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1. Introduction
Weak factorisation systems (wfss) have been a feature of Homotopy The-

ory even before Quillen’s definition of model categories and the recognition
of their importance. Wfss, whose definition can be found in §4.a, can be de-
scribed as a pair of classes of morphisms pL,Rq that satisfy three properties.
First, each morphism of the category must be a composition of a morphism
from L followed by one of R (in a not necessarily unique way). Secondly,
each r P R must have the right lifting property with respect to each ` P L; in
other words, each commutative square, as displayed, has a (not necessarily
unique) diagonal filler.

¨ //

`
��

¨

r
��

¨ //

@@

¨

(1.1)
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Lastly, pL,Rq is, in a precise way, maximal. Each one of Quillen’s model
categories comes equipped with two wfs (by definition).

Orthogonal factorisations systems (ofs) arose at the same time as wfss
and can be described as wfss in which the diagonal filler (1.1) not only exists
but it is unique. This makes the factorisation of a morphism f as f “ r ¨ `,
with ` P L and r P R, unique up to unique isomorphism. Two typical
examples of ofss are the factorisation of a function as a surjection followed
by an injection, and of a continuous map between topological spaces as a
surjection followed by an embedding (ie an homeomorphism onto its image).

When the ambient category has a terminal object, denoted by 1, there is
a case of (1.1) of special interest, namely:

¨ //

`
��

A

��
¨ //

@@

1
(1.2)

If the unique morphism A Ñ 1 has the right (unique) lifting property with
respect to `, one says that A is injective with respect (resp., orthogonal to)
`. Clearly each ofs pL,Rq gives rise to a class of objects that are orthogonal
to each member of L: those objects A such that A Ñ 1 belongs to R. The
extent to which pL,Rq is determined by this class of objects is the subject of
study of [5]. The ofss so determined are called reflective.

In addition to their widespread use in Homological Algebra, injective ob-
jects play a role in many other areas of Mathematics. For example, in the
category of metric spaces and non-expansive maps, hyperconvex spaces are
the objects injective with respect to the family of isometries (see [2] and [15]).

There are examples, as those introduced by D. Scott [29], of squares (1.2)
where the diagonal filler is not unique but there exists a smallest one (with
respect to an ordering between morphisms). The main example from [29] con-
sists of those topological spaces that arise from endowing continuous lattices
with the Scott topology. These spaces are characterised by their injectivity
with respect to topological embeddings. In fact, if ` is a topological embed-
ding and A is a continuous lattice in (1.2), there is a diagonal filler that is the
smallest with respect to the (opposite of) the pointwise specialisation order
(see §13 for more details).

Another example comes from complete lattices, which can be characterised
as those posets that are injective with respect to embeddings of posets. As
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in the previous example, in the situation (1.2) where A is a complete lattice
and ` is a poset embedding, there exists a smallest diagonal filler.

Motivated by the above examples, one can generalise the existence of a
smallest diagonal filler in the situation (1.2) to the situation of a commuta-
tive square (1.1). By doing so, one arrives to the notion of lax orthogonal
factorisation system.

The present paper gives an account, in the context of order-enriched cat-
egories, of lax orthogonal factorisation systems (lofs), a notion that sits
between ofss and wfss.

orthogonal lax orthogonal weak
factorisation Ă factorisation Ă factorisation

system system system
Lofss were introduced and studied in the context of 2-categories by the
authors in [7]. We cover here some of the same material in the much simpler
framework of order-enriched categories and some completely new results on
reflective lofss, as well as new examples (see below).

In a lofs, the existence of a diagonal filler (1.1) is replaced by the existence
of a smallest diagonal filler. More precisely, there is a diagonal filler d with
the property that d ď d1 for any other diagonal filler d1.

¨ //

`
��

¨

r
��

¨ //

d
22

d1

BB

ď

¨

Since morphisms between two objects in an order-enriched category form
a poset, the above property uniquely defines the smallest diagonal filler.
There are, however, advantages in providing these diagonals by means of
an algebraic structure, instead of postulating the existence of a smallest
diagonal filler. This algebraic structure is provided by the algebraic weak
factorisation systems (awfss), introduced with a different name in [14] and
slightly modified in [13]; we use the definition given in the latter.

