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AND THE NONNEGATIVITY OF THE COEFFICIENTS
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Abstract: Define the pseudosymmetric power sum polynomials sj = sj(p, x) =∑n
i=1 pix

j
i , where the pi are reals. For i = 1, . . . , n, let hi = xi − xi+1, where

xn+1 = 0; letm1, . . . ,mk ≥ 1 be integers; and let p = sm1sm2 · · · smk .Assume p is ex-
pressed in the variables hi. We give formulas expressing the coefficient of the mono-
mial hi11 h

i2
2 . . . , h

in
n in p in dependence of m1, . . . ,mk and (i1, . . . , in). We use this for

conjecturing, and partially proving, a strengthening of a series of coefficient inequal-
ities of Holland [Hol] concerning the weighted harmonic mean (

∑n
i=1 pi(1−xit)−1)−1

when developed into a power series in t. The methods here developed extend work
in a previous paper where coefficient inequalities of the geometric mean type power
series (1− x1t)α1 · · · (1− xnt)αn , due to Laffey where reproved and they should be
useful in general for proving inequalities for pseudosymmetric polynomials. As an
offspin of our work, a surprising combinatorial identity is uncovered.

Keywords: multivariate polynomial inequalities, power series, derivatives, combi-
natorial identities, symmetric functions.
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0. Introduction and Motivation

Along this paper we use x1, . . . , xn as well for indeterminates as for real
numbers in such a way that context will make clear the intended meaning.
We sometimes write x = (x1, . . . , xn), and for 1 ≤ i ≤ j ≤ n we may write
xi:j := (xi, . . . , xj). Also the notation Sxi:j = xi+ · · ·+xj will help to lighten
notation. Similar observations go for other letters than x.

We note that it is a trivial matter to rewrite any polynomial p ∈ R[x1, . . . , xn]
as a polynomial in the quantities hi = xi − xi+1, i = 1, . . . , n − 1, hn = xn:
substitute xi = hi + hi+1 + · · · + hn and develop p. In other words, defining
σ(h) := σ(h1, . . . , hn) := (Sh1:n, Sh2:n, . . . , Shn−1:n, hn), develop (p a σ)(h).
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2 A. KOVAČEC

The quest for such a development may arise when trying to prove polyno-
mial inequalities; in particular in the cases in which one knows beforehand
that it is enough to consider a certain ordering of variables, the method can
be very efficient.

For example the most immediate proof for the symmetric polynomial in-
equality p(x, y, z) = x3 + y3 + z3 − 3xyz ≥ 0 for x, y, z ≥ 0 might well be
to note that without loss of generality one may assume x ≥ y ≥ z ≥ 0 and
hence (x, y, z) = σ(h) for some h ∈ R3

≥0, and then to compute that

(p a σ)(h) = h3
1 + 3h2

1h2 + 3h1h
2
2 + 2h3

2 + 3h2
1h3 + 3h1h2h3 + 3h2

2h3.

The nonnegative coefficients turn the nonnegativity of p manifest in a most
satisfactory way.

To carry out such a strategy if infinite families of polynomial inequalities
are to be established, formulas expressing the coefficients of the monomials
in h1, . . . , hn in dependence of the parameters defining the polynomials can
obviously be useful.

As an auxiliary means towards this end, in [K] the following is proved and
will be reproved for completeness here.

Let p ∈ R[x1, x2, . . . , xn] and consider it as a polynomial in

R[x1, x2, . . . , xn, T ],

where xn+1 = T is an additional indeterminate. Write ∂kxip or ∂ki p for the
k-th derivative of p with respect to xi, and indicate the transformation a
polynomial q suffers by taking k times the derivative with respect to xi, and
then putting xi+1 = xi by

q
∂ki , xi = xi+1−−−−−−−→ q̃,

where q̃ is the resulting polynomial.

Theorem 0.1. Let p ∈ R[x1, x2, . . . , xn] ⊆ R[x1, x2, . . . , xn, T ]. Then:

a. p is a finite sum of terms of the form

p̃i1i2...in(T )

i1! · · · in!
(x1 − x2)

i1(x2 − x3)
i2 · · · (xn−1 − xn)in−1(xn − T )in,

where p̃ = p̃i1i2...in(T ) results from applying a chain of operators (a ∂-
reduction) to p as shown in

p
∂i11 , x1 = x2−−−−−−−→ ·

∂i22 , x2 = x3−−−−−−−→ · · · · ·
∂
in−1

n−1 , xn−1 = xn−−−−−−−→ · ∂inn , xn = T−−−−−−−→ p̃.
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b. In particular, if p is homogeneous of degree s and i1 + · · · + in = s, then
p̃ is a real number and the coefficient of hi11 . . . h

in
n in the development of

(p a σ)(h) is given by p̃(0)/(i1! · · · in!).

