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ASPECTS OF ALGEBRAIC ALGEBRAS
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We dedicate this paper to Jirka Adámek whose mathematics has enchanted us since the first
seminars in Bremen and in Coimbra.

Abstract: In this paper we investigate important categories lying strictly between
the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad
on an order-enriched category. Firstly, we give a characterisation of free algebras in
the spirit of domain theory. Secondly, we study the existence of weighted (co)limits,
both on the abstract level and for specific categories of domain theory like the
category of algebraic lattices. Finally, we apply these results to give a description
of the idempotent split completion of the Kleisli category of the filter monad on the
category of topological spaces.

1. Introduction
The Eilenberg-Moore categories of idempotent monads are precisely the

full reflective isomorphism-closed subcategories of the base category. A sub-
stantial study in category theory has been dedicated to full reflective sub-
categories since the 1970’s, and this is one of the many subjects to which
Jǐŕı Adámek has given a remarkable contribution (see [4, 6, 5], just to name
a few). The notion of Kock-Zöberlein monad ([21, 35]), also named lax-
idempotent monad, is a fruitful generalisation of idempotent monads to the
more general setting of 2-categories. As discovered by Martin Escardó and
others in a series of papers in the late 1990’s, Kock-Zöberlein monads pro-
vide a new insight into important examples of domain theory and topology,
when our 2-categories are just order-enriched categories (e.g., [13, 15, 14]). In
this case, the Eilenberg-Moore categories are reflective subcategories of the
base category as well; however, in general they are not anymore full. In [9]
and other related papers, this kind of subcategories were called KZ-monadic
subcategories. As demonstrated in a series of recent papers [10, 9, 32, 8],
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several important well-known properties and notions on full reflective sub-
categories of ordinary category theory have an order-enriched counterpart
when we replace full reflectivity by KZ-monadicity.
Associated with each monad T = (T,m, e) on a category X, we have a

faithfully full functor E : X
T

→֒XT between the Kleisli category X
T

and the
Eilenberg-Moore category XT. Moreover, we have adjunctions F

T

⊣ U
T

:
X
T

−→ X and FT ⊣ UT : XT −→ X with UTE = U
T

and EF
T

= FT. In
fact, these two adjunctions are the initial and terminal objects of the obvious
category of all adjunctions which induce the monad T.
When T is an idempotent monad (i.e., the multiplication m is a natural

isomorphism), XT can be identified with a full subcategory of X, and X
T

≃
XT. Thus, when the functor T is injective on objects, as it happens in most
significant examples, XT is just the closure under isomorphisms of X

T

in X.
Hence, there are no interesting subcategories strictly between X

T

and XT to
be considered.
The situation is dramatically different when we work with Kock-Zöberlein

monads in order-enriched categories. In this case we have yet XT as a (usually
non-full) subcategory of X. And XT is now, on objects and morphisms, the
closure of X

T

under left adjoint retractions on X ([10]). But, between X
T

and XT there are interesting subcategories which are quite distinct. As an
example, take the open filter monad F over X = Top0. Then XF is precisely
the category of continuous lattices and maps preserving directed suprema and
arbitrary infima. And between X

F

and XF we have at least two remarkable
subcategories: the category ALat of algebraic lattices is properly contained
in XF, and between X

F

and ALat we have the idempotent completion of
X
F

which we characterise here as consisting of all algebraic lattices whose
compact elements form the dual of a frame (Section 6). We also prove that,
for that monad F, ALat is precisely the closure under weighted limits of X

F

in XF (then, also in Top0).
In this paper we embark on a study of important categories lying strictly

between the Kleisli category and the Eilenberg–Moore category, for a Kock-
Zöberlein monad on an order-enriched category; with particular focus on
various filter monads on the category Top0 of T0 topological spaces and con-
tinuous maps. After recalling the necessary background material in Sec-
tion 2, the aim of Section 3 is to give a general treatment of the notion of
algebraic lattice. In continuation of [29], where the authors observe that
“these theorems characterizing completely distributive lattices are not really
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about lattices” but rather “about a mere monad D on a mere category”, in
Theorem 3.17 we give a characterisation of free algebras for a general Kock-
Zöberlein monad, the algebraic algebras, which resembles the classical notion
of (totally) algebraic lattice.
Taking seriously the fact that Top0 is order-enriched forces us to not just

consider ordinary completeness but rather study weighted limits and colimits.
In this spirit, in Section 4 we prove an interesting general result which has
an important application in Section 5: every order-enriched category with
weighted limits and a regular cogenerator has also weighted colimits.
In Section 5 we consider the full subcategory of XT defined by those alge-

bras which are in a suitable sense cogenerated by the Sierpiński space. For the
various filter monads we show that these algebras coincide with well-known
objects in domain theory: algebraic lattices and spectral spaces. In particu-
lar, we conclude that the corresponding categories have weighted limits and
weighted colimits.
Finally, in Section 6, we consider the filter monad F on Top0. By the re-

sults of the previous section, its Kleisli category is a full subcategory of the
category ALat of algebraic lattices with maps preserving directed suprema
and all infima. As the latter one is complete, it contains in particular the
idempotent split completion of (Top0)F; and we identify its objects as pre-
cisely those algebraic lattices where the compact elements form the dual of
a frame.

2. Background material on Kock-Zöberlein monads
In this section we recall the main facts about Kock-Zöberlein monads on

order-enriched categories needed in this paper. For general 2-categories, this
type of monads were introduced independently by Volker Zöberlein [35] and
Anders Kock (see [21]). We also refer to [13] and [15] for a detailed study
of Kock-Zöberlein monads in the context of domain theory, the one treated
in this paper. In particular, the three theorems of this section are presented
there. In this case, we work with a special type of 2-categories, the order-
enriched categories, that is, categories enriched in the category Pos of par-
tially ordered sets and monotone maps. This means that the hom-sets are
posets and the composition of morphisms preserves the order on the left and
on the right. An order-enriched functor between order-enriched categories is
one which preserves the order of each hom-poset.
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Definition 2.1. A monad T = (T,m, e) on an order-enriched category X

is called order-enriched whenever T : X → X is so. An order-enriched
monad T = (T,m, e) is of Kock-Zöberlein type whenever TeX ≤ eTX, for
all object X in X.

We note that, for an order-enriched monadT = (T,m, e), the full and faith-
ful functor X

T

→ XT of the Kleisli category into the Eilenberg-Moore cate-
gory is also an order-isomorphism on hom-sets. The condition “TeX ≤ eTX”
in the definition of Kock-Zöberlein monad is somehow arbitrarily chosen, the
following theorem presents alternative descriptions.

Theorem 2.2. Let T = (T,m, e) be an order-enriched monad on an order-
enriched category X. For every object X in X, the following assertions are
equivalent.

(i) TeX ≤ eTX.
(ii) mX ⊣ eTX.
(iii) TeX ⊣ mX .

We turn now our attention to Eilenberg–Moore algebras.

Theorem 2.3. Let T = (T,m, e) be a Kock-Zöberlein monad on an order-
enriched category X and let α : TX → X in X. Then the following assertions
are equivalent.

(i) α : TX → X is a T-algebra structure on X.
(ii) α · eX = idX .
(iii) α ⊣ eX.

As a consequence of the equivalence (i) ⇐⇒ (iii) of the above theorem,
the Eilenberg-Moore category XT is a subcategory of X (up to isomorphism of
categories). Moreover, XT is also an order-enriched category with the order
inherited from X.
Before presenting examples, we recall some standard notions from order

theory and topology.

Definition 2.4. In (1)-(6) we follow the terminology of [17].

(1) A subset D ⊆ X of a partially ordered set X is called directed when-
ever D 6= ∅ and, for all x, y ∈ D, there is some z ∈ D with x ≤ z and
y ≤ z. We are going to use the notation

∨↑D to express the supre-
mum of a set D and, at the same time, indicate that D is directed.



ASPECTS OF ALGEBRAIC ALGEBRAS 5

(2) The way below relation ≪ is defined as follows: x ≪ y provided

that, for every directed subset D ⊆ X, if y ≤
∨↑D, then x ≤ d for

some d ∈ D. An element x ∈ X is called compact whenever x≪ x.
(3) The totally below relation ≪ is defined in a similar way: x ≪ y

whenever, for every subset S ⊆ X, if y ≤
∨
S, then x ≤ d for some

d ∈ S. An element x ∈ X is called totally compact whenever
x≪ x.