An awfs on an order-enriched category C consists of a locally monotone
comonad L and a locally monotone monad R on C2 interrelated by axioms,
and that define a locally monotone functorial factorisation f “ Rf ¨ Lf .
Inspired by the observation of [14] that ofss correspond to awfss whose
monad and comonad are idempotent, we defined in [7] lofss as awfss whose
monad and comonad are lax idempotent, or Kock-Zöberlein. We reprise this
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definition in the context of order-enriched categories, which enables some
simplifications.

A fundamental example of lofs on the order-enriched category of posets
factors each morphism as a left adjoint right inverse (or lari) followed by a
split opfibration. This factorisation can be constructed on any order-enriched
category with sufficient (finite) limits, and plays a similar role for lofss as
the factorisation isomorphism–morphism (that factors f as 1dompfq followed
by f) plays for ofss (§4.d).

We introduce kz-reflective lofss as those lofss pL,Rq that are determined
by the restriction of the monad R on C2 to C (here C is viewed as the full
subcategory of C2 with objects of the form A Ñ 1). We characterise kz-
reflective lofss in a way that mirrors the characterisation in [5] of reflective
ofss pL,Rq as those with the following property: if g ¨ f and g belong to
L, then so does g (§9). For example, the lofs of lari–split opfibration
mentioned above will be reflective with our definition.

Another contribution of [5] was the construction of reflective ofss from the
so-called simple reflections. The morphisms inverted by them always form
a left class of an ofs. We introduce simple monads in the order-enriched
context, as those satisfying a certain property that allows us to build lofss.
After providing sufficient conditions for a lax idempotent monad to be simple
(§11), we recover the example of topological spaces discussed above in this
introduction as a consequence of the simplicity of a certain monad: the filter
monad, which associates to each topological space the space of filters of its
open subsets endowed with a natural topology (§13). The algebras for the
filter monad are precisely the continuous lattices (with the Scott topology).
The induced lofs on (T0) topological spaces has an associated wfs that was
considered in [4]. We also provide easy-to-verify conditions guaranteeing that
a submonad of a simple lax idempotent monad enjoys these same properties
(§12). When applied to the filter monad we obtain lofss closely related to
continuous Scott domains, stably compact spaces and sober spaces.

Another example that we obtain from a simple monad is a lofs on the
order-enriched category of (skeletal) generalised metric spaces §14. The re-
striction of this lofs to the category of metric spaces yields an ofs whose
left class of morphisms are the dense inclusions. Further examples are ex-
plored in [6] in a very general framework that covers, for example, R. Lowen’s
approach spaces as well as the examples mentioned above.
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An appendix §A discusses part of the theory of lofss that can be developed
in the setting of locally presentable categories, where, under mild hypotheses,
there is a reflection between the category of accessible lax idempotent monads
and the category of accessible lofss. The appendix demands more knowledge
of some parts of Category Theory.

2. Order-enriched categories and lax idempotent mon-
ads

By an ordered set we shall mean what is usually called a poset, that is, a pair
pX,ďq where X is a set and ď is a relation on X that is reflexive, transitive
and antisymmetric. Ordered sets can be identified with small categories with
at most one morphism between any two objects and whose isomorphisms are
identity morphisms.

We denote by Ord the category of ordered sets and monotone maps (func-
tions that preserve ď). This is a cartesian closed category, with exponential
Y X defined as the set of all order-morphisms X Ñ Y , and endowed with the
pointwise order.

A category enriched in Ord, or Ord-category, is a locally small category C

whose hom-sets are equipped with an order structure, and whose composition
preserves the inequality: if g ď g1 then h ¨g ď h ¨g1 and g ¨f ď g1 ¨f , whenever
these compositions are defined. In other words, the composition functions

CpY, Zq ˆ CpX, Y q ÝÑ CpX,Zq

are monotone maps.
The category Ord of ordered sets can be regarded as a full subcategory

of the category of small categories Cat by regarding ordered sets as small
categories, as mentioned above. This means that Ord-categories can be
regarded as 2-categories, but we do not go to that level of generality.

