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GLIOMA GROWTH: A MATHEMATICAL APPROACH FOR
CHEMOTHERAPY PROTOCOLS

J. R. BRANCO, J. A. FERREIRA, P. DE OLIVEIRA AND G. PENA

Abstract: In this paper we analyse properties of a nonlinear mathematical model
that describes the evolution of brain tumour cells under the effect of a chemotherapy
drug, considering the viscoelastic behaviour of the brain. Under suitable regularity
conditions we establish upper bounds for an energy functional of the system, with
respect to the L2 norm, leading to the stability of the model. Chemotherapy
treatment protocols based on stronger assumptions on the drug and cell kinetics
are also proposed with the purpose of controlling tumour growth. These protocols
are based on suitable estimates for the mass of tumour cells in the system after
chemotherapy sessions. A numerical method based on finite differences and finite
elements is introduced and its stability properties are analysed. The qualitative
behaviour of the solutions of the system is explored and discussed.

Keywords: Glioma, chemotherapy, numerical simulation, treatment protocols.

1. Introduction
Tumours are the uncontrolled growth of abnormal cells. Gliomas, which

are a special case of brain tumours, present a high mortality rate, giving
six months to one year of life expectancy once diagnosed (even undergoing
treatment). Medical doctors believe that a reason for the inefficiency of such
treatments lies in the high motility of the tumour cells.

The modelling of migration and proliferation of tumour cells has received
attention in the scientific community during the last decades. The simplest
approach is to model the motion of tumour cells by passive diffusion. This
was first proposed in [9], who introduced a partial differential equation built
upon a mass conservation law. Later work [3, 4], based on the principles
followed in [9], modelled tumour cells as having two possible phenotypes (or
states), proliferative and migratory, allowing cells to switch between both
phenotypes. However, such models do not take into account the effect of
the extracellular matrix or of any chemical agent in the surroundings of the
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brain/tumour cells for their motion. Scientific evidence has shown that three
major phenomena come into play in this context, besides passive diffusion of
cells: chemotaxis, haptotaxis and durotaxis. The chemotactic effect models
motion driven by a concentration gradient of a chemical produced by tumour
cells’ matrix degrading enzymes (MDE), haptotaxis accounts for motion
directed in response to the degradation of the extracellular matrix (ECM)
by MDE and durotaxis represents cells’ motion driven by gradients in ECM
stiffness. In the literature, models considering some of these effects can be
found in [8, 15, 18].

The influence of stiffness in the diffusion of molecules in polymeric matrices
was addressed in [5, 6]. Recent accumulated evidence of molecular biologists
and experimentalists (see, for example, [13]) suggests that the mechanical
properties of the ECM, stiffness and microstructure, have a crucial influence
on cell motility and proliferation. In [1] a coupled system of ODE-PDE and
an integro-differential equation, was used to represent invasion (by passive
diffusion), proliferation and treatment of glioma cells, considering the different
rigidity of gray and white matter. The authors obtained qualitative results
in agreement with the medical literature. The influence of the stiffness and
confinement of a 3D culture matrix was also studied in [11] and numerical
simulations were compared with in vitro results. The inclusion of the stiffness
effect properties brings another layer of complexity to these models: the
geometry of the white and gray matter should be taken into account, see [14].

Once a brain tumour is diagnosed, several therapeutic approaches are
usually followed, depending on the characteristics of the tumour. The most
common treatments involve chemotherapy, radiotherapy or even resection.
Chemotherapy (or radiotherapy) has also been incorporated in existing models
for tumour growth. This has been accomplished by introducing an additional
term in the partial differential system that removes cells at a rate depending
on the concentration of a certain drug (or an amount of radiation, in the case
of radiotherapy), [2, 10, 16].

The study of treatment protocols, based upon the partial differential systems
that model chemotherapy effects in tumour growth, has also received some
attention recently. In [1], the authors deduced, for a linear problem, bounds
for different energies of the system. This allowed to create treatment protocols,
based on suitable sufficient conditions, aiming to control the tumour growth.
A more complex model was proposed in [2], introducing nonlinear terms for
the coupling between drug concentration and tumour cells’ removal.
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In this paper we introduce the following model for the evolution of tumour
cells and concentration of chemotherapy drug,

∂u

∂t
+∇ · Ju = −β1u+ β2v − k(c)u, in Ω× (0, T ],

∂v

∂t
= ρv + β1u− β2v − k(c)v, in Ω× (0, T ],

∂c

∂t
+∇ · Jc = −k(c)

α
(u+ v) + g(t)−Mc, in Ω× (0, T ],

(1)

where Ω ⊂ Rd (d = 2, 3), u and v are the densities of migratory and prolifera-
tive cells, ρ is the proliferation rate, β1 and β2 are the phenotype switching
rate parameters, Ju is the mass flux associated with cells’ migration, c is the
drug concentration, k is a nonnegative function of the concentration that
represents the rate at which cells die due to the drug’s effect, Jc is the mass
flux for the drug, coefficient α is the measure of the rate of cell kill relative to
the rate of drug degradation, g is a source term for the concentration and M
is the washout effect for the drug. This model is an extension of the model
proposed in [2] by adding integral terms to account for the rigidity of the
brain tissue. The definitions and units of the model parameters are presented
in Appendix A.

To study system (1) we start by establishing convenient energy estimates,
see Section 2, as well as upper bounds for the total mass of cells in the system,
see Section 3. While the first results are interesting from a mathematical
point of view, they do not lead to treatment protocols. However, such
protocols can be obtained with the latter upper bounds and some examples
are presented in Section 3. Finally, in Section 4, we propose a numerical
method to approximate the solution of the nonlinear system of equations. A
stability analysis of the numerical method is also performed. Some numerical
results showing the efficiency of the treatment protocols are presented in
Section 5 followed by a brief discussion.

