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Abstract: Point-free modeling of mappings that are not necessarily continuous
has been so far based on the extension of a frame to its frame of sublocales, mim-
icking the replacement of a topological space by its discretization. This otherwise
successful procedure has, however, certain disadvantages making it not quite par-
allel with the classical theory (see Introduction). We mend it in this paper using a
certain extension Sc(L) of a frame L, which is, a.o., Boolean and idempotent. Doing
this we do not lose the merits of the previous approach. In particular we show that
it yields the desired results in the treatment of semicontinuity. Also, there is no
obstacle to using it as a basis of a point-free theory of rings of real functions; the
“ring of all real functions” F(L) = C(Sc(L)) is now order complete.
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Introduction

Frame homomorphisms h : M → L represent continuous maps between
frames (locales) M,L viewed as generalized spaces (in case of L = Ω(X),
M = Ω(Y ) with classical sober spaces X, Y they represent them precisely).
Now if we wish to deal with more general real functions X → R (say, the
semicontinuous ones, or even the maps not continuous at all) we have to
replace the frame L by another one, naturally associated with L, that is
“much more discrete”. In the classical setting, of course, we can take the
same underlying set with the discrete topology; in terms of the frames of
open sets this amounts to take the set P(X) of all the subsets (subspaces)
of X instead of the Ω(X).

This was done in a nice way in [7], and further developed in papers such
as [5, 6], by extending the frame (locale) L by the dual S(L) = S(L)op of
the system of all sublocales (∼= the frame of all congruences on L). This
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2 J. PICADO AND A. PULTR

extension L → S(L) indeed allowed for a very expedient mimicking of the
classical theory of embedding the ring of continuous functions into that of
all functions, and of related facts.

However, this approach also has certain disadvantages:

(1) S(L) can be very big; in particular for spaces S(Ω(X)) can be (and typi-
cally is) much bigger than the system of all subspaces P(X).

(2) Although S(L) is very strongly disconnected, it is (again typically) not
a Boolean algebra. And for a good analogy we would wish for a natural
counterpart of a discrete space – which is a Boolean frame.

(3) The theory is not quite conservative. When applied to semicontinuity in
classical spaces it is satisfactory, but the general not necessarily classical
functions are represented only by analogy.

(4) The construction is not idempotent, that is, S( S(L)) is typically big-
ger than S(L), as if the discontinuous functions were not discontinuous
enough, and needed a further extension to get a representation of “more
discontinuous ones” (and again and again).

In this paper we present a variant that might be viewed as a more sat-
isfactory one. Instead of S(L) we use a smaller Sc(L), a frame of closedly
generated sublocales, that occurred before in connection with the study of
scatteredness ([4], [15]). Comparing the result with the points above we have
that:

(1’) If L = Ω(X) for a T1-space then Sc(L) ∼= P(X).
(2’) If L is subfit (and we are mostly concerned with the much stronger

regularity) then Sc(L) is Boolean and hence can be viewed as a “discrete
cover” of L.

(3’) The theory is now conservative, already starting with the representation
of general mappings.

(4’) Sc(Sc(L)) ∼= Sc(L) and hence the discretization is made once for ever.

In representing semicontinuous mappings it is natural to choose another
approach instead of extending the locale L. One can keep the L but instead
to change the topology of the reals. Thus, one can view the lower semi-
continuous functions X → R as the continuous functions X → Ru where
we take the topology of open up-sets on R, and similarly with the upper
semicontinuous ones. In the point-free setting, one can replace the point-free
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reals LR by a naturally modified subframe LuR and consider the homomor-
phisms LuR → L (and similarly for the upper semicontinuity). Nevertheless,
semicontinuous maps are specific (not quite continuous) mappings, and the
question naturally arises whether they will also naturally appear as specific
homomorphisms LR → Sc(L). And indeed this is the case. We have a
completing of the diagram

LuR
h

//
� _

��

L� _

oL

��

LR
h

// Sc(L)

subjected to a certain assumption (∗) on the h, under which one can specify
the upper and lower semicontinuous functions by conditions akin to the clas-
sical ones. Moreover, the formula for (∗) is one that has already appeared in
the literature ([12, 8]) in connection with point-free representation of certain
function insertion facts, and the result above explains what happened there.