Proof : a. Since each of the operators of the chain is linear, it is enough
to show the claim for the case of monomials p = xl11 x

l2
2 · · ·xlnn . Developing

xl11 = (x2 + (x1 − x2))
l1 by the binomial theorem, we see

p =

l1∑
ν=0

(
l1
ν

)
xl1+l2−ν

2 xl33 · · ·xlnn (x1 − x2)
ν =

l1∑
ν=0

ν!−1(∂νx1p)(x2, x2:n)(x1 − x2)
ν.

In the case n = 1, we have p = xl11 and x2 = T. We then find that the
coefficient of (x1 − T )i1 in p is

i1!
−1(∂i1x1p)(T ) = i1!

−1 · l1 · · · (l1 − i1 + 1)xl1−i11 |x1=T = i1!
−1p̃i,

as claimed. Suppose the claim proved for n − 1 variables. By above repre-
sentation, the coefficient of

(x1 − x2)
i1(x2 − x3)

i2(x3 − x4)
i3 · · · (xn−1 − xn)in−1(xn − T )in

in p is evidently equal to the coefficient of

(x2 − x3)
i2(x3 − x4)

i3 · · · (xn−1 − xn)in−1(xn − T )in

in i1!
−1(∂i1x1p)(x2, x2:n). Now the latter expression is the result of applying the

first arrow in above chain to p and dividing by i1!. As (∂i1x1p)(x2, x2:n) is a
polynomial in n−1 variables, we can infer by the induction assumption, that
applying the remaining arrows to it and multiplying by (i1! · i2! · · · in!)−1, we
obtain the second mentioned coefficient. This yields the theorem.

b. Is an immediate consequence of part a obtained by putting T = 0 and
putting hi = (xi − xi+1), i = 1, . . . , n and xn+1 = 0.

It is implicit in [K] that, given α1, . . . ., αn ≥ 0 of sum ≤ 1, the polynomials

uk(x1, . . . , xn) = (−1)k
∑

j1+···+jn=k

(
α1

j1

)(
α2

j2

)
· · ·
(
αn
jn

)
xj11 · · ·xjnn

can – after the transformation x = σ(h) – be written as nonpositive combina-
tions of monomials of the form hi11 · · ·hinn . It follows by symmetry in particular
that, whenever x1, . . . , xn ≥ 0, and k ≥ 1, then uk(x1, . . . , xn) ≤ 0. By us-
ing Cauchy multiplication, one has, equivalently, that the power series in t,
(1−x1t)

α1 · · · (1−xnt)αn, has only nonpositive coefficients whenever x ∈ Rn
≥0
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(except for the coefficient of t0). Laffey [L] had proved this same result via
quite different considerations and used it in papers with Loewy and Šmigoc
[LLS] for advancing the nonnegative inverse eigenvalue problem.

Define the pseudosymmetric power sum polynomials sj by

sj(p, x) =
n∑
i≥1

pix
j
i .

The number of variables play in our investigations only a minor role. We will
denote it by n. If various sj occur in the same polynomial we assume this
number equal in all of the polynomials. Polynomials sj revert by the choice

pi = 1 for all i to the usual (symmetric) power sums. Define Sp1:t =
∑t

i=1 pi
for the t-th partial sum of p. In [K] we computed, manually, from theorem 0.1
the ∂-reductions of some low-degree products of the sj and expressed them in
terms of the Sp1:i. We were unable to produce some general expressions nor
did we even have an idea how to implement these calculations on a computer.

The main contribution of this paper are two formulae which, given any
polynomial p(p, x) = sm1

sm2
· · · smk

of degree s = m1 + · · ·+mk, express the
coefficient of hi1hi2 · · ·his in the development of p(p, σ(h)). One of these for-
mulae is a polynomial in Sp1:i1, Sp1:i2, · · · , Sp1:is with square-free monomials.
(Here i1, i2, . . . , is are not necessarily distinct.) The other formula is of a
very different character and as an offspin these two formulas lead to a very
surprising combinatorial identity.

As an example consider the polynomial in x1, . . . , x6,

q3 = (−25
∑
i

x3
i + 9

∑
i6=j

x2
ixj − 6

∑
i<j<k

xixjxk)/216.

This polynomial is the special case of the polynomial

q3(p, x) = −s3(p, x) + 2s1(p, x)s2(p, x)− s1(p, x)3,

arising from putting x = (x1, x2, . . . , x6) and p = 1
6(1, 1, 1, 1, 1, 1).

Our results allow us to say more generally that for arbitrary number of
variables, if x ≥ 0 and p is an arbitrary probability vector (i.e. |p| =

∑
i pi =

1, p ≥ 0), then the inequality q3(p, x) ≤ 0 will hold since q3(p, σ(h)) will be
shown to be a polynomial in h with nonpositive coefficients. This in turn
will be seen as a consequence of the simple fact that for 0 ≤ b ≤ c ≤ 1 there
holds −3+4b+2c−3bc ≤ 0. The rôles os a, b, c herein will be those of certain
partial sums of p.
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Similar drastic simplifications hold for other linear combinations of mono-
mials in s1, s2, . . . .