2.Model analysis
We assume that the drug diffuses according to Fick’s law, that is, we define

its flux as

Jc(t) = −Dc∇c(t), (2)

where Dc represents the diffusion tensor of the drug. Regarding glioma cells,
the fickian flux JF (t) is modified by adding a term JNF (t) that will take into
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account that glioma cells spread more in a stiffer environment, see [11]. We
define the total flux Ju(t) by

Ju(t) = JF (t) + JNF (t). (3)

The fickian flux of glioma cells, JF (t), is represented by

JF (t) = −D̃∇u(t), (4)

where D̃ stands for the diffusion tensor of glioma cells and the nonfickian flux
JNF (t) is defined by

JNF (t) = −D̃v∇σ(t), (5)

where σ represents the stress (the force per unit area) exerted by the extracel-
lular matrix and D̃v represents the stress driven diffusion tensor, a diagonal
tensor with negative entries.

To complete the definition of JNF , a relation between the stress σ and
the strain ε is adopted. Several viscoelastic models have been used in the
literature to simulate the mechanical behaviour of the brain. In this work,
we adopt a linear Kelvin-Voigt model consisting of a Hookean spring in series
with a Kelvin body, as depicted in Figure 1, which shows an almost perfect

E0

E1

µ1

Figure 1. Kelvin-Voigt model: a Hookean spring in series with
a Kelvin body.

agreement with experimental data [7]. We note that in case of strongly
localised displacements of the brain tissue, that may occur in later stages of
tumour development, nonlinear models can provide more realistic simulations.

The differential equation associated with the Kelvin-Voigt model is

∂σ

∂t
+ βσ = α1ε+ α2

∂ε

∂t
(6)

with

β =
E0 + E1

µ1
, α1 =

E0E1

µ1
, α2 = E0,
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where E0 represents the Young modulus of the Hookean spring and E1, µ1

represent, respectively, the Young modulus and the viscosity of the Kelvin
body. Integrating (6) we obtain

σ(t) = e−βtσ(0) +

∫ t

0

e−β(t−s)
(
α1ε(s) + α2

∂ε

∂t
(s)

)
ds. (7)

However, we note that a relation between the stress σ and the strain ε must
reflect the fact that the two entities act in opposite directions, that is, that
they have opposite signs. We now relate the strain ε with the density of cells
of migratory phenotype u, by considering the ansatz

ε = λu (8)

where λ stands for a positive constant. Defining σ by the symmetric of the
right hand side of (7) and replacing (4)-(8) in (3) we finally obtain

Ju(t) = −(D̃ − λE0D̃v)∇u(t)−
∫ t

0

λD̃v
E2

0

µ1
e−

E0+E1
µ1

(t−s)∇u(s) ds. (9)

Let us represent in (9) the effective fickian diffusion by D, that is,

D = D̃ − λE0D̃v.

and let us denote by Dv = −λD̃v
E2

0

µ1
, the nonfickian counterpart. We stress

that since D̃v has negative diagonal entries, the contribution of the diffusion
tensor D increases with increasing stiffness E0.

From (1), (2) and (9), we have

∂u

∂t
(t) = ∇ ·

(
D∇u(t)

)
−
∫ t

0

ker(t− s)∇ ·
(
Dv∇u(s)

)
ds

− β1u(t) + β2v(t)− k(c(t))u(t),

∂v

∂t
(t) = ρv(t) + β1u(t)− β2v(t)− k(c(t))v(t),

∂c

∂t
(t) = ∇ ·

(
Dc∇c(t)

)
− k(c(t))

α
(u(t) + v(t)) + g(t)−Mc(t),

(10)

in Ω × (0, T ], where ker(t) = e−
t
τ and D,Dc, Dv are symmetric positive

definite matrices, possibly space dependent.
We note that in [4] the authors, using a probabilistic approach with no

relation with the mechanical point of view adopted in this work, established,
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for the cells of migratory phenotype, an equation of the form

∂u

∂t
=
σ2

2

∫ t

0

ker(t− s)∆u(s) ds− β1u+ β2v,

where ker(·) represents a memory kernel defined in terms of a Laplace trans-
form.

System (10) is closed with homogeneous Neumann boundary conditions

−
(
D∇u(t)−

∫ t

0

ker(t− s)Dv∇u(s)ds

)
· η = 0, t > 0

and
−Dc∇c(t) · η = 0, t > 0,

where η represents the exterior unit normal, as well as suitable initial data.
We also assume that there exist δ, λ > 0 such that

δ ‖x‖2
2 6 (Dx, x) 6 λ ‖x‖2

2 , ∀x ∈ Rd (11)

and that Dv and Dc satisfy the same bounds.
We start by establishing an upper bound for the following energy functional

Eu,v,c(t) = ‖u(t)‖2 + ‖v(t)‖2 + ‖c(t)‖2

+ (2δ − ε2λ)

∫ t

0

‖∇u(s)‖2 ds+ 2δ

∫ t

0

‖∇c(s)‖2 ds, t ≥ 0

where ε 6= 0, satisfying 2δ − ε2λ > 0, is constructed in the proof of Theo-
rem 1. Let V1 = L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), Q = H1(0, T ;L2(Ω)) and
V = V1 ×Q× V1.

