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elements.

Keywords: Paraorthogonal polynomials on the unit circle; zeros; unitary matrices;
eigenvalues; interlacing; rank one perturbations.
Math. Subject Classification (2000): 15A42, 42C05.

1. Introduction and main result

The study of zeros of orthogonal polynomials on the real line (OPRL) can
be regarded as an eigenvalue problem for Jacobi matrices1. This allows us
to go back to one of the most important single books in the nineteenth
century, Cours d’analyse de l’École royale polytechnique (1821) by Cauchy to
deduce, at least in the weak sense, the zero interlacing property of consecutive
OPRL from the simplest form of the nowadays called Cauchy interlacing
theorem. The search of more refined eigenvalue interlacing properties of
Jacobi matrices was probably initiated by Cauchy himself in his work Sur
l’ Équation à l’ Aide de Laquelle on Détermine les Inegalitées Séculaires
des Mouvements des Planètes (1829) and later continued by several authors,
including in the second half of the last century Wilkinson [45], Kahan [29],
Golub [20], Hill and Parlett [26], and Bar-On [6]. In the same spirit, this work
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1A symmetric tridiagonal matrix whose next-to-diagonal elements are positive (cf. [27, p. 36]).
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recovers one of the earliest approaches used to study zeros of paraorthogonal
polynomials on the unit circle (POPUC), which is based on an eigenvalue
problem for certain unitary matrices which bear many similarities with Jacobi
matrices (cf. [31, 3, 23, 1, 25, 9, 16, 44, 7, 10, 11, 35, 36, 30, 39, 38, 40]).
Without wishing to delve into a historical discussion2, as far as we know,

the POPUC3 were introduced (in a somewhat hidden form) and successfully
developed in a serie of papers by Delsarte and Genin at the end of the 1980’s
[13, 15, 16], when they were working in signal processing. In [16], the au-
thors focuses on the problem of computing the zeros of POPUC regarded as
an eigenvalue problem for an unitary upper Hessenberg matrix with positive
subdiagonal elements. Elegant and recent proofs of most interlacing proper-
ties of zeros of POPUC shared with OPRL are due to Simon [39] (cf. [40,
Theorem 2.14.4]) where the theory of rank one perturbations plays a central
role. However, before such work (and references therein) the zeros of POPUC
were studied by the Linear Algebra community based on ideas close to those
of Simon but supported on more elementary facts. Further analysis of these
ideas will allow us to easily extend the known results. Indeed, our main
purpose is to prove and improve, in connection with the works of Delsarte
and Genin on the subject, the known zero interlacing properties of POPUC,
based on the development of the ideas discussed by Arbenz and Golub in [4,
Section 6]4.
Here and below, we mainly follow the notation of [35, 36, 40]. Denote by

D the open unit disk and by S
1 its boundary, i.e.,

D := {z ∈ C : |z| < 1} , S
1 := {z ∈ C : |z| = 1} .

Let (α0, . . . , αn−1, τn) with αj ∈ D (j = 0, 1, . . . , n− 1) and τn ∈ S
1. Set

Θj := Θ(αj), Θ(α) :=

(

α ρ

ρ −α

)

, ρ :=
(

1− |α|2
)1/2

.

2The weakened orthogonality condition that POPUC satisfy appeared in [13, Equation 4.10] as
far as we can tell. While it is true that in Geronimus’ 1944 paper [17, Theorem IV] such polynomials
were presented.

3In [13], Delsarte and Genin called to these polynomials (symmetric) predictor polynomials and
its weakened orthogonality property quasiorthogonality. In [14], they refer to these polynomials as
quasiorthogonal polynomials on the unit circle. This denomination could be also supported by the
fact that in 1946 Geronimus regarding to these polynomials wrote that they “...play the same role
here as the quasi-orthogonal polynomials of M. Riesz in the Hamburger problem.” (cf. [18, Remark
I]). The denomination POPUC was coined in [28].

