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TENSOR PRODUCTS AND RELATION QUANTALES

MARCEL ERNÉ AND JORGE PICADO

Abstract: A classical tensor product A⊗B of complete lattices A and B, consist-
ing of all down-sets in A×B that are join-closed in either coordinate, is isomorphic
to the complete lattice Gal(A,B) of Galois maps from A to B, turning arbitrary
joins into meets. We introduce more general kinds of tensor products for closure
spaces and for posets. They have the expected universal property for bimorphisms
(separately continuous maps or maps preserving restricted joins in the two compo-
nents) into complete lattices. The appropriate ingredient for quantale constructions
is here distributivity at the bottom, a generalization of pseudocomplementedness.
We show that the truncated tensor product of a complete lattice B with itself be-
comes a quantale with the closure of the relation product as multiplication iff B is
pseudocomplemented, and the tensor product has a unit element iff B is atomistic.
The pseudocomplemented complete lattices form a semicategory in which the hom-
set between two objects is their tensor product. The largest subcategory of that
semicategory has as objects the atomic boolean complete lattices, which is equiv-
alent to the category of sets and relations. More general results are obtained for
closure spaces and posets.
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1. Introduction

Tensor products have their place in algebra, (point-free) topology, order
theory, category theory and other mathematical disciplines. In the realm of
ordered sets, they are intimately related to the concept of Galois connections
(see e.g. [5, 11, 19, 30, 34]; for historical background, refer to [14, 16, 18]).
In the present paper, we show how such tensor products give rise to certain
quantales whose members are specific relations between complete lattices,
partially ordered sets (posets) or closure spaces.
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Before focussing on tensor products, let us recall briefly the fundamental
notions in the theory of Galois connections. Given two posets A and B,
let Ant(A,B) denote the pointwise ordered set of all antitone, i.e. order-
reversing maps from A to B, and Gal(A,B) the subposet of all Galois maps,
i.e. maps from A to B such that the preimage of any principal filter is a
principal ideal [14, 28, 34]. If A and B are complete lattices, Ant(A,B) is a
complete lattice, too, and Gal(A,B) is the complete lattice of all f : A→ B

satisfying f(
∨
X) =

∧
f [X] for each X ⊆A. Galois maps are closely tied to

Galois connections; these are dual adjunctions between posets A and B, that
is, pairs (f, g) of maps f : A→ B and g : B → A such that

x ≤ g(y)⇔ y ≤ f(x) for all x ∈ A and y ∈ B,

or equivalently, pairs of maps f ∈ Ant(A,B) and g ∈ Ant(B,A) with

x ≤ g(f(x)) for all x ∈ A and y ≤ f(g(y)) for all y ∈ B.

Either partner in a Galois connection determines the other by the formula

g(y) =f ∗(y) = max {x ∈A : f(x) ≥ y},

and the Galois maps are nothing but the partners of Galois connections.
Clearly, (f, g) is a Galois connection iff (g, f) is one, and consequently,
Gal(A,B) ≃ Gal(B,A). Both composites of the partners of a Galois con-
nection are closure operations, and their ranges are dually isomorphic.
Three tensor products of posets A and B are defined as follows: A⊗rB

denotes the collection of all right tensors, i.e. down-sets T in A × B such
that xT = {y ∈ B : (x, y) ∈ T} is a principal ideal of B for each x ∈ A.
The system A ℓ⊗B of left tensors is defined in the opposite manner, and the
tensor product A ℓ⊗rB consists of all (two-sided, i.e. left and right) tensors;
if A and B are complete, it is denoted by A⊗B; in that case, a down-set
T in A×B is a right tensor iff {x}×Y ⊆ T implies (x,

∨
Y ) ∈ T , a left

tensor iff X ×{y} ⊆ T implies (
∨
X, y) ∈ T , and a tensor (or G-ideal [31])

iff X × Y ⊆ T implies (
∨
X,

∨
Y ) ∈ T (see Shmuely [34] for alternative

characterizations).
A bijective connection between posets of antitone maps and tensor products

of posets A,B is provided by the assignments

f 7→ Tf = {(x, y) ∈ A× B : f(x) ≥ y} and

T 7→ fT with fT : A→ B, x 7→ max xT .
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Indeed, these maps are mutually inverse isomorphisms between A⊗rB and
Ant(A,B), and they induce isomorphisms between A ℓ⊗rB and Gal(A,B).

If some poset B has a least element 0 = 0B, we may build the “trun-
cated” poset B̆ = B r {0B}. Now, given complete lattices A,B, C and
f ∈ Ant(A,B), g ∈ Ant(B,C), define g⊙ f : A→ C by

g⊙ f(a) =
∨
{c ∈ C : (a, c) ∈ Ef,g},

where Ef,g denotes the tensor generated by the set

Tf,g = {(x, z) ∈ A× C : ∃ y ∈ B̆ : f(x) ≥ y and g(y) ≥ z}

( = {(x, z) ∈ A× C : f(x) ∧ g∗(z) > 0B} if g is a Galois map).

Picado showed in Proposition 3.1 of [31] that the so-defined g⊙ f is in fact
a Galois map from A to C. This gives a way of composing antitone maps
and Galois maps or connections, so that the composed map is again antitone,
which almost never would happen with the usual composition of maps. In
certain cases, the alternate composition ⊙ appears somewhat mysterious.

Example 1.1. If I denotes the real unit interval [ 0, 1 ] with the usual order,
the composite g⊙ f of f, g ∈ Ant(I, I) is always a step function! Explicitly,

Tf,g = {(x, z) : ∃ y > 0 (f(x) ≥ y, g(y) ≥ z)}

= {(x, z) : f(x) > 0, ∃ y > 0 (g(y) ≥ z)},

Ef,g = {(a, c) : a ≤ r =
∨
{x : f(x) > 0}, c ≤ s =

∨
{g(y) : y > 0}} ∪ ∅,

where ∅ = ({0} × I) ∪ (I× {0}). Therefore,

g ⊙ f(0) = 1, g ⊙ f(a) = s if 0 < a ≤ r, and g ⊙ f(a) = 0 otherwise.
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In particular, the new composition ⊙ of any two involutions (that is, antitone
bijections) of I yields the constant function 1. Apparently, the previous
arguments work in any complete chain instead of I, and much more generally,
in any complete lattice with a meet-irreducible least element 0.

In [31] it is proved that ⊙ makes Gal(B,B) a quantale whenever B is
a frame (locale). Hence, with any frameB, there is associated not only a
quantale of (isotone, i.e. order preserving) residuated maps [6, 18], but also a
quantale of (antitone!) Galois maps. One of our main goals is to characterize
those complete lattices B for which Gal(B,B) or Ant(B,B), respectively,
together with the multiplication ⊙ becomes a quantale. In most cases, it
will be technically more comfortable to work with tensor products than with
Gal(A,B) or Ant(A,B).

After a brief summary of some central notions and facts in quantale theory
we introduce binary tensor products for closure spaces and establish their
fundamental properties. This allows us to extend the theory of tensor prod-
ucts for complete lattices in diverse directions, in particular, from complete
lattices to arbitrary posets. The usual trick is here to replace joins with cuts
(see [10, 11, 16] and Section 4), and then, in a more courageous step, cuts
by arbitrary closed sets in closure spaces. A tensor between closure spaces
A and B is a subset T of A×B such that all “slices” xT and Ty are closed,
and the tensor product A⊗B is the closure system of all such tensors.
Any augmented poset AX = (A,X ) (where A is a poset and X a collection

of subsets of A) may be interpreted as a closure space, by considering the
closure system of all X -ideals, i.e. down-sets I containing the cut closure
∆X =

⋂
{↓y : X⊆↓y} whenever X ∈ X and X ⊆ I. Then, the tensor

product AX ⊗BY of two augmented posets consist of all XY-ideals or XY-
tensors, i.e. down-sets T in A×B such that for allX∈X and Y ∈Y , X ×Y ⊆
T implies ∆X ×∆Y ⊆ T (resp. (

∨
X,

∨
Y ) ∈ T if the involved joins exist). If

A and B are complete lattices then the tensor product AX⊗B = AX⊗BPB is
isomorphic to the complete lattice AntX (A,B) of maps f : A→ B satisfying
f(
∨
X) =

∧
f [X] for all X ∈X . Furthermore, our tensor products have the

expected universal property with respect to the appropriate bimorphisms.
A considerable simplification is achieved by passing to truncated tensor

products AX ⊗̆BY , cutting off the least tensor from all tensors. Their el-
ements are down-sets in the direct product Ă × B̆ (with Ă = A r ∅ and

B̆ = Br∅) such that the conditions in the two coordinates hold for nonempty
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“rectangles”. One advantage of that reduction is that the pure tensors a⊗ b

have no longer the rather complicated form (a, b)∪ (∅×B)∪ (A×∅) but be-
come simply point closures, resp. principal ideals. Another, and more im-
portant, advantage is that now the quantale constructions are much easier,
since the tensor multiplication corresponding to ⊙ is obtained by forming
the (right) tensor closure of the usual relation product, and then the or-
der isomorphism between A ℓ⊗rB and Gal(A,B), resp. between A⊗rB and
Ant(A,B), also transports the multiplication. A main result will be that
for any complete lattice B, the truncated tensor product B ⊗̆B, resp. the
isomorphic tensor product B ⊗ B ≃ Gal(B,B), becomes a quantale iff B

is pseudocomplemented, and a unital quantale iff B is an atomic boolean
complete lattice.
Our constructions also provide a semicategory (missing identity morphisms)

of pseudocomplemented complete lattices together with the (truncated) ten-
sors or antitone maps, respectively, as morphisms. In that semicategory, the
atomic boolean complete lattices (isomorphic copies of power set lattices)
form the greatest subcategory, and the latter is equivalent to the category of
sets and relations as morphisms. Similar results are obtained for augmented
posets and for closure spaces instead of complete lattices. Crucial is here
the observation that a closure system is pseudocomplemented iff all polars
x⊥ = {y : x ∩ y = ∅} are closed.