A locally monotone functor F : C Ñ D, or Ord-functor, between Ord-
categories is an ordinary functor between the underlying ordinary categories
that is moreover monotone on homs; ie that each CpX, Y q Ñ DpFX,FY q is
a monotone map.

The category of Ord-categories and Ord-functors will be denoted by
Ord-Cat. It is a cartesian closed category.

Example 2.1. The category Ord has a canonical structure of an Ord-category
Ord whose ordered sets are OrdpX, Y q “ Y X . Many other categories
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constructed from Ord are Ord-enriched, such as the categories of join-
semilattices, complete lattices, distributive lattices, and Heyting algebras.

Example 2.2. If X is a topological space, define a preorder on X by x ď y
if all the neighbourhoods of y are also neighbourhoods of x, or, equivalently,
denoting by OX the topology of X, x P U whenever y P U for every U P OX;
in other words, x ď y if y P txu. The opposite of this order is usually called
the specialisation order and was introduced by D. Scott in [29]. The preorder
pX,ďq is an ordered set precisely when X is a t0 space.

Any continuous function f : X Ñ Y between topological spaces preserves
the order ď. The category Top0 of t0 topological spaces and continuous
maps can be endowed with an Ord-category structure if we define, for any
pair f, g : X Ñ Y of continuous functions, f ď g if fpxq ď gpxq for all x P X.

2.a. Full morphisms and locally full functors.

Definition 2.3. (1) A monotone map f between ordered sets is full if it
reflects inequalities; ie fpxq ď fpyq implies x ď y.

(2) A locally monotone functor F : A Ñ B between Ord-categories is
locally full if each monotone map

FA,B : ApA,Bq ÝÑ BpFA, FBq

is full.
(3) A morphism g : X Ñ Y in an Ord-category C is full if for each Z P C

the monotone map

CpZ, gq : CpZ,Xq ÝÑ CpZ, Y q

is full.

Full morphisms are necessarily monomorphisms; for if f : X Ñ Y is a full
monotone morphism of ordered sets and fpxq “ fpyq, then we have both
x ď y and y ď x, so x “ y.

Lemma 2.4. Suppose that F % U : BÑ A is an adjunction of locally mono-
tone functors between Ord-categories, with unit η : 1A ñ UF . Then F is
locally full if each component ηA : AÑ UFA is a full morphism.
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Proof : The naturality of η is expressed by the commutativity of the following
diagram.

ApA,Bq
FA,B

//

Ap1,ηBq ++

BpFA, FBq
UF A,F B

// ApUFA,UFBq

ApηA,1q
��

ApA,UFBq

If ηB is full, the diagonal morphism is full and therefore FA,B must be full
too.

2.b. Order-enriched (co)limits.

Limits. The category of ordered sets admits the construction of two-dimen-
sional limits, which will be fundamental for us. We denote by 2 the order
with two elements 0 ď 1. If X is an ordered set, then the exponential X2 is

X2
“ tpx, yq P X ˆX : x ď yu Ď X ˆX

with the order inherited from X ˆ X. We denote by d0 and d1 the two
projections from X2 onto X. Slightly more involved is the comma-object of
two order morphisms f : X Ñ Z Ð Y : g

f Ó g “ tpx, yq P X ˆ Y : fpxq ď gpyqu Ď X ˆ Y

that can equally well be constructed from Z2 by taking the limit of the
following diagram.

X
f
ÝÑ Z

d0
ÐÝ Z2 d1

ÝÑ Z
g
ÐÝ Y

The constructions of the previous paragraphs can be defined in any Ord-
category C. If X P C, then define X2 as an object equipped with two mor-
phisms d0 ď d1 : X2 Ñ X that induce isomorphisms of orders

CpZ,X2
q – CpZ,Xq2

for all Z P C, in the sense that, for each pair of morphisms f0 ď f1 : Z Ñ X,
there exists a unique morphism h : Z Ñ X2 such that f0 “ d0 ¨ h and f1 “
d1 ¨h. Furthermore, if k : Z Ñ X2 is another morphism, then the conjunction
of d0 ¨ h ď d0 ¨ k and d1 ¨ h ď d1 ¨ k implies h ď k. This universal property
guarantees that X2 is unique up to canonical isomorphism.