4Such ideas were pioneering employed in the present context by Bohnhorst in her Ph.D. thesis
[7] defended in 1993 at the Bielefeld University under the supervision of Elsner.
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Define the (n+ 1)-by-(n+ 1) matrix

C := LM , (1)

where L and M are given explicitly by

L :=

{

Θ0 ⊕Θ2 ⊕ · · · ⊕Θn−2 ⊕ τn if n is even

Θ0 ⊕Θ2 ⊕ · · · ⊕Θn−1 if n is odd ,

M :=

{

1 ⊕ Θ1 ⊕Θ3 ⊕ · · · ⊕Θn−1 if n is even

1 ⊕ Θ1 ⊕Θ3 ⊕ · · · ⊕Θn−2 ⊕ τn if n is odd.

Any unitary (n+ 1)-by-(n+ 1) upper Hessenberg matrix with positive sub-
diagonal elements is uniquely parameterized by 2n + 1 real numbers that
compose the parameters of the array (α0, . . . , αn−1, τn) [22] (cf. [24] and [2,
Proposition 1]). The resulting matrix after this process is referred as the
Schur parametric form of the original matrix. The factorization (1), which is
unitarily similar to the Schur parametric form of an upper Hessenberg ma-
trix with positive subdiagonal elements, was presented by Bunse-Gerstner
and Elsner [9] (cf. [21, Section 12.2.10] and [7, Definition 3.3 and Lemma
3.4]). The explicit unitary pentadiagonal or double-staircase form of C (re-
ferred as Doppel-Treppen-Matrix in the original German source) was studied
extensively by Bohnhorst [7], see Figure 1 for an 8-by-8 example (cf. [7,
Equation 3.9] and [30, Figure 1.1]). The matrix C becomes a very popular
object in the Mathematical Physics and Orthogonal Polynomials communi-
ties after the work [11], specially after Simon’s monographs [35, 36] where it
was called (improper) CMV matrix (cf. [38, 40]).

























α0 ρ0α1 ρ0ρ1
ρ0 −α0α1 −α0ρ1

ρ1α2 −α1α2 ρ2α3 ρ2ρ3
ρ1ρ2 −α1ρ2 −α2α3 −α2ρ3

ρ3α4 −α3α4 ρ4α5 ρ4ρ5
ρ3ρ4 −α3ρ4 −α4α5 −α4ρ5

ρ5α6 −α5α6 ρ6τ 7
ρ5ρ6 −α5ρ6 −α6τ 7

























Figure 1. The matrix C for n = 7.
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In order to make the notation more transparent, we write C(α0, . . . , αn−1, τn)
instead of C. We choose the representation (1) instead of their unitary sim-
ilar upper Hessenberg matrix for a technical reason related to the manner
in which Lemma 2.1 below is presented. In the next definition and subse-
quently, I denotes the identity matrix, whose order is made explicit or may
be inferred from the context.

Definition 1.1 (cf. [39, Proposition 3.2]). Let C(α0, . . . , αn−1, τn) be the
matrix given by (1), where αj ∈ D (j = 0, 1, . . . , n − 1) and τn ∈ S

1. The
(monic) polynomial Pn+1 defined by

Pn+1(z) := det
(

zI − C(α0, . . . , αn−1, τn)
)

is the POPUC of degree n+ 1 associated with the array (α0, . . . , αn−1, τn).

It is not difficult to see that the eigenvalues of C(α0, . . . , αn−1, τn) are sim-
ple. This fact was observed in 1944 by Geronimus [17, Theorem IV] (cf. [18,
Theorem III], [19, Theorem 9.1] and [5, Theorem 7.2.2]) using the connection
between POPUC and OPUC. Note that if τn were in D, then the correspond-
ing characteristic polynomial would be an OPUC and their zeros would be
in D. A remarkable property of the eigenvectors of C(α0, . . . , αn−1, τn) is the
fact that all their components are nonzero (cf. [35, Chapter 4] and references
therein). This property is clearly valid also for the corresponding unitarily
similar Hessenberg matrix.

Definition 1.2. Two finite subsets {ζ1, ζ2, . . . , ζm} and {ξ1, ξ2, . . . , ξn} (1 ≤
m ≤ n) of S1 interlace (resp. strictly interlace) whenever there exist n −m

points ζm+1, ζm+2, . . . , ζn ∈ S
1 such that any closed arc (resp. open arc) on

S
1 connecting two distinct elements of {ζ1, ζ2, . . . , ζn} contains at last one

element of {ξ1, ξ2, . . . , ξn}, and vice versa.