In the case of a frame / locale, our quantale constructions via Galois con-
nections or tensor products have important applications to the point-free
treatment of uniform structures (see Ferreira and Picado [20]). For a com-
prehensive discussion of frames resp. locales see Picado and Pultr [32], and
for more background concerning quantales Rosenthal [33].

For categorical topics refer to Adámek, Herrlich and Strecker [1]. The
diverse relation products discussed in this paper fit, of course, into the general
category-theoretical framework of relations and their multiplication (see [1],
Ferreira and Picado [20, Section 2], Freyd and Scedrov [21]).

The main results in this paper have been presented by the first author at
the 71st Workshop on General Algebra (AAA), Bedlewo 2006 [15] but were
never published in a journal until now.
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2. Prequantales, quantales, prenuclei and nuclei

A prequantale is a complete lattice Q with a multiplication that distributes
over arbitrary joins from both sides: for all x in Q and subsets Y of Q,

x ·
∨
Y =

∨
{x · y : y ∈ Y } and

∨
Y · x =

∨
{y · x : y ∈ Y }.

A quantale is a prequantale with associative multiplication, and a locale or
frame is a quantale whose multiplication is the binary meet. An equivalent
definition of quantales characterizes them as complete residuated semigroups

(Birkhoff [5], Blyth and Janowitz [6]) with residuation operations satisfying

y ≤ z .· x = x→z ⇔ x · y ≤ z ⇔ x ≤ z ·. y = z←y.

A subquantale of a quantale Q is closed under joins and the multiplication,
and a quantale homomorphism is a map between quantales that preserves
arbitrary joins and the multiplication. The example below is taken from
[18].

Example 2.1. Let (X, ·) be a partial semigroup, that is, a set equipped with
a partial binary operation such that whenever r · s and s · t are defined, then
so are (r · s) · t and r · (s · t), and these products are equal. Any such partial
semigroup gives rise to a quantale whose ground set is the power set PX and
whose multiplication and residuals are given by

R ⊙ S = {r · s : r ∈ R, s ∈ S, and r · s is defined},

R→T = {x ∈X : for all r ∈ R, if r · x is defined then r · x ∈ T},

T←S = {x ∈X : for all s ∈ S, if x · s is defined then x · s ∈ T}.

Specifically, taking the partial semigroup operation on a cartesian square
B×B given by (a, b) · (d, c) = (a, c) if b = d, the power set P(B×B) becomes
a quantale with unions as joins and the usual relation product

S ◦R = R · S = {(a, c) : (a, b) ∈ R and (b, c) ∈ S for some b}.

A preclosure operation on a poset B is an extensive (increasing) and isotone
(order preserving) map fromB to B, and a closure operation is an idempotent
preclosure operation; the fixpoint set

Bj= {x∈B : j(x)=x}

of a preclosure operation j is a closure domain, and the corresponding clo-
sure operation j is the (pointwise) least closure operation above j. The
poset of closure operations is dually isomorphic to that of closure domains
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(see e.g. [16]). As in [31], we mean by a prenucleus on a (pre)quantale Q a
preclosure operation j : Q→ Q such that

x · j(y) ∨ j(x) · y ≤ j(x · y) for all x, y ∈ Q.

A (quantic or quantalic) nucleus on Q is an idempotent prenucleus, or equiv-
alently, a closure operation j on Q satisfying

j(x) · j(y) ≤ j(x · y) for all x, y ∈ Q.

It is well known and easy to see that the surjective corestrictions of nuclei on
Q form a set of representatives for the surjective quantale homomorphisms
f : Q → Q′: such an f has an upper (right) adjoint g; then k = g ◦ f is a
nucleus on Q, and i : Qk → Q′, x 7→ f(x) is an isomorphism with f = i ◦ k.

The fixpoint sets of (pre)nuclei are characterized in Proposition 2.1 below
(see Niefield and Rosenthal [29, 33] and Picado [31]). Extensions to prenuclei
and nuclei on prequantales or cm-lattices, where the multiplication is isotone
but not necessarily distributive over joins, are possible (Erné [12, 13]).

Proposition 2.1. For a quantale Q and S ⊆ Q, the following are equivalent:

(a) S is the fixpoint set Qj of some prenucleus j on Q.

(b) S is the range Qk of some nucleus k on Q.

(c) S is closed under arbitrary meets and residuation in Q, that is, q ∈ Q

and s ∈ S imply q→s ∈ S and s←q ∈ S.

(d) S is closed under arbitrary meets in Q and is a quantale with respect

to the multiplication x ·S y =
∧
{s ∈ S : x · y ≤ s}.

If these conditions hold then k = j and x ·S y = k(x · y). There is a bijective

correspondence between nuclei and subsets S satisfying these conditions.

We call a subset S enjoying the above properties a quantic quotient of
Q. (Warning: a quantic quotient of a locale is usually referred to as a
sublocale, because the locale morphisms go in the opposite direction, whereas
a subquantale of a locale resp. frame is a subframe !)
In later sections, we shall need a related result (cf. [31, Lemma 3.2]):

Lemma 2.1. Let i : I → I, j : J → J , k : K → K be preclosure operations on

complete lattices, and suppose a map m : I × J → K, (x, y) 7→ x·y satisfies
∨
X ·

∨
Y =

∨
(X · Y ) (=

∨
{x · y : x ∈ X, y ∈ Y }) for all X ⊆ I, Y ⊆ J.

If i(x) · y ∨ x · j(y) ≤ k(x · y) for all x ∈ I, y ∈ J

then k(i(x) · j(y)) = k(x · y) for all x ∈ I, y ∈ J.
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Proof : Let E denote the pointwise ordered set of all preclosure operations
on I, and consider the subset

F = {f ∈ E : ∀x ∈ I ∀ y ∈ J (f(x)·y ≤ k(x·y))}.

By hypothesis, we have i ∈ F and, as F is closed under pointwise suprema
(by the distribution law), i ≤ s =

∨
F ∈ F . Thus, s is the greatest element

of F . But s ≤ s2 ∈ E and s2(x)·y ≤ k(s(x)·y) ≤ k(k(x·y)) = k(x·y) imply
s2 ∈ F . It follows that s = s2 is a closure operation, and consequently i ≤ s,
whence i(x) · y ≤ k(x · y). Analogously, we get x · j(y) ≤ k(x · y), and finally
i(x) · j(y) ≤ k(i(x) · y) ≤ k(k(x · y)) = k(x · y), hence k(i(x) · j(y)) ≤ k(x · y).
The reverse inequality follows from x · y ≤ i(x) · j(y).

Similar arguments show that many other (in)equalities involving i, j, k may
be transferred to the corresponding (in)equalities for i, j, k.

3. Tensor products of closure spaces

By slight abuse of language, one calls a closure (resp. preclosure) operation
on a power set B=PE a closure operator (resp. preclosure operator) on E,
and a collection of subsets closed under arbitrary intersections (with

⋂
∅ =

E) a closure system on E. The pair A = (E, C) is then referred to as a closure
space, and one writes UA for E and CA for C. For each preclosure operator c
on E, the set Bc of its fixpoints is a closure system. In the opposite direction,
one assigns to any subset X of B the closure operator cX : B → B with

cX (Y ) = cX Y = Y =
⋂
{X ∈ X : Y ⊆X}.

The assignments c 7→ Bc and X 7→ cX constitute a Galois connection that
induces a dual isomorphism between the complete lattice of all closure oper-
ators and that of all closure systems on E [5, 16, 30].
Open sets, subspaces, and continuous maps between closure spaces are

defined as in the topological case. Given any preclosure operator c on E,
a map f is continuous between the closure spaces (E,Bc) and (F, C) iff the
inclusion f [c(Y )] ⊆ c Cf [Y ] holds for all Y ⊆ E. A closure space is T0 iff
distinct singletons have different closures. For any complete lattice B and
any subset X of B, the pair (X, {{x ∈ X : x ≤ b} : b ∈ B}) is a T0

closure space, and all T0 closure spaces arise in that fashion [16, 30]. Every
closure space has an obvious T0 reflection (obtained by identifying points
with the same closure) whose closure system is isomorphic to the original
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one. Thereby, great parts of the theory of closure spaces may be reduced to
complete lattices (cf. [9]).
The empty set often causes some troubles in the subsequent considerations.