Theorem 1. Let (u, v, c) ∈ V be a solution of (10) and k ∈ L∞(R+). Then
there exists ε 6= 0 such that 2δ − ε2λ > 0 and

Eu,v,c(t) ≤ e2Ct
(
‖u0‖2 + ‖v0‖2

)
+

∫ t

0

e−2C(s−t) ‖g(s)‖2 ds

where

C = max

{
β2 − β1

2
+
‖k‖2

∞
α2

, ρ+
β1 − β2

2
+
‖k‖2

∞
α2

, 1−M,
λ ‖ker‖2

L2(R+)

2ε2(2δ − ε2λ)

}
.

A proof of Theorem 1 is presented in Appendix B.
Since system (10) is nonlinear, Theorem 1 does not imply the stability of

its solution. The following result establishes this property.
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Theorem 2. Let (u, v, c) ∈ V ∩ [L∞(0, T, L∞(Ω))]3 denote a solution of
system (10) and (ũ, ṽ, c̃) ∈ V a perturbation with different initial data. If
k ∈ W 1,∞(R+) then there exists C > 0 such that

M(t) ≤ CM(0), t ∈ [0, T ] (12)

where

M(t) = ‖ũ(t)− u(t)‖2 + ‖ṽ(t)− v(t)‖2 + ‖c̃(t)− c(t)‖2 , t ∈ [0, T ].

A proof of Theorem 2 is presented in Appendix B.

3. Treatment protocols for chemotherapy
The estimates established in the previous section are not useful to define

treatment protocols, i.e., to calculate the dosage and frequency of treatment
that lead to control the tumour mass. However, this task can be accomplished
by simplifying system (10) and determining convenient upper bounds for the
mass of tumour cells.

The approach that we follow in this section analyses a more general case
than the one presented in [2]. Following a similar approach, we assume

(1) u, v and c are nonnegative,
(2) drug dynamics is dominated by delivery, ie, Dc = 0 and
(3) k

α ≈ 0 (simplification based on real data).

Let

M(t) =

∫
Ω

(
u(t) + v(t)

)
dΩ, (13)

define the total mass of tumour cells at time t ≥ 0.
Combining the equations of (10) and the homogeneous boundary conditions

we get

M′(t) = ρ

∫
Ω

vdΩ−
∫

Ω

k(c)(u+ v)dΩ, (14)

which leads to
M(t) ≤M(0)e

∫ t
0
(ρ−k(c(s)))ds. (15)

When chemotherapy is applied, condition (15) can be used to determine an
effective dosage such that the total amount of tumour cells do not increase.
In fact, if ∫ t

0

(ρ− k (c(s))) ds ≤ 0, (16)

then we can conclude that M(t) ≤M(0), at any time t.
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From hypothesis 2 and 3, the drug concentration equation has a solution
given by

c(t) =

∫ t

0

e−M(t−s)g(s)ds+ e−Mtc(0). (17)

A typical protocol in chemotherapy treatment follows the bang-bang ap-
proach, which alternates maximum doses of chemotherapy with rest periods
when no drug is administered. In this treatment, function g, that represents
the concentration of release drug per unit of time, is defined by

g(t) =

{
d, when chemotherapy is being administered

0, otherwise
(18)

for t > 0.

Figure 2. Chemotherapy protocol.

In the definition of the treatment protocol, we consider the following vari-
ables and assumptions:

- each treatment cycle (chemotherapy sessions and rest period) has Pt
days;

- the patient is submitted to m chemotherapy sessions during each
treatment cycle, on the first m(≤ Pt) consecutive days of the latter;

- each chemotherapy session has a time duration ∆t(≤ 24h);
- in each chemotherapy session the patient receives a drug dose
d · ∆t = dtotal

m , where dtotal represents the total dosage of drug to
be administered in one month;

- the chemotherapy protocol will be repeated for n months.

In Figure 2 we present an example of a protocol with m = 6 chemotherapy
sessions each month.

For t = nPt, let us represent the first member of (16) by Pe(n). In
the following we establish upper bounds for Pe(n) considering two different
expressions for the function k:

k(c) =
µ

c0
c (linear model)
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and

k(c) = µ
c

kd + c
(Michaelis-Menten model),

for c ∈ R+
0 , where µ is a measure of the effectiveness of the drug, c0 is the

maximum external drug concentration and kd is a critical drug concentration.
We remark that the choice for k depends on the type of drug-cell kinetics,
as experimental evidence suggests [17]. In Figure 3 we plot the qualitative
behaviour of k for both cases.

c0 − kd
0

µ

concentration

k

linear
Michaelis-Menten

Figure 3. Plot of the linear and Michaelis-Menten representa-
tions of k.

From a mathematical point of view, it is clear that both expressions induce
different behaviours in the drug-cell kinetics. On one hand, for large values
of the concentration, while the nonlinear (Michaelis-Menten model) remains
bounded by µ, the linear one is not. On the other hand, the Michaelis-Menten
model describes a higher rate of killed cells for low values of the concentration.

Theorem 3. If k is a linear function of c, i.e., if k(c) = µ
c0
c, for µ, c0 > 0,

then

Pe(n) = Ptρ n− µ
dtotal n

Mc0
+ µ

B(n)e−nPtM

Mc0
(19)

where

B(j) =
dtotal
m∆t

e∆tM − 1

M

1− ejMPt

1− ePtM
1− emM
1− eM , j = 0, 1, . . . , n. (20)
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A proof of Theorem 3 is presented in Appendix B.
If the expression of k is nonlinear in c, the previous technique for calculating

Pe(n) cannot be used. In the following result we establish an upper bound
for Pe(n) when the Michaelis-Menten model is considered.

Theorem 4. Let µ, kd > 0. If k(c) = µ c
kd+c

then

Pe(n) ≤ Ptρ n−
µ

kd

dtotal
m∆tM2

n−1∑
j=0

m−1∑
i=0

log

(
kde

M∆t +B(j + 1)e−M(jPt+i)

kd +B(j + 1)e−M(jPt+i)

)

+
µ

M
log

(
1 +

B(n)e−MnPt

kd

)
(21)

where B(j) is defined as (20).