In this article we do not consider the theory of rings of real functions, where
the extension of L to S(L) plays a fundamental role. Let us just note that the
replacement of the S(L) by Sc(L) does not create obstacles in developing the
theory. In fact, in some respects this approach may give better parallels with
the classical facts. For instance, similarly like in spaces, by Proposition 1 of
Banaschewski-Hong ([3]), the “ring of all real functions” F(L) = C(Sc(L)) is
always order complete, unlike the C( S(L)).

The paper is organized as follows.
In Preliminaries we introduce the necessary definitions and notation, and

the point-free approach to reals. In the next section we recall the techniques
of sublocales and introduce the frame Sc(L) and those of its properties we will
need. In Section 3 we briefly discuss replacing the frame of sublocales S(L) by
the Sc(L). The following section contains the main results, in particular those
on semicontinuity which is used to advantage in the framework based on the
Boolean Sc(L), also with a reformulation of the regularization construction.
Sections 3 and 4 cover all the claims formulated above in the points (1’) –
(4’).
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1. Preliminaries

1.1. Notation. For a subset A of a poset (X,≤) we write

↑A = {x ∈ X | x ≥ a for some a ∈ A} and abbreviate ↑{x} to ↑x;

if ↑A = A we speak of an up-set.
∨

∅, the smallest element of a poset P = (X,≤) (if it exists) will be denoted
by 0P or simply by 0, and similarly we denote by 1P or 1 the largest element.

1.2. Pseudocomplements and complements. A pseudocomplement of a
is the largest x such that x ∧ a = 0. If it exists it is uniquely determined; it
will be denoted by a∗.
An element b is a complement of a if a ∧ b = 0 and a ∨ b = 1. If such a

b exists we say that a is complemented. In a distributive lattice (our posets
will be always such) each complement is a pseudocomplement and we will
write a∗ also for a complement of a.

1.3. Frames and coframes. A frame, resp. coframe, is a complete lattice
L satisfying the distributivity law

(
∨

A) ∧ b =
∨

{a ∧ b | a ∈ A}, (frm)

resp. (
∧

A) ∨ b =
∧

{a ∨ b | a ∈ A}, (cofrm)

for all A ⊆ L and b ∈ L; a frame (resp. coframe) homomorphism preserves
all joins and all finite meets (resp. all meets and all finite joins). The
lattice Ω(X) of all open subsets of a topological space X is a typical frame,
and a typical frame homomorphism Ω(f) : Ω(Y ) → Ω(X) is obtained from
a continuous f : X → Y by setting Ω(f)(U) = f−1[U ]. Thus we have a
contravariant functor

Ω: Top → Frm

where Frm designates the category of frames. This functor is a (contravari-
ant) full embedding on the subcategory of sober spaces which justifies taking
Ω for a functor extending Top to a category Loc = Frmop and viewing Loc

as a category of generalized spaces1.

1It is a (not quite consequently followed) custom to speak of a frame as of a locale when empha-
sizing the geometric interpretation.
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1.4. The Heyting resp. co-Heyting structure. The law (frm) states
that each of the maps x 7→ a ∧ x preserves suprema; since our lattice is
complete, it is standard that, hence, they are left adjoints, which creates a
Heyting operation→with

a ∧ b ≤ c iff a ≤ b→c.

The Heyting structure on a frame will be used in the sequel without further
mentioning.
Similarly the rule (cofrm) creates on a coframe a co-Heyting operation r

(the difference) with

ar b ≤ c iff a ≤ b ∨ c.

Note that we have the pseudocomplements in a frame given by the formula
a∗ = a→0.

1.5. Regular and subfit frames. A frame L is regular if

∀a ∈ L, a =
∨

{x | x ≺ a}

where x ≺ a stands for x∗ ∨ a = 1 (in other words, there is a y such that
y ∧ x = 0 and y ∨ a = 1, which formulation is sometimes handier). For a
space X and open subsets U, V ⊆ X, U ≺ V holds iff U ⊆ V , and hence
Ω(X) is regular in the sense above iff X is regular in the standard topological
one.