Therefore, we call a closure space A unbounded if ∅ is closed, and bounded

otherwise, because then any element in the least closed set ⊥A = ∅ is a lower
bound of the space in the specialization order given by x ≤ y ⇔ x ∈ y = {y}.
The closure space is uniquely bounded if the closure of ∅ is a singleton. As
we saw above, all complete lattices give rise to uniquely bounded closure
spaces whose closed sets are the principal ideals. The restriction to bounded
or to unbounded closure spaces does not cause a severe loss of generality:
adding a point 0 and taking the sets C ∪ {0} instead of the original closed
sets C, one obtains a uniquely bounded reflection; on the other hand, passing
from a closure space A to the subspace Ă on UAr⊥A yields an unbounded
coreflection; and all three spaces have isomorphic closure systems. Let us
note (cf. [9, 16]):

Proposition 3.1. The construct of complete lattices (regarded as closure

spaces) and join-preserving maps is a full epireflective subconstruct of the

construct of closure spaces: for any closure space A = (E, C), the map

ηA : A→ C, x 7→ x

is continuous, and for any continuous map f from A into a complete latticeB,

there is a unique join-preserving map f∨ : C → B with f = f∨ ◦ ηA.

The product of two closure spacesA andB is the cartesian product UA×UB
of the underlying sets, having the “rectangles” F ×G with F ∈CA, G∈CB
as closed sets. Notice that products of topological spaces have much more
closed sets! In the product A×B of closure spaces, one has the equation
X ×Y = X ×Y if X 6= ∅ 6= Y , which however may fail if X or Y are
empty.
Now, we define the tensor product A⊗B of A and B to be the closure

system of all tensors, i.e. subsets T of the underlying set of A×B such that

for each x in A, the set xT = {y : (x, y) ∈ T} is closed inB,
for each y in B, the set Ty = {x : (x, y) ∈ T} is closed inA.

Equivalently, X ×Y ⊆ T implies X ×Y ⊆ T . The closure space

A×B = (UA×UB,A⊗B)
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is referred to as the tensorial product ofA andB. The least element ofA⊗B is

∅ = (⊥A×UB) ∪ (UA×⊥B),

where the symbol ∅ refers toA×B, while ⊥A = ∅ refers toA and ⊥B = ∅
toB. In A×B, the following product equation is always true:

X ×Y = (X ×Y ) ∪ ∅.

Any tensor T ∈A⊗B is the join (in fact, the union) of the pure tensors x⊗y
with (x, y)∈T , where x⊗y = (x× y)∪ ∅ is the least tensor containing (x, y).
Given closure spaces A,B, C and a map f : A×B → C, we have maps

xf : B → C, y 7→ f(x, y) (x ∈ UA),

fy : A→ C, x 7→ f(x, y) (y ∈ UB).

The map f is separately continuous if all xf and all fy are continuous.

Lemma 3.1. (1) A map f : A×B → C is separately continuous iff it is

continuous as a map from A×B to C.

(2) Nonempty closure spaces A and B are unbounded iff every continuous

map f : A×B → C is separately continuous.

Proof : (1) follows from the identities xf
−1[Z] = xT and f−1y [Z] = Ty for

Z ⊆ C and T = f−1[Z].
(2) Suppose f : A×B → C is continuous. Then the preimage of any closed

set of C under f is a closed rectangle T = F ×G. If A and B are unbounded
then T is closed in A×B, since each xT is G or ∅, and each Ty is F or ∅.
Now, (1) applies to show that f is separately continuous.
On the other hand, if, say, A is bounded then ∅ = ∅×UB is closed in

A×B, but not in A×B, since ∅×UB 6= ∅. Hence, the identity map on
A×B is continuous but not separately continuous, by (1).

The coincidence A×B=A×B is rather rare: it fails, for instance, when-
ever A and B are non-singleton closure spaces whose finite subsets are closed.
By earlier remarks, the tensor product A⊗B, being a complete lattice,

may be regarded as a specific closure space, with the principal ideals ↓{T}
as closed sets. Now, from Proposition 3.1 and Lemma 3.1 (1), we infer:
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Theorem 3.1. For arbitrary closure spaces A,B, the pure tensor insertion

⊗ : A× B → A⊗B, (x, y) 7→ x⊗ y

is universal among all separately continuous maps from A×B to complete

lattices: a map f from A×B to a complete lattice C is separately continuous

iff there is a unique join-preserving f∨ : A⊗B → C with f(x, y) = f∨(x⊗y).
This map is given by f∨(T ) =

∨
f [T ].

Corollary 3.1. Tensor products of closure spaces satisfy the commutative law

A⊗B ≃ B⊗A and the associative law (A⊗B)⊗C ≃ A⊗ (B⊗C).

Fortunately, tensor products of closure spaces may be reduced to those of
complete lattices by the next result, which resembles a similar theorem for
concept lattices (cf. [11, 36]) but refers to a different tensor product (cf. [10]):

Theorem 3.2. For any two closure spaces A and B, the complete lattices

A⊗B and CA⊗ CB are isomorphic, via the bijection

h : A⊗B → CA⊗ CB, T 7→ {(X, Y ) ∈ CA×CB : X ×Y ⊆ T}.

Proof : Concerning well-definedness of h, notice that for any X ∈ CA and
any Y ⊆ X h(T ) = {Y ∈ CB : (X, Y )∈ h(T )}, one has X ×

⋃
Y ⊆ T , hence

X ×
⋃
Y ⊆ T , and so

∨
Y =

⋃
Y ∈ X h(T ); and similarly for the other side.

h is an order embedding: if S, T ∈A⊗B satisfy S⊆T then (X, Y ) ∈ h(S)
implies X×Y ⊆S⊆T , hence (X, Y ) ∈ h(T ). Conversely, if h(S)⊆h(T ) and
(x, y)∈S then x× y ⊆ S, (x, y) ∈ h(S) ⊆ h(T ), and so (x, y) ∈ x× y ⊆ T .
h is onto: given T ∈ CA⊗CB, put

T ={(x, y) ∈ UA×UB : h(x⊗ y)⊆T }.

Then we get h(T ) ⊆ T . Indeed, (X, Y ) ∈ h(T ) implies X×Y ⊆ T and so
h(x⊗ y) ⊆ T for all (x, y) ∈ X×Y ; any such (x, y) satisfies x× y ⊆ x⊗ y,
hence (x, y) ∈ h(x⊗y) ⊆ T . Now, T ∈ A⊗B yields (X, Y ) ∈ T , as X is the
join of the point closures x with x ∈ X, and analogously for Y .
Conversely, for (F,G) ∈ T and each (x, y)∈F ×G, we prove h(x⊗ y) ⊆ T :
indeed, (X, Y ) ∈ h(x⊗y) impliesX ×Y ⊆ x⊗y ⊆ (F×G)∪∅ (as (x, y) lies in
(F ×G)∪∅ ∈ A⊗B); hence (X r⊥A)×(Y r⊥B) = (X×Y ) r ∅ ⊆ F ×G;
if both X r⊥A and Y r⊥B are nonempty, it follows that X r⊥A ⊆ F and
Y r⊥B ⊆ G; consequently (X, Y )≤ (F,G) in CA⊗CB, and so (X, Y ) ∈ T ,
as T is a down-set (see Section 4) containing (F,G). If X = ⊥A or Y = ⊥B

then (X, Y ) also belongs to the tensor T . In any case, we obtain (x, y)∈T .
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Thus, F ×G ⊆ T and (F,G) ∈ h(T ). In all, this proves the equation h(T ) =
T .

With some effort, the results in this section may be extended to tensor
products with an arbitrary (infinite) number of factors (Erné [15]).

4. Tensor products of posets and complete lattices

Diverse tensor products for posets and lattices have been introduced in the
literature (see, for example, [4, 10, 11, 26, 28, 34, 36]). We shall define tensor
products with two additional parameters governing the choice of the joins
that should be preserved by the corresponding bimorphisms.
In order to prepare our construction of tensor products, we consider, for

an arbitrary partially ordered set (poset)B, the down-sets or lower sets of B;
these are the fixpoints of the down-closure operator ↓ given by

↓Y = {x ∈ B : x ≤ y for some y ∈ Y } (Y ⊆ B).

The down-sets form a completely distributive algebraic lattice with unions
as joins and intersections as meets, the down-set lattice or Alexandroff com-

pletion AB. While the down-sets are precisely the unions of principal ideals

↓y = ↓{y} = {x ∈ B : x ≤ y} (y ∈ B),

the intersections of principal ideals are special down-sets, the (lower) cuts.
They form the Dedekind-MacNeille completion or normal completionNB [5].
The associated closure operator is the cut operator ∆: PB → PB, given by

∆X =
⋂
{↓y : X ⊆ ↓y} ( = ↓

∨
X if X has a supremum

∨
X)

(see e.g. [16]). More generally, let us consider augmented posets, i.e. pairs
BY = (B,Y) where B is a poset and Y is a collection of subsets of B. We

call a subset I of B a Y-ideal if ∆Y ⊆ I for all Y ∈
.
Y with Y ⊆ I, where

.
Y = Y ∪ {{x} : x ∈ B}.

The Y-ideals are the fixpoints of the preclosure operator ∆Y defined by

∆YX =
⋃
{∆Y : Y ⊆X, Y ∈

.
Y}.

They form a standard completion IYB, i.e. a closure system between NB

and AB. The least Y-ideal is ∅, the bottom of B; it is empty or a singleton.
Applying these definitions to any subset selection Z, assigning to each poset

B a collection Y = ZB of subsets, one obtains the Z-ideals as introduced in
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[8] (see also [14, 16, 18]). A poset B in which each Y ∈ Y (resp. ZB) has a
join is said to be Y-(resp. Z-) join-complete. In such posets, a Y-ideal is just
a down-set closed under forming joins of sets in Y (so-called Y-joins).