Similarly, given morphisms f : X Ñ Z Ð Y : g in C, one can define a
comma-object f Ó g in C as an object equipped with two morphisms d0 and
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d1 as shown
f Ó g

d0

{{

d1

##
ďX

f ##

Y

g{{
Z

that induce an order-isomorphism
CpW, f Ó gq – CpW, fq Ó CpW, gq

for all W P C. In other words, for each pair of morphisms h0 : W Ñ X and
h1 : W Ñ Y such that f ¨ h0 ď g ¨ h1, there exists a unique h : W Ñ f Ó g
satisfying d0 ¨ h “ h0 and d1 ¨ h “ h1. Furthermore, if k : W Ñ f Ó g is
another morphism, then the conjunction of d0 ¨ h ď d0 ¨ k and d1 ¨ h ď d1 ¨ k
implies h ď k.

Colimits. Let D be an ordinary category. If D : D Ñ C is a functor (ie a
diagram in C), we say that an object C P C together with a natural transfor-
mation αX : DpXq Ñ C is a colimit of D if

CpαX , C
1
q : CpC,C 1q ÝÑ CpDpXq, C 1q

is a limiting cone in the category Ord, for all C 1 P C. This is the same as
saying that pC, αq is a limit of sets and the bijection CpC,C 1q – limCpD´, C 1q
is an isomorphism of posets.

It is not hard to verify that filtered colimits in Ord can be constructed
in a completely analogous way to those in the category of sets. Further-
more, it can easily be verified that filtered colimits commute, or distrib-
ute, over finite enriched limits in Ord, in the sense that the Ord-functor
lim: rF,Ords Ñ Ord preserves filtered colimits if F is finite. For example,
the functor p´q2 : Ord Ñ Ord preserves filtered colimits, as do pullbacks,
and therefore comma-objects preserve colimits (since comma-objects can be
constructed from p´q2 and pullbacks). This phenomenon is part of the gen-
eral theory of locally finitely presentable enriched categories developed in [18].

2.c. Adjunctions, extensions and liftings. An adjunction in an Ord-
category C consists of two morphisms f : X Ñ Y and g : Y Ñ X in opposite
directions with inequalities

1X ď g ¨ f and f ¨ g ď 1Y .
Such an adjunction is usually written f % g.
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By the usual argument, adjoints are unique up to canonical isomorphism,
which in our case, by the antisymmetry of the ordering, means that adjoints
are unique. For, if f % g and f % g1, then

g “ 1X ¨ g ď g1 ¨ f ¨ g ď g1 ¨ 1Y “ g1

and symmetrically, g1 ď g.
A notion related to adjunctions is that of a left extension. If j : X Ñ Y and

f : X Ñ Z are morphisms in the Ord-category C, we say that an inequality
f ď lanjf ¨ j exhibits lanjf : Y Ñ Z as a left extension of f by j if, for any
other g : Y Ñ Z that satisfies f ď g ¨ j, the inequality lanjf ď g holds.

X
j

//

f &&

Y

g
��

ď

Z

“

X
j

//

f %%

Y

lanjf
��

g

xx

ď
ď

Z

This universal property makes lanjf unique – if it exists.
When j has a right adjoint j˚, there always exists a left extension lanjf ,

for any f : the extension is given by lanjf “ f ¨ j˚.
The notion dual to that of a left extension is called left lifting. If j : X Ñ Y

and f : Z Ñ Y are morphisms in C, we say that an inequality f ď j ¨ jf as
depicted exhibits jf as a left lifting of f through j if, for any other morphism
g, the inequality f ď j ¨ g implies jf ď g.

X
ě

j
// Y

Z

g

OO

f

88

“

X
j

//

ě
ě

Y

Z

jf

OO

f

99

g

88

When j has a left adjoint j`, then j` ¨ f is a left lifting of f through j.