A frame is subfit if

a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c. (sfit)

It is easy to see that this is implied by regularity. The original definition ([9],
see 2.4 below) was formulated otherwise, this first order formula is of a later
date ([16]).
In spaces, the subfitness of Ω(X) is slightly weaker than T1. In fact,

T1 ≡(sfit)&TD (TD requires that for each x ∈ X there is an open U ∋ x
such that U r {x} is open – see [1]).
Subfitness is not inherited in subobjects; the hereditary variant, fitness is,

somewhat surprisingly, a fairly strong property already close to regularity
(see [14]).
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1.6. Frames of reals. The frame of reals LR ([2]) will be defined without
reference to the classical real line R (but under the Axiom of Choice, LR ∼=
Ω(R)).
We start with the rational line Q and obtain LR as the frame generated

by all ordered pairs (p, q) ∈ Q×Q satisfying the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s.
(R3) (p, q) =

∨

{(r, s) | p < r < s < q}.
(R4)

∨

p,q∈Q(p, q) = 1.

Equivalently, LR may be defined as the frame with generators (p,—) and
(—, q), p, q ∈ Q, subject to the following relations:

(r1) (p,—) ∧ (—, q) = 0 whenever p ≥ q.
(r2) (p,—) ∨ (—, q) = 1 whenever p < q.
(r3) (p,—) =

∨

r>p(r,—), for every p ∈ Q.
(r4) (—, q) =

∨

s<q(—, s), for every q ∈ Q.
(r5)

∨

p∈Q(p,—) = 1.
(r6)

∨

q∈Q(—, q) = 1.

With (p, q) = (p,—) ∧ (—, q) one goes back to (R1)-(R4) and defining
(p,—) =

∨

r∈Q(p, r) and (—, q) =
∨

r∈Q(r, q) one recovers the (p,—) and (—, q).
For more details about this alternative approach we refer the reader to [8].

In particular, it yields the frames LuR and LlR of upper and lower reals:
they are the subframes of LR given by

LuR = 〈{(p,—) | p ∈ Q, (p,—) satisfy (r3) and (r5) for all p ∈ Q}〉,

LlR = 〈{(—, q) | q ∈ Q, (—, q) satisfy (r4) and (r6) for all q ∈ Q}〉.

Note that in order to define a frame homomorphism h : LR → L it suffices
to define it on the generators (p,—) and (—, q) and to check that it turns the
defining relations (r1)-(r6) into identities in the frame L.

2. The frame Sc(L)
The lattice of sublocales to be discussed in the later part of this section

is generally a frame, as stated in the title, but in all the known cases it is
both a frame and a coframe. In the cases we will be interested in it is even
Boolean, which is essential for our investigations.
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2.1. The coframe of sublocales. A sublocale of a frame (locale) L is a
subset S ⊆ L such that

(S1) for every M ⊆ S the meet
∧

M is in S (hence each sublocale contains
1L =

∧

∅), and
(S2) for every s ∈ S and every x ∈ L, x→s ∈ S.

Note that if we view frames (locales) as generalized spaces, the sublocales are
indeed the sub-locales (that is, the subobjects in the concrete category Loc

of locales) in the sense that they are precisely the subsets the embeddings of
which are extremal monomorphisms in Loc.
The system of all sublocales of L ordered by inclusion,

S(L),

is (obviously) a complete lattice with

∧

Si =
⋂

Si and
∨

Si = {
∧

M | M ⊆
⋃

Si};

the least sublocale
∨

∅ = {1} is denoted by O and referred to as the void

sublocale2. It is a fundamental fact that

2.1.1. The lattice S(L) is a coframe. (see [10] or [13]).

2.2. Open and closed sublocales. With each element a ∈ L there is
associated an open sublocale

o(a) = {x ∈ L | x = a→x} = {a→x | x ∈ L}

and a closed sublocale

c(a) = ↑a.

The open resp. closed sublocales precisely correspond to the open and closed

parts in Isbell’s pioneering article [9], and in the spatial case L = Ω(X) they
correspond to open and closed subspaces of X.

2.2.1. Facts. 1. o(a) and c(a) are complements of each other in S(L).
2. We have o(0) = O, o(1) = L, o(a∧ b) = o(a)∩o(b) and o(

∨

ai) =
∨

o(ai).
3. We have c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b) and c(

∨

ai) =
⋂

c(ai).