We can now formulate our main result.

Theorem 1.1. Let C(α0, . . . , αn−1, τn) be a matrix given by (1), where αj ∈ D

(j = 0, 1, . . . , n− 1) and τn ∈ S
1. The following sentences hold:

(i) Let β ∈ S
1\{1} and define Cβ

m := C(α0, . . . , αm−1, βαm, . . . , βαn−1, βτn)
(0 ≤ m < n) and Cβ

n := C(α0, . . . , αn−1, βτn). Then the eigenvalues of
C(α0, . . . , αn−1, τn) and Cβ

m strictly interlace on S
1 for each 0 ≤ m ≤ n.
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(ii) For each 0 ≤ m < n, let τm ∈ S
1, and let C(α0, . . . , αn−1, τn) be

partitioned as

C(α0, . . . , αn−1, τn) =

(

C11 C12
C21 C22

)

, (2)

C11 being the (m+1)-by-(m+1) leading principal submatrix of C(α0, . . . ,

αn−1, τn). For each ζ ∈ S
1, define recursively the numbers5

τn(ζ) := τn, τj(ζ) :=
ζ αj + τj+1(ζ)

αjτj+1(ζ) + ζ
(j = n− 1, . . . , 1, 0) . (3)

Set6

A := C ∩ σ(C(α0, . . . , αm−1, τm)), B := σ(N ) \A ,

where C := {ζ ∈ S
1 : τm(ζ) = τm}, N := C(αm+1, . . . , αn−1, τn)D with

D := diag (γm, I), and

γm :=
αm − τm

αmτm − 1
. (4)

Then C(α0, . . . , αn−1, τn) and C(α0, . . . , αm−1, τm) have at mostmin{m+
1, n−m} common eigenvalues. More precisely, C(α0, . . . , αn−1, τn) and
C(α0, . . . , αm−1, τm) have A as the set of common eigenvalues, A being
also given by the alternative expression

A = σ(N ) ∩ σ(C(α0, . . . , αm−1, τm)) .

Furthermore, the elements of the sets σ
(

C (α0, . . . , αn−1, τn)
)

\A and

σ
(

C(α0, . . . , αm−1, τm)
)

∪ B strictly interlace on S
1.

Let Pn+1 be the POPUC of degree n+1 associated to the array (0, . . . , 0, 1).
Since C(0, . . . , 0, 1) is a permutationmatrix, it follows that Pn+1(z) = zn+1−1.
The sequence (Pj)j≥1 (all of whose zeros are roots of unity) produce, by
geometric intuition, illuminating examples that fall within Theorem 1.1.

5In [15] (cf. [16, Equation 2.6]), Delsarte and Genin have shown that if the τj(ζ)’s (known as
pseudo reflection coefficients), for a suitable choice of ζ, are given by (3), then the corresponding
POPUC satisfy a three-term recurrence relation (cf. [12]). Bunse-Gerstner and He [10] have
provided an illuminating discussion of the works of Delsarte and Genin on POPUC in matrix
terms.

6σ(A) denotes the spectrum of A.
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Example 1.1. Let P3 and P6 be the POPUC associated to the arrays (0, 0, 1)
and (0, 0, 0, 0, 0, 1), respectively. In this situation,

C(0, 0, 1) =





0 0 1
1 0 0
0 1 0



 , C(0, 0, 0, 0, 0, 1) =

















0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

















,

and, therefore,

σ(C(0, 0, 1)) =
{

1, e±i2π/3
}

, σ(C(0, 0, 0, 0, 0, 1)) =
{

±1, e±i2π/3, e±iπ/3
}

.

In the notation of Theorem 1.1 we have n = 5, m = 2, τj(ζ) = ζ5−j (0 ≤
j ≤ 5), A = C = σ(C(0, 0, 1)), and B = ∅, where A is obtained by using
any of the expressions outlined in Theorem 1.1. Clearly, C(0, 0, 0, 0, 0, 1)
and C(0, 0, 1) have A as the set of common eigenvalues and the elements of
the sets σ(C(0, 0, 0, 0, 0, 1)) \ A and σ(C(0, 0, 1)) strictly interlace on S

1, in
concordance with sentence (ii) of Theorem 1.1.