It should be noted that pseudosymmetricity of a polynomial is harder to
discern than symmetricity. For example, with and si(p, x) = xi + 2yi + 7zi,
i = 1, 2, 3, one has

s3
1 + s1s2 = 2x3 + 8x2y + 14xy2 + 12y3 + 28x2z + 84xyz + 98y2z+

154xz2 + +308yz2 + 392z3.

The results reported here where found by trying to strengthen a result
of Holland [Hol] who, as a variation of Laffey’s result, had shown that the
harmonic mean of (1− x1t), . . . , (1− xnt), that is, the power series

n((1− x1t)
−1 + (1− x2t)

−1 + · · ·+ (1− xnt)−1)−1,

gives rise to coefficient polynomials ql(x) of the tl, l ≥ 1 which all assume non-
positive values when x ≥ 0. While Holland’s result could probably adapted
to show the same for the polynomials ql(p, x) obtained by considering above

pi(1−xit)−1 (p a probability vector) in place of k−1(1−xit)−1. But his proof
does not seem to lend for proving that the polynomials ql(p, σ(h)) have only
negative coefficients.

We have yet to give a uniform argument implying this for all l, but our re-
duction method applicable to any linear combination of products sm1

sm2
· · · smk

(and in particular to all symmetric polynomials) allows us convenient exper-
imentation. In particular we were able to confirm the conjecture for every l
we tried. We report on this in Section 5.

Timofte [T] and Riener [Rie] have shown that the nonnegativity of an
arbitrary symmetric polynomial of degree d defined on an Rn is guaranteed
as soon as its nonnegativity can be established for all x with at most d/2
distinct entries. This result shares with our’s the common feature that in the
formulation of the tests to be made to certify nonnegativity the number of
variables plays only a minor role. Other researchers in symmetric functions
have noted the same. See [MD, p.18].

The organization of this preprint is as follows. In the short Section 1 we
note an alternative way for writing the reduction chains of theorem 1 above.
It is particularly useful if the number of variables is much larger than the
degree of the polynomials involved. We use this notation in Section 2 where
we prove one of the formulae mentioned above and which involves chains of
multisets; and we use the notation also in Section 3, where we prove the other
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formula using trees. The short Section 4 derives a surprising combinatorial
identity. We conclude in Section 5 by some remarks on the codes we used
for implementing the formulae and also how the results might be useful for
proving general or symmetric polynomial inequalities.

The reading of sections 2 and 4 is not necessary for following the applica-
tions given in Section 5. We conserve these sections here for the sole reason
that it is interesting combinatorics that might be useful in advancing the
main problem left open here or be useful elsewhere. Also, (the proof of)
proposition 2.2 was used only in the construction of a code implementing the
formula of theorem 2.1.

1. An alternative way to denote ∂-reductions

The reduction chains of theorem 1 are of the form

p
∂i11 , x1 = x2−−−−−−−→ · · · · · ∂

in
n , xn = T−−−−−−−→ p̃.

If we apply (as we shall) such a chain to a homogeneous polynomial of degree
s = i1 + · · · + in we get after application of ‘∂inn ’ at the right a real number.

Hence the operation ‘xn = T ’ has no rôle. Write ‘
to i−→’ for saying that the

currently existing variables of index ≤ i should be mapped to xi. For example

−3x1 + x1x
2
2 + x3

to 2−−−→ −3x2 + x3
2 + x3.

Then we may substitute every arrow ‘
∂ill−→’ by il successive operations

to l, ∂l−−−→ .
Note that in case of polynomials with many variables but of relatively low
degree many of the iν above may be 0. It is this case above all in which the
new notation will be useful and we see that a chain as above can be replaced
by a chain of the form

to i1, ∂i1−−−−−→ · to i2, ∂i2−−−−−→ · · · to is, ∂is−−−−−→,
where we have i1 ≤ i2 ≤ · · · ≤ is, with iν typically differing from the above,
but with the same s. The proofs in the next two sections use this notation.

Part b of theorem 0.1 reads in this language as follows:

Corollary 1.1. Let p be homogeneous of degree s and assume i1+· · ·+in = s.
Then the coefficient of hi11 · · ·hinn in the development of (p a σ)(h) is obtained

by applying i1 operators
to 1, ∂1−−−→, followed by i2 operators

to 2, ∂2−−−→, ... followed

by in operators
to n, ∂n−−−→, and dividing the result by i1! · · · in!
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In case a polynomial is not homogeneous, an obvious modification of this
corollary can be applied to its homogeneous parts.

Example 1.2. Let p = p(x1, x2, x3) be the polynomial mentioned in Section
0. We have

p(x1, x2, x3)
to 1, ∂1−−−−−→ 3x2

1 − 3x2x3
to 1, ∂1−−−−−→ 6x1

to 3, ∂3−−−−−→ 6.

The coefficient of h2
1h3 in (p a σ)(h) therefore is 6/(2!0!1!) = 3.

2. A formula for the ∂-reduction of sm1sm2 · · · smk
involving

multichains of sets

As earlier, let sm be a shorthand for sm(p, x). We will have necessity to
consider sm(i : n) := sm(pi:n, xi:n); the notation at the left again is chosen for
lightness.