Z members Z-join-complete Z-ideal

A arbitrary down-sets complete lattice cut [5, 16]
B binary subsets join-semilattice 3-ideal [17]
C nonempty chains chain-complete chain-closed set
D directed subsets up-complete (dcpo) Scott-closed set [7]
E one-element subsets arbitrary poset arbitrary subset
F finite subsets join-semilattice with 0 Frink ideal [22]

The complete lattices are those posets in which cuts are principal ideals;
sometimes, we regard them as augmented posets (C,PC). In dcpos, the
Scott-closed sets are the usual ones [25]; in the absence of directed joins,
they are the closed sets in the weak Scott topology σ2B [7]. The Axiom of
Choice resp. Zorn’s Lemma guarantees that C-join-completeness is equivalent
to D-join-completeness, and that the chain-closed sets are the Scott-closed
ones.
Now, consider two posets A and B and their direct product A×B (with

the componentwise order). Its down-sets are the lower relations, i.e., those
relations R ⊆ A×B which coincide with their down-closure

↓R = {(a, b) ∈ A×B : a ≤ x and b ≤ y for some (x, y) ∈ R}.

It is a convenient custom to write xRy for (x, y) ∈ R, and to put

xR = {y ∈ B : xR y} for x ∈ A, XR =
⋃
{xR : x ∈ X} for X ⊆ A,

Ry = {x ∈ A : xR y} for y ∈ B, RY =
⋃
{Ry : y ∈ Y } for Y ⊆ B.

Lemma 4.1. For any poset B, the Alexandroff completion QB = A(B×B)
is a subquantale of the relation quantale P(B×B) (but not a quantic quotient

unless the order of B is equality). For R, S, T ∈QB, the residuals are given by

R→T = {(a, b) ∈ B×B : R(↓a)×{b} ⊆ T},

T←S = {(a, b) ∈ B×B : {a}× (↓b)S ⊆ T}.
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Proof : Like any down-set lattice, A(B×B) is closed under arbitrary unions;
these are joins in P(B×B) as well as in QB, and products distribute over
them. Since R, S, T are down-sets, so are R→T and T←S. Furthermore,

S ⊆ R→T ⇔ (aS b ⇒ R(↓a)×{b} ⊆ T )

⇔ ∀ c, d (d≤a, a S b, cR d⇒ c T b) (S = ↓S)

⇔ ∀ c (aS b, cR a⇒ c T b)⇔ R · S ⊆ T.

An analogous argument yields R ⊆ T←S ⇔ R · S ⊆ T .

Notice that the dual relations Rop = {(y, x) : xR y} fulfil the equations

(R · S)op = Sop · Rop and (R→T )op = T op←Rop.

Generalizing the tensor product from [10], we now define the tensor product
of augmented posets AX and BY , or the XY-tensor product of A and B, to
be the closure system of all XY-tensors,

AX ⊗BY = {T = ↓T ⊆ A×B : X∈ X , Y ∈ Y , X×Y ⊆ T ⇒ ∆X×∆Y ⊆ T}.

If A and B happen to be complete lattices or at least all members of X and
Y possess joins then T is an XY-tensor iff it is a down-set in A×B so that

X ∈ X , Y ∈ Y and X ×Y ⊆ T imply (
∨
X,

∨
Y ) ∈ T.

Note:
∨
(X×Y ) = (

∨
X,

∨
Y ) holds only if X 6= ∅ 6= Y or

∨
X=0A,

∨
Y =0B.

If AX and BY are augmented posets then for T to be an XY-tensor it is
necessary and sufficient that the following two implications are fulfilled:

X ∈
.
X and X × {y} ⊆ T imply ∆X ×{y} ⊆ T,

Y ∈
.
Y and {x} × Y ⊆ T imply {x}×∆Y ⊆ T,

which simply means that each Ty is an X -ideal and each xT is a Y-ideal.
Hence, the XY-tensor products may be regarded as special instances of tensor
products for closure spaces: AX ⊗BY is just the tensor product of the closure
spaces (A, IXA) and (B, IYB), and so all facts concerning tensor products
of closure spaces apply to that situation. In particular, the tensor product
of augmented posets may be reduced to that of complete lattices, by virtue
of the following special instance of Theorem 3.2:

Corollary 4.1. AX ⊗BY ≃ IXA⊗IYB ≃ IYB⊗IXA ≃ BY ⊗AX .
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Examples. Let AX and BY be augmented posets.

(1) For X = Y = ∅ (or at least X ⊆ EA and Y ⊆ EB), we have the entire
down-set lattice

AX ⊗BY = A©↓ B = A(A× B) = {T ⊆ A×B : T = ↓T}.

(2) Taking, at the other extreme, for X and Y the power sets PA and PB,
respectively, and identifying APA with A etc., we obtain the tensor product

AX ⊗BY = A⊗B = {T ⊆ A×B : X ×Y ⊆ T ⇒ ∆X ×∆Y ⊆ T}

considered in [10]; if A and B are complete lattices, it agrees with the tensor
product studied earlier by Shmuely [34] and others; but if A or B fails to be
complete, the tensor product A⊗B will be larger than the tensor product
A ℓ⊗rB mentioned in the introduction, which consists of all down-sets T in
A×B such that each of the sets xT and Ty is a principal ideal. In [10],
it is shown that A⊗B has much better properties than the tensor product
A ℓ⊗rB ≃ Gal(A,B) investigated by Nelson [28].

(3) If X is empty and Y is the power set PB then

AX ⊗BY = A ∅⊗B = {T ⊆ A×B : T = ↓T , Y ⊆ xT ⇒ ∆Y ⊆ xT}

consists of all down-sets T in A×B whose slices xT are cuts. Similarly, for
X = PA and Y = ∅ one obtains the system A⊗B ∅ of all down-sets T in
A×B such that each Ty is a cut. If A and B are complete lattices, A ∅⊗B

is the system of all right tensors, A⊗rB ≃ Ant(A,B), and A⊗B ∅ is the
system of all left tensors, A ℓ⊗B ≃ Ant(B,A) (see the introduction).

(4) A variant of the previous example is obtained for X = {∅} and Y =
PB. In case B is complete, the members of AX ⊗BY now correspond to the
antitone maps sending the least element of A to the greatest element of B.

(5) Taking X = {X ⊆A : cardX <α} and Y = {Y ⊆B : card Y <α}, one
obtains some (but not all) kinds of tensor products studied by Bandelt [4].

5.Morphisms and bimorphisms for posets

The introductory remarks on the isomorphisms

f 7→ Tf = {(x, y) : f(x)≥ y} and T 7→ fT with fT (x) = max xT

may be generalized as follows. Let AX be an augmented poset, B a poset,
and define AX ⊗B to be the set of all T ⊆ A×B such that for all x ∈ A,
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the set xT is a principal ideal, and for all y ∈ B, the set Ty is an X -ideal.
For AntX (A,B) take the set of all maps f : A→ B such that for each y∈B,
the preimage f−1[↑y] is an X -ideal. Thus, AntX (A,B) consists of all X -ideal
continuous maps from A to the order-dual of B, where a map f between
posets is X -ideal continuous if all preimages of principal ideals are X -ideals.
For complete lattices A,B, one obtains the complete lattices AX ⊗B and

AntX (A,B) = {f ∈ Ant(A,B) : f(
∨
X) =

∧
f [X] for all X ∈ X}.

Proposition 5.1. For any two posets A and B, the mutually inverse iso-

morphisms f 7→ Tf and T 7→ fT between the posets Ant(A,B) and A⊗rB

induce mutually inverse isomorphisms between AntX (A,B) and AX⊗B.

Proof : By definition, we have for f ∈ Ant(A,B) and T ∈ A⊗rB:

Tf ⊆ T ⇔ ∀x∈A (x T f(x))⇔ ∀x∈A (f(x) ≤ fT (x))⇔ f ≤ fT .

For f ∈AntX (A,B) and each x∈A, the set x Tf is a principal ideal ↓f(x),
and for each y ∈ B, the set Tf y = f−1[↑y] is an X -ideal. Thus, we get
Tf ∈ AX ⊗B and f(x) = max xTf .
Conversely, let T ∈ AX ⊗B. Then fT (x) = max xT defines an antitone

map by the down-set property of T . For x ∈ A and y ∈ B, we have the
equivalences x ∈ f−1T [↑y] ⇔ fT (x) ≥ y ⇔ x T y. Hence, f−1T [↑y] = Ty is an
X -ideal, proving fT ∈ AntX (A,B).
The equivalence x T y ⇔ fT (x) ≥ y shows that the assignment T 7→ fT

induces a bijection between AX ⊗B and AntX (A,B) with inverse f 7→ Tf .
Since f ≤ g is tantamount to Tf ⊆ Tg, we actually have an isomorphism.

Let AX and BY be augmented posets. Being a closure system, AX ⊗BY is
a complete lattice with greatest element A×B and least element ∅, which is
one of the following sets:

if ∅ 6∈ X , ∅ 6∈ Y then ∅ = ∅

if ∅ ∈ X , ∅ 6∈ Y then ∅ = ∆∅×B

if ∅ 6∈ X , ∅ ∈ Y then ∅ = A×∆∅

if ∅ ∈ X , ∅ ∈ Y then ∅ = A×∆∅ ∪ ∆∅×B.

