Z

z
��

� ,2
T

t
��

lrlr ,2 0

0 ,2 K
� ,2 k ,2 X

f � ,2
Ylr

s
lr ,2 0

0 ,2 K2LRκ1 LR

� ,2 ,2 Z 1z1 LR

� ,2
T 1t1LR

lrlr ,2 0.



20 MATHIEU DUCKERTS-ANTOINE AND TIM VAN DER LINDEN

0 ,2 K 1 � ,2 ,2 ��
��

� ,2

z�

Tlrlr

t

z���
��

��
��

��

,2 0

0 ,2 K 1
_��

κ

��

� ,2 ,2 �
��

� ,2
Ylrlr ,2 0

0 ,2 K 1
?z�

κ

z���
��

��
��

�

� ,2 ,2 Z
� ,2

z
z���

��
��

��
��

Tlrlr

t
z���

��
��

��
��

,2 0

0 ,2 K
� ,2

k
,2 X

f � ,2
Ylr

s
lr ,2 0

Figure 1. A square of split extensions induced by Lemma 4.1.

If f is a trivial extension, κ and κ1 are split monomorphisms and pz, z1q is a
jointly strongly epimorphic pair, then also the pair pκ, κ1q is jointly strongly
epimorphic.

Proof : Lemma 3.4 tells us that the composites k�κ and k�κ1 are normal mo-
nomorphisms. Hence we can apply Lemma 4.2 twice to reduce the situation
to the special case where t and t1 are identities. The result then follows from
algebraic coherence via Proposition 2.9.

When the cospans under consideration are induced by squares of split mono-
morphisms, this result may be refined as in Proposition 4.5.

We say that a commutative square

A � � A0
,2

��

A2

a2
��

A1 a1
,2 A3

� P Arr2pC q (H)

is jointly strongly epimorphic when such is its underlying cospan pa1, a2q.
Note that a pushout square is always jointly strongly epimorphic.

Lemma 4.4. Suppose that C is semi-abelian. Consider in Arr2pC q a pullback
of regular epimorphisms

A
f � ,2

k _��

B

g
_��

D
h

� ,2 C
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where B and D are jointly strongly epimorphic squares and C is a pushout
square. Then A is also a jointly strongly epimorphic square.

Proof : Let us consider the commutative diagram of solid arrows in Figure 2,
where the objects and arrows in C are numbered as in (H). Lemma 2.6
tells us that the morphisms k3 � k3�pa1 a2q : A1 �A0

A2 Ñ D3 and f3 �
f3�pa1 a2q : A1 �A0

A2 Ñ B3 are regular epimorphisms. By Lemma 2.2, it re-
mains to show that the square g3�f 3 � h3�k3 is a pushout. This is easily checked
using the definition of pushouts and the fact that C is a pushout square.

A1 �A0
A2pa1 a2q

#+
f
3

&-

k3

�'

A2
� ,2

_��

a2z���
��

��

ι2
mt

B2

_��

z���
��

��

A3
f3

� ,2

k3

_��

B3

g3

_��

A1
� ,2

_��

a1

:D������

ι1

PW

B1

_��

:D������

D2
� ,2

z���
��

��
C2

z���
��

��

D3
h3

� ,2 C1 �C0
C2

D1
� ,2

:D������

C1

:D������

Figure 2. Situation sketch for Lemma 4.4.

Proposition 4.5. Let

0 ,2 K
� ,2 k ,2 A

f � ,2 B ,2 0

be a short exact sequence in Pt2pC q where f is component-wise a normal exten-
sion. If A, considered as a square of split monomorphisms, is jointly strongly
epimorphic, and B is a pushout square, then K is also a jointly strongly epi-
morphic square.

Proof : Lemma 4.4 allows us to reduce the situation to the special case where f
is a both a split epimorphism and a trivial extension. Indeed, the pullback
f �pfq of f along itself is a split epimorphic normal extension, which makes
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it a trivial extension—see 3.1. Furthermore, the kernel of f �pfq is K. The
conclusion now follows from Lemma 4.3.