Theorem 2.1. Let k ≥ 0, m1, . . . ,mk ≥ 1 and h ≥ 0 be integers and let
s =

∑
imi + h. Then the result of the computation

∗: sm1
sm2
· · · smk

xh0
to i1, ∂i1 , to i2, ∂i2 , · · · , to is, ∂is−−−−−−−−−−−−−−−−−−−→ R

is the real number R which can be obtained as follows:
Let M = {m1,m2, · · · ,mk} be the multiset of the k integers mi and consider

the family C of all multichains

C : ∅ =: A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ As ⊆M

of length s of multisubsets Aν of M. Then with i0 = 0 and

s(Aν) := sum of the elements of Aν,

R =
∑
C∈C

s∏
ν=1

Sp
|Aν |−|Aν−1|
1+iν−1:iν

(s(Aν) + h− ν + 1)).

Proof : We prove the claim by induction over s. In case s = 0, necessarily
k = 0, and the left hand side of ∗ is x0 = 1. No computation is done,
therefore R = 1. At the other hand the only chain of length 0 is the empty
one. The product figuring in the expression for R is empty, and hence by
usual conventions equal to 1. Thus the sum given is also 1 as we wished to
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see. Now assume s = 1. Then the left hand side is either s1 or x1
0. In the first

case we get

s1
to i1−−−→ Sp1:i1x

1
i1

+ s(1 + i1 : n)
∂i1−−−→ Sp1:i1.

The set M = {1} and we are speaking of chains C : ∅ ⊆ A1 ⊆M = {1} of
length s = 1. We get either A1 = ∅ or A1 = {1}. Now the expression under
the sum sign is

Sp
|A1|−|A0|
1+i1−1:i1

(s(A1) + 0− 1 + 1)) = Sp
|A1|
1:i1
s(A1).

So since s(∅) = 0, we find the sum yields Sp1:i1.
In the second case the computation yields

x0
to i1−−−→ xi1

∂i1−−−→ 1.

In this case M = ∅. There is then only one chain , namely C : ∅ ⊆ A1 ⊆ ∅.
Then the sum has only one term and yields

Sp
|A1|−|A0|
1:i1

(0 + 1− 1 + 1) = Sp0
1:i1

1 = 1.

This concludes the proof of the case s = 1.
Now suppose the proposition already proved for all expressions sm1

· · · smk
xh0

for which
∑
mi + h = s′ < s and assume now

∑
mi + h = s. We have the

computation

sm1
· · · smk

xh0
to i1−−−→

k∏
ν=1

(Sp1:i1x
mν

i1
+ smν

(1 + i1 : n))xhi1.

With Ic meaning the complement of I in {1, 2, . . . , k}, the product herein
can be written as ∑

I⊆{1,...,k}

Sp
|I|
1:i1
x
∑
ν∈I mν

i1

∏
ν∈Ic

smν
(1 + i1 : n).

Therefore, applying ∂i1 to the right hand side, we obtain

sm1
· · · smk

xh0
to i1, ∂i1−−−−−→

∑
I⊆{1,...,k}

(
Sp
|I|
1:i1

(
∑
ν∈I

mν + h)
∏
ν∈Ic

smν
(1 + i1 : n)

)
x
∑
ν∈I mν+h−1

i1
.
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By the linearity of the operators
to iν , ∂iν−−−−−→, to obtain R we have to compute

now for each I ⊆ {1, . . . , k} the results RI of the computations

∗2 :
∏
ν∈Ic

smν
(1 + i1 : n)x

∑
ν∈I mν+h−1

i1

to i2, ∂i2 , · · · , to is, ∂is−−−−−−−−−−−−−−→ RI ;

to multiply each RI with Sp
|I|
1:i1

(
∑

ν∈Imν + h); and to sum the resulting
numbers over all I ⊆ {1, . . . , k}.

Note that the product at the left of ∗2 is a product of the form we started
with but its degree is

∑
ν∈Icmν+

∑
ν∈Imν+h−1 = s−1 < s. So we may apply

the induction hypothesis to it, and have to take care only of reindexations.
To each I ⊆ {1, . . . , k} there pertains actually the multiset {mν : ν ∈ I}.

Using this multiset instead of I, and calling it A1 we find that the left hand
sides of ∗2 can be written as∏

m∈Ac1

sm(1 + i1 : n)x
s(A1)+h−1
i1

, A1 ⊆M.

The application of the operator in ∗2 (which consist of only s − 1 pairs ‘to
iν, ∂iν ’) to this yields by induction hypothesis the sum over all products

s∏
ν=2

Sp
|A′ν |−|A′ν−1|
1+iν−1:iν

(s(A′ν) + (s(A1) + h− 1)− (ν − 1) + 1)

associated to the family of chains of length s−1, C : ∅ ⊆ A′2 ⊆ · · · ⊆ A′s ⊆ Ac
1

of multisets, indexed for convenience below with numbers ranging from 2 to
s. If we define Aν = A1 ] A′ν, for ν = 2, . . . , s, then we can write this as

s∏
ν=2

Sp
|Aν |−|Aν−1|
1+iν−1:iν

(s(Aν) + h− ν + 1)

and the sum is over all chains A2 ⊆ A3 ⊆ · · · ⊆ As, where A1 ⊆ A2 and
As ⊆M.

