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1. Introduction

In 1985 Cassidy-Hébert-Kelly [6] studied orthogonal factorisations systems
induced by reflective subcategories, with particular emphasis in the case when
the reflection is simple. Among the lax orthogonal factorisation systems, that
generalise the orthogonal ones in 2-categories, those arising from simple mon-
ads – as defined by the authors of this paper in [12, 13] – have particular
relevance. This paper intends to give a systematic way of producing simple
monads in (some) topological categories over Set using the presheaf monads
of (T, V )-Cat studied in [20, 9]. Given a quantale V and a well-behaved Set-
monad T, the category (T, V )-Cat, of generalised V -enriched categories and
their functors, is topological and locally preordered (see [8, 14]). As crucial
examples we mention the categories Ord of (pre)ordered sets and monotone
maps, Top of topological spaces and continuous maps, Met of Lawvere gen-
eralised metric spaces and non-expansive maps [25], and App of Lowen ap-
proach spaces and non-expansive maps [26]. Equipping the quantale V with
a canonical (T, V )-category structure, one gets naturally a Yoneda Lemma
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and a well-behaved presheaf monad that was shown to be lax idempotent in
[20]. Here we show that it is simple, inducing a lax orthogonal factorisation
system which underlies a weak factorisation system having embeddings as
left part. (In order to avoid technicalities we restrict ourselves to separated,
or skeletal, (T, V )-categories, so that their hom-sets have an anti-symmetric
order.) This encompasses the weak factorisation system in Ord studied by
Adámek-Herrlich-Rosický-Tholen in [1].
These presheaf monads have interesting simple submonads, namely the one

that has as algebras the Lawvere complete (T, V )-categories (see [10]), and
that gives – as shown by Lawvere in [25] – Cauchy-complete spaces when one
takes T = Id the identity monad and V the complete half-real line. These also
cover, following techniques developed in [9], the weak factorisation systems
of Top0 studied in [4], having as left parts embeddings, dense embeddings,
flat embeddings and completely flat embeddings.
This paper does not intend to be self-contained. In Section 2 and 3 we

present the basic definitions and results on lax orthogonal factorisation sys-
tems and on (T, V )-categories that are needed for this work. For a better
understanding of these topics we refer to the papers mentioned there and to
the monograph [21]. In Section 4 we study the presheaf monads on (T, V )-
categories and their simplicity. In Section 5 we explore the examples of lax
orthogonal factorisation systems induced by these presheaf monads.

2. Lax orthogonal factorisation systems

Throughout we will be working on a category C enriched in posets, or Ord-
enriched category, so that each hom-set C(X, Y ) is equipped with an order
structure ≤ that is preserved by composition: if f, f ′ : X → Y , with f ≤ f ′,
g : Y → Z and h :W → X, then g · f ≤ g · f ′ and f · h ≤ f ′ · h.

2.1. Weak factorisation systems. Given morphisms f, g, we say that f
has the left lifting property with respect to g, and that g has the right lifting
property with respect to f , if every commutative square as shown has (a not
necessarily unique) diagonal filler.

. //

f
��

.
g

��
. //

>>

.

A weak factorisation system (wfs) in a category is a pair (L,R) of families
of morphisms such that:
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• L consists of those morphisms with the left lifting property with re-
spect to each morphism of R.

• R consists of those morphisms with the right lifting property with
respect to each morphism of L.

• Each morphism in the category factors through an element of L fol-
lowed by one of R.

2.2. Algebraic weak factorisation systems. An Ord-functorial factori-

sation on an Ord-category C consists of a factorisation dom
λ
⇒ E

ρ
⇒ cod of

the natural transformation dom ⇒ cod with component at f ∈ C2 equal to
f : dom(f) → cod(f), in the category of locally monotone functors C2 → C.
As in the case of functorial factorisations on ordinary categories, an Ord-
functorial factorisation can be equivalently described as:

• A copointed endo-Ord-functor Φ: L⇒ 1C2 on C2 with dom(Φ) = 1.
• A pointed endo-Ord-functor Λ: 1C2 ⇒ R on C2 with cod(Λ) = 1.

The three descriptions of an Ord-functorial factorisation are related by:

dom(Λf) = Lf = λf cod(Φf) = Rf = ρf .

An algebraic weak factorisation system, abbreviated awfs, on an Ord-
category C consists of a pair (L,R), where L = (L,Φ,Σ) is an Ord-comonad
and R = (R,Λ,Π) is an Ord-monad on C2, such that (L,Φ) and (R,Λ) rep-
resent the same Ord-functorial factorisation on C (i.e., the equalities above
hold), fulfilling a distributivity condition we explain next.
Note that the components of Σ and Π are as follows

Σf =

·

Lf
��

·

L2f
��

·
σf

// ·

and Πf =
·

πf
//

R2f
��

·

Rf
��

· ·

which together form a transformation ∆ : LR ⇒ RL, with ∆f = (σf , πf) as
below.