(4) A partially ordered setX is called directed complete whenever every
directed subset of X has a supremum. Furthermore, X is said to be
bounded complete if every subset with an upper bound has a least
one; equivalently, it has all non-empty infima.

(5) A partially ordered set X is continuous if each one of its elements x
is the directed supremum of all elements y with y ≪ x. A domain is
a continuous poset with directed suprema. Furthermore, a complete
partially ordered set X is called completely distributive whenever
every x ∈ X is the supremum of all elements y with y ≪ x.

(6) A domain X with each x ∈ X satisfying the equality x =
∨↑{y ∈ X |

y ≤ x, y ≪ y} is an algebraic domain. The designation of contin-
uous lattice [30] is used for a domain which is also a lattice; hence, a
continuous lattice is a complete and continuous partially ordered set.
Analogously, an algebraic lattice is an algebraic domain which is
also a lattice. A completely distributive partially ordered set where
x =

∨
{y ∈ X | y ≤ x, y ≪ y}, for every x ∈ X, is called totally

algebraic.
(7) A topological space X is called stably compact whenever X is sober,

locally compact and every finite intersection of compact saturated
subsets is compact (see [19]). A continuous map f : X → Y be-
tween stably compact spaces is called spectral whenever f−1(K) is
compact, for every compact saturated subset K ⊆ Y . We denote by
StablyComp the category of stably compact spaces and spectral maps.
A stably compact space X is called spectral whenever the compact
open subsets form a basis for the topology of X; equivalently, if the
cone (f : X → S)f of all spectral maps into the the Sierpiński space is
initial with respect to the forgetful functor Top → Set; and this in turn
is equivalent to (f : X → S)f being initial with respect to the canon-
ical forgetful functor StablyComp → Set. It is also well-known that a
continuous map f : X → Y between spectral spaces is spectral if and
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only if f−1(K) is compact, for every compact open subset K ⊆ Y .
The full subcategory of StablyComp defined by all spectral spaces we
denote by Spec; it is a reflective subcategory since by definition it is
closed under initial cones (see [3, Theorem 16.8]). Finally, we note
that StablyComp is equivalent to the category of Nachbin’s partially
ordered compact Hausdorff spaces and monotone continuous maps.
Here a stably compact space X corresponds to the partially ordered
compact Hausdorff space with the same underlying set, the order re-
lation is the specialisation order, and the compact Hausdorff topology
is given by the so-called patch topology (see [25, 19] for details).

Examples 2.5. The following monads are of Kock-Zöberlein type.

(1) The category Pos of partially ordered sets and monotonemaps is order-
enriched, with the pointwise order of monotone maps. The downset
monad D = (D,m, e) on Pos is given by

• the downset functor D : Pos → Pos which sends an ordered set
X to the set DX of downclosed subsets of X ordered by inclu-
sion, and, for f : X → Y monotone, Df : DX → DY sends a
downclosed subset A of X to the downclosure of f(A);

• the unit eX : X → DX sends x ∈ X to the downclosure ↓ x of x;
and

• the multiplicationmX : DDX → DX sends a downset of downsets
to its union.

The category PosD of Eilenberg–Moore algebras and homomorphisms
is equivalent to the category Sup of complete partially ordered sets
and sup-preserving maps.

(2) An interesting submonad of D = (D,m, e) is given by the monad
I = (I,m, e) where IX is the set of directed downclosed subset of
X, ordered by inclusion. Furthermore, PosI is equivalent to the cate-
gory DSup of partially ordered sets with directed suprema and maps
preserving directed suprema.

(3) We denote the category of topological T0-spaces and continuous maps
by Top0. The topology of a T0-space X induces the specialisation
order on the set X: for x, x′ ∈ X, x ≤ x′ ⇐⇒ Ω(x) ⊆ Ω(x′), where
Ω(x) denotes the set of open sets. Every continuous map preserves this
order, and, thus, also its dual. We consider Top0 as an order-enriched
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category by taking the dual of the specialisation order pointwisely on
hom-sets.
The filter functor F : Top0 → Top0 sends a topological space X to

the space FX of all filters on the lattice ΩX of open subsets of X.
The topology on FX is generated by the sets

A# = {f ∈ FX | A ∈ f}

where A ⊆ X is open. For a continuous map f : X → Y , the map
Ff : FX → FY is defined by

f 7→ {B ⊆ Y | f−1(B) ∈ f},

for f ∈ FX. Since (Ff)−1(B#) = (f−1(B))# for every B ⊆ Y open,
Ff is continuous. The filter functor is part of the filter monad F =
(F,m, e) on Top0, here the unit eX : X → FX sends x ∈ X to its
neighbourhood filter Ω(x), and the multiplication mX : FFX → FX
sends F ∈ FFX to the filter {A ⊆ X | A# ∈ F}. The category TopF0
of Eilenberg–Moore algebras for the filter monad is equivalent to the
category ContLat of continuous lattices and maps preserving directed
suprema and arbitrary infima (see [12, 33]). Here a continuous lattice
is viewed as a topological space with the Scott topology, and the
algebra structure α : FX → X picks for every f ∈ FX the largest
convergence point with respect to the specialisation order.

(4) In this paper we will consider several submonads of the filter monad
F on Top0; in particular, the proper filter monad F1 = (F1, m, e)
where F1X is the subspace of FX consisting of all proper filters, and
the prime filter monad F2 = (F2, m, e) where F2X is the subspace of
FX consisting of all prime filters. Indeed, we have a chain of Kock-
Zöberlein submonads Fn of F, for n a regular cardinal, where FnX is
the subspace of FX of all n-prime filters; and the union of this chain
is the completely prime filter Kock-Zöberlein monad Fc = (Fc, m, e)
where FcX is the subspace of FX consisting of all completely prime
filters (see [11]). In the latter case, the category TopFc

0 is equivalent
to the category of sober spaces and continuous maps (see [15]). It is
shown in [31] that the category TopF2

0 is equivalent to the category
StablyComp of stably compact spaces and spectral maps. Moreover,
TopF1

0 is equivalent to the category of bounded complete domains (also
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known as continuous Scott domains) and maps preserving directed
suprema and non-empty infima (see [34, 15]).

The notion of Kock-Zöberlein monad generalises the one of idempotent
monad; we recall that a monad T = (T,m, e) on a category X is idempotent
whenever m : TT → T is an isomorphism. By Theorem 2.2, T is idempotent
if and only if T is of Kock-Zöberlein type with respect to the discrete order
on the hom-sets of X; i.e. if TeX = eTX . This observation motivates the
designation lax idempotent monad for this type of monads, which is also
used in the literature. Furthermore, we recall that

(1) For every adjunction A ⊤

G
**

F

jj X, G is fully faithful if and only if

the counit ε : FG→ Id is an isomorphism.
(2) Every fully faithful and right adjoint functor G : A → X is monadic,

and the induced monad is idempotent.
(3) For every monad T on X, GT : XT → X is full if and only if T is

idempotent.

We also remark that the completely prime filter monad Fc = (Fc, m, e) on
Top0 is actually idempotent.
For an order-enriched monad T = (T,m, e) on an order-enriched category

X, we put

M
T

= {h : X → Y in X | Th has a right adjoint g with g · Th = idTX}.

Clearly, if X is locally discrete, then M
T

is the class of all morphisms h :
X → Y where Th is an isomorphism. Equivalently, M

T

is the largest class
of morphisms of X with respect to which the subcategory XT is orthogonal.
The concept of orthogonality is the particularisation, to the locally discrete
case, of the concept of Kan-injectivity. We recall that an object A is left
Kan-injective with respect to a morphism h : X → Y , if and only if the
hom-map X(h,A) : X(Y,A) → X(X,A) is a right adjoint retraction in the
category Pos. And a morphism f : A→ B is Kan-injective with respect to h
if A and B are so and the left adjoint maps (X(h,A))⋆ and (X(h,B))⋆ satisfy
the equality X(X, f) · (X(h,A))⋆ = (X(h,B))⋆ · X(Y, f).
Next we recall a characterisation of Eilenberg–Moore algebras of Kock-

Zöberlein monads in terms of injetivity.
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Theorem 2.6. Let A be in X and T be a Kock-Zöberlein monad on X. Then
the following assertions are equivalent.

(i) A is injective with respect to {eX : X → TX | X in X}.
(ii) A is a T-algebra.
(iii) A is injective with respect to M

T

.
(iv) A is Kan-injective with respect to M

T

.