From these arguments it follows that our searched-for expression for R is∑
A1⊆M

Sp
|A1|
1:i1

(s(A1) + h)
∑

C∈C′(A1)

s∏
ν=2

Sp
|Aν |−|Aν−1|
1+iν−1:iν

(s(Aν) + h− ν + 1),

where C ′(A1) is the set of chains C : A2 ⊆ · · · ⊆ As ⊆M for which A1 ⊆ A2.
Since this sum can be rewritten precisely in the form the proposition claims,
the proof is complete.
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We used the ideas in the proof of the following proposition for a computer
implementation of the above formula; the fact itself is a special case of [St,
Proposition 3.5.1] when formulated for antichains P.

Proposition 2.2. Let M = {m1, . . . ,mk} be an ordered list of natural num-
bers and let ṡ > s be positive integers. There is a natural bijection C

{1, . . . , s, ṡ}k C−→ { chains of length s, C :A1 ⊆ A2 ⊆ · · · ⊆ As ⊆M}.

Proof : Given t = (t1, . . . , tk) ∈ {1, . . . , s, ṡ}k, associate to l = 1, . . . , s, the
set Al := {mi : ti ≤ l}. Obviously these sets define a chain C = C(t) :
A1 ⊆ A2 ⊆ · · · ⊆ As ⊆ M. Now choose t′ ∈ {1, . . . , s, ṡ}k with t′ 6= t. Let
C ′ = C(t′) : A′1 ⊆ A′2 ⊆ · · · ⊆ A′s ⊆ M be the associated chain. There exists
an i0 such that, say, ti0 < t′i0. Then A′ti0 = {mi : t′i ≤ ti0}. It follows that

mi0 6∈ A′ti0 while mi0 ∈ Ati0
. Hence C(t) 6= C(t′) and the map C is injective.

Now assume a chain C : A1 ⊆ A2 ⊆ · · · ⊆ As ⊆ M be given. Define
Aṡ := M and ti = min{l : mi ∈ Al}, i = 1, . . . , k. Obviously t = (t1, . . . , tk) ∈
{1, . . . , s, ṡ}k. So this t defines a chain C(t).We claim C(t) = C. By definition,
the l-th set in C(t) isBl := {mi : ti ≤ l}, for l = 1, . . . , s. Fix an l and consider
an i so that mi ∈ Bl. Then ti ≤ l, that is, by definition of t, mi ∈ Ati and
so mi ∈ Al. In other words Bl ⊆ Al. Conversely, if i is so that mi ∈ Al then
mi ∈ Ati for some ti ≤ l and so mi ∈ Bl. So Al ⊆ Bl. We see that indeed
Bl = Al for all l. Hence the map C is surjective.

3. A formula for the ∂-reduction of sm1sm2 · · · smk
whose

proof involves trees

The result R of the computation

∗: sm1
sm2
· · · smk

to i1, ∂i1 , to i2, ∂i2 , · · · , to is, ∂is−−−−−−−−−−−−−−−−−−−→ R

can also be obtained in a very different way. We begin by explaining the
construction of certain type of trees. The following particular tree has rel-
evance for computing the result R above when k = 3 and m1,m2,m3 are
called l,m, r (for left, middle, right, respectively), but a completely analo-
gous construction will yield the corresponding result R for the general case.

The rules for growing the tree are as follows: take a1, a2, . . . and x to be
symbols and l,m, r; l′,m′, r′ integers.
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* The root of the tree is labeled a1x
l · a1x

m · a1x
r.

* If axl
′ · bxm′ · cxr′ is a vertex with a, b, c ∈ {1, ai}, then it has three sons:

- the edges to the left/middle/right son are labeled al′/bm′/cr′ respectively;
- the left/middle/right sons themselves are labeled

1xl
′−1 · b′xm′ · c′xr′ / a′xl

′ · 1xm′−1 · c′xr′ / a′xl
′ · b′xm′ · 1xr′−1,

respectively, where we define

a′ =

{
1 if a = 1
ai+1 if a = ai

, b′ =

{
1 if b = 1
ai+1 if b = ai

, c′ =

{
1 if c = 1
ai+1 if c = ai

In the following partial picture of the upper part of the tree we suppressed a
number of vertex labels for lack of space.

Using traditional designations, the root of a tree has depth 0 and the depth
of a vertex is the number of edges on the path from the root to it. Each path
can be identified with a word on the alphabet L,M,R in the obvious way.
We now assume to construct the tree till all its leaves have the same depth
l +m+ r.