2This may sound queer but it makes good sense; if L happens to have points P , they are of the
form {a, 1} with prime a 6= 1.
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2.2.2. Interior and closure. Since joins of open sublocales are open we
have the interior of a sublocale

intS =
∨

{o(a) | o(a) ⊆ S}

and the closure S =
∧

{c(a) | S ⊆ c(a)}. Note that for the closure one has a
particularly simple formula S = ↑

∧

S.

2.3. The frame of sublocales. Besides the coframe of sublocales S(L) one
also uses its dual

S(L) = S(L)op.

Note that it is a frame and that we have by 2.2.1.3 an embedding cL : L →
S(L) that can be viewed as the extension of the generalized space L to a

generalized space S(L) with certain useful properties.
The frame S(L) is isomorphic to the frame of congruences (or nuclei) on L

and hence it starts the well known tower

L → S(L) → S
2(L) → · · · → S

α(L) → · · ·

(see e.g. [10]).

2.4. Subfitness and fitness in terms of the behaviour of sublocales.

A frame is subfit (recall 1.5 above) iff

each open sublocale is a join of closed ones

and it is fit iff

each closed sublocale is a meet (intersection) of open ones

(in fact those were the original definitions in Isbell’s [9], the first order defi-
nitions we use now came later – recall 1.5).

2.4.1. Joins of closed sublocales and the frame Sc(L). In fact, the
characteristic of fitness above has a stronger equivalent, namely that a frame
is fit iff

each sublocale is a meet of open ones.

The former statement, however, does not have such an extension (the state-
ment that each sublocale whatsoever is a join of closed ones characterizes the
scattered subfit frames ([4]), not the general subfit ones). While studying this
phenomenon in [15] it was proved that

Sc(L) = {S ∈ S(L) | S is a join of closed sublocales of L}

is always a frame. Hence we have here
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a frame Sc(L) embedded into a coframe S(L) preserving the joins.

2.4.2. The meets are not generally preserved, but of course if a meet of a
system in Sc(L) taken in S(L) happens to be in Sc(L) then the two meets
coincide.

2.5. Some properties of the frame Sc(L). (The proofs are in [15]).

2.5.1. By 2.4 we have for a subfit L a frame embedding

oL : L → Sc(L).

Then, by 2.4.2,

Sc(L) is closed under both the operations of interior and closure

in S(L).

2.5.2. If L is subfit (in particular if L is regular, which is the case we are
mostly interested in this paper) then Sc(L) is a Boolean algebra. Hence we
have here an extension of L to a Boolean frame, which can be in localic
terms interpreted as a cover of the locale L by an (in a generalized way)
discrete locale Sc(L). Furthermore, Sc(Sc(L)) ∼= Sc(L), so that we have such
an extension “once for ever”.

2.5.3. If X is a T1-space then

Sc(Ω(X)) ∼= P(X)

and Sc(Ω(X)) can be naturally viewed as the system of all classical subspaces
of X.

2.6. The relation of S(L) and Sc(L). If L is subfit then Sc(L) is the
Booleanization of S(L). Furthermore, since c : L → S(L) is universal in
among the frame homomorphisms f : L → M with f [L] complemented in
M (in the sense that such an f can be lifted to an h : S(L) → M), there is
an h : S(L) → Sc(L) such that h · c = o and this h is given by the formula
h(S) = S∗.

3. Point-free semicontinuity and discontinuity

3.1. Point-free semicontinuity in the literature. Upper and lower semi-
continuous real functions in point-free topology were introduced by Li and
Wang ([11]) but their approach did not faithfully reflect the classical notions,
so they faced some problems in formulating Katětov-Tong insertion theorem
in its full generality (see [12]). This was mended in [12] and [8]. There a lower
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semicontinuous function on a frame L is defined as a frame homomorphism
f : LuR → L satisfying

∧

p∈Q
o(f(p,—)) = 0 (3.1.1)

in the coframe of sublocales S(L). Analogously, an upper semicontinuous

function on L is a frame homomorphism f : LlR → L satisfying

∧

q∈Q
o(f(—, q)) = 0. (3.1.2)