Moreover, as shown in [10], M
T

is the largest class of morphisms of X with
respect to which the subcategory XT is Kan-injective. For a detailed study
on Kan-injectivity, see also [9].
If T is of Kock-Zöberlein type, then, by Theorem 2.2, eX : X → TX

belongs toM
T

, for all objectsX in X. However, in contrast to the idempotent
case, the following example shows that this property does not characterise
Kock-Zöberlein monads.

Example 2.7. Let X be the order-enriched category of all complete partially
ordered sets and all monotone maps, ordered pointwise; and let A be the
subcategory of X with the same objects, and as morphisms those morphisms
of X which preserve the top and the bottom element. The inclusion functor
A →֒ X is right adjoint: for each object X of X, the reflection map

ηX : X → FX = {⊥}+X + {⊤}

is given by freely adjoining a largest and a smallest element to X. Further-
more, FηX : FX → FFX sends the bottom element of FX to the bottom
element of FFX, the top element of FX to the top element of FFX, and
x ∈ X to itself. Since X has a largest element, every supremum in FX of ele-
ments ofX is inX, therefore FηX preserves all suprema and consequently has
a right adjoint g : FFX → FX in X. Moreover, since FηX : FX → FFX is
an order-embedding, we obtain g · FηX = idFX . Since ηFX neither preserves
the top nor the bottom element, we get FηX � ηFX and ηFX � FηX ; in
particular, the induced monad is not of Kock-Zöberlein type, neither for the
order ≤ nor for its dual.

Remark 2.8. For every h : X → Y in X, a right adjoint g : TY → TX of
Th is necessarily a T-algebra homomorphism. To see this, just observe that
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the diagram

TTX
TTh // TTY

TX

TeX

OO

Th
// TY

TeY

OO

commutes, therefore the diagram of the corresponding right adjoints Th ⊣ g,
TTh ⊣ Tg, TeX ⊣ mX and TeY ⊣ mY commutes as well. We also recall
that, for an adjunction f ⊣ g in an order-enriched category, the inequalities
id ≤ gf and fg ≤ id imply fgf = f ; hence, if f is a monomorphism, then
gf = id. Consequently,

M
T

= {h : X → Y in X | Th is a left adjoint monomorphism in X}

= {h : X → Y in X | Th is a left adjoint monomorphism in XT}.

In the sequel we call

• a morphism h : X → Y in X order-mono whenever, for all f, g :
A→ X in X, h · f ≤ h · g implies f ≤ g.

• a morphism h : X → Y in X order-epi whenever, for all f, g : Y → B
in X, f · h ≤ g · h implies f ≤ g.

• a functor T : X → X order-faithful whenever, for all f, g : A → X
in X, Tf ≤ Tg implies f ≤ g.

We denote the class of all order-monos of X by ord-mono(X), and the
class of all order-epis by ord-epi(X). Clearly, if X is order-enriched with the
discrete order, then the notions above coincide with mono, epi and faithful,
respectively. Furthermore, order-mono implies mono, order-epi implies epi
and order-faithful implies faithful.

Proposition 2.9. Let T = (T,m, e) be an order-enriched monad on X. Then
the following assertions are equivalent.

(i) For every object X in X, eX is order-mono.
(ii) T is order-faithful.

Moreover, for a Kock-Zöberlein monad T, the two assertions above are also
equivalent to M

T

⊆ ord-mono(X).

Proof : It is immediate, taking into account that, for an order-enriched monad
T = (T,m, e), the inequality Tf · eX ≤ Tg · eX implies f ≤ g, and that the
maps eX belong to M

T

.
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Remark 2.10. For all monads T = (T,m, e) of Examples 2.5, the functor
T is order-faithful.

3. Abstract algebraic objects
The role model of this section is the theory of completely distributive and of

totally algebraic lattices in the spirit of [28, 29]. We recall that, for T = D

being the downset monad on Pos, a partially ordered set Y is isomorphic
to some DX if and only if Y is totally algebraic (see Definition 2.4 (6)).
Analogously, trading the downset monad for the directed downset monad
T = I, a partially ordered set Y is isomorphic to some IX if and only if
Y is an algebraic domain. The principal observation of this section is that
these results are not particularly about order theory but hold in more general
for a Kock-Zöberlein monad on an order-enriched category. To achieve this,
an important tool is the equivalence [29] between category of split algebras
and the idempotent split completion of the Kleisli monad which allows us to
move back and forth between these categories.
Hence, in this section we consider a Kock-Zöberlein monadT = (T,m, e) on

an order-enriched category X. Then the Kleisli category X
T

is order-enriched
as well, and the canonical functor

X −→ X
T

, (f : X → Y ) 7−→ (f∗ = eY · f : X −→◦ Y )

is order-enriched; it is even locally an order embedding provided that T is
order-faithful. We note that, for arrows r : A −→◦ X and s : Y −→◦ B in X

T

and f : X → Y in X,

f∗ ◦ r = Tf · r and s ◦ f∗ = s · f.

The following definition is motivated by [23].

Definition 3.1. An object Y in X is called Cauchy complete whenever
every left adjoint morphism r : X −→◦ Y in X

T

is of the form r = f∗, for some
f : X → Y in X.

Examples 3.2. For the downset monad D on Pos, every partially ordered
set X is Cauchy complete. For each of the filter monads on Top0, a T0-space
X is Cauchy complete if and only if X is sober.

Theorem 3.3. Every T-algebra Y is Cauchy complete. Moreover, if T is
order-faithful, an object Y of X is a T-algebra if and only if Y is Cauchy-
complete and TeY has a left adjoint in X.



12 DIRK HOFMANN AND LURDES SOUSA

Proof : Assume first that Y is a T-algebra, with left adjoint β : TY → Y of
eY : Y → TY . Since T is order-enriched, also Tβ ⊣ TeY , hence TeY has a
left adjoint. Let s : Y −→◦ X be the right adjoint of r : X → Y in X

T

. Hence,

eX ≤ s ◦ r = mX · Ts · r and eY ≥ r ◦ s = mY · Tr · s.

We put f = β · r, then f∗ = eY · β · r ≥ r. In fact, f∗ ⊣ s in X
T

since
s ◦ f∗ ≥ s ◦ r ≥ eX and

f∗ ◦s = Tβ ·Tr ·s ≤ Tβ ·eTY ·mY ·Tr ·s ≤ Tβ ·eTY ·eY = Tβ ·TeY ·eY = eY ;

and therefore r = f∗.
Assume now that T is order-faithful and let Y be a Cauchy-complete X-

object so that TeY has a left adjoint in X. Then, since TeY : TY → TTY
corresponds to (eY )∗ : Y −→◦ TY in X

T

, (eY )∗ has a left adjoint r : TY −→◦ Y
in X

T

(see also Remark 2.8). Since Y is Cauchy complete, r = β∗ for some
β : TY → Y . Finally, (−)∗ : X → X

T

is locally an order embedding by
hypothesis, therefore β ⊣ eY .

Corollary 3.4. Let T = (T,m, e) be an idempotent monad on a category X

where T is faithful. Then an object Y of X is a T-algebra if and only if Y is
Cauchy complete.

We recall now the general notion of a split algebra for a monad as intro-
duced in [29].

Definition 3.5. A T-algebra X is called split whenever the left adjoint
α : TX → X of eX : X → TX has a left adjoint t : X → TX in X; and X is
called algebraic whenever X is isomorphic to a free algebra in XT.

Examples 3.6. A partially ordered set X is a split algebra for the downset
monad if and only if X is completely distributive, in this case the map
t : X → DX sends x ∈ X to the set {y ∈ X | y ≪ x} of all elements y ∈ Y
which are totally below x (see [27, 16]). Similarly, a directed cocomplete
partially ordered set X is a split algebra for I = (I,m, e) if and only if X
is a domain (see Definition 2.4(4)); in this case the splitting t : X → IX is
given by x 7→ {y ∈ X | y ≪ x}. Regarding the filter monad F = (F,m, e)
on Top0, a continuous lattice X (equipped with the Scott topology) is a split
algebra for F if and only if X is F-disconnected in the sense of [18]. Here,
with α : FX → X denoting the algebra structure of X, for an open subset
A ⊆ X we put µ(A) = {x ∈ X | α(f) = x for some f ∈ FX with A ∈ f}.
Then X is F-disconnected precisely when µ(A) is open, for every open subset
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A ⊆ X; and in this case the map t : X → FX sends x ∈ X to the filter
t(x) = {A ⊆ X | A open, x ∈ µ(A)}. The case of the prime filter monad is
similar, with µ(A) now defined using only prime filters. In terms of partially
ordered compact Hausdorff spaces, every split algebra for F2 is a Priestley
space, more precise, a Priestley space is a split algebra forF2 if and only if it is
an f-space in the sense of [26]. In Section 6 we give a different characterisation
of the split algebras for the filter monad, by means of the way below relation.
In Examples 3.18 we describe algebraic T-algebras.