A path from the root to a leaf defines a monomial obtained by taking
the product of its edge-labels. The sum of all these monomials defines a
polynomial which we wish to characterize.
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After a little reflection and tinkering with the rules, the following features
are salient:
• The edge to a left/middle/right son always carries exactly one factor of the
form l − t /m− t/r − t, respectively; if an edge has a factor l − t, say, then
along a path to the root there occur also the factors l− t+ 1, . . . , l− 1, l (not
necessarily uninterruptedly). Similar observations hold for factors m− t and
r − t.
• Consequently the monomial attached to a root-to-leave path may be zero.
For example the monomial obtained by taking always the edge to left sons
will be a1l(l− 1)(l− 2) · · · (l− (l+m+ r) + 1) and hence contain the factor
l − l = 0. We see that a path will define a nonzero monomial if and only if
its code has exactly l letters L, m letters M, and r letters R.

We also see that at the first choice to a left son we substitute in the label
for the next vertex a letter a by 1; at the first choice to a middle son a letter
b by 1; at the first choice to a letter c by 1. Thus:
• If a root-to-leave-path defines a nonzero monomial, then this monomial is
of the form l!m!r!a1aiaj with 1 < i < j ≤ l+m+r. This particular monomial
is produced if the first times that in the path is taken a descent to a left,
middle, or right sun (in any order), are the moments in which descents to
vertices of depths 1, i, or j are done. No letters a∗ are joined to the product
if a descent is of a type that occurred already.

The polynomial that this tree defines is consequently homogeneous of de-
gree 3 in a1, . . . , al+m+r and has only positive integer coefficients all of which
are divisible by l!m!r!. The coefficient of a1aiaj is l!m!r! times the number
of words of length l+m+ r that have l letters L, m letters M , and r letters
R and for which the first occurrences (in any order) of these letters occur in
positions 1, i, j.

Example 3.1. Assume l = 2,m = 1, r = 1, and i = 2, j = 3. Then s =
l+m+r = 4. Examples of admissible words are then LMRL, LRML, MRLL.
But LLRM is not admitted since none of the letters L,M,R has at position
2 its leftmost occurrence. If we choose i = 2, j = 4 then LRLM and RLLM
are admissible, but LRML is not.

We now explain what such considerations have to do with ∂-reductions; in
the particular case we consider the reduction of sl(p, x)sm(p, x)sr(p, x). This
is a polynomial in xes of degree l +m+ r.
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If we apply ‘
to i1−−→’ to sl = sl(p, x), we get Sp1:i1x

l
i1

+ sl(1 + i1 : n) and

similar formulas hold for sm and sr. So after applying
∂i1−→ to the product of

the transformed formulas, we get the sum of the three products

(Sp1:i1l)x
l−1
i1
· (Sp1:i1x

m
i1

+ sm(1 + i1 : n))(Sp1:i1x
r
i1

+ sr(1 + i1 : n)),

(Sp1:i1x
l
i1

+ sl(1 + i1 : n)) · (Sp1:i1m)xm−1
i1
· (Sp1:i1x

r
i1

+ sr(1 + i1 : n)),

(Sp1:i1x
l
i1

+ sl(1 + i1 : n)) · (Sp1:i1x
m
i1

+ sm(1 + i1 : n)) · (Sp1:i1r)x
r−1
i1

.

We could store this information in a tree whose root is slsmsr, which has three
leaves of depth one, which has edge labels Sp1:i1l, Sp1:i1m,Sp1:i1r, and whose
leaves are labeled by what remains of the above products after suppressing
the edge labels. The information in that tree would be read as: to get the

result of slsmsr
to i1−→ ∂i1−→ R, multiply each vertex label with the label of the

edge leading to it; and then sum these products. By writing a1 for Sp1:i1

the edge labels turn into those of the tree constructed above. Also note
that for knowing the edge labels (which come from applying ∂i1, the sums
sl(1 + i1 : n), sm(1 + i1 : n), sr(1 + i1 : n) above are of no relevance. Also
the indices of the xi1 can be suppressed. This justifies to write the simplified
notation a1x

l·a1x
m·a1x

r instead of slsmsr to store all the relevant information.
Next note that

∗ : Sp1:i1x
l
i1

+ sl(1 + i1 : n)
to i2−−→ Sp1:i1x

l
i2

+ Sp1+i1:i2x
l
i2

+ sl(1 + i2 : n)

= Sp1:i2x
l
i2

+ sl(1 + i2 : n)

and similar formulae hold for the factors above associated to m and r.

Applying ‘
to i2, ∂i2−−−−−→’ to the three leaves of the current tree, we see as before

using the product rule that three edges will emanate from each of the vertices
of depth 1. We again use the factors not depending on x as edge labels. Then
writing a2 for Sp1:i2, we get precisely the edge labels up to depth 2 of the
tree shown above.

The relation ∗ remains true if everywhere i1 and i2 are substituted by iν
and iν+1, respectively. Using this we can continue the above reasoning and
see the result R for the case k = 3, (m1,m2,m3) = (l,m, r) can be found
by using the tree polynomial associated to this triple and substituting aj by
Sp1:j.