3.2. Semicontinuities in a more general setting. The treatment of
point-free semicontinuities was then placed in a more general and elegant
setting, allowing for a treatment of the concept of an arbitrary not necessarily
(semi)continuous real function on a frame L, by Gutiérrez Garćıa-Kubiak-
Picado in [7]. The main feature of this improved framework is that now all
those continuous and semicontinuous functions have common domains and
are therefore members of a unique lattice-ordered ring of real valued functions
formed by all frame homomorphisms LR → S(L).
A lower semicontinuous function on a frame L is a frame homomorphism

f : LR → S(L) such that f(p,—) is a closed sublocale for every p ∈ Q, and an
upper semicontinuous function on L is a frame homomorphism f : LR → S(L)
for which f(—, q) is a closed sublocale for every q ∈ Q. Continuous functions
are just the ones in the intersection of the two classes.

3.3. Discretization by Sc(L). The frame S(L) played the role of a sort
of “discretization” of the frame L. The analogy is obvious: if we wish to
consider for a moment the general, not necessarily continuous maps f : X →
Y between topological spaces, we can consider the (continuous) f : DX → Y
where DX is the discrete space with the same underlying set as X. Now S(L)
is an extension of L that is “much more discrete” than L (in the sense that
it is very strongly disconnected, that is, the complemented elements play a
very prominent part).
But the natural counterpart of discrete spaces in point-free topology are

the Boolean frames (locales), that is, we would like to have all the elements
complemented, and this is not the case with the S(L). Instead, to follow
the analogy with spaces, we will restrict ourselves to the subfit frames and
harness the Boolean frame Sc(L).
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3.4. Conservativeness, to start with. For a space X, there is no natural
correspondence between the general maps f : X → R and the homomor-
phisms LR → S(Ω(X)) (the frame S(Ω(X)) is not isomorphic to Ω(DX). By
2.5.3 we have, however,

3.4.1. Corollary. If X is a T1-space then Sc(Ω(X)) ∼= Ω(DX).

3.4.2. Note. The restriction to T1-spaces is not a bad loss of generality.
It is a (partial) counterpart of our restriction to subfit frames. The full
counterpart, a restriction to subfit spaces (the concept makes sense in spaces,
see 1.5) would yield a quasidiscrete extension which is not what we need.

3.5. Now we have a conservative extension of the concept of a general map.
The question naturally arises whether we may not lose the facts of 3.2. The
structure of Sc(L) is not as rich as that of S(L) which helped to establish the
relation between the homomorphisms LuR → L and LR → S(L). But the
correspondences will be as desired, as we will show in the following section.

4. Semicontinuities in the new framework

4.1. Lemma. Let h : LuR → L be a frame homomorphism and let h : LR →
Sc(L) be a frame homomorphism such that

h(p,—) = o(h(p,—)) for every p ∈ Q.

Then h(—, q) =
∨

s<q c(h(s,—)) for every q ∈ Q.

Proof : “≤”: By (r4), h(—, q) =
∨

s<q h(—, s). Consider any s < q. Since

h(—, s) ∧ h(s,—) = 0 by (r1), then h(—, s) ≤ c(h(s,—)).

“≥”: For each s < q, h(—, q) ∨ h(s,—) = 1 and thus c(h(s,—)) ≤ h(—, q).

4.2. Proposition. Let h : LuR → L be a frame homomorphism, let j : LuR →
LR be the subframe embedding and oL : L → Sc(L) the embedding from 2.5.1.

The h can be extended to a frame homomorphism h in such a way that the

square

LuR
h

//
� _

j

��

L� _

oL

��

LR
h

// Sc(L)
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is commutative if and only if
∨

p∈Q
c(h(p,—)) = 1. (4.2.1)

In this case, the h is unique.

Proof : By the lemma, if there is such h then necessarily h(p,—) = o(h(p,—))
and h(—, q) =

∨

s<q c(h(s,—)) and the uniqueness of h is proved. It remains

to check that this monotone h is indeed a frame homomorphism if and only
if (4.2.1) holds. The necessity of (4.2.1) follows immediately from the fact
that h must turn relation (r6) into an identity in the frame Sc(L). So, let us
assume it holds. We need to check that the remaining relations (r1)-(r5) are
preserved by h:

(r1): Let p ≥ q. Then

h(—, q) ∧ h(p,—) =

(

∨

s<q
c(h(s,—))

)

∧ h(p,—)

=
∨

s<q
(c(h(s,—)) ∧ h(p,—))

≤
∨

s<q
(c(h(s,—)) ∧ h(s,—)) = 0.