We denote the full subcategory of XT of all split T-algebras by Spl(XT).
Since T is of Kock-Zöberlein type, every free T-algebra TY (with algebra
structure mY : TTY → TY ) is split since TeY ⊣ mY ⊣ eTY . Hence, ev-
ery algebraic T-algebra is split. Next we recall that the split T-algebras
are precisely those algebras where the algebra structure has a homomorphic
splitting.

Proposition 3.7. Let X be a T-algebra with α ⊣ eX in X and let t : X → TX
in X. Then t ⊣ α in X if and only if t is a T-homomorphism with α · t = idX.

The following two results exhibit the connection with idempotents in X
T

as shown in [29].

Proposition 3.8. For every split T-algebra X with t ⊣ α ⊣ eX , t ≤ eX and
t ◦ t = t.

Recall that X is idempotent split complete, or just idempotent complete,
whenever every idempotent morphism e : X → X in X is of the form s · r,
for some r : X → Y and s : Y → X in X with r · s = idY . (see [7], for
instance). Every category with equalisers or with coequalisers is idempotent
split complete.

Theorem 3.9. Assume that X is idempotent split complete. Then Spl(XT)
is equivalent to the idempotent split completion kar(X

T

) of X
T

.

In the remainder of this section we aim for a characterisation of algebraic
T-algebras in an intrinsic way, for idempotent split complete order-enriched
categories X. Under the equivalence Spl(XT) ≃ kar(X

T

), a split algebra
X with t ⊣ α ⊣ eX corresponds to (X, t) in kar(X

T

); in particular, the
free algebra TY corresponds to (TY, TeY ). Moreover, for every Y in X,
(Y, eY ) ≃ (TY, TeY ) in kar(X

T

). Hence:



14 DIRK HOFMANN AND LURDES SOUSA

Corollary 3.10. Assume that X is idempotent split complete. A split T-
algebra X with t ⊣ α ⊣ eX is algebraic if and only if (X, t) ≃ (Y, eY ) in
kar(X

T

), for some Y in X.

To describe this condition, we introduce the following notion.

Definition 3.11. A morphism f : X → Y in X is called T-dense whenever
f∗ : X −→◦ Y has a right adjoint f ∗ : Y −→◦ X in X

T

.

Remark 3.12. Clearly, f∗ : X −→◦ Y has a right ajoint in X
T

if and only
if the corresponding algebra homomorphism Tf : TX → TY has a right
adjoint in XT. By Remark 2.8, this is equivalent to Tf being left adjoint in
X. Thus, if T is order-faithful,

M
T

= T-dense ∩ ord-mono(X).

Examples 3.13. (1) For T = D being the downset monad on Pos , every
monotone map f : X → Y is D-dense. In fact, for a monotone map
f : X → Y , the right adjoint f ∗ : Y −→◦ X of f∗ in Pos

D

is given by
f ∗(y) = {x ∈ X | f(x) ≤ y}, for all y ∈ Y .

(2) If we consider the monad I = (I,m, e) instead, then f∗ has a right
adjoint if and only if “f ∗ lives in Pos

I

”, that is, if and only if {x ∈ X |
f(x) ≤ y} is directed, for all y ∈ Y .

(3) For T = F being the filter monad on Top0, every continuous map
f : X → Y is F-dense. Here, for a continuous map f : X → Y ,
the right adjoint f ∗ : Y −→◦ X of f : X −→◦ Y is given by f ∗(y) =
〈{f−1(B) | B ∈ Ω(y)}〉 ∈ FX, for all y ∈ Y .

(4) For the proper filter monad F1 on Top0, a continuous map f : X → Y
is F1-dense if and only if the filter 〈{f−1(B) | B ∈ Ω(y)}〉 is proper,
for each y ∈ Y ; and this in turn is equivalent to f being dense in the
usual topological sense.

(5) Similarly, for the prime filter monad F2 on Top0, a continuous map
f : X → Y is F2-dense if and only if the filter 〈{f−1(B) | B ∈ Ω(Y )}〉
is prime. By [15, Lemma 6.5], this condition is equivalent to f being
flat. More generally, for the n-prime filter monads Fn, to be Fn-dense
is equivalent to be n-flat [11].

Assumption 3.14. From now on we also assume that

• X has equalisers and
• T sends regular monomorphisms to monomorphisms.
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Since X has equalisers, X is also idempotent split complete. We remark
that these conditions are satisfied in all Examples 2.5.

Lemma 3.15. If i : A → X is a regular monomorphism in X, then i∗ is a
monomorphism in X

T

.

Proof : Just observe that i∗ ◦ r = i∗ ◦ s in X
T

translates to T i · r = T i · s in
X.

Proposition 3.16. Let X be a split T-algebra with t ⊣ α ⊣ eX and let

A
i // X

eX //

t
// TX

be an equaliser diagram. Then the following assertions hold.

(1) i∗ : A −→◦ X is a morphism of type i∗ : (A, eA) −→◦ (X, t) in kar(X
T

).
(2) X is algebraic if and only if i : A→ X is T-dense and i∗ ◦ i

∗ = t.

Proof : To show the first assertion, we calculate

t ◦ i∗ = t · i = eX · i = T i · eA = i∗ ◦ eA.

Regarding the second assertion, assume first that X is algebraic, that is,
there are arrows r : (Y, eY ) −→◦ (X, t) and s : (X, t) −→◦ (Y, eY ) in kar(X

T

)
with s ◦ r = eY and r ◦ s = t. Since t ≤ eX , we conclude that r ⊣ s in X

T

and, since the T-algebra X is Cauchy complete (see Theorem 3.3), r = f∗
for f = α · r : Y → X. Furthermore,

t · f = t · α · r = mX · Tt · r = t ◦ r = r = f∗ = eX · f,

hence there is an arrow h : Y → A in X with i · h = f . Then

i∗ ◦ h∗ ◦ s = f∗ ◦ s = r ◦ s = t ≤ eY

and
i∗ ◦ h∗ ◦ s ◦ i∗ = t ◦ i∗ = i∗ ◦ eA,

hence h∗ ◦ s ◦ i∗ = eA, by Lemma 3.15. Putting i∗ = h∗ ◦ s, we have seen that
i∗ ⊣ i

∗ in X
T

and i∗ ◦ i
∗ = t.

Conversely, assume now that i∗ has a right adjoint i∗ with i∗ ◦ i
∗ = t. Since

i∗ ◦ t = i∗ ◦ i∗ ◦ i
∗ = i∗ = eA ◦ i∗,

i∗ : (X, t) −→◦ (A, eY ) is a morphism in kar(X
T

); it is indeed an isomorphism
since i∗ ◦ i∗ = eA and i∗ ◦ i

∗ = t.

Finally, we can simplify the condition i∗ ◦ i
∗ = t and obtain:



16 DIRK HOFMANN AND LURDES SOUSA

Theorem 3.17. With the same assumption as in Proposition 3.16, X is
algebraic if and only if i : A → X is T-dense and α · T i is an epimorphism
in X.

Proof : For r : X −→◦ Y in X
T

, we write r̂ : TX → TY for the corresponding
T-algebra homomorphism. With the notation of Proposition 3.16, if i : A→
X is T-dense with right adjoint i∗, then i∗ ◦ i

∗ = t if and only if t̂ = î∗ · î∗ =
T i · î∗ if and only if the T-algebra homomorphisms T i : TA → TX and
î∗ : TX → TA split the idempotent t̂ : TX → TX. But since t̂ : TX → TX
is also split by α : TX → X and t : X → TX, i∗ ◦ i

∗ = t if and only if

î∗ · t · α · T i = idTA and α · T i · î∗ · t = idX .

Furthermore, the first equality is always true:

î∗ · t · α · T i = î∗ ·mX · Tt · T i = î∗ ·mX · TeX · T i = î∗ · T i = idTA;

therefore the second one holds precisely when α · T i is an epimorphism in
X.

Examples 3.18. We continue here Examples 3.6.

(1) For T = D being the downset monad on Pos, Theorem 3.17 tells us
that a completely distributive lattice L is algebraic for D if and only
if L is totally algebraic, that is, if every element is the supremum of
all the elements totally below it.