A proof of Theorem 4 is presented in Appendix B.
To guarantee that Pe(n) ≤ 0, depending on the function k being considered,

we can use (19) or (21) to determine an effective dosage dtotal and the frequency
of treatments that allows to control the total tumour mass. Obviously the
value of dtotal depends on the chemotherapy protocol chosen.

4. Numerical method
We now present a numerical scheme to approximate the solution of the

proposed problem. Let N denote a positive integer. We define ∆t = T
N and

introduce the uniform partition in [0, T ], ti = i∆t, i = 0, . . . , N . Let h > 0
denote a fixed parameter and Th an admissible triangulation of the domain Ω
where

h = max
K∈Th

diam(K)

and diam(K) denotes the diameter of triangle K.
Let Vh denote the space of piecewise linear functions built upon Th, that is,

Vh = {v ∈ C0(Ω) : v|K ∈ P1(K), K ∈ Th},

where P1(K) denotes the space of polynomials of degree at most one, defined
in K.

Discretizing system (10) with an implicit-explicit strategy in time and
the finite element method in space, we establish the following variational
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formulation for the discrete problem: find un+1, vn+1, cn+1 ∈ Vh such that(
un+1 − un

∆t
, w

)
= −(D∇un+1,∇w) + (−β1u

n+1 + β2v
n+1 − k(cn)un+1, w)

+ ∆t
n+1∑
i=1

ker(tn+1 − ti)(Dv∇ui,∇w),(
vn+1 − vn

∆t
, z

)
= (ρvn+1 + β1u

n+1 − β2v
n+1 − k(cn)vn+1, z),(

cn+1 − cn
∆t

, q

)
= −(Dc∇cn+1,∇q)

+

(
g(tn+1)−

k(cn+1)(un+1 + vn+1)

α
−Mcn+1, q

)
(22)

for all w, z, q ∈ Vh.
We remark that the solution of system (22) can be obtained by a decoupling

strategy: first we solve for the first two equations (simultaneously) and then
we calculate the approximate concentration.

The numerical scheme can also be studied from a stability point of view, as
it was the case of the continuous model. We start by establishing an upper
bound for an energy of the solution of scheme (22).

Theorem 5. Let

C1 = min

{
β1 − β2 −

‖k‖∞
α

, β2 − β1 − 2ρ− ‖k‖∞
α

, 2M − ‖k‖∞
(

2

α
+ 1

)}
.

If k ∈ L∞(R+), g ∈ C0([0, T ]) , ∆t is such that 1 + ∆tC1 and

C = 2 δ − 2λ

(
∆t+

‖ker‖2
L2(R+)

2

)
are positive then, for

C2 =
λ(∆t+ ‖ker‖2

L2(R+))

C
method (22) verifies the following bound

En ≤ en
C2−C1∆t
1+∆tC1 E0 + ∆t(meas(Ω))2

n−1∑
i=0

1

(1 + ∆tC1)n−i
(g(ti+1))

2 , (23)
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where

En = ‖un‖2 + ∆t C
n∑
i=1

∥∥∇ui∥∥2
+ ‖vn‖2 + ‖cn‖2 + 2∆t δ ‖∇cn‖2

is a discrete version of Eu,v,c(tn).

A proof of Theorem 5 is presented in Appendix B.
We remark that combining the treatment of the nonlinear terms presented in

the proof of Theorem 2 with the technique followed in the proof of Theorem 5,
we can establish the stability of the numerical solution, under a suitable
condition on the parameters of the problem.

5. Numerical results and discussion
We now illustrate the behaviour of the solution of system (10) with the

help of the numerical scheme (22). To this end, we have considered the
computational domain, Ω, depicted in Figure 4b (approximately 14.4cm×
9.2cm). The coordinate system has its origin at the lower left corner of the
image. The domain was discretized with a triangular mesh, see Figure 4a.

(a) Triangular mesh on the brain slice. (b) White matter (dark grey) and grey
matter (black) and initial gaussian profile
for tumour cells.

Figure 4. Computational representation of the brain.

The initial condition was taken as

v0(x, y) = 103e−50((x−7.2)4+(y−4.6)4), (x, y) ∈ Ω,
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to emulate a tumoral mass centered in the geometry, as represented in
Figure 4b. The mesh was refined near the peak of the gaussian profile in order
to better capture the steep gradients. The complete list of all the parameters
used in the simulation is found in Appendix A.

Remark 1. The diffusion tensor is chosen to be diagonal where its nonzero
entries are equal to Dg in the gray matter and Dw in the white matter.

Remark 2. The metabolic removal rate was calculated based on the biological
half life of Temozolomide. The total amount of drug was fixed to illustrate
the different behaviour of the solution, varying the efficacy of the drug.

In what follows we analyse three different treatment protocols, for treatment
cycles of length Pt = 28 days, considering m = 1, 5, 28 and the corresponding
drug dosage (per unit of time), as detailed in Table 1.

m d

protocol I 1 0.12
protocol II 5 0.024
protocol III 28 0.0043

Table 1. Treatment protocol’s definition.

From (19) and the upper bound (21), we plot in Figure 5 the dependency
of these expressions with respect to to the number of monthly sessions of
chemotherapy and the drug effectiveness parameter.

1 5 10 15 20 25 2810−3

10−2

1

5 · 10−3

1.5 · 10−1

linear

Michaelis-Menten

↑
↓

Pe(n) < 0

Pe(n) > 0

↑Pe(n) < 0

m

µ

0.15552

0.015552

0.0015552

Figure 5. Admissible regions of controlled tumour growth.