5. The Seifert–van Kampen theorem

We are now ready to prove our main result. We start with a version of the
Seifert–van Kampen theorem for fundamental group functors, Theorem 5.1.
We then restrict our attention to the situation where those fundamental group
functors are the derived functors of a Birkhoff reflector and obtain Theorem 5.2.
After that we finish with some final questions and comments.

Theorem 5.1. Let Γ be a Galois structure as in (E) and let us consider in
the category C a pushout of split monomorphisms as on the left.

O
,2

j
,2

��
i

��

B
��
ιB

��

�lr

A ,2
ιA

,2

_LR

A�O B
�lr

_LR
πF
1 pOq ,2

πF
1
pjq

,2

��
πF
1
piq

��

πF
1 pBq

��
πF
1
pιBq

��

�lr

πF
1 pAq ,2

πF
1
pιAq,2_LR

πF
1 pA�O Bq�lr

_LR

Then the square on the right is a pushout square in X .

Proof : Proposition 2.7 gives us a way of covering the given pushout square by
a pushout of projective presentations as in the left hand side cube of Figure 3.
Normalising, we obtain a square in NExtpC q represented by the right hand side
cube. The top diagram in this cube is an object of Pt2pC q, in which the solid
square is jointly strongly epimorphic: piU , iV q is a jointly strongly epimorphic
pair, as a regular quotient of the pair pιP , ιQq.

In Figure 4, all rows are exact as in (G). In order to prove our claim, we only
need to show that the central and the right hand side upward directed dotted
squares of this figure are pullbacks. Indeed, then the dotted square on the left
is a pullback as well, and the result follows from Proposition 2.12.

We first show that the right hand side dotted square in Figure 4 is a pull-
back. Recalling from Subsection 3.2 that F pP q � F pUq, F pQq � F pV q,
F pRq � F pW q and F pP �RQq � F pZq, we see that the two cubes in Figure 3
have the same image through F . Since the reflector F preserves colimits, we
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R

r

_��

,2 ,2
z�

z���
��

��
��

��
Q�lr

q

_��

z�

ιQ
z���

��
��

��
�

P

p

_��

,2
ιP

,2

?:D

P �R Q
�lr

_��

?:D

O
,2

j
,2

z�
i

z���
��

��
��

��
B�lr

z�

ιB
z���

��
��

��
��

A ,2
ιA

,2

?:D

A�O B
�lr

?:D

W

w

_��

,2
β

,2
z�

α

z���
��

��
��

��
V�lr

v

_��

z�

iV
z���

��
��

��
��

U

u

_��

,2
iU

,2

?:D

Z
�lr

z

_��

?:D

O
,2

j
,2

z�
i

z���
��

��
��

��
B�lr

z�

ιB
z���

��
��

��
��

A ,2
ιA

,2

?:D

A�O B
�lr

?:D

Figure 3. A projective cover of a pushout square, and its normalisation.

0 ,2 π1pOq
z�

z���
��

��
��

� ��

��

� ,2 ,2 Kerpwq
��

��

,2
z�

z���
��

��
��

�

HF pW q
��

��

z�

z���
��

��
��

�

0 ,2 π1pAq
��

��

� ,2 ,2

?:D

Kerpuq
��

iU

��

,2

?:D

HF pUq
��

��

?:D

0 ,2 π1pBq
z�

z���
��

��
��

�

� ,2 ,2

_LR

Kerpvq ,2

z�

iV
z���

��
��

��
�

_LR

HF pV q
z�

z���
��

��
��

�

_LR

0 ,2 π1pA�O Bq � ,2 ,2

?:D

_LR

Kerpzq ,2

?:D

_LR

HF pZq
_LR

?:D

Figure 4. The exact sequence (G) induced by the right hand side
cube of normal extensions in Figure 3.