(2) We consider now the directed downset monad I = (I,m, e) on Pos.
In this case, a directed cocomplete partially ordered set X is a split
algebra if and only if it is a domain; in this case the splitting t : X →
IX is given by x 7→ {y ∈ X | y ≪ x}. Moreover, X is algebraic if and
only if, for every x ∈ X, the set {y ∈ X | y ≪ y ≪ x} is directed and
has x as supremum; that ist, if X is algebraic in the sense of domain
theory (see [1]).

(3) Let now X be a F-disconnected continuous lattice. Then the elements
of A are precisely those elements x ∈ X where, for all open subsets
B ⊆ X, x ∈ µ(B) implies that x ∈ B. Then X is algebraic if and
only if every x ∈ X is the largest convergence point (with respect to
the specialisation order) of a filter f with A ∈ f.

(4) Similarly, an f-space X is a algebraic for the prime filter monad F2 if
and only if every x ∈ X is the largest convergence point (with respect
to the specialisation order) of a prime filter f with A ∈ f.
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4.Weighted (co)limits and cogenerators
“Cocompleteness almost implies completenes” is the title of the paper [2]

of Jǐŕı Adámek, Horst Herrlich and Jǐŕı Reiterman, as well as the main theme
of section 12 of the book [3]. The title announces several results giving con-
ditions under which completeness and cocompleteness are equivalent. In par-
ticular, it is proved (the dual of) that a complete and wellpowered category
with a cogenerator is cocomplete (and co-wellpowered).
In the setting of order-enriched categories, it is natural to consider “order-

enriched” limits and colimits, the so-called weighted (co)limits, or in-
dexed (co)limits. Thus, the question of knowing when weighted com-
pleteness does imply weighted cocompleteness arises. Here we show that it
happens in the presence of a regular cogenerator.

Remark 4.1. 1. We start by recalling the notion of weighted limit ([20])
in the order-enriched setting. Let D : D → X and W : D → Pos be order-
enriched functors, withD small. They give rise to the functor PosD(W, X(−, D))
from Xop to Pos, where, for every X ∈ X, X(−, D)(X) stands for the functor
X(X,−) ·D : D → Pos. The limit of D weighted by W , in case it exists,
is an object L of X which represents that functor, that is, there is a natural
isomorphism

(1) X(−, L) ∼= PosD(W, X(L,D)).

This is equivalent to say that we have a family of morphisms

L
lxd−→ Dd, d ∈ D, x ∈ Wd

satisfying the following conditions:

(a) lxd ≤ lyd whenever x ≤ y, and Dn · lxd = l
Wn(x)
d′ , for all morphisms

n : d→ d′ in D and all x ∈ Wd. (This gives the natural transformation
fromW to X(L,D) which is the image of idL by the component of the
natural transformation indexed by L.)

(b) The family (lxd)d∈D,x∈Wd is universal, i.e., the natural transformation

(1) is a natural isomorphism. This means that every family of mor-

phisms A
axd // Dd , d ∈ D, x ∈ Wd, satisfying (a) – with A and a in

the place of L and l – is of the form axd = lxdt for a unique t : A → L;
and, moreover, for t, t′ : A→ L, the inequality lxdt ≤ lxdt

′, for all d and
x, imply t ≤ t′.
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When W is just the constant functor into a singleton, we speak of conical
limits. Thus, a conical limit is a limit in the ordinary sense whose projections
are jointly order-monic.
Inserters and cotensor products are special types of weighted limts. The

inserter of a pair of morphisms f, g : X → Y is just a morphism i : I → X
with fi ≤ gi and universal with respect to that property (in the sense of
(b) above). Given a poset I and an object X of X, the cotensor product
of I and X, denoted by ⋔ (I,X), is a weighted limit with the domain D

of the functors D and W the unit category, i.e., the category with just an
object and the corresponding identity morphism. Thus, the projections of
the cotensor product are of the form

⋔ (I,X)
li // X , i ∈ I,

with li ≤ lj for i ≤ j.
In an order-enriched category, the existence of conical products and insert-

ers guarantees the existence of all weighted limits.
The dual notions for weighted limits, inserters and cotensor products are,

respectively, weighted colimits, coinserters and tensor products.

2. For every Kock-Zöberlein monad T over a category X with weighted
limits, the subcategory XT is closed under them (since the forgetful functor
from XT to X creates weighted limits). Indeed, as shown in [9], more than
being closed under weighted limits, the subcategory XT is also an inserter-
ideal. This means that, for every diagram

I
i // A

g
//

f
// B

with i the inserter of the pair (f, g) in X, if f is a morphism of XT, then
i : I → A lays in XT too.

Remark 4.2. We also use the “order-enriched” version of the notion of
cogenerator. Along this paper an object S of an order-enriched category
is said to be a cogenerator if it detects the order, in the sense that, for
every pair of morphisms f, g : X → Y , f ≤ g iff tf ≤ tg for all morphisms
t : Y → S. Next we give the notion of regular cogenerator. (Co)generators
in this sense were considered for instance in [22].
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Remark 4.3. 1. We recall that an order-enriched adjunction between order-
enriched categories is an adjunction F ⊣ U : A → B with U and F order-
enriched, and for which there exists a natural isomorphism between the func-
tors B(−, U−) and A(F−,−) from B × A to Pos. This is equivalent to say
that we have an adjunction F ⊣ U : A → B with U order-enriched, and the
unit η satisfies the property that any inequality of the form Uf ·ηX ≤ Ug ·ηX,
for f e g with common domain and codomain, implies f ≤ g ([11]). Clearly,
an order-enriched adjunction induces an order-enriched monad; and, for an
order-enriched monad T, the adjunctions FT ⊣ UT and F

T

⊣ U
T

are order-
enriched.

2. In an order-enriched category A with weighted limits, given an object
S, the cotensor product yields a functor

(2) ⋔ (−, S) : Pos −→ Aop

which is an order-enriched left adjoint of A(−, S). For every X ∈ A, the
counit map is given by (the dual of) the morphism nX determined by the
universality of the cotensor product:

(3) X
nX //

f

��✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳

⋔ (A(X, S), S)

πf

��✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄

, f ∈ A(X, S)

S

Given X ∈ A, put

X̂ =⋔ (A(X, S), S)

and consider the cotensor product

⋔ (A(X̂, S), S)
π̂g

−−−−→ S, g ∈ A(X̂, S).
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Let β :⋔ (A(X, S), S) −→⋔ (A(X̂, S), S) be the unique morphism of A which
makes the following diagrams commutative:

X̂
β

//

πg·nX

��✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

⋔ (A(X̂, S), S)

π̂g

��☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎

, g ∈ A(X̂, S).

S

Thus, putting α = nX̂ , we have the diagram

(4) X
nX // X̂

β
//

α
// ⋔ (A(X̂, S), S).

Definition 4.4. Let A be an order-enriched category with weighted limits.
An object S of A is said to be a regular cogenerator if the the diagram
(4) is an equaliser.

If A has weighted limits, every equaliser of A is conical; hence, it is imme-
diate that every regular cogenerator detects the order, so, in particular, it is
a cogenerator.

Theorem 4.5. Every order-enriched category with weighted limits and a reg-
ular cogenerator has weighted colimits.

Proof : Let A be an order-enriched category with weighted limits and a regular
cogenerator S. Then, as seen in Remark 4.3, the functors

Aop
A(−,S)

// Pos
⋔(−,S)
oo

form an order-enriched adjunction. Let T be the corresponding monad and
let K : Aop → PosT be the comparison functor:

Aop K //

A(−,S) ""❊
❊❊

❊❊
❊❊

❊
PosT

{{✇✇
✇✇
✇✇
✇✇
✇

Pos

Since S is a regular cogenerator, the morphism nopX , which is, pointwisely, the
counit of the adjunction ⋔ (−, S) ⊣ A(−, S), is a regular epimorphism, and,
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consequently, K is a full and faithful right adjoint. Moreover, this adjunction
is order-enriched, as it is explained in the next paragraph.
Let F ⊣ U : C → B be an order-enriched adjunction with the counit being

pointwisely a conical coequaliser, and C having conical coequalisers. It is well-
known that, under these conditions, the comparison functor K is a full and
faithful right adjoint [24]. It is clear that K is order-enriched. Then, in order
to conclude that the adjunction K : C → BT is order-enriched, it suffices to
show that, for every universal map ηT(X,ξ) : (X, ξ) → KA of the adjunction,

and every pair f, g : A→ B of morphisms in C with Kf · ηT(X,ξ) ≤ Kg.ηT(X,ξ),

we have f ≤ g (see Remark 4.3.1). Recall that, given (X, ξ) ∈ BT, the
universal map from (X, ξ) to K is obtained as follows: take the coequaliser
c : FX → A of the pair

FUFX
εFX //

Fξ
// FX

where ε is the counit of the adjunction F ⊣ U . Then Uc ·UFξ = Uc ·UεFX .
But ξ = coeq(UεFX , UFξ); hence, there is a unique θ : X → UA making the
following triangle commutative:

UFX
ξ

//

Uc $$■
■■

■■
■■

■■
X

θ
��

UA

and it holds θ = Uc.ηX . It is known that

ηT(X,ξ) = θ

and, for every g : (X, ξ) → KB in BT, the unique ḡ : A → B in C making
the triangle

(X, ξ)
θ //

g
��

KA

Kḡzz✈✈✈
✈✈
✈✈
✈✈
✈

KB

commutative is characterised by the equality

ḡ · c = εB · Fg.