∆f =

Ef
σf

//

LRf
��

1

##

ELf

RLf
��

ERf
πf

// Ef

The distributivity axiom requires ∆ to be a mixed distributive law between
the comonad L and the monad R, that reduces to the commutativity of the
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following diagrams.

LR2 ∆R //

LΠ
��

RLR
R∆ // R2L

ΠL
��

LR
∆ //

ΣR
��

RL

RΣ
��

LR
∆ // RL L2R

L∆ // LRL
∆L // RL2

(a)

Algebraic weak factorisation systems were introduced by Grandis-Tholen in
[18] under the name natural factorisation system; later, in [17], Garner added
to this definition the distributivity conditions we described above.
Each awfs has an underlying wfs (L,R), with L = {f | f has an (L,Φ)-

coalgebra structure} and R = {g | g has an (R,Λ)-algebra structure}. A
coalgebra structure (1X, s : Y → Ef) for f ∈ L, so that s · f = Lf and
Rf · s = 1Ef , and an (R,Λ)-algebra structure (p : Eg → Z, 1W ) for g ∈ R,
so that g · p = Rg and p ·Lg = 1Z , give a natural lifting d = p ·E(u, v) · s for
a commutative square v · f = g · u:

X
u //

f

��

Lf

!!❇
❇❇

❇❇
❇❇

❇ Z Z

g

��

Ef
E(u,v)

// Eg

p
==④④④④④④④④

Rg

!!❈
❈❈

❈❈
❈❈

Y

s
==⑤⑤⑤⑤⑤⑤⑤⑤
Y

v // W.

(b)

This lifting is unique – so that (L,R) is an orthogonal factorisation system
– if, and only if, L and R are idempotent. In fact idempotency of L implies
idempotency of R and vice-versa, as shown in [3].

2.3. Lax algebraic factorisation systems. Informally, a lax orthogonal
factorisation system is an awfs whose liftings as in (b) have a universal
property, as we explain next. First we recall that:

Definition ([24]). An Ord-enriched monad S = (S, η, µ) is lax idempotent,
or Kock-Zöberlein, if it satisfies any of the following equivalent conditions:

(i) Sη ≤ ηS;
(ii) Sη ⊣ µ (or, equivalently, Sη · µ ≤ 1);
(iii) µ ⊣ ηS (or, equivalently, 1 ≤ ηS · µ);
(iv) a morphism f : SX → X is an S-algebra structure for X if, and only

if, f ⊣ ηX with f · ηX = 1X .

A lax idempotent Ord-comonad is defined dually.
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Lemma. If S = (S, η, µ) is a lax idempotent monad on an Ord-category, the
following conditions are equivalent, for an object X of C:

(i) X admits an S-algebra structure;
(ii) X admits a unique S-algebra structure;
(iii) ηX : X → SX has a right inverse, i.e. X admits an (S, η)-algebra

structure;
(iv) X is a retract of SX;
(v) X is a retract of an S-algebra.

An awfs (L,R) is a lax orthogonal factorisation system, abbreviated lofs,
if L and R are lax idempotent. These factorisations were introduced by the
authors in [12] and further studied in the Ord-enriched categories setting, as
used here, in [13].

Corollary. If (L,R) is a lofs, then its underlying weak factorisation system
(L,R) consists of the class L of the morphisms admitting a (unique) L-
coalgebra structure and the class R consists of the morphisms admitting a
(unique) R-algebra structure.

As for orthogonal factorisation systems, lax idempotency of L implies lax
idempotency of R and vice-versa. In fact:

Theorem ([13]). (1) Given an awfs (L,R) on an Ord-category C, the fol-
lowing conditions are equivalent:
(i) (L,R) is a lofs;
(ii) L is lax idempotent;
(iii) R is lax idempotent.

(2) Given a domain-preserving Ord-comonad L and a codomain-preserving
Ord-monad R inducing the same Ord-functorial factorisation f = Rf ·Lf ,
the following conditions are equivalent:
(i) (L,R) is a lofs.
(ii) Both L and R are lax idempotent.
(iii) One of L and R is lax idempotent and the distributive law axioms

(a) hold.
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2.4. Lifting operations. Diagram (b) shows that every functorial factori-
sation system induces a canonical lifting operation from the forgetful Ord-
functor U : (L,Φ)-Coalg → C2 to the forgetful Ord-functor V : (R,Λ)-
Alg → C2, meaning that every commutative diagram

.
h //

Ua
��

.