It is evident that analogous considerations are valid in the general case; so
we get
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Theorem 3.2. Let s = m1 + m2 + · · · + mk. Then the result R of the com-
putation

∗: sm1
sm2
· · · smk

to i1, ∂i1 , to i2, ∂i2 , · · · , to is, ∂is−−−−−−−−−−−−−−−−−−−→ R

is a homogeneous polynomial of degree k in the variables Sp1:i1, . . . , Sp1:is.
Each monomial is of the form Sp1:i1Sp1:iν2

· · ·Sp1:iνk
with 1 = ν1 < ν2 < · · · <

νk ≤ s. The coefficient of this particular monomial equals m1!m2! · · ·mk!
times the number of words of length s with k distinct letters of respective
multiplicities m1, . . . ,mk, and whose leftmost positions are ν1, ν2, . . . , νk.

The following proposition helps to compute the coefficients of the men-
tioned polynomial.

Proposition 3.3. Let M1, . . . ,Mk be distinct letters, and m1, . . . ,mk and
1 = µ1 < µ2 < . . . < µk ≤

∑
mi positive integers. The number of words

which we can form using exactly mi letters Mi (and no others) and which have
the property that µi is the leftmost position a letter Mi occurs, i = 1, . . . , k
is given by the product

k∏
i=1

(
m1 + · · ·+mi − µi

mi − 1

)
.

Proof : Once letter Mk is positioned at place µk, there remain the positions
1 + µk, 2 + µk, . . . , s = (s− µk) + µk as admissible for the remaining mk − 1
letters Mk. There are

(
s−µk
mk−1

)
possible choices for where to put these remaining

Mks. Once a choice is done, we look at the letter Mk−1. One of these letters
is at position µk−1, all the other letters Mk−1 are at the right of it occupying
mk−1−1 of the still admissible s−mk−µk−1 positions. This yields

(
s−mk−µk−1
mk−1−1

)
possible choices. We next have that one letter Mk−2 takes position µk−2 all
the mk−2− 1 other letters Mk−2 lie to the right of it in the still available s−
mk−mk−1−µk−2 positions. This yields

(
s−mk−mk−1−µk−2

mk−2−1

)
choices. Continuing

this way and using the definition of s yields the claim.

Corollary 3.4. Let Sk be the symmetric group acting on {1, 2, . . . , k}. Then
the coefficient of Sp1:i1Sp1:iν2

· · ·Sp1:iνk
in the polynomial R mentioned in the

above theorem 3.2 is given by

m1!m2! · · ·mk! ·
∑
σ∈Sk

k∏
i=1

(
mσ1 + · · ·+mσi − νi

mσi − 1

)
=
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m1m2 · · ·mk

∑
σ∈Sk

∏k
i=1(mσ1 + · · ·+mσi − νi)mσi−1.

Proof : The first formula is a consequence of the previous proposition, given
that the letters referred in the theorem, let’s say M1, . . . ,Mk, may occur
at the positions ν1, . . . , νk as leftmost ones of their type in any order. The
right formula is a consequence of the definition of the binomial coefficient as(
r
k

)
= rk/k!.

Example 3.5. At the beginning of Section 5 we will see that from the above
formulas we get

s1s2
to i1, ∂i1 , to i2, ∂i2 , to i3, ∂i3−−−−−−−−−−−−−−−−→ 4Sp1:i1Sp1:i2 + 2Sp1:i1Sp1:i3.

(This is an example of a reduction computed manually in [K].) It follows
from corollary 1.1 that if there are at least variables x1, . . . , x5 present, then
the coefficient of h1h3h4 in s1(x, σ(h))s2(x, σ(h)) will be

(1/(1!1!1!))(4Sp1:1Sp1:3 + 2Sp1:1Sp1:4);

and that of h1h
2
5 will be

(1/(1!2!))(4Sp1:1Sp1:5 + 2Sp1:1Sp1:5).

In case that e.g. p (of length of x) is p = (3,−1, 2, 5,−7, 0, . . . , 0), then the
uple of partial sums of p is (3, 2, 4, 9, 2, 2 . . . , 2). So the respective coefficients
will be 102 and 18.

4. A surprising identity

From the two ways to compute the reduction R of sm1
sm2
· · · smk

we get a
surprising identity.

Theorem 4.1. Assume M = {m1,m2, . . . ,mk} to be a multiset of natural
numbers and assume s = m1 + · · · + mk. For A ⊆ M (understood as a
submultiset), let

s(A) := sum of the elements of A.

Let C denote the family of all chains C : ∅ ⊆ A1 ⊆ A2 ⊆ · · · ⊆ As ⊆ M of
length s of multisubsets Ai of M. Then, with x0 = 0, there holds the identity
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∑
C∈C

s∏
ν=1

(xν − xν−1)
|Aν |−|Aν−1|(s(Aν)− ν + 1)) =

m1m2 · · ·mk

∑
1=ν1<ν2<···<νk≤s

∑
σ∈Sk

k∏
i=1

(mσ1 + · · ·+mσi−νi)mσi−1 xν1xν2 · · ·xνk.