The solid line corresponds to the protocol efficiency of the linear model while
the dashed line corresponds to the upper bound for the Michaelis-Menten
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model and is therefore only a sufficient condition to guarantee controlled
tumour growth. Any choice of parameters µ and m that lies above the solid
line (for the linear model) or dashed line (for the Michaelis-Menten model)
leads to controlled growth for the respective representation. Also, from the
plot, we can see that for the linear case, the protocol efficiency does not depend
on the number of chemotherapy sessions. However, for the Michaelis-Menten
model, the upper bound shows a slight dependency on m. In both cases, the
protocol efficiency depends, as expected, on the drug effectiveness parameter.
The results also suggest that, although the dashed line corresponds to an
upper bound, the Michaelis-Menten model induces more restrictive choices
for the drug in order to guarantee controlled growth.
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Figure 6. Plot of tumour mass and area for the linear represen-
tation for Protocol I.

Figure 5 also shows three dotted lines, that correspond to specific choices
of the parameter µ. This choice was made in order to analyse the behaviour
of the solutions under these different scenarios. While for µ = 0.0015552,
controlled growth is not guaranteed for both representations, for µ = 0.015552
we can only assure control for the linear case. The other choice of the drug
effectiveness parameter µ = 0.15552 is such that control is established again
for the linear model and also for protocol I with the Michaelis-Menten model.
We stress that since we work with an upper bound for the Michaelis-Menten
model, we cannot establish growth control for protocols II (m = 5) and III
(m = 28). In order to clarify further this question, we conducted a series of
numerical experiments that shall be detailed next.
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Figure 7. Plot of tumour mass and area for the linear represen-
tation for Protocol III.

Figure 8. Plot of diffusive cells density for protocol I and drug
effectiveness parameters µ = 0.015552 and µ = 0.0015552 (t =
100 days).

The guarantee of growth control for the linear model for µ = 0.15552 and
µ = 0.015552 is illustrated in Figures 6 and 7 (left column) for protocols I
and III, respectively (the results for protocol II are similar to protocol I). We
highlight that this bound does not amount to controlling the tumoral area,
as seen on the right column of the same figure.

In Figure 8 we also show a plot with the diffusive cells distribution for
protocol I and two different drug effectiveness parameters, µ = 0.015552 and
µ = 0.0015552. The highest peak corresponds to the drug with the lowest
drug effectiveness parameter (and for which growth control is not guaranteed).
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The results in Figure 8 are in agreement with the data in Figure 6: the area
of the tumour is higher for µ = 0.0015552 and so is the cell density.

Comparing different protocols for the same drug effectiveness parameters,
Figure 9 suggests that there is no direct relation between the number of
sessions of chemotherapy and the protocol efficiency. Indeed, when we go
from 5 sessions to 28 sessions, see Figure 9a, a more efficient control of
the tumour mass does not emerge. Control is nonetheless present but the
chemotherapy protocol does not reduce more the density of cells. Another
interesting observation from Figure 9 is the change of growth rate of the
diffusive tumour cells after each treatment cycle. In both drug effectiveness
parameters, after each cycle, the rate decreases and this is due to the spatial
distribution of the tumor.
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(a) µ = 0.015552.
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(b) µ = 0.0015552.

Figure 9. Plot of tumour mass and area for different drug
effectiveness parameters for the linear representation.

The nonlinear representation of function k (Michaelis-Menten model) in-
duces a different behaviour in the overall results. A first comment addresses
the sharpness of the upper bound (21). From Figure 10 (left column), the
decrease in the overall diffusive cells’ density is present even if it was not
guaranteed as such from Figure 5. This implies that the region in Figure 5
for which controlled tumour growth is larger than our estimate shows.

An interesting difference with respect to the linear case is the fact that in this
scenario, the increased number of sessions leads to a better control (reduction)
of the tumour density, even if this was not clear in the inequallity (21), see
Figure 10a and 10b. This behaviour is explained by the way k acts on the
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reduction of tumour cells. In fact, even if a small amount of drug is present,
the drug still maintains good effectiveness properties, in agreement with
Figure 3.
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(a) Protocol II.
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Figure 10. Plot of tumour mass and area for the nonlinear
representation.

6. Conclusions
In this paper we propose a nonlinear mathematical model to describe the

evolution of brain tumour cells with and without the effect of a chemotherapy
drug. The stability of the solution of the model is established under convenient
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regularity assumptions. A numerical method based on finite differences and
finite elements is proposed and its stability properties are analysed.

In order to study the total mass of tumour cells in the system, suitable
indicators for the chemotherapy protocol’s efficiency are established. Un-
der sufficient conditions on the (controllable) parameters of the system, the
controlled growth of tumour mass is achieved. Using these indicators, three
different chemotherapy protocol scenarios are proposed and analysed, consid-
ering a linear and nonlinear (Michaelis-Menten model) representation for the
function governing the drug-cell kill interaction. Depending on the dynamics
of this interaction, our numerical simulations show different behaviours: for
the linear model, more treatment sessions do not have an impact on the
growth control; in the Michaelis-Menten model, more frequent chemotherapy
sessions with less aggressive dosages might be preferable. These last results
are in agreement with new medical research in metronomics chemotherapy,
based on more frequent treatments with low doses administration.

Appendix

Appendix A.Simulation parameters

Parameter Symbol Value Ref.