Here, ∆∅ is empty or a singleton. Down-sets of the form

x⊗ y = ↓(x, y) ∪ ∅ =
⋂
{T ∈ AX ⊗BY : x T y}
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are always members of AX ⊗BY ; we call them pure tensors or principal ten-
sors. They form a join-dense subset of AX ⊗BY , because every XY-tensor
T is the union (hence the join) of all pure tensors x⊗ y with x T y.
As expected, XY-tensor products may be characterized by a universal

property for bimorphisms (cf. [2, 10, 11]). Notice that a map from a poset A
into a complete lattice C is X -ideal continuous iff it is continuous as a map
between the closure spaces (A, IXA) and (C,NC) = (C, IPCC). Given a fur-
ther augmented poset BY , we call a map f : A×B → C an XY-bimorphism

if each fy is X -ideal continuous and each xf is Y-ideal continuous — in other
words, if f is separately continuous as a map between the associated closure
spaces. In the case of complete lattices A and B, f is an XY-bimorphism iff
it is isotone and satisfies

xf(
∨
Y ) =

∨
xf [Y ] for all x ∈ A, Y ∈ Y ,

fy(
∨
X) =

∨
fy[X] for all y ∈ B, X ∈ X .

Now, as a special instance of the corresponding Theorem 3.1, we have:

Corollary 5.1. For arbitrary augmented posets AX and BY , the map

⊗ : A× B → AX ⊗BY , (x, y) 7→ x⊗ y

is universal among all XY-bimorphisms into complete lattices. Thus, ⊗ is an

XY-bimorphism, and for any XY-bimorphism f with domain A×B, there

is a unique join-preserving map f∨ : AX ⊗BY → C with f(x, y) = f∨(x⊗y).

Examples. For simplicity, let A and B be complete lattices.

(1) The down-set lattice A(A×B) = A ∅⊗B ∅ is the tensor product for
isotone bimorphisms.

(2) A⊗B =APA⊗BPB ≃ Gal(A,B) is the known tensor product for bimor-
phisms that preserve arbitrary joins in both arguments.

(3) A∅⊗B ≃ Ant(A,B) is the tensor product for bimorphisms that are
isotone in the first argument and preserve joins in the second argument.

(4) For 1 = {∅}, A 1⊗B is slightly different from A∅⊗B, being the ten-
sor product for bimorphisms that are isotone, preserve bottom elements in
the first argument, and joins in the second. Here, A 1⊗B is isomorphic to
Ant1(A,B), the lattice of all antitone maps f : A→ B sending 0A to 1B.

(5) If X and Y consist of all finite subsets then AX ⊗BY is the tensor prod-
uct for bimorphisms preserving finite joins in both arguments. The same
universal property holds for bimorphisms preserving joins of cardinality less
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than an arbitrary but fixed cardinal α, if we take for X and Y the collections
of all subsets with less than α elements.

(6) If X and Y consist of all directed subsets then AX ⊗BY is the tensor
product for Scott-continuous bimorphisms (cf. Bandelt [3]).

6. Truncated tensor products

For subsets X of a closure space A = (E, C) with ⊥A= ∅, put

X̆=X r⊥A

and denote by Ă the unbounded coreflection of A, the subspace induced on Ĕ.
We shall now present a more economic and effective form of tensor products,
by cutting off from each tensor the obligatory part

∅ = (⊥A×UB)∪ (UA×⊥B).

Proposition 6.1. If A and B are closure spaces then A⊗B is isomorphic

to Ă⊗ B̆, by the mutually inverse assignments T 7→ T r ∅ and T ′ 7→ T ′ ∪ ∅.

Proof : T ∈ A⊗B implies Tr∅ ∈ Ă⊗ B̆ and (Tr∅)∪∅ = T : X ×Y ⊆ Tr∅
entails X ×Y ⊆ T , hence (X r⊥A)× (Y r⊥B) = (X ×Y )r ∅ ⊆ T r ∅.
Conversely, T ′ ∈ Ă⊗ B̆ implies T = T ′ ∪ ∅ ∈ A⊗B and T ′ = T r ∅: from

X ×Y ⊆ T it follows that (Xr⊥A)× (Y r⊥B) = (X ×Y )r∅ ⊆ T r∅ = T ′,

hence (X ×Y )r∅ = (Xr⊥A)×(Yr⊥B) ⊆ T ′ and soX ×Y ⊆ T ′ ∪∅ = T .

Given an augmented poset AX = (A,X ) with least X -ideal ⊥A, put

X̆ = {X̆= X r⊥A : X ∈
.
X , X̆ 6= ∅ or ⊥A = ∅}.

Note that the cut operator ∆̆ of the subposet Ă satisfies

∆̆X̆ ⊇
⋂
{↓y r⊥A : X̆ ⊆ ↓y} =

⋂
{↓y r⊥A : X ⊆ ↓y} = ∆X r⊥A

and equality holds if X̆ ∈ X̆ . Using that fact, one easily shows:

Proposition 6.2. The ideal lattices IXA and IX̆Ă are isomorphic, by virtue

of the mutually inverse assignments I 7→ I r ∅ and I ′ 7→ I ′ ∪ ∅.

For augmented posets AX and BY , the truncated tensor product

AX ⊗̆BY = ĂX̆ ⊗ B̆Y̆
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consists of all subsets T of the product poset Ă × B̆ such that each xT is
a Y̆-ideal and each Ty is an X̆ -ideal. Thus, AX ⊗̆BY is a closure system
with least element ∅. The least element of AX ⊗̆BY containing (x, y) is the

principal ideal ↓(x, y) in Ă× B̆. Passing from AX and BY to their X - and
Y-ideal spaces, respectively, we deduce from Propositions 6.1 and 6.2:

Corollary 6.1. For augmented posets AX , BY, the tensor product AX ⊗BY
is isomorphic to AX ⊗̆BY via the relativization map T 7→ T∩(Ă×B̆) = Tr∅.

Corollary 6.2. For complete B, the map T 7→ f̆T with f̆T (x) = max (xT ∪∅)
induces an isomorphism between AX ⊗̆B = AX ⊗̆BPB and AntX (A,B). The

inverse isomorphism is given by f 7→ T̆f = {(x, y) ∈ Ă× B̆ : f(x) ≥ y}.

Corollary 6.3. For posets A,B, the principal ideal map (x, y) 7→↓(x, y) from
A×B to A ⊗̆B is a universal bimorphism into complete lattices.

7. Pseudocomplementation and polarization

The polar x⊥ of an element x in a poset B consists of all y ∈ B such that
↓x∩↓y = ∆∅. If the polar x⊥ has a greatest element, this is denoted by
x∗ and called the pseudocomplement of x; and the whole poset is said to be
pseudocomplemented if each of its elements has a pseudocomplement.
Recall that A ℓ⊗rB denotes the set of all tensors T ⊆A×B so that each

xT and each Ty is a principal ideal. For bounded posets, pseudocomplemen-
tation is preserved by these tensor products. Write A⊗ b for (A×↓b)∪∅,
the least tensor containing A×↓b, and a⊗ B for (↓a×B)∪∅.

Proposition 7.1. Let A and B be non-singleton bounded posets.

(1) For b ∈ B, a set S is the pseudocomplement of A⊗ b in A ℓ⊗rB iff b has

a pseudocomplement b∗ in B and S = A⊗ b∗.

(2) A ℓ⊗rB is pseudocomplemented iff A and B are pseudocomplemented.

Proof : (1) If b∗ is the pseudocomplement of b then A⊗ b∗ is a tensor with

A⊗ b ∩ A⊗ b∗= A×(↓b∩↓b∗)∪ ∅ = ∅; for T ∈ A ℓ⊗rB with A⊗ b ∩T = ∅
and any (x, y) ∈ T , it follows that ∅ = A⊗ b ∩ x⊗ y = ↓x × (↓y ∩↓b)∪∅,
hence x = 0A or y ∈ b⊥ ; in any case, (x, y) ∈ (↓0A×B)∪ (A×↓b∗) ⊆ A⊗ b∗;
thus, T ⊆A⊗ b∗. Consequently, A⊗ b∗ is the pseudocomplement of A⊗ b.
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Conversely, if S is the pseudocomplement of A⊗ b in A ℓ⊗rB then for any
a ∈ Ă 6= ∅ (by hypothesis, A is not a singleton), the set aS is a prin-
cipal ideal, so it suffices to prove aS = b⊥ in order to show that b has
a pseudocomplement b∗ (the greatest element of aS = b⊥): aS y implies

↓a×(↓b∩↓y) ⊆ a⊗ b∩ a⊗ y = ∅, hence ↓b∩↓y = ∆∅, i.e. b ⊥ y. Con-

versely, if the latter holds then A⊗ b ∩ a⊗ y = ↓a×(↓b∩↓y)∪∅ = ∅, hence
(a, y) ∈ a⊗ y ⊆ S, y ∈ aS.
(2) If A and B are pseudocomplemented then, by (1), each principal tensor

a⊗ b has the pseudocomplement S = A⊗ b∗ ∪ a∗⊗B. Indeed, S belongs to
A ℓ⊗rB, as xS ∈ {↓b∗, ↓1B} for all x in A, and Sy ∈ {↓a∗, ↓1A} for all y

in B. Furthermore, a⊗ b ∩ S = a⊗ 0B ∪ 0A⊗ b = ∅, and if a T ∈ A ℓ⊗rB

satisfies a⊗ b ∩ T = ∅ then for each (x, y) ∈ T we get ∅ = x⊗y ∩ a⊗b, hence
x ≤ a∗ or y ≤ b∗, in any case (x, y) ∈ S. Since the set of all principal tensors
is join-dense in A ℓ⊗rB, all elements of A ℓ⊗rB have pseudocomplements.
Indeed, if J is a join-dense subset of a complete lattice L and all x ∈ J

have pseudocomplements x∗ then each t ∈ L has the pseudocomplement
t∗ =

∧
{x∗ : x ∈ J ∩ ↓ t}.