Proof : Choose h = 0 in the identity of Theorem and note that Sp1+iν−1:iν =
Sp1:iν − Sp1:iν−1. If in the above left hand side we substitute xν by Sp1:iν ,
ν = 1, . . . , s, we get R. By the corollary 3.4 we get R also if we substitute
the xνl by Sp1:iνl

in the right hand side. The Sp1:iν can be arbitrary real
numbers. But a real multivariate polynomial function in s variables which
is identically 0 on Rs, defines the zero polynomial; see [CLS, p.3]. As a
consequence we get that the two polynomials in indeterminates x1, . . . , xs
above are equal.

5. Applications and concluding remarks

We have not found any significant simplification for the formula found for
R in Section 3. With ‘−→’ symbolizing the reduction of R at the beginning
of Section 3 we get that sm1 −→ m!Sp1:i1Sp1:i2 · · ·Sp1:im, and sm −→ m!Sp1:i1,
but already the reduction of sm1

sm2
is quite unwieldy:

sm1
sm2
−→

m1m2

∑
2≤ν≤m1+m2

((m1 − 1)!(m1 +m2 − ν)m2−1 + (m2 − 1)!(m1 +m2 − ν)m1−1)Sp1:i1Sp1:iν .

Still, in case m1 + m2 = 3 = s and writing a = Sp1:i1, b = Sp1:i2, c = Sp1:i3,
for 1 ≤ i1 ≤ i2 ≤ i3 ≤ 3 one gets that s3

1 −→ 6abc, s1s2 −→ 4ab + 2ac, and
s3 −→ 6a, and consequently

q3 −→ 2a(−3 + 4b+ 2c− 3bc) = 2a(−3 + 2c+ b(4− 3c))

for the polynomial q3(p, x) = −s3 + 2s1 − s3
1, mentioned in the introduction.

The inequalities of Holland, generalized to an arbitrary probability vector
p, read ql(p, x) ≤ 0 for all l = 1, 2, 3, . . . . and x ≥ 0, where

ql(p, x) =− sl(p, x) +
∑
l1+l2=l

sl1(p, x)sl2(p, x)−

∑
l1+l2+l3=l

sl1(p, x)sl2(p, x)sl3(p, x) + · · ·+ (−1)ls1(p, x)l.
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In [K] we showed that these polynomials are the coefficient polynomials
arising from developing the harmonic mean (

∑n
i=1 pi(1 − xit)

−1)−1 into a
power series in t.

We conjecture that indeed ql(p, σ(h)) is a polynomial in h1, h2, . . . with
nonpositive coefficients.

For l = 1 of course we have q1 −→ −a; for l = 2 one finds

q2 −→ −2a+ 2ab = 2a(−1 + b);

and it is clear from these observations that the corresponding polynomials in
h have nonpositive coefficients. for l = 3 we found above

q3 −→ −6a+ 8ab+ 4ac− 6abc.

With the implementation of the formula of Section 3 we similarly found

q4 −→ (−24a+ 40ab+ 20ac− 36abc+ 12ad− 24abd− 12acd+ 24abcd)

q5 −→ (−120a+ 240ab+ 120ac− 252abc+ 72ad− 168abd− 84acd+

192abcd+ 48ae− 120abe− 60ace+ 144abce− 36ade+ 96abde+
48acde− 120abcde)

We also computed the ∂-reductions for q6, q7, q8. For the reductions of ql,
2l−1 terms can be expected.

The proofs of the nonpositivity of these reductions uses an adaption of the
map σ(h) defined in Section 0. For example, to show that the reduction of
q4 is nonpositive for 0 ≤ a ≤ b ≤ c ≤ d ≤ 1, note that we may divide by a
and then develop the remaining polynomial in terms of h3 = (1 − d), h2 =
(d−c), h1 = (c−b). That is, put d = 1−h3, c = 1−h3−h2, b = 1−h3−h2−h1.
As a result one gets a polynomial with only negative coefficients in h1, h2, h3.

More information on the coefficients of the reductions will be necessary
to prove negativity of ql in general. With the computer experiments done
till now we have uncovered a curious combinatorial fact. The sums of the
coefficients of the homogeneous parts of the reduction of any ql seems to define
a sequence of length l which is equal to l!(−1)j+1

(
l−1
j

)
, j = 0, 1, . . . , l − 1.

For example, for l = 4 the sequence is −24, 72,−72, 24. We do not know why
this holds. With some luck somebody’s future publication is able to clarify
this issue.

Often symmetric polynomials are given in terms of the elementary sym-
metric functions. In such cases our procedures are applicable via Warings’
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formula which expresses elementary symmetric polynomials as polynomials
in the power sums; see e.g. [A, Proposition 4.25], or [MD, Formula 2.14’]:

If el(x) =
∑

1≤i1<...<il≤n
xi1xi2 · · · xil, and sl(x) =

n∑
i=1

xli, l = 1, 2, . . . , n,

then

el =
∑

b ∈ Zl≥0
b1 + 2b2 + · · ·+ lbl = l

(−1)l−|b|∏
i(bi! · ibi)

sb11 s
b2
2 · · · s

bl
l .

Other transition formulae between bases for the rings of symmetric functions
can be found in [MD].

Mathematica code implementing the main formulae of this article is avail-
able from the author.
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