Growth rate ρ 0.012 /day [12]

Switching parameters
β1 10−6 /day [12]

β2 0.036 /day [12]

Fickian diffusion coefficient (gray
matter)

Dg 0.0013 cm2/day [12, 14]

Fickian diffusion coefficient
(white matter)

Dw 5 ·Dg cm
2/day [12, 14]

Measure of the rate of cell kill
relative to the rate of drug degra-
dation

α 24× 1010ml/(g cm2) [10]

Maximum external drug concen-
tration

c0 10−5 g/cm2 [10]
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Relaxation parameter β−1 0.00348 day [1, 7]

Nonfickian diffusion coefficient Dv 0.001 cm2/day2 [1, 7]

Diffusion coefficient (drug) Dc 0.432 cm2/day [10]

Total drug concentration dtotal 0.12 g/cm2 -

Critical drug concentration kd 2 · 10−6 g/cm2 [10]

Metabolic removal rate M 9.242 /day -

Appendix B.Proof of theoretical results
Proof of Theorem 1: From the first equation, we have

1

2

d

dt

(
‖u(t)‖2 + 2

∫ t

0

∥∥∥√D∇u(s)
∥∥∥2

ds

)
= −β1 ‖u(t)‖2 + β2(v(t), u(t))− (k(c(t))u(t), u(t))

+

∫ t

0

ker(t− s)(Dv∇u(s)ds,∇u(t))ds.

(24)

From the second equation, it follows

1

2

d

dt
‖v(t)‖2 ≤ (ρ− β2) ‖v(t)‖2 + β1(u(t), v(t))− (k(c(t))v(t), v(t)) . (25)

From the third equation, we have

1

2

d

dt
‖c(t)‖2 = −

∥∥∥√Dc∇c(t)
∥∥∥2

−
(
k(c)

α
(u(t) + v(t)), c(t)

)
+ (g(t), c(t))−M ‖c(t)‖2 .

(26)
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Combining (24), (25) and (26) and using bounds (11) we get

1

2

d

dt

(
‖u(t)‖2 + ‖v(t)‖2 + ‖c(t)‖2 + 2δ

∫ t

0

‖∇u(s)‖2 ds+ 2δ

∫ t

0

‖∇c(s)‖2 ds

)
≤ −β1 ‖u(t)‖2 + (β2 + β1)(v(t), u(t)) + (ρ− β2) ‖v(t)‖2 − (k(c(t))u(t), u(t))

− (k(c(t))v(t), v(t))−
(
k(c(t))

α
(u(t) + v(t)), c(t)

)
+ (g(t), c(t))−M ‖c(t)‖2

+

∫ t

0

ker(t− s)(Dv∇u(s)ds,∇u(t))ds. (27)

For the last integral in (27), there exists ε 6= 0 such that∫ t

0

ker(t− s)(Dv∇u(s)ds,∇u(t))ds

≤ ε2λ

2
‖∇u(t)‖2 +

λ ‖ker‖2
L2(R+)

2ε2

∫ t

0

‖∇u(s)‖2 ds. (28)

Chosing ε such that 2δ − ε2λ > 0, (27) becomes

1

2

dEu,v,c
dt

(t) ≤ −β1 ‖u(t)‖2 + (β2 + β1)(v(t), u(t)) + (ρ− β2) ‖v(t)‖2

− (k(c(t))u(t), u(t))− (k(c(t))v(t), v(t))

−
(
k(c(t))

α
(u(t) + v(t)), c(t)

)
+ (g(t), c(t))−M ‖c(t)‖2 +

λ ‖ker‖2
L2(R+)

2ε2

∫ t

0

‖∇u(s)‖2 ds.

(29)
Applying Cauchy-Schwartz and Young’s inequalities to the inner products

in (29), it follows that

1

2

dEu,v,c
dt

(t) ≤
(
β2 − β1

2
+
‖k‖2

∞
α2

)
‖u(t)‖2 +

(
ρ+

β1 − β2

2
+
‖k‖2

∞
α2

)
‖v(t)‖2

+ (1−M) ‖c(t)‖2 +
1

2
‖g(t)‖2 +

λ ‖ker‖2
L2(R+)

2ε2

∫ t

0

‖∇u(s)‖2 ds

(30)



GLIOMA GROWTH: A MATHEMATICAL APPROACH 21

and consequently

dEu,v,c
dt

(t) ≤ 2CEu,v,c(t) + ‖g(t)‖2 , (31)

which concludes the proof.

Proof of Theorem 2: Let u(t) = ũ(t) − u(t), v(t) = ṽ(t) − v(t), c(t) =
c̃(t)− c(t), for t ∈ R+

0 . Since (u, v, c) and (ũ, ṽ, c̃) satisfy (10) and using (28)
it follows that there exists ε 6= 0 such that

1

2

d

dt
‖u(t)‖2 +

(
δ − ε2λ

2

)
‖∇u(t)‖2

≤ −β1 ‖u(t)‖2 +
λ ‖ker‖2

L2(R+)

2ε2

∫ t

0

‖∇u(s)‖2 ds

+ β2(v(t), u(t))− (k(c̃(t))ũ(t)− k(c(t))u(t), u(t))

and

1

2

d

dt
‖v(t)‖2 = (ρ−β2) ‖v(t)‖2+β1(u(t), v(t))−(k(c̃(t))ũ(t)−k(c(t))u(t), u(t))

and also

1

2

d

dt
‖c(t)‖2 + δ ‖∇c(t)‖2

≤M ‖c(t)‖2 − 1

α
(k(c̃(t))(ũ(t) + ṽ(t))− k(c(t))(u(t) + v(t)), c(t)).

The treatment of the linear terms of the equations that arise uses the same
technique used in Theorem 1. To establish the desired inequality, it remains
to bound the nonlinear terms.