Conversely, if A ℓ⊗rB is pseudocomplemented then by (1), so are A and
B.

Let us call a closure space A polarized if for each x ∈ UA, the polar

x⊥ = {y ∈ UA : x ∩ y = ∅}

is closed. In particular, a complete lattice is pseudocomplemented iff it is
polarized as a closure space. These specific notions of polars fit into the
general framework of polarities proposed by Birkhoff [5] (cf. [16, 17, 18]).

Theorem 7.1. For closure spaces A,B, the following are equivalent:

(a) A and B are polarized, or one of them has only one closed set.

(b) The complete lattices CA and CB are pseudocomplemented, or one of

them is a singleton.

(c) The lattices Ă⊗ B̆ ≃ A⊗B ≃ CA⊗CB are pseudocomplemented.

Proof : (a) ⇒ (b) : For F ∈ CA, the polar F⊥ =
⋂
{y⊥ : y ∈ F} is closed,

and for G ∈ CB, the equation F ∩G = ∅ is equivalent to G ⊆ F⊥.
(b) ⇒ (a) : Each polar x⊥ is contained in the pseudocomplement K of x in

CA; hence x⊥ ⊆ K. Thus, if y ∈ x⊥ then y ∈ x⊥, which is therefore closed.
For (b) ⇔ (c) , invoke Theorem 3.2 and Propositions 6.1 and 7.1.
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A poset B is said to be Y-distributive at the bottom or ⊥-Y-distributive
provided for all x ∈ B and Y ∈ Y , x ⊥ Y implies x ⊥ ∆Y , where x ⊥ Y

means that ↓x ∩ ↓Y is contained in ∅, the least Y-ideal. Writing x ⊥ y

for x ⊥ {y}, we see that ⊥-Y-distributivity simply requires that all polars
x⊥= {y : x⊥y} are Y-ideals. An equivalent postulate is that

a ∈ ∆Y ∩ B̆ implies ↓a ∩ ↓Y ∩ B̆ 6= ∅ for all Y ∈Y .

The term ⊥-Y-distributive is motivated by the fact that a (Y-join) complete
lattice B is ⊥-Y-distributive iff x∧y = 0B for all y ∈ Y implies x∧

∨
Y = 0B.

For more material on distributivity at the bottom see Erné and Joshi [17].

Corollary 7.1.A poset B is ⊥-Y-distributive iff IYB is pseudocomplemented.

Proof : By definition, B is ⊥-Y-distributive iff the ideal space (B, IYB) is
polarized, which by Theorem 7.1 says that IYB is pseudocomplemented.

Examples. Let B be a poset.

(1) If Y ⊆ EB ∪ {∅} then B is trivially ⊥-Y-distributive.

(2) At the other extreme, for the power set Y = PB, the ⊥-Y-distributive
posets are just the completely ⊥-distributive ones, in which all polars are cuts.
Pseudocomplemented posets are completely ⊥-distributive; for complete lat-
tices, the converse is also true. Clearly, frames are pseudocomplemented.

(3) If Y is the collection of all finite subsets of a join-semilattice with 0, then
⊥-Y-distributivity amounts to the usual notion of 0-(semi-)distributivity.

(4) If Y consists of all directed subsets, one obtains complete lattices that are
meet-continuous at 0. That property together with atomicity (requiring an
atom below any non-zero element) has the consequence that the least element
is a meet of

∧
-irreducible elements, a fact of great importance for universal

algebra and spectral theory. For an easy proof, observe that any polar a⊥ is
closed under directed joins, hence has maximal elements by Zorn’s Lemma,
and these are

∧
-irreducible if a is an atom, because every greater element

has to lie above a. Note that a complete lattice is pseudocomplemented iff it
is 0-distributive and meet-continuous at 0.

8. Tensor quantales

A first observation concerning the structure of truncated tensor products
is
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Lemma 8.1. For any poset B, the truncated tensor product

QB̆ = B̆©↓ B̆ = A(B̆×B̆) = B ∅ ⊗̆B ∅

is a quantale with union as join, intersection as meet, and the relation product

as multiplication. It has a unit only if the order relation on B̆ is equality.

For the last claim, modify the proof of Proposition 9.1 suitably.
Let X and Y be subsets of PB. We define on each truncated tensor prod-

uct BX ⊗̆BY , which is a meet-closed subset of QB̆, a multiplication ⊙ by
taking for R⊙S the least member of BX ⊗̆BY containing the relation prod-
uct R ·S. This gives an interesting and flexible multiplicative structure, in
contrast to the corresponding multiplication on the “full” tensor products
BX ⊗BY , which becomes trivial whenever B has a least element 0B: for
R, S ∈ BX ⊗BY , the inclusions B × {0B} ⊆ R and {0B} ×B ⊆ S force R·S
and R⊙S to be the largest tensor B×B, no matter how small R and S are.
The crucial question is now: under what circumstances is the truncated

tensor product BX ⊗̆BY a quantic quotient of QB̆, hence a quantale in its
own right? As we know from Section 2, this is the case precisely when we
can represent BX ⊗̆BY as the fixpoint set of a (pre)nucleus.
In the more general situation of truncated tensor products of augmented

posets AX and BY , define a preclosure operation t on Ă©↓ B̆ = A(Ă×B̆) by

t(R) = tXY(R) =
⋃
{∆̆X × ∆̆Y : X ∈ X̆ , Y ∈ Y̆ , X ×Y ⊆ R}.

The cut operators ∆̆ refer to the truncated posets Ă and B̆. By definition,
the truncated tensor product AX ⊗̆BY is the fixpoint set of t. This preclosure
operation is not idempotent (except in some extremal cases), so that the least
closure operation t above t has to be built by transfinite iteration, or just by

t(R) = tXY(R) =
⋂
{T ∈ AX ⊗̆BY : R ⊆ T}.

Specifically, we define new relation products by

R⊙S = RX⊙Y S = t(R · S).

Although the usual relation product is certainly associative, it is not clear a
priori under what conditions the new multiplication ⊙ is associative as well.
We shall see that the appropriate ingredient for positive results is polarization
in the case of closure spaces and distributivity at the bottom in the case of
posets.
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Let us prepare the characterization of those posets for which BX ⊗̆BY is a
quantale or, more precisely, a quantic quotient of QB̆, by

Lemma 8.2. Let AX ,BY,CZ be augmented posets. If B is ⊥-Y-distributive
then for all R ∈ Ă©↓ B̆ and S ∈ B̆©↓ C̆,

tXY(R) · S ∪ R · tYZ(S) ⊆ tXZ(R · S), tXY(R)⊙ tYZ(S) = tXZ(R · S).

Proof : For (x, z)∈ tXY(R)·S, there are y∈ B̆, X∈X , Y ∈Y with X̆ 6= ∅ 6= Y̆ ,

X̆× Y̆ ⊆R, x ∈ ∆̆X̆, y ∈ ∆̆Y̆ , and y S z. Recall that ∆̆Y̆ = ∆Y r⊥B, as
Y̆ 6= ∅.
By ⊥-Y-distributivity of B, we find a b ∈ ↓y ∩ ↓Y ∩ B̆. It follows that
X̆×{b} ⊆ R and (b, z) ∈ S, whence X̆×{z} ⊆ R · S, and as x ∈ ∆̆X̆, one
obtains (x, z) ∈ tXZ(R · S). Analogously, one shows R · tYZ(S) ⊆ tXZ(R · S).
The equation for the associated closure operations is then obtained by

applying Lemma 2.1 to i = tXY , j = tYZ and k = tXZ .

By similar arguments, one proves t ∅Y(R) · S = R · S = R · tY ∅(S).
Now, to the main result.

Theorem 8.1. For a poset B and sets X ,Y⊆PB, the following conditions

are equivalent:

(a) B is ⊥-(X ∪ Y)-distributive.
(b) tXY is a prenucleus on QB̆.

(c) tXY is a nucleus on QB̆.

(d) BX ⊗̆BY is a quantic quotient of QB̆.

(e) BX ⊗̆BY is a quantale with multiplication X⊙Y .
(f ) BX ⊗̆BY (or BX ⊗BY) is pseudocomplemented.

(g) There exists a (pre)nucleus j on QB̆ with tXY ≤ j and j(∅) = ∅.
(h) There exist X - resp. Y-ideal continuous order embeddings g and h of

B in a (pre)quantale Q such that x ⊥ y ⇔ g(x) · h(y) = 0Q.

Each of these conditions is fulfilled whenever B is pseudocomplemented.