V b
��

.
k // .

(c)

has a canonical diagonal filler φa,b(h, k) so that V b ·φa,b(h, k) = k, φa,b(h, k) ·
Ua = h. Those fillers respect both composition and order in a natural way
(see [13] for details).
A lifting operation from U : A → C2 to V : B → C2 is said to be kz

if, for every commutative diagram (c) and every diagonal filler d, one has
φa,b(h, k) ≤ d.

Theorem ([13]). For an awfs (L,R) on an Ord-category C, the following
conditions are equivalent:

(i) (L,R) is a lofs.
(ii) The lifting operation from L-Coalg → C2 to R-Alg → C2 is kz.

2.5. Simple monads and their lofss. The notion of simple monad we
present here, studied in [12, 13], is the Ord-enriched version of simple reflec-
tion of [6]. Given an Ord-monad S = (S, η, µ), we construct a monad R on C2

by considering the comma-object Kf = Sf ↓ ηY and defining Rf : Kf → Y

as the second projection. Then Lf is the unique morphism making the fol-
lowing diagram commute.

X

f

��✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶

Lf
❈❈

❈

!!❈❈
❈

ηX

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

Kf qf //

Rf
��

SX

Sf
��

Y

≥

ηY
// SY

The Ord-functorial factorisation f = Rf · Lf defines a copointed endo-Ord-
functor (L,Φ : L⇒ 1), with Φf = (1X , Rf), and a pointed endo-Ord-functor
(R,Λ), with Λf = (Lf, 1Y ). Moreover, (R,Λ) underlies a monad R on C2
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whose multiplication Πf = (πf , 1Y ) is defined by the unique morphism πf
given by the universal property of the comma-object:

KRf
πf

##●
●●

●●
●●

●

qRf
//

RRf

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
SKf

Sqf
// SSX

µX

��

Kf
qf

//

Rf
��

SX

Sf
��

Y
ηY

//

≥

SY

(See [13] for details.)

Lemma. Given a monad S on C, the following conditions are equivalent for
a morphism f : X → Y in C:

(i) f has an (L,Φ)-coalgebra structure.
(ii) Sf is a lari (=left adjoint right inverse), that is, it has a right adjoint

S∗f such that S∗f · Sf = 1.

Proof : (i)⇒(ii): If (1X, s : Y → Kf) is an (L,Φ)-coalgebra structure for
f : X → Y , then S∗f := µX · Sqf · Ss is a left inverse of Sf :

S∗f · Sf = µX · Sqf · Ss · Sf = µX · Sqf · SLf = µX · SηX = 1;

and, moreover, it is right adjoint to Sf :

Sf · S∗f = Sf · µX · Sqf · Ss = µY · SSf · Sqf · Ss ≤ µY · SηY · SRf · Ss = 1.

(ii)⇒(i): Let S∗f be a right adjoint left inverse of Sf . By definition of
comma-object, from Sf · (S∗f · ηY ) ≤ ηY there exists a unique s : Y → Kf

such that Rf · s = 1Y and qf · s = S∗f · ηY . To conclude that s · f = Lf ,
compose s · f with Rf and qf :

Rf · s · f = f and qf · s · f = S∗f · ηY · f = S∗f · Sf · ηX = ηX .

A morphism f in C such that Sf is a lari is called an S-embedding. Denote
by S-Emb the category that has as objects pairs (f, r) of morphisms of C
such that Sf ⊣ S∗f with S∗f ·Sf = 1, and as morphisms (h, k) : (f, S∗f) →
(g, S∗g) morphisms (h, k) : f → g in C2 such that S∗g · Sk = Sh · S∗f .
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Definition. The Ord-monad S is said to be simple if the locally monotone
forgetful functor S-Emb → C2 has a right adjoint and the induced comonad
has underlying functor L and counit Φ.

As shown in [13]:

Proposition. A lax idempotent monad S = (S, η, µ) on C is simple if, and
only if, for every morphism f : X → Y , there is an adjunction

SLf ⊣ µX · Sqf .

Theorem. If S is a lax idempotent and simple monad, then (L,R) is a lofs.
Moreover, the left class L of the weak factorisation system it induces is the
class of S-embeddings.

Proof : (Sketch of the proof; for details see [13].) Simplicity of S gives the
comonad structure for L needed to define the awfs.
In order to show that R is a lax idempotent monad, that is, RΛf ≤ ΛRf =

(LRf, 1Y ), we denote RΛf by ((RΛf)1, 1Y ) and note that, by definition of R,
R2f · (RΛf)1 = Rf and qRf · (RΛf)1 = SLf · qf . Then

qRf · (RΛf)1 = µSKf · ηS2Kf · SLf · qf = SLf · µX · Sqf · ηKf ≤ ηKf ,

by simplicity of S. Now, by definition of comma-object and by the equalities
R2f · LRf = Rf and qf · LRf = ηKf , it follows that (RΛf)1 ≤ LRf as
claimed.
The last assertion follows from the lemma above.