A quick calculation shows that

− (k(c̃(t))ũ(t)− k(c(t))u(t), u(t))

≤ ‖k‖∞ ‖u(t)‖2 + ‖k′‖∞ ‖u(t)‖2
∞ ‖c(t)‖ ‖u(t)‖

≤
(
‖k‖∞ +

‖k′‖∞ ‖u(t)‖2
∞

2

)
‖u(t)‖2 +

‖k′‖∞ ‖u(t)‖2
∞

2
‖c(t)‖2
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and

− (k(c̃(t))ṽ(t)− k(c(t))v(t), v(t))

≤
(
‖k‖∞ +

‖k′‖∞ ‖v(t)‖2
∞

2

)
‖v(t)‖2 +

‖k′‖∞ ‖v(t)‖2
∞

2
‖c(t)‖2

and also

− (k(c̃(t))(ũ(t) + ṽ(t))− k(c(t))(u(t) + v(t)), c(t))

≤ ‖k‖∞
2

(
‖u(t)‖2 + ‖v(t)‖2

)
+ (‖k‖∞ + ‖k′‖∞ ‖u(t) + v(t)‖∞) ‖c(t)‖2 .

Let

C1(u) =
C2
e

2
‖k′‖∞ ‖u‖2

L∞(0,T,L∞(Ω)) , C2(u) = ‖k‖∞ + C1(u),

for u ∈ V1∩L∞(0, T, L∞(Ω)). Using these notations, the previous inequalities
can be bounded by constants that do not depend on t:

− (k(c̃(t))ũ(t)− k(c(t))u(t), u(t)) ≤ C1(u) ‖c(t)‖2 + C2(u) ‖u(t)‖2

and

− (k(c̃(t))ṽ(t)− k(c(t))v(t), v(t)) ≤ C1(v) ‖c(t)‖2 + c(v) ‖v(t)‖2 ,

and also

− (k(c̃(t))(ũ(t) + ṽ(t))− k(c(t))(u(t) + v(t)), c(t))

≤ ‖k‖∞
2

(
‖u(t)‖2 + ‖v(t)‖2

)
+ 2c(u+ v) ‖c(t)‖2 .

The proof follows now the same guidelines as the one for Theorem 1, with

C = max

{
β2 − β1 + 2C2(u) +

2

α
‖k‖∞ , 2ρ+ β1 − β2 + 2c(v) +

2

α
‖k‖∞ ,

2 (C1(u) + C1(v) +M) +
4

α
C2(u+ v),

λ ‖ker‖2
L2(R+)

2ε2(2δ − ε2λ)

}
.

Proof of Theorem 3: Combining the definition of Pe and (17) we obtain

Pe(n) =

∫ nPt

0

(
ρ− µ

c0

∫ s

0

g(τ)eM(τ−s)dτ

)
ds.
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It follows that

Pe(n) = ρnPt −
µ

c0

∫ nPt

0

∫ s

0

g(τ)eM(τ−s)dτds

= ρnPt −
µ

c0

n−1∑
j=0

∫ (j+1)Pt

jPt

∫ s

0

g(τ)eM(τ−s)dτds.

(32)

Using integration by parts, for each month j we have∫ (j+1)Pt

jPt

∫ s

0

g(τ)eM(τ−s)dτds

=

∫ (j+1)Pt

jPt

e−Ms

∫ s

0

g(τ)eMτdτds

=
e−jPtM

M

(∫ jPt

0

g(τ)eMτdτ − e−PtM
∫ (j+1)Pt

0

g(τ)eMτdτ
)

+
1

M

∫ (j+1)Pt

jPt

g(s)ds.

(33)

For the first integral of (33), doing the summation for the geometric pro-
gressions, we have∫ jPt

0

g(τ)eMτdτ =
d(e∆tM − 1)

M

1− ejPtM
1− ePtM

1− emM
1− eM = B(j). (34)

For the third integral of (33), we have∫ (j+1)Pt

jPt

g(s)ds = dm∆t = dtotal. (35)

Using (34) and (35) on (33), we get∫ (j+1)Pt

jPt

∫ s

0

g(τ)eM(τ−s)dτds

=
d

M 2

1− emM
1− eM

1

1− ePtM
(
e∆tM − 1

)
e−jPtM

(
1− e−PtM

)
+
dtotal
M

(36)

and so, from (32) and doing the summation for the geometric progression, we
finally get (19).
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Proof of Theorem 4: Following the proof of Theorem 3, it can be estab-
lished that

Pe(n) = Ptρn− µ
n−1∑
j=0

∫ (j+1)Pt

jPt

c(s)

kd + c(s)
ds. (37)

Using the ordinary differential equation satisfied by c,

c′(s) = −Mc(s) + g(s), s ∈ (0, T ),

the integral in equation (37) can be calculated as

∫ (j+1)Pt

jPt

c(s)

kd + c(s)
ds

=
1

M

(
log

(
kd + c((j + 1)Pt)

kd + c(jPt)

)
−

m−1∑
i=0

∫ jPt+i+∆t

jPt+i

d

kd + c(s)
ds

)
. (38)

The summation of the first term in (38) can be directly computed as

n−1∑
j=0

log

(
kd + c((j + 1)Pt)

kd + c(jPt)

)
= log

(
1 +

c(nPt)

kd

)
= log

(
1 +

B(n)e−nPtM

kd

)
.