Regarding Theorem 1.1, as far as we know, sentence (i) for m = 0 was
proved by Ammar, Gragg and Reichel [1, Proposition 4.2], although the
particular case β = −1 is known since Geronimus’ work [17, Theorem IV] (cf.
[18, Theorem III]). The sentence (i) for m = n was proved by Bohnhorst in
[7, Theorem 3.19] (cf. [8, Theorem 3.5]). In [39, Theorem 3.4], Simon proved
a weaker version of sentence (ii) that reads as follows: Strictly between any
pair of eigenvalues of C(α0, . . . , αm−1, τm) there is at least one eigenvalue of
C(α0, . . . , αn−1, τn).

Corollary 1.1. Let C(α0, . . . , αn−1, τn) be a matrix given by (1), where
αj ∈ D (j = 0, 1, . . . , n− 1) and τn ∈ S

1. Let τn−1 ∈ S
1 and define γn−1 as in

(4) for m = n − 1. Then C(α0, . . . , αn−1, τn) and C(α0, . . . , αn−2, τn−1) have
at most one common eigenvalue. More precisely, either C(α0, . . . , αn−1, τn)
and C(α0, . . . , αn−2, τn−1) have τnγn−1 as (only) common eigenvalue and the
elements of σ

(

C(α0, . . . , αn−1, τn)
)

\ {τnγn−1} and σ
(

C(α0, . . . , αn−2, τn−1)
)

strictly interlace on S
1, or else C(α0, . . . , αn−1, τn) and C(α0, . . . , αn−2, τn−1)

have no common eigenvalues, and in such case τnγn−1 is not an eigenvalue
of either, and the elements of the sets σ

(

C(α0, . . . , αn−1, τn)
)

and σ
(

C(α0,

. . . , αn−2, τn−1)
)

∪ {τnγn−1} strictly interlace on S
1.
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Proof : Take m = n − 1 in Theorem 1.1. Hence, (3) and (4) yield C =
{τnγn−1} which, in turn, is equal to σ(N ). Then either A = C and B = ∅ if
τnγn−1 ∈ σ

(

C(α0, . . . , αn−2, τn−1)
)

, or else A = ∅ and B = C otherwise. The
result follows immediately from sentence (iii) of Theorem 1.1.

Corollary 1.1 was proved by Bohnhorst [7, p. 48] (cf. [8, p. 819]) and
rediscovered by Simon [39, Theorem 1.4]. It is worth noting that in view of
Corollary 1.1 and besides the several and well-known practical consequences,
POPUC answered the following open-ended question proposed by Turán as
far as 1974 [42, Problem LXVI, p. 60]: “It is known that the zeros of the
nth orthogonal polynomial (with respect to a Lebesgue-integral function on an
interval) separate the zeros of the (n+1)th polynomial. What corresponds to
this fact on the unit circle?”7.

2. Proof of Theorem 1.1

2.1. Some preliminary lemmas. Theorem 1.1 will be proved through the
following sequence of lemmas.

Lemma 2.1. Let U and S be unitary matrices of the same order and suppose
that rank (I − S) = 1 . Then U and US have weakly interlacing eigenvalues
on S

1. Moreover, assume that US admits a decomposition US = U1 ⊕ U2 ,

and let U be partitioned as

U =

(

U11 U12

U21 U22

)

,

U11 and U1 being of the same order. Set U1 := σ(U1), U2 := σ(U2), and
U := σ(U). Assume further that the eigenvalues of U1 and U2 are simple and
σ(U11) ∩ U1 = σ(U22) ∩ U2 = ∅. Then the elements of the sets U \

(

U1 ∩ U2

)

and U1 ∪
(

U2\(U1 ∩ U2)
)

strictly interlace on S
1.