2.6. Submonads of simple monads. Well-behaved submonads of simple
monads are simple, as stated below.

Theorem ([13]). Suppose that ϕ : S′ → S is a monad morphism between
Ord-monads whose components are pullback-stable S-embeddings, and that S-
embeddings are full. If S is lax idempotent, then S′ is simple whenever S is
so. Moreover, every S′-embedding is an S-embedding.

(Here by full morphism in an Ord-category we mean a morphism f : X → Y

such that, for every u, v : Z → X, f · u ≤ f · v implies u ≤ v.)

3. (T, V )-categories
3.1. The setting. First we describe the setting where we will be working
throughout the paper.
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A. V is a commutative and unital quantale, that is, a complete lattice equipped
with a tensor product ⊗, with unit k 6= ⊥ and with right adjoint hom. We
denote by V -Rel the bicategory of V -relations, having sets as objects, while
morphisms r : X−→7 Y are V -relations, i.e. maps r : X × Y → V ; their
composition is given by relational composition, that is, for r : X−→7 Y and
s : Y−→7 Z,

s · r(x, z) =
∨

y∈Y

r(x, y)⊗ s(y, z).

Every map f : X → Y is a V -relation f : X × Y → V with f(x, y) = k if
f(x) = y and f(x, y) = ⊥ elsewhere. This correspondence defines a bijective
on objects and faithful pseudofunctor Set → V -Rel. V -Rel is a locally ordered
and locally complete bicategory, with r ≤ s if r(x, y) ≤ s(x, y), for r, s :
X−→7 Y , x ∈ X, y ∈ Y . It has an involution ( )◦ : V -Rel → V -Rel assigning to
each r : X−→7 Y the V -relation r◦ : Y−→7 X defined by r◦(y, x) = r(x, y). For
each r : X−→7 Y both left and right compositions with r preserve suprema,
and therefore we have the following adjunctions

V -Rel(Y, Z) ⊥

( )·r
//
V -Rel(X,Z)

( )•−r

oo and V -Rel(Z,X) ⊥

r·( )
//
V -Rel(Z, Y )

r−•( )
oo

so that, for every s : Y−→7 Z, s′ : X−→7 Z, t : Z−→7 X, t′ : Z−→7 Y ,

s · r ≤ s′ ⇐⇒ s′ ≤ s′ •− r and r · t ≤ t′ ⇐⇒ t ≤ r −• t′.

B. T = (T, e,m) is a non-trivial Set-monad that satisfies (BC); that is, T
preserves weak pullbacks and every naturality square ofm is a weak pullback.
We point out that, in particular, the monad T is taut in the sense of Manes
[27] (see [11] for details).
C. ξ : TV → V is a T-algebra structure on V such that both ⊗ : V ×V → V

and k : 1 → V , ∗ 7→ k, are T-algebra homomorphisms, that is, the following
diagrams

T1
Tk //

!
��

TV

ξ
��

T (V × V )
T (⊗)

//

<ξ·Tπ1,ξ·Tπ2>
��

TV

ξ
��

1
k // V V × V

⊗ // V
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are commutative, and, for all maps f : X → Y , ϕ : X → V and ψ : Y → V

with ψ(y) =
∨

x∈f−1(y)

ϕ(x) for every y ∈ Y , the following inequality holds

ξ · Tψ(y) ≤
∨

x∈Tf−1(y)

ξ · Tϕ(x),

for every y ∈ TY . (For alternative descriptions of the latter condition see
[19].)
D. Using ξ we define, for each V -relation r : X−→7 Y , the V -relation Tξr :
TX−→7 TY as the composite

TX × TY
Tξr

//

❴<Tπ1,T π2>
◦

��

V

T (X × Y )
Tr

// TV

ξ

OO

that is, for each x ∈ TX, y ∈ TY ,

Tξr(x, y) =
∨

{ξ(Tr(w)) |w ∈ T (X × Y ), Tπ1(w) = x, Tπ2(w) = y}.

This defines a pseudofunctor Tξ : V -Rel → V -Rel that extends T : Set → Set,
so that m : TξTξ → Tξ is a natural transformation while e : IdV -Rel → Tξ is
an op-lax natural transformation (see [19] for details).