(39)
Regarding the second term in (38), using the upper bound

c(s) ≤ e−MsB(j + 1), s ∈ [jPt, (j + 1)Pt],

it follows that

−
m−1∑
i=0

∫ jPt+i+∆t

jPt+i

d

kd + c(s)
ds ≤ −

m−1∑
i=0

∫ jPt+i+∆t

jPt+i

d

kd + e−MsB(j + 1)
ds. (40)

Calculating this last integral exactly, the upper bound for Pe(n) follows.
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Proof of Theorem 5: Let w = un+1, z = vn+1 and q = cn+1. From system
(22) it follows∥∥un+1

∥∥2
= (un, un+1)−∆t

∥∥∥√D∇un+1
∥∥∥2

−∆tβ1

∥∥un+1
∥∥2

+ ∆tβ2(v
n+1, un+1)

−∆t(k(cn)un+1, un+1)+∆t2
n+1∑
i=1

ker(tn+1 − ti)(Dv∇ui,∇un+1),∥∥vn+1
∥∥2

= (vn, vn+1) + ∆t(ρ− β2)
∥∥vn+1

∥∥2
+ ∆tβ1(u

n+1, vn+1)

−∆t(k(cn)vn+1, vn+1),∥∥cn+1
∥∥2

= (cn, cn+1)−∆t
∥∥∥√Dc∇cn+1

∥∥∥2

−∆t

(
k(cn+1)(un+1 + vn+1)

α
− g(tn+1), c

n+1

)
−∆tM

∥∥cn+1
∥∥2
.

(41)
Using

(w, z) ≤ 1

2
(‖w‖2 + ‖z‖2), w, z ∈ Vh (42)

and (11), it holds for system (41) that

(1 + ∆t(2β1 − β2))
∥∥un+1

∥∥2 ≤ ‖un‖2 − 2∆t δ
∥∥∇un+1

∥∥2
+ ∆tβ2

∥∥vn+1
∥∥2

− 2∆t(k(cn)un+1, un+1)

+2∆t2
n+1∑
i=1

ker(tn+1 − ti)(Dv∇ui,∇un+1),

(1 + ∆t(2(β2 − ρ)− β1))
∥∥vn+1

∥∥2 ≤ ‖vn‖2 + ∆tβ1

∥∥un+1
∥∥2

− 2∆t(k(cn)vn+1, vn+1),

(1 + 2∆tM)
∥∥cn+1

∥∥2 ≤ ‖cn‖2 − 2∆t δ
∥∥∇cn+1

∥∥2

− 2∆t

(
k(cn+1)(un+1 + vn+1)

α
, cn+1

)
− 2∆t(g(tn+1), c

n+1).
(43)

The lower bound for k implies that

−(k(ci)q, q) ≤ 0,
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for q ∈ Vh and i ∈ {n, n+ 1}. Therefore, system (43) is rewritten as

A1

∥∥un+1
∥∥2 ≤ ‖un‖2 − 2∆t δ

∥∥∇un+1
∥∥2

+ ∆tβ2

∥∥vn+1
∥∥2

+2∆t2
n+1∑
i=1

ker(tn+1 − ti)(Dv∇ui,∇un+1),

A2

∥∥vn+1
∥∥2 ≤ ‖vn‖2 + ∆tβ1

∥∥un+1
∥∥2
,

A3

∥∥cn+1
∥∥2 ≤ ‖cn‖2 − 2∆t δ

∥∥∇cn+1
∥∥2

− 2∆t

(
k(cn+1)(un+1 + vn+1)

α
− g(tn+1), c

n+1

)
(44)

where A1 = 1+∆t(2β1−β2), A2 = 1+∆t(2(β2−ρ)−β1) and A3 = 1+2∆tM.
From Young’s inequality, one can show that

−2(k(cn+1)q, cn+1) ≤ ‖k‖∞
(
‖q‖2 +

∥∥cn+1
∥∥2
)

for q = un+1 or q = vn+1 and

2(g(tn+1), c
n+1) ≤ (meas(Ω)g(tn+1))

2 +
∥∥cn+1

∥∥2
.

Combining these last inequalities with (44) and summing all inequalities
term by term, we obtain

B1

∥∥un+1
∥∥2

+B2

∥∥vn+1
∥∥2

+B3

∥∥cn+1
∥∥2 ≤ ‖un‖2 + ‖vn‖2 + ‖cn‖2

− 2∆t δ
∥∥∇un+1

∥∥2
+ 2∆t2

n+1∑
i=1

ker(tn+1 − ti)(Dv∇ui,∇un+1)

− 2∆t δ
∥∥∇cn+1

∥∥2
+ ∆t(meas(Ω)g(tn+1))

2 (45)

where B1 = 1 + ∆t(β1 − β2 − ‖k‖∞α ), B2 = 1 + ∆t(β2 − 2ρ− β1 − ‖k‖∞α ) and

B3 = 1 + 2∆t(M − ‖k‖∞α − 1
2).

From Cauchy-Schwarz, Young and Hölder inequalities we get

∆t
n+1∑
i=1

ker(tn+1 − ti)(Dv∇ui,∇un+1) ≤ λ

(
∆t+

‖ker‖2
L2(R+)

2

)∥∥∇un+1
∥∥2

+
λ

2

(
∆t+ ‖ker‖2

L2(R+)

) n∑
i=1

∥∥∇ui∥∥2
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so in (45) we obtain

B1

∥∥un+1
∥∥2

+ ∆t C
∥∥∇un+1

∥∥2
+B2

∥∥vn+1
∥∥2

+B3

∥∥cn+1
∥∥2

+ 2∆t δ
∥∥∇cn+1

∥∥2

≤ ‖un‖2 + ‖vn‖2 + ‖cn‖2 +λ∆t
(

∆t+ ‖ker‖2
L2(R+)

) n∑
i=1

∥∥∇ui∥∥2

+ ∆t(meas(Ω)g(tn+1))
2. (46)

It follows that

(1 + ∆tC1)En+1 ≤ (1 + C2)En + ∆t
(
meas(Ω)g(tn+1)

)2

and using a standard argument we obtain (23).
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