find that the solid square in

F pW q ,2
F pβq

,2

��
F pαq

��

F pV q
��
F pιV q

��

�lr

F pUq ,2
F pιU q ,2_LR

F pZq�lr

_LR
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0 ,2 Kerpwq
z�

z���
��

��
��

� ��

��

� ,2 ,2 W
��

��

� ,2
z�

z���
��

��
��

��
O

��

��

z�

z���
��

��
��

��

,2 0

0 ,2 Kerpuq
��

iU

��

� ,2 ,2

?:D

U
��

iU

��

� ,2

?:D

A
��

��

?:D

,2 0

0 ,2 Kerpvq
z�

iV
z���

��
��

��
�

� ,2 ,2

_LR

V
� ,2

z�

iV
z���

��
��

��
��

_LR

B
z�

z���
��

��
��

��

_LR

,2 0

0 ,2 Kerpzq � ,2 ,2

?:D

_LR

Z
� ,2

?:D

_LR

A�O B

_LR

?:D

,2 0

Figure 5. Taking kernels in the right hand side cube of Figure 3
yields a short exact sequence in Pt2pC q.

is a pushout diagram in X . Consequently, by Proposition 2.12 the dotted
square in the same diagram is a pullback, which is preserved by the right
adjoint inclusion H.

Let us now prove that also the central dotted square in Figure 4 is a pullback.
Again by Proposition 2.12, for this it suffices that the pair piU , iV q is jointly
(strongly) epimorphic in X or, equivalently, in C . To see this, we consider the
diagram in Figure 5 and apply Proposition 4.5.

Theorem 5.2. Let F : C Ñ X be the Birkhoff reflector from a semi-abelian
algebraically coherent category with enough projectives C to an abelian cate-
gory X . The functor F may, for instance, be the reflector from an Orzech
category of interest to an abelian subvariety. Consider in C a pushout of split
monomorphisms as on the left.

O
j

,2

i
��

B

ιB
��

A ιA
,2 X

L1F pOq j� ,2

i�
��

L1F pBqpιBq�
��

L1F pAq pιAq� ,2 L1F pXq
Then the square on the right is a pushout square in X . Moreover, we have
“Mayer–Vietoris” short exact sequences [58, 72]

0 ,2 LnF pOq � ,2
xi�,j�y

,2 LnF pAq `LnF pBq ppιAq� �pιBq�q� ,2 LnF pXq ,2 0

for n P t0, 1u. As a consequence, the pushout on the right is also a pullback.
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Proof : The pushout result is Theorem 5.1 via the interpretation of left derived
functors as Galois groups, taking the discussion in Subsection 3.6 into account.
Recall that L0F � F preserves pushouts since it is a left adjoint functor.
The short exact sequences follow from the construction of pushouts in abelian
categories [35, Proposition 2.53], and the fact that the composite

LnF pOq ∆LnF pOq
,2 LnF pOq `LnF pOq i�`j� ,2 LnF pAq `LnF pBq

is a (split) monomorphism.

Remark 5.3. One technique used in [3] by Barr and Beck in order to obtain
a homology coproduct theorem such as (A) is to assume that a sum of two
resolutions is again a resolution. This hardly ever happens, so this technique
is of limited use when trying to prove general results. However, a trace of their
idea occurs in the proof of Theorem 5.1, when Proposition 2.7 is used to obtain
a presentation of a pushout square.

Following the interpretation in [31] of n-fold extensions as finite-dimensional
resolutions, part of Barr and Beck’s argument may be recoverable when the
sum of two n-fold extensions is still an n-fold extension. We do not know how
this condition relates to other conditions studied in categorical algebra.

Remark 5.4. Another categorical-algebraic condition which may be related
to the problem of extending Theorem 5.2 to higher degrees is the following.
In [39, 14] a semi-abelian variety is called locally algebraically cartesian
closed (LACC) when the change of base functors considered in 2.8 preserve
binary coproducts. It is easy to see that this condition implies algebraic cohe-
rence. Examples include the categories of groups, Lie algebras, crossed modu-
les, cocommutative Hopf algebras over a field of characteristic zero. On the
other hand, the category Nil2 of groups of nilpotency class at most 2 is not
an example. Incidentally, Nil2 is the counterexample from [51] which appeared
on page 3. Since (LACC) is one of the rare categorical-algebraic conditions
satisfied by Gp but not by Nil2, perhaps a higher-order version of Theorem 5.1
is valid for (LACC) semi-abelian categories with enough projectives.
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