Proof : The first sentence of the lemma is the simplest form of a result due
to Arbenz and Golub [4, Section 6] (cf. [7, Theorem 2.9] and [8, Theorem
2.7])8. In order to deduce the second one, we first claim that

U1 ∩ U2 = U1 ∩ U = U2 ∩ U . (5)

Indeed, since rank (US − U) = 1, there exist nonzero vectors u, v ∈ Cn (n
being the common order of U and S) such that US = U + uvT . Using the

7We quote the English translation provided by Szüsz [43, Problem LXVI].
8It can be deduced directly using [32, p. 222] and [27, Corollary 4.3.9].
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formula for the determinant of a rank one perturbation (cf. [34, Proposition
3.21]), we may write for each ζ ∈ C

9

χ
U
(ζ) = χ

US
(ζ) + vT adj(ζI − US)u . (6)

Let US = ZΛZ∗ be the spectral decomposition of US in which Λ = diag (λ1,

. . . , λn) and Z = (z1 . . . zn). Thompson-McEnteggert’s formula for the adju-
gate [41] (cf. [33, Theorem 2.1]) gives

adj(λjI − US) = χ′
US
(λj)zjz

∗
j , (7)

where the prime denotes the derivative. Combining (6) with (7) yields10

χ
U
(λj) =

(

χ′
U1

(λj)χU2
(λj) + χ

U1
(λj)χ

′
U2

(λj)
)

z∗juv
Tzj . (8)

We next claim that if λj ∈ (U1 − U2) ∪ (U2 − U1)
11, then z∗juv

Tzj 6= 0. We

only prove that λj ∈ U1 − U2 implies vTzj 6= 0. (To prove that λj ∈ U1 − U2

implies z∗ju 6= 0, we proceed similarly, as well as for proving that λj ∈ U2−U1

implies z∗juv
Tzj 6= 0.) Indeed, suppose that λj ∈ U1 − U2 and vTzj = 0.

Since there is a normalized eigenvector vj of U1 associated with λj such that
zj = (vTj , 0, . . . , 0)

T , we deduce

U11 vj = λjvj ,

hence λj ∈ σ(U11) ∩ U1, contrary to σ(U11) ∩ U1 = ∅. Consequently, (5)
follows from (8). Finally, it follows from (5) that the sets U \

(

U1 ∩ U2

)

and

U1 ∪
(

U2\(U1 ∩ U2)
)

have no common elements, thus the second sentence of
the lemma follows from the first one.

Lemma 2.2. Let U be a unitary matrix and for a fixed k let S be the diag-
onal matrix obtained from the identity matrix by replacing the (k, k) entry
with a number on S

1 \ {1}. Assume that U and S have the same order.
Assume further that the eigenvalues of U are simple and all its eigenvectors
have a nonzero component at the position k. Then U and US have strictly
interlacing eigenvalues on S

1.

Proof : Without loss of generality we can assume that k = 1, and so S =
diag (β, I) with β ∈ S

1 \ {1}. Let U = ZΛZ∗ be the spectral decomposition

9χ
A
denotes the characteristic polynomial of A.

10The eigenvalue interlacing already stated implies U1 ∩ U2 ⊆ U , and so U1 ∩ U2 ⊆ U1 ∩ U and
U1 ∩ U2 ⊆ U2 ∩ U .

11Given a set E and F,G ⊆ E, we define F −G := F ∩ (E\G); if G ⊆ F , then F −G = F\G.
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of U in which Λ = diag (λ1, . . . , λn) and Z = (z1 . . . zn). Arguing as in the
proof of Lemma 2.1 we have

χ
US
(λj) = χ′

U
(λj) z

∗
juv

Tzj . (9)

Let aj 6= 0 be the first component of the vector zj . Then

z∗juv
Tzj = z∗jU(I − S)zj = λj(1− β) |aj|

2 6= 0 .

Thus the result follows from (9) and the first sentence of Lemma 2.1.

Lemma 2.3. Let αj ∈ D (j = 0, 1, . . . , n − 1) and τn ∈ S
1. The following

sentences hold:

(i) Let S be a diagonal matrix obtained from the (n+1)-by-(n+1) identity
matrix by replacing one of its diagonal entries with a number on S

1 \
{1}. Then C(α0, . . . , αn−1, τn) and C(α0, . . . , αn−1, τn)S have strictly
interlacing eigenvalues on S

1.
(ii) Let C(α0, . . . , αn−1, τn) be partitioned as in (2). Then, for each 0 ≤

m < n, C22 has no eigenvalues on S
1 .