We show that, given two morphisms g, h : (X, ξ) → KB with g ≤ h then ḡ ≤
h̄. Since F is order-enriched, the inequality g ≤ h implies εB · Fg ≤ εB · Fh.
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But then

ḡ · c = εB · Fg ≤ εB · Fh = h̄ · c

and, since c is order-epic (because it is a conical coequaliser), ḡ ≤ h̄.

Now we have that, for our comparison functor K : Aop → PosT,

• K is the right adjoint of an order-enriched adjunction;
• K is full and faithful, and it is full with respect to the order, that is,

given a pair of morphisms
f

//
g

// in Aop, f ≤ g in Aop iff Kf ≤ Kg

in PosT.

Consequently, since PosT has weighted limits, also Aop has weighted limits,
and the weighted limits in Aop are constructed, up to isomorphism, as in
PosT. (This can be easily proved in a way analogous to the one of the
ordinary case.) That is, A has weighted colimits.

In the next section we apply this theorem to the categories ALat of al-
gebraic lattices with maps which preserve directed suprema and all infima,
the category ADom of bounded complete algebraic domains with maps which
preserve directed suprema and all non-empty infima, and the category Spec

of spectral topological spaces and spectral maps.

5. (Co)completeness of subcategories of XT

In this and the next section we work within the category Top0 of T0 topo-
logical spaces and continuous maps. We consider the relation ≤ in a space
to be the specialisation order, and we use also the symbol ≤ to refer to the
corresponding order induced in the hom-sets of Top0. We do this in order
to fit our terminology on continuous domains and lattices with [17]. Thus,
as mentioned already in Examples 2.5, the open filter monads are KZ with
respect to ≥.
The category Top0 has weighted limits, since its ordinary limits are conical,

and the inserter of a pair (f, g) of morphisms with domain in X is just the
subspace of all x ∈ X with f(x) ≤ g(x). Therefore, for every Kock-Zöberlein
monad T over X = Top0 the corresponding Eilenberg-Moore category XT is
closed under weighted limits in Top0 (since the forgetful functor from XT to
Top0 creates limits). Hence, the cotensor product yields the functor

⋔ (−, S) : Pos −→
(
XT
)op

.
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This functor is defined as in (2) of the previos section. Thus, we can consider
the diagram defined as in (4):

(5) X
nX // X̂

β
//

α
// ⋔ (Hom(X̂, S), S)

where Hom refers to hom-posets of XT. Let

Xalg

denote the full subcategory of XT for which the diagram (5) is an equaliser
in Top0, then also in XT.
We are going to show that, concerning the filter, the proper filter and

the prime filter monads, the subcategories Xalg are well-known categories,
namely: the category ALat of algebraic lattices with maps which preserve
directed suprema and all infima, the category ADom of bounded complete
algebraic domains with maps which preserve directed suprema and all non-
empty infima, and the category Spec of spectral topological spaces and spec-
tral maps (see Definition 2.4). We show that all of them are closed under
weighted limits. Hence, the equaliser diagram (5) tells us that the Sierpiński
space is a regular cogenerator of Xalg. Moreover, it allows us to conclude
that:

(1) Xalg is the closure under weighted limits of X
T

in XT, and in Top0
(Corollary 5.4);

(2) Xalg has weighted colimits (Corollary 5.5).

We start by establishing the closedness under weighted limits:

Proposition 5.1. Every one of the three categories, ALat, ADom and Spec,
is closed under weighted limits in Top0.

Proof : Let T be a Kock-Zöberlein monad over Top0; then XT is closed under
weighted limits in Top0. Inserters in Top0 are topological embeddings, then
also order embeddings. Thus, the same happens in XT.
Let now K be a full subcategory of XT. Then, in order to ensure that K is

closed under weighted limits in Top0, it suffices to show that K is closed in
XT under

• (conical) products, and
• topological embedding subobjects, i.e., for every topological embed-
ding
m : X →֒ Y in XT with Y in K, also X belongs to K.
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Since for the filter and the proper filter monads the morphisms of XT are
the maps preserving directed suprema and infima (respectively, non-empty
infima), the closedness under products and topological embedding subobjects
of ALat and ADom in the corresponding category XT is just Proposition I-4.12
and Corollary I-4.14 of [17].
Concerning the category Spec, we observed already in Definition 2.4 (7) and

Example 2.5(4) that Spec is a reflecive full subcategory of XT ≃ StablyComp

since it is closed in it under initial cones. In particular, it is closed under
products and embeddings.

Next we show that the Sierpiński space S is a regular cogenerator for each
one of the three categories, ALat, ADom and Spec. For that, we first prove
Lemma 5.2 below, where we present a common feature of the three categories,
which gives the means for the proof of Theorem 5.3.
Before stating that lemma, we describe the morphism nX : X −→ X̂ ,

defined in (3), in any full subcategory A of XT closed under weighted limits
and containing the Sierpinski space S. Given X ∈ A, let

ΛX = {U ∈ ΩX | XU : X −→ S is a morphism of A}.

Then X̂ =⋔ (Hom(X, S), S) consists of all families (zU)U∈ΛX in the product
SΛX with the property U ⊆ V ⇒ zU ≤ zV , and nX(x) = (χU(x))U∈ΛX. The

topology of X̂ is just the one induced by the product topology. Thus, it is
generated by the sub-base of all sets

♦U = π−1
χU
({1}) = {(zU)U∈ΛX | zU = 1}, U ∈ ΛX,

and we have U = n−1
X (♦U). Moreover, since the projections πχ

U
belong to

Hom(X, S), the sets ♦U belong to ΛX̂ .

Lemma 5.2. Let A be one of the categories ALat, ADom or Spec. Then A

satisfies the following conditions:

(i) The spaces of A are sober and S ∈ A.
(ii) A is closed under weighted limits in Top0.
(iii) For every X ∈ A, the set ΛX is closed under finite intersections (in

particular, contains X) and forms a base of the topology ΩX.

(iv) For every X ∈ A, the morphism nX : X → X̂ has the following
property, for every family Vi, i ∈ I, of sets of ΛX:

If H =
⋃

i∈I

Vi ∈ ΛX, then H = n−1
X (H ′), for some H ′ ∈ ΛX̂ with H ′ ⊆

⋃

i∈I

♦Vi.
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Proof : Condition (i) is well-known for the three categories.
Condition (ii) is Proposition 5.1.
We show condition (iii) for ALat. Given X ∈ ALat and U ∈ ΩX, the

characteristic function χU : X → S is a morphism of ALat iff it preserves
arbitrary infima, and this is equivalent to U being closed under arbitrary
infima. We show that it forms a base of ΩX. If U closed under infima, it
is of the form U =↑ c where c =

∧
U . But then the open sets of X closed

under infima are precisely all of the form ↑ c with c a compact element of
X, and these sets are known to be a base for the topology of the algebraic
lattice X. Moreover, they are closed under finite intersections.
Condition (iii) for ADom is shown in an analogous way and we have, in

this case,

ΛX = {U ∈ ΩX | U is closed under non-empty infima}.

Concerning (iii) for Spec, it is obvious that a continuous map f : X → S
is spectral iff f−1({1}) is compact. Thus

ΛX = {U ∈ ΩX | U is compact}

which is, by definition of spectral space, a base of ΩX.
Now we verify condition (iv) for the three categories.