Proof : (a) ⇒ (b) : Applying Lemma 8.2 to the special case A=B =C and

Y=Z, one obtains for R, S ⊆ QB̆ first tXY(R) · S ⊆ tXY(R·S), and second
R · tXY(S) ⊆ R · tUY(S) ⊆ tXY(R · S) for U = X ∪ Y .
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(a) ⇔ (f ) : We may assume that B is not a singleton. Then

B is ⊥-(X ∪ Y)-distributive

⇔ IXB and IYB are pseudocomplemented (Corollary 7.1)

⇔ IXB⊗IYB is pseudocomplemented (Proposition 7.1)

⇔ BY ⊗BY ≃ BY ⊗̆BY is pseudocomplemented (Corollaries 4.1, 6.1).

(b) ⇒ (c) ⇔ (d) ⇔ (e) : Proposition 2.1.

(c) ⇒ (g) : Take j = tXY .

(g) ⇒ (a) : Assume B̆ 6= ∅ (otherwise B =⊥B is pseudocomplemented). For

Y ∈Y and a ∈ ∆Y ∩ B̆ ⊆ ∆̆Y̆ , put R = B̆×(B̆ ∩ ↓ Y̆ ), S = (B̆ ∩ ↓a)× B̆.

Then R, S ∈ QB̆. If Y̆ ∈ Y̆ then B̆× ∆̆Y̆ ⊆ tXY(R) ⊆ j(R). Picking a b ∈ B̆,
we get (b, a) ∈ j(R), (a, b) ∈ S, and then (b, b) ∈ j(R) ·S ⊆ j(R ·S). Now,
by contraposition, the hypothesis j(∅) = ∅ implies R·S 6= ∅, which provides

x, y, z ∈ B̆ such that xRy S z. Then y ∈ ↓Y (since (x, y) ∈ R) and y ∈ ↓a
(since (y, z) ∈ S). Thus, y ∈ B̆ ∩↓a∩↓Y , proving ⊥-Y-distributivity. It

remains to check the case Y̆ = ∅. Then either ∆̆Y̆ = ∅, and one may proceed
as before, or ∆Y̆ = {0B̆}, and then B is trivially pseudocomplemented,

because B̆ = B r {0B} has a least element.

(e) ⇒ (h) : Fix some b ∈ B̆ (the case B̆ = ∅ is obvious). Put Q = BX ⊗̆BY
and define g : B → Q by g(x) = ↓(b, x) (the down-set in B̆) for x ∈ B̆ and

g(x) = ∅ for x ∈ ⊥B. Then g is an order embedding, since for x, y ∈ B̆,

x ≤ y ⇒ g(x) = ↓(b, x) ⊆ g(y) = ↓(b, y) ⇒ (b, x) ≤ (b, y) ⇒ x ≤ y,

and similarly for x ∈ ⊥B. And g is Y-ideal continuous since for T ∈ Q, we
get

g−1[↓{T}] = {x ∈ B̆ : ↓(b, x) ⊆ T} ∪ ⊥B = bT ∪ ⊥B ∈ IYB.

Analogously, one defines an X -ideal continuous embedding h of B in Q.
Furthermore, these two embeddings satisfy for x ∈ Ă and y ∈ B̆ with x ⊥ y:

g(x)⊙h(y) = tXY(↓(b, x) · ↓(y, b)) = tXY(∅) = ∅ = 0Q,

whereas (b, b) ∈ ↓(b, x) · ↓(y, b) 6= 0Q if x ⊥ y fails, i.e. ↓x∩↓y∩ B̆ 6= ∅. This

proves the equivalence x ⊥ y ⇔ g(x) · h(y) = 0Q for x, y ∈ B̆. The cases
x ∈ ⊥A or y ∈ ⊥B are easy.

(h)⇒ (a): Assume Y ∈ Y and x ⊥ Y , i.e. g(x)·h(y) = 0Q for all y ∈ Y , hence
g(x) ·

∨
h[Y ] = 0Q. Since h is Y-ideal continuous, we get h[∆Y ] ⊆ ↓

∨
h[Y ]
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and so g(x) ·h(z)=0Q for all z ∈ ∆Y , which is equivalent to x ⊥ ∆Y . Thus,
B is ⊥-Y-distributive, and analogously, X -continuity of g entails that B is
⊥-X -distributive.

The case X = Y = PB and

t : QB̆ →QB̆, R 7→
⋃
{∆̆X× ∆̆Y : ∅ 6= X × Y ⊆ R },

combined with Corollaries 6.1 and 6.2, amounts to

Theorem 8.2. For a complete lattice B, the following are equivalent:

(a) B is pseudocomplemented.

(b) t is a prenucleus on QB̆.

(c) t is a nucleus on QB̆.

(d) B ⊗̆B is a quantic quotient of QB̆.

(e) B ⊗̆B ≃ B⊗B ≃ Gal(B,B) is a quantale.

(f ) B ⊗̆B ≃ B⊗B ≃ Gal(B,B) is pseudocomplemented.

(g) There exists a (pre)nucleus j on QB̆ with t ≤ j and j(∅) = ∅.
(h) There exist join-preserving order embeddings g, h of B in a quantale

Q such that x ∧ y = 0B ⇔ g(x) · h(y) = 0Q.
( i ) For each X ⊆ PB, AntX (B,B) is a quantale.

( j ) For each X ⊆ PB, AntX (B,B) is pseudocomplemented.

The mutually inverse isomorphisms T 7→ T̆ = T r ∅ and T ′ 7→ T ′ ∪ ∅ from
Corollary 6.1 transport the multiplication ⊙ on AX ⊗̆BY to a multiplication
⊙ on AX ⊗BY by

R⊙S = (R̆⊙ S̆) ∪ ∅ = tXY(R̆ · S̆) ∪ ∅.

But, as we have mentioned at the beginning of this section, the resulting mul-
tiplication ⊙ heavily differs from the multiplication obtained by taking the
full tensor closure of the relation product. Let us add a small but illustrative
example.

Example 8.1. For a three-element chain 3 = {0, 1, 2}, the truncated tensor
product 3 ⊗̆ 3 is a non-commutative quantale without unit:
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⊙ R0 R1 R2 R3 R4 R5

R0 R0 R0 R0 R0 R0 R0

R1 R0 R1 R2 R1 R2 R2

R2 R0 R1 R2 R1 R2 R2

R3 R0 R3 R5 R3 R5 R5

R4 R0 R3 R5 R3 R5 R5

R5 R0 R3 R5 R3 R5 R5

dR0

dR1

dR2
dR3

dR4

dR5

@@ ��

�� @@

R5 = {(1, 1), (1, 2), (2, 1), (2, 2)}
R4 = {(1, 1), (1, 2), (2, 1)}
R3 = {(1, 1), (2, 1)}
R2 = {(1, 1), (1, 2)}
R1 = {(1, 1)}
R0 = ∅

In contrast to that non-trivial quantale, the full tensor closure of the relation
product of any two members of 3⊗ 3 gives the whole cartesian product 3×3.

The reader will guess that a result analogous to Theorem 8.1 holds for
closure spaces, and that is the case indeed.

Theorem 8.3. A closure space is polarized iff the truncated tensor product

Ă⊗ Ă is a quantale with the multiplication R⊙S = R · S.

Proof : A is polarized

⇔ CA is pseudocomplemented (Theorem 7.1)

⇔ CA⊗CA is a quantale (Theorem 8.2)

⇔ A⊗A is a quantale (Theorem 3.2)

⇔ A ⊗̆ A is a quantale (Proposition 6.1).

9. Unital tensor quantales and boolean algebras

The relation quantales constructed before have a unit (that is, a neutral
element for the multiplication) only in a restricted, well decidable situation.

Proposition 9.1. Let B be a poset and A = At(B) the set of its atoms (the

minimal elements of B̆). Then the following conditions are equivalent:

(a) B is atomistic, i.e., each element is a join of atoms.

(b) IA = {(a, a) : a ∈ A} is the neutral element of B ⊗̆ B.
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(c) B ⊗̆ B (respectively, B⊗B) has a neutral element.

For bounded B, define iA: B→B by iA(0B) = 1B, iA|A = idA, iA(x) = 0B
otherwise. Then the previous conditions are equivalent to the following two:

(d) The map iA is the neutral element of Gal(B,B).
(e) Gal(B,B) has a neutral element.

Proof : (a) ⇒ (b) : IA is a truncated tensor, being a down-set in B̆× B̆ and
trivially closed under existing joins (notice that A is an antichain). By defi-
nition, IA ·T = {(a, c) ∈ T : a∈A} for each T ∈ B ⊗̆ B, and consequently
the generated truncated tensor IA⊙T is contained in T , too. On the other
hand, for each (b, c) ∈ T , we find a nonempty set X ⊆ A with

∨
X = b.

Now, a ∈ A ∩ ↓b entails (a, c) ∈ T for each a ∈ X, and (a, a) ∈ IA yields
(a, c) ∈ IA·T ; thus, X × {c} ⊆ IA·T ⊆ IA⊙T , and therefore (b, c) ∈ IA⊙T .
In all, this proves the equation IA⊙T = T , and T ⊙ IA = T is analogous.

(b) ⇒ (c) : The lattice isomorphism between B ⊗̆ B and B⊗B sends the

multiplication ⊙ to ⊙, hence the unit IA to the unit IA ∪ ∅.