(r2): Let p < q. Then

h(p,—) ∨ h(—, q) = o(h(p,—)) ∨
∨

s<q
c(h(s,—)).

Take some r such that p < r < q. Then, immediately, o(h(p,—))∨
∨

s<q c(h(s,—)) ≥
o(h(r,—)) ∨ c(h(r,—)) = 1.

(r3): For each p ∈ Q, h(p,—) = o(h(p,—)) = o(
∨

r>p h(r,—)) =
∨

r>p o(h(r,—)).

(r4): For each q ∈ Q, h(—, q) =
∨

s<q c(h(s,—)).On the other hand,
∨

s<q h(—, s) =
∨

s<q

∨

r<s c(h(r,—)), which is clearly the same join as
∨

s<q c(h(s,—)).

(r5):
∨

p∈Q h(p,—) =
∨

p o(h(p,—)) = o(
∨

p h(p,—)) = o(1) = 1.

4.2.1. Note. Condition (4.2.1) above is equivalent to the (3.1.1) of Gutiérrez
Garćıa-Picado formulated in the Boolean Sc(L).

4.3. Corollary. The correspondence h 7→ h of the preceding proposition es-

tablishes a bijection between the set of all frame homomorphisms h : LuR → L
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satisfying (4.2.1) and the set of all frame homomorphisms h : LR → Sc(L)
such that h(p,—) ∈ o(L) for every p ∈ Q.

Proof : The correspondence is clearly one-to-one. Let h : LR → Sc(L) such
that, for each p ∈ Q, h(p,—) = o(ap) for some ap ∈ L. The map h : LuR → L
given by (p,—) 7→ ap is then a frame homomorphism and by applying Lemma
4.1 we conclude that it satisfies (4.2.1):

1 =
∨

q∈Q
h(—, q) =

∨

q

∨

s<q
c(h(s,—)) =

∨

s
c(h(s,—)).

4.4. This motivates now to introduce general real functions on a frame
L as arbitrary frame homomorphisms LR → Sc(L), lower semicontinuous
functions on L as frame homomorphisms f : LR → Sc(L) such that each
f(p,—) is an open sublocale and, similarly, upper semicontinuous functions
on a frame L as frame homomorphisms f : LR → Sc(L) such that each f(—, q)
is an open sublocale. Continuous functions are the ones that are both lower
and upper semicontinuous. These classes of morphisms are partially ordered
by

f ≤ g ≡ f(p,—) ≤ g(p,—) for every p ∈ Q.

Equivalently, f ≤ g iff g(—, p) ≤ f(—, p) for every p ∈ Q. Indeed, if f(p,—) ≤
g(p,—) for every p ∈ Q, then g(—, p) =

∨

r<p g(—, r) and, for each such r,
g(—, r) = g(—, r)∗∗ ≤ g(r,—)∗ ≤ f(r,—)∗ ≤ f(—, p).

4.5. Regularization of an arbitrary function. As an illustration of the
advantage of the Boolean structure of Sc(L) we describe what the important
lower and upper regularization3 procedures of [5] look like now. Let f be a
general function LR → Sc(L) and define a mapping f ◦ on the generators of
LR as follows:

f ◦(p,—) =
∨

s>p
int f(s—) and f ◦(—, p) =

∨

s<p
(int f(s,—))∗.

It is a straightforward exercise to check that this mapping turns the defining
relations (r1)-(r4) of LR into identities on Sc(L). Also with (r6):

∨

p∈Q
f ◦(—, p) =

∨

p
(int f(p,—))∗ = (

∧

p
int f(p,—))∗

≥ (
∧

p
f(p,—))∗ =

∨

p
f(p,—)∗ ≥

∨

p
f(—, p) = 1.