A = ALat. Let H =
⋃

i∈I Vi belong to ΛX with all Vi in ΛX. Then,⋃
i∈I Vi =↑ a, with a a compact element of X; hence, a ∈ Vi0 for some i0 ∈ I;

but Vi0 =↑ Vi0, thus we have
⋃

i∈I Vi = Vi0. Consequently,

H = Vi0 = n−1(♦Vi0) with ♦Vi0 ⊆
⋃

i∈I

♦Vi.

A = ADom. The same proof as for ALat, in case
⋃

i∈I Vi 6= ∅. The case⋃
i∈I Vi = ∅ is trivial.

A = Spec. Consider H =
⋃

i∈I Vi in ΛX, with Vi ∈ ΛX, i ∈ I. Then,
since

⋃
i∈I Vi is compact, it can be written as

⋃
i∈I Vi =

⋃
j∈J Vj, with J ⊆ I

finite. Hence, we obtain

H =
⋃

i∈I

Vi =
⋃

j∈J

Vj = n−1(
⋃

j∈J

♦Vj)

wth
⋃

j∈J ♦Vj ⊆
⋃

i∈I ♦Vi, and
⋃

j∈J ♦Vj ∈ ΛX̂, because it is a finite union

of compact open sets of X̂ .
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Theorem 5.3. For a subcategory A of Top0 fulfilling conditions (i)-(iv) of
Lemma 5.2, the diagram (5) is an equaliser in Top0. As a consequence, the
Sierpiński space is a regular cogenerator in A, and, in particular, in each one
of the categories ALat, ADom and Spec.

Proof : We prove that if A is a subcategory of Top0 fulfilling conditions (i)-
(iv) of Lemma 5.2, then (5) is an equaliser in Top0. Since A contains S and
is closed under weighted limits in Top0, it immediatly follows that (5) is also
an equaliser in A.
Put n = nX . In order to conclude that n is indeed the equaliser of α and

β, let

Y
h

−−−→ X̂ =⋔ (Hom(X, S), S)

be a morphism in Top0 such that

αh = βh.

For y ∈ Y , put

h(y) = (yU)U∈ΛX .

We show that:

(A) For every y ∈ Y , the set

Fy = {U ∈ ΛX | y
U
= 1}

is a filter of the poset (ΛX,⊆), and has the following property:

(♦) If
⋃

i∈I Vi ∈ Fy with all Vi ∈ ΛX, then Vj ∈ Fy for some j ∈ I.

(B) Every filter F of the poset (ΛX,⊆) satisfying property (♦) is of the
form

F = B(x) = {U ∈ ΛX | x ∈ U}

for a unique x ∈ X.

After proving (A) and (B), it is then clear that we can define h̄ : Y → X
by putting

h̄(y) = x with Fy = B(x),

and this is the unique map making the triangle

X
n // X̂

Y
h̄

__❄
❄
❄
❄ h

??⑧⑧⑧⑧⑧⑧⑧⑧
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commutative. The fact that h̄ is continuous follows, since n is a topological
embedding.
Proof of (A). We observe that the equality αh(y) = βh(y) means that

χH((yU
)U∈ΛX) = yn−1(H) , H ∈ ΛX̂.

Thus Fy 6= ∅, because y
X
= yn−1(X̂) = χX̂((yU

)U∈ΛX) = 1.
It is also clear that if U and V are two open sets of ΛX with U ⊆ V and

U ∈ Fy then V ∈ Fy, by definition of X̂. Moreover, Fy is closed under binary
intersections: V and W laying in Fy means that y

V
= 1 and y

W
= 1, that

is, (y
U
)U∈ΛX ∈ (♦V )

⋂
(♦W ). But then χ(♦V )

⋂
(♦W )((yU

)U∈ΛX) = 1. Now,

(♦V )
⋂
(♦W ) ∈ ΛX̂ , because X̂ ∈ A (since S ∈ A and A is closed under

weighted limits), thus X̂ satisfies (iii). Then, we have y
V

⋂
W
= yn−1(♦V

⋂
♦W ) =

1, that is, V
⋂
W ∈ Fy.

We show now that Fy satisfies (♦). Let Vi, i ∈ I, be a family of sets of
ΛX with

⋃
i∈I Vi ∈ Fy, that is,

⋃
i∈I Vi ∈ ΛX and y⋃

i∈I Vi
= 1. Then, by (iv),

there is some H ′ ∈ ΛX̂ , with n−1(H ′) =
⋃

i∈I Vi and H
′ ⊆

⋃
i∈I ♦Vi. Now,

using the equality αh(y) = βh(y), we have:

1 = y⋃
i∈I Vi

= yn−1(H ′) = χH ′((y
U
)U∈ΛX).

Consequently,

(y
U
)U∈ΛX ∈ H ′ ⊆

⋃

i∈I

♦Vi.

Thus, for some j ∈ I, (y
U
)U∈ΛX ∈ ♦Vj that is, yVj

= 1, hence Vj ∈ Fy.

Proof of (B). It is clear that B(x) is a filter of (ΛX,⊆) with property (♦).
Conversely, let F be a filter of (ΛX,⊆) with property (♦), and put

A = {z ∈ X | B(z) ⊆ F}.

We show that A is a non-empty irreducible closed set.
Indeed, given t ∈ X \ A, there is some V ∈ ΛX with t ∈ V and V /∈ F .

But then all elements of V belong to X \ A, thus t ∈ V ⊆ X \ A; hence, A
is closed. A is also non-empty, because, if for every x ∈ X, we have some
Ux ∈ ΛX with Ux /∈ F then, by (♦), we obtain that

⋃
x∈X Ux = X /∈ F ,

which contradicts the fact that F is a filter.
To show that A is irreducible, let A = F1

⋃
F2 with F1 and F2 closed. If

A 6= F1 and A 6= F2 then there is x ∈ X\F1 and y ∈ X\F2 with x, y ∈ A. But
then we can find U, V ∈ ΛX with x ∈ U ⊆ X \ F1 and y ∈ V ⊆ X \ F2, and
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U
⋂
V ∈ F . Taking into account that U

⋂
V ⊆ (X \F1)

⋂
(X \F2) = X \A,

then, for every z ∈ U
⋂
V , there is some Vz ∈ B(z) with Vz ⊆ U

⋂
V and

Vz /∈ F . But then U
⋂
V =

⋃
z∈U

⋂
V Vz belongs to F with all Vz /∈ F , which

contradicts (♦).
Since X is sober and A ⊆ X is a non-empty irreducible closed set, we

know that A = {x} for a unique x ∈ X. We show that F = B(x). Clearly
B(x) ⊆ F . Concerning the converse inclusion, condition (♦) ensures that,

for every U ∈ F , there is some z ∈ U
⋂
A = U

⋂
{x} – otherwise, we would

find Vz ∈ ΛX, with z ∈ Vz 6∈ F and U =
⋃

z∈U Vz, a contradiction to (♦);
but then x ∈ U , i.e., U ∈ B(x).

Corollary 5.4. For the filter, the proper filter and the prime filter monads,
the category Xalg is, respectively, ALat, ADom and Spec. Moreover, Xalg is
the closure under weighted limits of X

T

in XT, thus, also in Top0.

Proof : The above theorem shows that, in all the three cases A = ALat, ADom, Spec,
A is indeed contained in Xalg. On the other hand, since S ∈ A, and A is closed
under weighted limits in XT, the diagram (5) is contained in A whenever it is
an equaliser diagram. Hence A coincides with Xalg. Moreover, every X of XT

making diagram (5) an equaliser belongs to the closure under weighted limits
of X

T

in XT, because S belongs to X
T

. Indeed, for the open filter monad T,
S is homeomorphic to TS, and, for the proper and the prime filter monads,
S is homeomorphic to TX with X a singleton space. Therefore, in the three
cases, Xalg is precisely the closure under weighted limits in XT of X

T

; and
also in Top0, since XT is closed under weighted limits in Top0.

Corollary 5.5. The categories ALat, ADom and Spec have weighted colimits.

Proof : It is a consequence of Theorem 4.5, Proposition 5.1 and Theorem 5.3.

6. The idempotent split completion for the filter monad
Let F = (F,m, e) be the open filter monad on X = Top0. As in the previous

section, we use ≤ to refer to the order induced in the hom-sets of Top0 by
the specialisation order, thus the open filter monad is of Kock-Zöberlein type
with respect to ≥. Accordingly, in all notions and results of Sections 2 and 3
on Kock-Zöberlein monads, regarding adjunctions between morphisms, “left
adjoint” interchanges with “right adjoint”.
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As seen in Section 3, the idempotent split completion of X
F

, denoted by
kar(X

F

), is equivalent to the full subcategory Spl(XF) of XF. And Spl(XF)
consists of all F-algebras (X,α) for which there is a morphism t : X → FX
(in Top0) such that α ⊣ t. Moreover, it is known that the subcategory X

F

is contained in ALat [13], and the latter is closed under weighted limits in
ContLat. Thus, we have the following full embeddings:

X
F

→֒ kar(X
F

) →֒ ALat →֒ XF = ContLat.