(c) ⇒ (a) : Assume I is a neutral element of B ⊗̆ B. For (a, b) ∈ I, the

principal truncated tensor ↓(b, a) ⊆ B̆× B̆ is an element of B ⊗̆ B, whence
(a, a) ∈ I ⊙↓(b, a) = ↓(b, a) and (b, b) ∈ ↓(b, a)⊙ I = ↓(b, a); thus, a ≤ b

and b ≤ a, i.e. a = b. Next, assume 0B < c ≤ a. Then (a, c) ∈ I, and so
a = c must be an atom. Now, given any x ∈ B, put A(x) = {a ∈ A : (a, a) ∈
I, a ≤ x}, and consider a y ∈ B with A(x) ⊆ ↓y. For each (a, b) ∈ I· ↓(x, x)
we have a ≤ y (since (a, a) ∈ I) and b ≤ x; therefore, ↓(x, x) = I ⊙↓(x, x)
must be contained in the principal truncated tensor ↓(y, x); it follows that
x ≤ y, and then x =

∨
A(x).

(b) ⇔ (d) : By Corollary 6.2, iA is the Galois map f̆IA corresponding to IA.

(c) ⇔ (e) : Use the isomorphisms B ⊗̆ B ≃ B⊗B ≃ Gal(B,B).

Lemma 9.1. If B and C are atomistic posets then so is B ⊗̆ C ≃ B⊗C.

Proof : It is easy to see that

At(B ⊗̆ C) = {↓(b, c) : b ∈ At(B), c ∈ At(C)}.

Hence, if B and C are atomistic then for each T ∈ B ⊗̆ C, one obtains

T =
∨
{↓(b, c) : b T c} =

∨
{S ∈ At(B ⊗̆ C) : S ⊆ T}.
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Recall that the atomi(sti)c boolean complete lattices (ABC-lattices) are
nothing but the isomorphic copies of power set lattices (B is atomic if each
non-zero element is above an atom). From Theorem 8.1 and Proposition 9.1,
we now conclude:

Theorem 9.1. For a complete lattice B, the following are equivalent:

(a) B is atomic and boolean (an ABC-lattice).
(b) B is atomistic and pseudocomplemented.

(c) B ⊗̆ B ≃ B⊗B ≃ Gal(B,B) is a unital quantale.

(d) B ⊗̆ B is isomorphic to the quantale of all relations on a set.

Proof : For (b)⇒ (a), note that for a ∈ At(B) and all b ∈ B, one has a ≤ b

or a ∧ b = 0B, i.e. a ≤ b∗. Hence, b ∨ b∗ =
∨
At(B) = 1B, and by the

Glivenko-Frink Theorem [5, 23], this forces B to be Boolean. (For a quick
direct proof of distributivity, let a ∈ At(B), a ≤ b ∧ (c ∨ d). If a � c, d then
a ≤ c∗ ∧ d∗ = (c ∨ d)∗, in contrast to 0B < a ≤ c ∨ d. Hence, a ≤ b ∧ c or
a ≤ b ∧ d, and as B is a atomistic, this proves b ∧ (c∨d) = (b∧c) ∨ (b∧d).)
The equivalence (a)⇔ (d) will follow from Lemma 10.1 and Theorem 10.1.

In contrast to the right closure operation r = t∅PB and the left closure

operation ℓ = tPB ∅, the operation t = tPB PB is frequently only a preclosure

operation. The lack of idempotency already occurs for finite boolean lattices.

Example 9.1. Let B be a boolean algebra with more than four elements.
Then there is an a ∈ B r {0, 1} whose complement a∗ is not an atom, and
we find a b ∈ B with 0 < b < a∗. Put c = a∗ ∧ b∗ and M = {a, b, c}. Then B

has the following eight-element boolean subalgebra:

e

0

M
e

c
e
b

e
a

ea∗ eb∗ ec∗

e1

@
@@

�
��

@
@@

�
��

�
��

@
@@

�
��

@
@@

For the lower relation R = ↓{(x, y) ∈M×M : x 6= y}, a quick computation
yields t(R) = ↓{(x, x∗) : x ∈M}, but (1, 1) ∈ t2(R).

Our final observation is a bit disappointing:

Corollary 9.1. An unbounded T0 closure space A is discrete if and only if

A⊗A is a unital quantale.
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Proof : A is discrete, i.e. CA = P UA

⇔ CA is an ABC-lattice (A unbounded and T0)

⇔ CA⊗CA is a unital quantale (Theorem 9.1)

⇔ A⊗A is a unital quantale (Theorem 3.2).

10. Semicategories with tensor products as hom-sets

If one wishes to take tensor products of ⊥-distributive or pseudocomple-
mented posets or lattices as hom-sets in a category, one has to overcome
a little technical problem: while the composition property is saved by the
hypothesis of pseudocomplementation (see below), identity morphisms are
rather rare, as our results in Section 9 demonstrate. However, Lemma 8.2
assures that we can build at least so-called semicategories [24, 27, 35], sat-
isfying the same axioms as categories, with exception of the postulate that
each object carries an identity morphism. Such semicategories rather rarely
occur in the literature, and if they do, the considerations mostly are confined
to small semicategories – a restriction we do not want to adopt here. By an
obvious adjunction of identity morphisms, one may turn every semicategory
into a category, but this may destroy important structural properties; for
example, adding a new identity to a (truncated) tensor quantale with the
obvious extension of the multiplication gives a monoid, but not a quantale.
The largest semicategory we can construct in the aforementioned way has

as objects partially ⊥-distributive posets. These are augmented posets BY =
(B,Y) where B is a ⊥-Y-distributive poset. As hom-set between any two
such objects AX and BY we take the truncated tensor product AX ⊗̆BY .

Proposition 10.1. The partially ⊥-distributive posets with the down-set lat-

tices A ∅ ⊗̆ B ∅ as hom-sets form a semicategory, and so do the partially ⊥-
distributive posets with the truncated tensor products AX ⊗̆BY as hom-sets.

There is a semifunctor from the former to the latter semicategory, acting

identically on objects and sending R ∈ A ∅ ⊗̆ B ∅ to tXY(R) ∈ AX ⊗̆BY.

Proof : The associative law for the composition of lower relations is clear,
since it is just the classical relation product; for the morphisms which are
members of the truncated tensor products AX ⊗̆BY , the associative law is
assured by the homomorphism property of the semifunctor described above,
which in turn is an immediate consequence of Lemma 8.2.
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Let us establish an analogous result for closure spaces. Composing the
isomorphisms from Theorem 3.2 and Proposition 6.1, we get isomorphisms

CAB : A⊗B→ CA ⊗̆ CB,

T 7→{(X, Y )∈ CA×CB : X 6= ∅, Y 6= ∅, X ×Y ⊆ T}.

Lemma 10.1.For closure spacesA,B, C and R∈A⊗B,S∈B⊗C,T ∈A⊗C,

one has the equivalence

R·S ⊆ T ⇔ CAB(R) · CBC(S) ⊆ CAC(T )

and the equality

CAC(R⊙S) = CAB(R)⊙ CBC(S).

Proof : Suppose R ·S ⊆ T . For (X,Z) ∈ CAB(R) · CBC(S) there is a Y ∈ CB,

Y 6= ∅, with (X, Y ) ∈ CAB(R) and (Y, Z) ∈ CBC(S); hence, X ×Y ⊆ R,
Y ×Z ⊆ S, and, as Y 6= ∅, also X ×Z ⊆ R · S ⊆ T and (X,Z) ∈ CAC(T ).
Conversely, assume CAB(R) · CBC(S)⊆CAC(T ) and (x, z)∈R ·S, say xRySz.
Then we get x×y ⊆ R and y×z ⊆ S, hence (x, y)∈CAB(R), (y, z)∈CBC(S),
and therefore (x, z) ∈ CAB(R) · CBC(S)⊆ CAC(T ), whence (x, z) ∈ x× z ⊆
R · S.
Now, by the proven equivalence and the isomorphism property of CAC ,

CAC(R⊙S) = CAC(
⋂
{T ∈ A⊗B : R · S⊆T})

=
⋂
{CAC(T ) : CAB(R) · CBC(S)⊆CAC(T )}

=
⋂
{T ∈ CA ⊗̆ CB : CAB(R) · CBC(S) ⊆ T } = CAB(R)⊙ CBC(S).

We are now in a position to define a semifunctor C from the semicategory
PCS of polarized closure spaces with tensor products as hom-sets to the
semicategory PCL of pseudocomplemented complete lattices with truncated
tensor products as hom-sets, by taking C = CAB on PCS(A,B) = A⊗B.
Then C preserves the composition by Lemma 10.1, and it induces bijections
between the hom-sets A⊗B and CA ⊗̆ CB. Furthermore, it is dense, since
every pseudocomplemented complete lattice C is isomorphic to the closed set
lattice CA of the polarized cut space A = (C,NC).

Theorem 10.1. By virtue of the semifunctor C, the semicategories PCS and

PCL are equivalent. Similarly, PCL is equivalent to the semicategory of par-

tially ⊥-distributive posets and truncated tensor products as hom-sets, via the

ideal semifunctor sending AX to IXA and mapping AX ⊗̆ BY to IXA ⊗̆ IYB.
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Corollary 10.1. The pseudocomplemented complete lattices together with the

sets of Galois maps as hom-sets form a semicategory whose largest subcate-

gory is that of ABC-lattices, which is equivalent to the category of sets and

relations as morphisms.

In fact, by the distributive laws (which follow from Lemma 2.1), one obtains
so-called (semi)quantaloids as considered by Garraway [24] and Stubbe [35].
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