3.2. (T, V )-categories. Having fixed these data, a (T, V )-category is a pair
(X, a), where X is a set and a : TX−→7 X is a V -relation such that

1X ≤ a · eX and a · Ta ≤ a ·mX .

Given (T, V )-categories (X, a), (Y, b), a (T, V )-functor f : (X, a) → (Y, b) is
a map f : X → Y such that

f · a ≤ b · Tf.

We denote the category of (T, V )-categories and (T, V )-functors by (T, V )-Cat.
As defined in [14, Section 12], (T, V )-Cat is (pre)ordered-enriched by:

f ≤ g if g ≤ b · eY · f,

for f, g : (X, a) → (Y, b). (This structure is in fact inherited from the order-
enrichment of V -Rel as explained in 3.5.) Identifying an element x of X with
the (T, V )-functor E = (1, e◦1) → (X, a), ∗ 7→ x, (X, a) becomes (pre)ordered;
(X, a) is called separated, or skeletal, if, for x, x′ ∈ X, x ≤ x′ and x′ ≤ x
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implies x = x′. The category of separated (T, V )-categories and (T, V )-
functors will be denoted by (T, V )-Cat0.

Examples. Let T be the identity monad Id and ξ : V → V the identity
map.

– When V = 2, (Id, 2)-Cat is the category of (pre)ordered sets and monotone
maps.

– Let V = [0,∞]+ be the complete half-real line [0,∞] ordered by the greater
or equal relation, with ⊗ = + and hom the truncated minus, so that
hom(u, v) = v ⊖ u, which is equal to v − u if v ≥ u and 0 otherwise. As
shown by Lawvere in [25], (Id, [0,∞]+)-Cat is the category of generalised
metric spaces and non-expansive maps.

Let T be the ultrafilter monad U and ξ : TV → V be defined by ξ(x) =∨
{v ∈ V | x ∈ T (↑ v)}.

– When V = 2 – as shown by Barr in [2] – (U, 2)-Cat is the category of
topological spaces and continuous maps.

– When V = [0,∞]+ – as shown in [8] – (U, [0,∞]+)-Cat is the category of
approach spaces and non-expansive maps [26].

3.3. The dual of a (T, V )-category. When T is the identity monad,
(T, V )-Cat is the category V -Cat of V -categories and V -functors. In V -Cat
there is a natural notion of dual category, inducing a functor D : V -Cat →
V -Cat, with D(X, a) = (X, a◦). To build a dual for a (T, V )-category we
first note that the Set-monad T can be extended to V -Cat, with T (X, a) =
(TX, Ta), and make use of the following adjunction

(V -Cat)T ⊥

N //
(T, V )-Cat

M
oo

where, for a V -category (X, a), a T-algebra structure α : T (X, a) → (X, a)
and a T-homomorphism f , N((X, a), α) = (X, a · α) and Nf = f , and, for a
(T, V )-category (Y, b) and a (T, V )-functor g, M(Y, b) = ((TY, T b ·m◦

Y ), mY )
and Mg = Tg. The functor D : V -Cat → V -Cat lifts to a functor D :
(V -Cat)T → (V -Cat)T, with D((X, a), α) = ((X, a◦), α), and we define the
dual (X, a)op of a (T, V )-category (X, a) as

(V -Cat)TD

&&

⊥

N //
(T, V )-Cat

M
oo
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NDM(X, a) = (TX,mX · (Ta)◦ ·mX); that is, denoting its structure by aop,

aop(X, y) =
∨

Y :mX(Y)=y

Ta(Y, mX(X)),

for X ∈ T 2X and y ∈ TX (see [7]).

3.4. V as a (T, V )-category. As we have in V both a V -categorical struc-
ture hom : V−→7 V and a T-algebra structure ξ : TV → V , which is a V -
functor ξ : (TV, T hom) → (V, hom) due to our assumptions,N((V, hom), ξ) =
(V, homξ) is a (T, V )-category; this structure has a crucial role in our study,
as we will see in the next section.

3.5. (T, V )-bimodules. Given (T, V )-categories (X, a) and (Y, b), a (T, V )-
bimodule (or simply a bimodule) ψ : (X, a)−→◦ (Y, b) is a V -relation ψ :
TX−→7 Y such that ψ ◦ a ≤ ψ and b ◦ ψ ≤ ψ, where the composition s ◦ r
of two V -relations r : TX−→7 Y and s : TY−→7 Z is given by the Kleisli
convolution (see [22]), that is

s ◦ r = s · Tr ·m◦
X .