In this section we show that the idempotent split completion of X
F

consists
precisely of all algebraic lattices whose set of compact elements forms the dual
of a frame.

Notation 6.1. Along this section we use the sybmol K(X) to denote the
set of compact elements of a directed complete poset (see Definition 2.4).

Remark 6.2. Let X and Y be continuous lattices and let Y
α

**
X

e
jj be in

Top0 with αe = idX and eα ≤ idY . Then α is defined by

α(y) =
∨

{z ∈ X | e(z) ≤ y}.

This follows from Freyd Adjoint Theorem.

Lemma 6.3. Let X, Y be directed complete posets with Y continuous, and

let Y ⊥

α
**

t

jj X be in Pos with α a surjective map and t preserving directed

suprema. Then α preserves the way-below relation ≪, and, as a consequence,
X is also continuous and the set of compact elements of X is given by

K(X) = {α(y) | y ∈ K(Y )}.

Proof : Let y0, y1 ∈ Y with y0 ≪ y1. Assume that α(y1) ≤
∨↑

i∈I zi. Then,

since α ⊣ t, y1 ≤ t(
∨↑

i∈I zi) =
∨↑

i∈I t(zi). By hypothesis, there is some i ∈ I
with y0 ≤ t(zi). Hence α(y0) ≤ αt(zi) ≤ zi. Consequently, α(y0) ≪ α(y1).
Thus α prserves the relation ≪, in particular it preserves compact elements.
Let now x ∈ K(X). First we show that x =

∨
{α(y) | y ∈ K(Y ), α(y) ≤ x}.

Indeed, for every y ∈ Y , we have that the inequalities α(y) ≤ x and y ≤ t(x)
are equivalent, because α ⊣ t. Now, using also the fact that α is surjective
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and Y is continuous, we have that

x = αt(x) = α
(∨

{y ∈ K(Y ) | y ≤ t(x)}
)
=
∨

{α(y) | y ∈ K(Y ), y ≤ t(x)}

=
∨

{α(y) | y ∈ K(Y ), α(y) ≤ x}.

Let now x ∈ K(X). The set {α(y) | y ∈ K(Y ), α(y) ≤ x} is directed in X
(because it is the image under α of a directed set). Then, as x is compact,
it must be of the form α(y) for some y ∈ K(Y ).

Lemma 6.4. Let A be an algebraic lattice such that there is t : A → FA in
Top0 which is right adjoint to the F-structure α : FA → A (thus, αt = idA
and idFA ≤ tα). Then the set K(A) of compact elements of A is closed
under arbitrary infima, and, in K(A), finite suprema distribute over arbitrary
infima.

Proof : It is easy to see that in FA, the compact elements are closed under
arbitrary infima. Indeed K(FA) = {↑ U | U ∈ ΩA}, and we have that⋂

i∈I ↑ Ui =↑
(⋃

i∈I Ui

)
.

Moreover, in K(FA) finite suprema are distributive with respect to arbi-
trary infima. Indeed, it is easy to see that, for Vi, U and V in ΩA, we have
in FA:

(i)
∧

i∈I ↑ Vi =
⋂

i∈I ↑ lVi =↑
(⋃

i∈I Vi
)
; and

(ii) (↑ U)
∨
(↑ V ) =↑ (U

⋂
V ).

Hence,

(↑ U)∨
(
∧

i∈I

↑ Vi

)
=↑

(
U∩

(
⋃

i∈I

Vi

))

=↑

(
⋃

i∈I

(U∩Vi)
)

=
⋂

i∈I

↑ (U∩Vi)

=
∧

i∈I

((↑ U)∨ (↑ Vi)) .

Now, being simultaneously a right and a left adjoint, α preserves infima and
suprema. Consequently, by Lemma 6.3, as in FA, compacts in A are closed
under infima. Moreover, A also inherits the distribuivity of finite suprema
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over arbitrary infima for compact elements: putting c = α(d) and ci = α(di)
with d and all di compacts of A, we have:

c ∨

(
∧

i∈I

ci

)
= α (d) ∨

(
∧

i∈I

α (di)

)
= α

(
d ∨

(
∧

i∈I

di

))

= α

(
∧

i∈I

(d ∨ di)

)
=
∧

i∈I

(c ∨ ci) .

Theorem 6.5. The idempotent split completion of the category X
F

of al-
gebraic algebras is precisely the full subcategory of ContLat of all algebraic
lattices whose subposet of compacts is the dual of a frame.

Proof : We know that kar (X
F

) consists of all algebraic lattices A such that
the F-structure of A, α : FA → A, has a right adjoint t : A → FA. In
particular, since α is a retraction, also αt = idA. Consequently, by Lemma
6.4, for every A ∈ kar (X

F

), the poset dual to K(A) is a frame.
Conversely, let A be an algebraic lattice such that in its subposet K(A)

there are all infima and finite suprema are distributive with respect to arbi-
trary infima.
By Remark 6.2, the F-structure map of A is given by

α (φ) =
∨

{x ∈ A | eA(x) ⊆ φ}, φ ∈ FA.

We show that α has a right adjoint t : A→ FA.
For everyG ∈ ΩA, let k(G) denote the compact elements of A which belong

to G. Given a ∈ A, consider the subset of FA

(6) Sa = {φ ∈ FA | α(φ) ≤ a}

and the subset of ΩA

(7) ψa = {G ∈ ΩA |
∧

k(G) ≤ a}.

We show that ψa is a filter and ψa =
∨
Sa.

First, we show that the union of all filters of Sa is precisely ψa. Let then
φ ∈ FA with α(φ) ≤ a, and let G ∈ φ. Put c =

∧
k(G). By hypothesis, c ∈

K(A), then ↑ c is an open set containingG, hence belongs to φ. Consequently,
eA(c) ⊆ φ, thus, c ≤ α(φ). Since, α(φ) ≤ a, it follows that c ≤ a, as desired.
Conversely, let G be an open set of A with

∧
k(G) ≤ a. Put φ =↑ G. Then,

for every x ∈ A, eA(x) ⊆ φ means that every open set of which x is an
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element contains G, and, in particular, contans k(G). But this implies that
x ≤ c for all c ∈ k(G), that is, x ≤

∧
k(G), and, thus, x ≤ a. Since this

happens to all x with eA(x) ⊆ φ, we have α(φ) ≤ a. Hence, G ∈ φ with φ a
filter of Sa.
Now, we show that ψa is indeed a filter, then ψa =

∨
Sa. First, observe

that, every open G is the union of all sets ↑ c with c ∈ k(G), and, moreover,
if {ci, i ∈ I} ⊆ K(A) with G =

⋃
i∈I ↑ ci, then

∧
k(G) =

∧
i∈I ci. Now, let G

and H belong to ψa with k(G) = {ci, i ∈ I} and k(H) = {dj, j ∈ J}. Then

G∩H =

(
⋃

i∈I

↑ ci

)
⋂


⋃

j∈J

↑ dj


 =

⋃

i∈I, j∈J

(↑ ci
⋂

↑ dj) =
⋃

i∈I, j∈J

↑ (ci ∨ dj)

with all ci∨ dj compact, because the supremum of two compacts is compact.
Moreover, using the existing distributivity in K(A),

∧

i∈I, j∈J

(ci ∨ dj) =

(
∧

i∈I

ci

)
∨

(
∧

j∈j

dj

)
≤ a ∧ a = a.

Then G∩H belongs to ψa.
Now, put, for every a ∈ A,

t(a) =
∨

Sa = ψa.

By the defnition of Sa, t : A → FA is indeed a right adjoint of α in Pos.
It remains to show that the map t is continuous (equivalently, it preserves
directed suprema). We know that the sets U# = {φ ∈ FA | U ∈ φ}, U ∈ ΩA,
form a base of the topology of FA (see Examples 2.5(3)). And we have that

t−1(U#) = {a ∈ A | U ∈ t(a)} = {a ∈ A |
∧

k(U) ≤ a} =
x(
∧

k(U)) ;

thus t−1(U#) is open because, by hypothesis,
∧
k(U) is compact.
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