3The term regularization was coined in [5]. It comes from general topology and has nothing to
do with the topological regularity.
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But that does not happen necessarily with (r5). Clearly, it happens if and
only if

∨

p∈Q
int f(p,—) = 1, (4.5.1)

a boundedness condition that guarantees f ◦ to have only values on the reals,
not on the extended ones. Therefore, f ◦ ∈ LSC(L) whenever (4.5.1) holds.
This constructed f ◦ is the lower regularization of the given f . Of course,

if f is already lower semicontinuous, f ◦ = f . Moreover:

4.5.1. Proposition. Let f, g : LR → Sc(L) satisfy (4.5.1). Then:

(1) f ≤ g ⇒ f ◦ ≤ g◦.
(2) f ◦ ≤ f .
(3) f ◦◦ = f ◦.

(4) f ◦ =
∨

{h ∈ LSC(L) | h ≤ f}.

Proof : (1): f ◦(p,—) =
∨

s>p int f(s,—) ≤
∨

s>p int g(s,—) = g◦(p,—).

(2): f ◦(p,—) =
∨

s>p int f(s,—) ≤
∨

s>p f(s,—) = f(p,—).

(3): This is also straightforward:

f ◦◦(p,—) =
∨

s>p
int f ◦(s,—) =

∨

s>p
int(

∨

r>s
int f(r,—))

=
∨

s>p

∨

r>s
int f(r,—) =

∨

r>p
int f(r,—) = f ◦(p,—).

(4) follows immediately from (1) and (2).

4.6. Note on the spatial case L = Ω(X). In [8], the set of lower semi-
continuous functions

f : X → R

were shown to be in a bijective correspondence with the set of frame homo-
morphisms

h : LuR → Ω(X)

satisfying a certain boundedness condition. Now we can show that this
boundedness condition ((4.6.1) below) is included in our theory as the equal-
ity (4.2.1) of Proposition 4.2. (Everything under T1.)

4.6.1. Proposition. Let h : LuR → Ω(X) be a frame homomorphism. If X
is T1, then condition (4.2.1) is equivalent to the following:

∀x ∈ X, {p ∈ Q | x ∈ h(p,—)} is bounded from above. (4.6.1)
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Proof : Let Up = h(p,—) ∈ Ω(X). The Up’s form a cover of X, by (r5), and
Up ⊆ Uq for every p ≥ q.
Now, suppose X is T1 and (4.2.1) holds, that is,

∨

p
↑Up = Ω(X).

If there is some y ∈ X such that the set {p ∈ Q | y ∈ Up} is not bounded
from above, that is, y ∈

⋂

p Up, then we would have
∨

p ↑Up 6= Ω(X), a
contradiction, since the open X r {y} would not belong to it. Indeed, if
not, otherwise, we would have some {Ui}i ⊆

⋃

p ↑Up such that X r {y} =
int (

⋂

p Ui). Then, for each i, Upi ⊆ Ui for some pi ∈ Q, y would belong
to
⋂

p Up ⊆
⋂

i Upi ⊆
⋂

iUi and, consequently,
⋂

i Ui would be all the X, a
contradiction.

Conversely, suppose (4.6.1) holds and let us compute the join
∨

p
↑Up = {

∧

A | A ⊆
⋃

p
↑Up}.

By (4.6.1), for each x ∈ X there is some px ∈ Q such that x /∈ Upx, that is,
Upx ⊆ X r {x} ∈ Ω(X). Let U be an arbitrary open in Ω(X). Since

U =
⋂

x/∈U

(X r {x}) =
∧

x/∈U

(X r {x}),

it suffices to take

A = {X r {x} | x /∈ U} ⊆
⋃

p
↑Up

in order to conclude that the arbitrary U is in
∨

p ↑Up. Hence
∨

p ↑Up =
Ω(X).

From Proposition 4.6.1 and Corollary 4.3 we get immediately that

4.6.2. Corollary. Let X be a T1-space. The set of all lower semicontinu-

ous real functions f : X → R on X is in bijection with the set of all lower

semicontinuous real functions LR → Sc(Ω(X)) on the frame Ω(X).

This mends an inaccuracy in Corollary 4.3 of [8], which relies on a mistak-
enly quoted result used in formula (4.5) that clearly does not hold even for
T1-spaces: the S(Ω(X)) there should be replaced by our Sc(Ω(X)).
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