Under our assumptions bimodules compose, with the (T, V )-categorical struc-
tures as identities for this composition. We denote by (T, V )-Mod the cat-
egory of (T, V )-categories and (T, V )-bimodules. (T, V )-Mod is locally pre-
ordered by the preorder inherited from V -Rel.
Every (T, V )-functor f : (X, a) → (Y, b) induces a pair of bimodules f∗ :

(X, a)−→◦ (Y, b) and f ∗ : (Y, b)−→◦ (X, a), defined by f∗ = b·Tf and f ∗ = f ◦·b;
that is, f∗(x, y) = b(Tf(x), y) and f ∗(y, x) = b(y, f(x)), for x ∈ TX, y ∈ TY ,
x ∈ X and y ∈ Y . The Kleisli convolution becomes simpler when composing
with these bimodules: for any ϕ : X−→◦ Z and ψ : Z−→◦ X, f ∗ ◦ ϕ = f ◦ · ϕ
and ψ ◦ f∗ = ψ · Tf . It is easy to check that a ≤ f ∗ ◦ f∗ and f∗ ◦ f

∗ ≤ b, that
is, f∗ ⊣ f

∗. The (T, V )-functor f is said to be fully faithful when f ∗ ◦ f∗ = a,
or, equivalently, a(x, x) = b(Tf(x), f(x)), for every x ∈ TX, x ∈ X. The local
(pre)order on (T, V )-Cat corresponds to the local (pre)order on (T, V )-Mod:
for (T, V )-functors f, g : (X, a) → (Y, b),

f ≤ g ⇐⇒ f ∗ ≤ g∗ ⇐⇒ f∗ ≥ g∗.
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4. The presheaf monad and its submonads

4.1. The Yoneda Lemma. The tensor product in V defines a tensor prod-
uct in (T, V )-Cat, with (X, a) ⊗ (Y, b) = (X × Y, c), where c(w, (x, y)) =
a(Tπ1(w), x)⊗ b(Tπ2(w), y), for w ∈ T (X × Y ), x ∈ X, y ∈ Y . Its neutral
element is E = (1, e◦1). For each (T, V )-category (X, a), the functorXop⊗( ) :
(T, V )-Cat → (T, V )-Cat has a right adjoint ( )X

op

: (T, V )-Cat → (T, V )-Cat.

Proposition ([10]). For (T, V )-categories (X, a), (Y, b) and a V -relation ψ :
TX−→7 Y , the following conditions are equivalent:

(i) ψ : (X, a)−→◦ (Y, b) is a bimodule;
(ii) ψ : Xop ⊗ Y → V is a (T, V )-functor.

Since a : (X, a)−→◦ (X, a) is a bimodule, this result tells us that a : Xop ⊗
X → V is a (T, V )-functor, and therefore, from the adjunction Xop ⊗ ( ) ⊣
( )X

op

, a induces the Yoneda (T, V )-functor

(X, a)
y
X // V Xop

.

The following result provides a Yoneda Lemma for (T, V )-categories.

Theorem ([10]). Let (X, a) be a (T, V )-category. For all ψ ∈ V Xop

and all
x ∈ TX,

â(T y
X
(x), ψ) = ψ(x),

where â denotes the (T, V )-categorical structure on V Xop

. In particular, y
X

is fully faithful.

4.2. The presheaf monad. In order to work in an Ord-enriched category,
from now on we restrict ourselves to (T, V )-Cat0. We remark that the results
of the previous subsection remain valid when we replace (T, V )-Cat by (T, V )-
Cat0. Denoting V Xop

by PX, we point out that, via Theorem 4.1, PX =
{ϕ : (X, a)−→◦ E |ϕ bimodule}. Moreover, the Yoneda (T, V )-functor y

X

turns out to assign to each x ∈ X, that is to each (T, V )-functor x : E → X,
the bimodule x∗ : X−→◦ E. Each (T, V )-functor f : (X, a) → (Y, b) induces
a (T, V )-functor Pf : PX → PY , assigning to ϕ : X−→◦ E the bimodule
ϕ ◦ f ∗ : Y−→◦ E, that is Pf = ( ) ◦ f ∗. This defines an endofunctor P
on (T, V )-Cat. From the adjunction f∗ ⊣ f ∗, for every (T, V )-functor f :
(X, a) → (Y, b) one gets a right adjoint to Pf , P ∗f = ( ) ◦ f∗ : PY → PX.
In particular, P y

X
: PX → PPX has a right adjoint mX : PPX → PX,

which, together with P and y , defines a lax idempotent monad, the presheaf
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monad. Next we show that this monad is simple. In order to do that we use
Proposition 2.5.

Theorem. The presheaf monad P on (T, V )-Cat is simple.

Proof : We need to show that, for any (T, V )-functor f : (X, a) → (Y, b), in
the diagram below PLf ⊣ mX ·Pqf .