Proof : (i) The result follows directly from Lemma 2.2 and the fact that all
the components of the eigenvectors of C(α0, . . . , αn−1, τn) are nonzero.
(ii) Assume that m is even. Note that C22 is the (n − m)-by-(n − m)

trailing principal submatrix of each of the matrices C(αm, . . . , αn−1, τn) and
C(αm, . . . , αn−1, τn)S, where S := diag (β, I). Suppose the assertion (ii) is
false. Since C(αm, . . . , αn−1, τn) and C(αm, . . . , αn−1, τn)S are unitary matri-
ces, these matrices share all the eigenvalues of C22 on S

1, which contradicts
sentence (i). If m is odd, we argue in the same way noting that CT

22 is
the (n−m)-by-(n−m) trailing principal submatrix of each of the matrices
C(αm, . . . , αn−1, τn) and S C(αm, . . . , αn−1, τn).

Lemma 2.4. Let αj ∈ D (j = 0, 1, . . . , n−1) and τn ∈ S
1. Let C(α0, . . . , αn−1,

τn) be partitioned as in (2), where 0 ≤ m < n. Let τm ∈ S
1 and define τm(ζ)

via (3) for each ζ ∈ S
1. Then C(α0, . . . , αn−1, τn) and C(α0, . . . , αm−1, τm)

have at most min{m+1, n−m} common eigenvalues, which consist of the set
of different solutions ζ of the equation τm(ζ) = τm on σ(C(α0, . . . , αm−1, τm)).

Proof : We begin by noting that

det
(

ζI − Cn
)

= det
(

ζI − C(α0, . . . , αm−1, τm(ζ))
)

det
(

ζI − C22
)

(10)
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for each ζ ∈ S
1. Indeed, by sentence (ii) of Lemma 2.3, ζI−C22 is nonsingular,

hence (10) follows from the equality (cf. [7, Equation 3.41])

C(α0, . . . , αm−1, τm(ζ)) = C11 − C12(C22 − ζI)−1C21 ,

after taking into account that the Schur complement of ζI − C22 in ζI −
C(α0, . . . , αn−1, τn) is ζI −

(

C11 − C12(C22 − ζI)−1C21
)

. The result follows
from (10) and the fact that for ν, ζ ∈ S

1, with ν 6= ζ, C(α0, . . . , αm−1, ν)
and C(α0, . . . , αm−1, ζ) have no common eigenvalues (see e.g. [40, Theorem
2.14.4]; alternatively, apply sentence (i) of Lemma 2.3).

2.2. Proof of Theorem 1.1. (i) Let S := diag (Im, β, In−m), D := diag (Im,
J β
n−m+1), and V := diag (Im+1, J

β
n−m), where J β

k := diag (β, 1, β, 1, . . . ) is a
k-by-k diagonal matrix. Note that

(

β 0
0 1

)

Θ(α)

(

1 0
0 β

)

= Θ(αβ) . (11)

Using (11) it is easily seen that 12

D∗ C(α0, . . . , αn−1, τn)DS =
(

D∗LV
) (

V∗MDS
)

= Cβ
m ,

when m is even. Similarly, the transpose of (11) leads to

S D C(α0, . . . , αn−1, τn)D
∗ =

(

S DLV∗
) (

VMD∗
)

= Cβ
m ,

when m is odd. The result follows from sentence (i) of Lemma 2.3.
(ii) Define the block diagonal matrix S := diag (Im,Z, In−m−1), where

Z = Θ∗
m

(

τm 0
0 γm

)

.

Hence

C(α0, . . . , αm−1, τm) ⊕ N = C(α0, . . . , αn−1, τn)S ,

when m is odd, and

C(α0, . . . , αm−1, τm) ⊕ N T = ST C(α0, . . . , αn−1, τn) ,

when m is even. Note that N has simple eigenvalues (on S
1) by sentence (i)

of Lemma 2.3. The result follows from Lemma 2.1, sentence (ii) of Lemma
2.3, and Lemma 2.4.

12A different proof is given in [37, Theorem 5.1].
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