X
y
X //

f

��

Lf

!!❈
❈❈

❈❈
❈❈

❈ PX

Pf

��

PLf

##❍
❍❍

❍❍
❍❍

❍❍

P y
X //

PPX
mX

oo

Kf

≥
Rf

��✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡

qf

77♦♦♦♦♦♦♦♦♦♦♦♦♦

y
Kf

// PKf

PRf

��✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝

Pqf

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠

Y
y
Y

// PY

First we recall that the comma object (Kf, ã) = Pf ↓ y
Y

is given by
Kf = {(ϕ, y) ∈ PX × Y |Pf(ϕ) ≤ y∗}, and ã(w, (ϕ, y)) = â(Tqf(w), ϕ) ∧
b(TRf(w), y), where â is the structure on PX. On one hand, as we observed
before, PLf has as right adjoint the (T, V )-functor P ∗Lf = ( ) ◦ (Lf)∗. On
the other hand, mX ·Pqf = P ∗

y
X
·Pqf = ( ) ◦ q∗f ◦ (yX)∗. Next we will show

that (Lf)∗ = q∗f ◦ (y
X
)∗ : X−→◦ Kf , which concludes the proof. For each

x ∈ TX and (ϕ, y) ∈ Kf ,

(q∗f ◦ (yX)∗)(x, (ϕ, y)) = â(T y
X
(x), ϕ) = ϕ(x),

while

(Lf)∗(x, (ϕ, y)) = ã(TLf(x), (ϕ, y)) = â(T y
X
(x), ϕ) ∧ b(Tf(x), y).

Since y∗ ≥ Pf(ϕ) and b(Tf(x), y) = b̂(T y
Y
(Tf(x)), y∗) by Yoneda Lemma,

b(Tf(x), y) ≥ b̂(T y
Y
(Tf(x)), Pf(ϕ)) = b̂(TPf ·T y

X
(x), Pf(ϕ)) ≥ â(T y

X
(x), ϕ),

because Pf is a (T, V )-functor, and so

(Lf)∗(x, (ϕ, y)) = â(T y
X
(x), ϕ) = ϕ(x).

Proposition. (1) A (T, V )-functor is a P -embedding if, and only if, it is
fully faithful.
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(2) Fully faithful (T, V )-functors are pullback stable.

Proof : (1) If f : (X, a) → (Y, b) is a (T, V )-functor, then Pf has a right
adjoint, P ∗f . It remains to show that P ∗f ·Pf = 1X when f is fully faithful;
this means f ∗ · f∗ = a, and so, for any bimodule ϕ : X−→◦ E,

P ∗f · Pf(ϕ) = ϕ ◦ f ∗ ◦ f∗ = ϕ ◦ a = ϕ.

Conversely, if P ∗f · Pf = 1PX , then, for any x ∈ X,

a(−, x) = x∗ = P ∗f ·Pf(x∗) = x∗ ◦ f ∗ ◦ f∗ = f ◦ ·x◦ · b ·Tf = b(Tf(−), f(x)),

that is, f is fully faithful.
(2) As in any topological category, (bijective, fully faithful (T, V )-functors)

is an orthogonal factorisation system in (T, V )-Cat, and therefore fully faith-
ful (T, V )-functors are pullback-stable.

4.3. Presheaf submonads. Let Φ be a class of (T, V )-bimodules satisfying
the conditions:

(S1) Φ is closed under composition.
(S2) For every (T, V )-functor f , f ∗ ∈ Φ.
(S3) For every (T, V )-bimodule ψ : X−→◦ Y , ψ ∈ Φ provided that y∗◦ψ ∈ Φ

for every y ∈ Y .

We call such a class saturated. There is a largest saturated class, of all (T, V )-
bimodules, and a smallest one, {f ∗ | f is a (T, V )-functor}. In the last section
we will explore other examples.
For each (T, V )-category (X, a), we define

ΦX = {ϕ : X−→◦ E |ϕ ∈ Φ} ⊆ PX,

equipped with the structure â inherited from PX, and, to each (T, V )-functor
f : (X, a) → (Y, b) we assign

Φf : ΦX → ΦY, with Φf(ϕ) = ϕ ◦ f ∗.

Since x∗ ∈ Φ for every x ∈ X, y
X
corestricts to ΦX,

X
y
Φ
X // ΦX .

Moreover, condition (S3) guarantees that mX = P ∗
y
X

(co)restricts to m
Φ
X :

ΦΦX → ΦX: by the Yoneda Lemma, for all ϕ ∈ ΦX, ϕ∗ ◦ P ∗
y
X
= ϕ ∈ Φ.

So, (Φ, y
Φ,m

Φ) is a submonad of P .
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Theorem. If Φ is a saturated class of bimodules, then the monad (Φ, y
Φ,m

Φ)
is lax idempotent and simple, and so it defines a lax orthogonal factorisation
system.

Proof : Since fully faithful (T, V )-functors are pullback-stable and full, and
the inclusion ΦX → PX is clearly fully faithful, this result follows directly
from Theorem 2.6.

5. Examples: The induced lofss

5.1. Examples: the presheaf lofs. From Theorem 2.5 we know that the
presheaf monad defines a lofs (L,R) in (T, V )-Cat0, and, consequently, a
wfs (L,R), where L is the class of fully faithful (T, V )-functors. It is easy
to check that they coincide with extremal monomorphisms in (T, V )-Cat0,
that is, topological embeddings. Therefore, from Theorem 2.5 we conclude
that, for every quantale V and monad T in the conditions of 3.1, (T, V )-Cat0
has a wfs (L,R) where L is the class of embeddings and R is the class of
morphisms with the right lifting property with respect to embeddings. Since
(L,R) is a lofs, these morphisms have the kz-lifting property with respect
to embeddings. Such morphisms encompass interesting properties.
In (Id, 2)-Cat0, that is in the category of (anti-symmetric) ordered sets and

monotone maps, R is the class of monotone maps characterized by Adámek
as fibre-complete, fibrations and co-fibrations (see [1, 30]).
In (Id, [0,∞]+)-Cat0, that is, in the category of separated generalised met-

ric spaces and contractions, morphisms in R are the fibrewise version of
hyperconvex metric spaces, studied for instance by Isbell [23].
In (U, 2)-Cat0, that is, the category of T0-spaces and continuous maps,

morphisms in R are the so-called fibrewise continuous lattices, as studied in
[4, 5].

5.2. General description. Now let us fix a saturated class Φ of (T, V )-
bimodules as in 4.3. The presheaf submonad Φ induces a lofs (LΦ,RΦ),
and consequently a wfs (LΦ,RΦ) where L

Φ is the class of Φ-embeddings.
Following [10], we say that a (T, V )-functor f is Φ-dense if f∗ ∈ Φ.

Lemma ([10]). For a (T, V )-functor h, the following conditions are equiva-
lent:

(i) h is Φ-dense;
(ii) Φh is a left adjoint;
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(iii) Φh is Φ-dense.

We note that Φh has a right adjoint if and only if the right adjoint P ∗h

of Ph can be (co)restricted to Φ∗h : ΦY → ΦX, which is the case precisely
when h∗ ∈ Φ.

Proposition. For a (T, V )-functor h : (X, a) → (Y, b), the following condi-
tions are equivalent:

(i) h is a Φ-embedding;
(ii) h is fully faithful and Φ-dense.

Proof : (i)⇒(ii): From Theorem 4.3 we know that a Φ-embedding h is fully
faithful, and, by definition, Φh is a left adjoint. (ii)⇒(i): If h is Φ-dense,
then Φh has a right adjoint Φ∗h, and so it remains to show that, when
h∗ ◦ h∗ = a, Φ∗h ·Φh = 1PX : since x

∗ ∈ Φ for every x ∈ X, the proof follows
the arguments used in Proposition 4.2(1).

Corollary. For every (T, V )-category (X, a), y
Φ
X

is a Φ-embedding.

5.3. Examples: the Lawvere lofs. It has particular relevance the choice
of Φ = {ψ ∈ PX |ψ is right adjoint}. Indeed, as Lawvere showed in [25] (see
also [10]), when T = Id and V = [0,∞]+ the injective objects with respect
to Φ-embeddings are the Cauchy-complete metric spaces, that is, a non-
expansive map X → 1 belongs to R

Φ if and only if X is Cauchy-complete.
Therefore, the morphisms in R

Φ are good candidates for a fibrewise notion
of Cauchy-completeness. This lofs was studied in [13]. We point out that
the non-expansive maps in R

Φ do not coincide with Sozubek’s L-complete
maps [29]. Indeed, Sozubek’s define them via an injective property, but his
left part – the so called L-equivalences – is a proper subclass of our LΦ.

5.4. Further examples. Using the techniques of [15, 16] and [9, 3.7], one
can define saturated classes of (T, V )-bimodules Φ0, Φω and ΦΩ so that the
left parts of the corresponding wfs are L

Φ0 = {dense embeddings}, LΦω =
{flat embeddings} and L

ΦΩ = {completely flat embeddings}. The simple
presheaf submonads they define induce lofs whose underlying wfs were
studied in [4], where R

Φ0, RΦω and R
ΦΩ give the fibrewise notions of Scott

domain, stably compact and sober spaces (cf. also [15, 16, 28]).
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