2.d. Lax idempotent monads. Before recalling the notion of order-enriched
monad, let us remind the reader of the definition of a monad on a category.
A monad on a category A is a triple T “ pT, η, µq where T is an endofunctor
of A and η : 1A ñ T ð T 2 : µ are natural transformations that satisfy the
associativity and unit axioms:

T 3 Tµ
//

µT
��

T 2

µ
��

T 2 µ
// T

T
Tη
//

1   

T 2

µ
��

T
ηT
oo

1~~
T
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An algebra for the monad T, or a T-algebra, is a pair pA, aq where a : TAÑ A
is a morphism in A that satisfies two axioms:

T 2A
Ta //

µA
��

TA

a
��

TA
a // A

A
ηA //

1 !!

TA

a
��

A

A morphism of T-algebras pA, aq Ñ pB, bq is a morphism f : A Ñ B in A

that satisfies b ¨ Tf “ f ¨ a. Algebras and their morphisms form a category
T-Alg, that comes equipped with a forgetful functor into A.

Let C be an Ord-category. An order-enriched monad, or Ord-monad,
on C consists of a monad T “ pT, η, µq on the ordinary category C with the
additional requirement that T be an Ord-functor. When the context is clear,
we will refer to Ord-monads simply as monads.

Definition 2.5. A monad T “ pT, η, µq on an Ord-category C is lax idem-
potent, or Kock–Zöberlein, if it satisfies any of the following equivalent con-
ditions.

(1) Tη ¨ µ ď 1.
(2) 1 ď ηT ¨ µ.
(3) For any T-algebra a : TAÑ A, the inequality 1TA ď ηA ¨ a holds.
(4) A morphism l : TA Ñ A defines a T-algebra structure pA, lq if and

only if l % ηA with l ¨ ηA “ 1A.
(5) Tη ď ηT .
(6) For any pair of T-algebras pA, aq and pB, bq and all morphisms f : AÑ

B in C, b ¨ Tf ď f ¨ a holds.
(7) For any T-algebra pA, aq and any morphism f : X Ñ A in C, the

equality a ¨ Tf ¨ ηX “ f exhibits a ¨ Tf as a left extension of f along
ηX : X Ñ TX.

The equivalences of the above conditions can be found, in the more general
case of 2-categories, in [20]. Morphisms f satisfying condition (6) are called
lax morphisms of T-algebras, even for a monad T that is not lax idempotent;
so condition (6) says that T is lax idempotent if any morphism in C between
T-algebras is a lax morphism of T-algebras.

Definition 2.6. The notion of a lax idempotent comonad G “ pG, ε, δq
is a dual one: G is a lax idempotent comonad on C if pGop, εop, δopq, the
corresponding monad on Cop, is lax idempotent. We only translate explicitly
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condition (7) of Definition 2.5: for any G-coalgebra a : A Ñ GA and any
morphism f : A Ñ X in C, the equality f “ εX ¨ Gf ¨ a exhibits Gf ¨ a as a
left lifting of f through εX (see §2.c for the definition of left liftings).

GX
ě

εX // X

A

Gf ¨a

OO

f

77

Example 2.7. Given an ordered set X, denote by P pXq the set of down-closed
subsets of X, ie the set of those subsets Y Ď X satisfying px ď yq ^ py P
Y q ñ x P Y ; the set P pXq is canonically ordered by the inclusion of subsets
of X. We denote by ηX : X Ñ P pXq the monotone function

ηX : X ÝÑ P pXq x ÞÑ Óx “ ty P X : y ď xu.

The assignment X ÞÑ P pXq can be extended to a functor whose value on a
monotone function f : X Ñ Y is

P pXq
f˚
ÝÑ P pY q f˚pZq “ ty P Y : pDx P Zqpy ď fpxqqu “ YxPZÓfpxq.

Observe that f˚ always has a right adjoint f ˚ : P pY q Ñ P pXq given by
f ˚pZq “ tx P X : Dz P Z such that fpxq ď zu.

Clearly, f˚ ď g˚ if f ď g, so P is an Ord-functor. It is well-known that
X ÞÑ P pXq defines a monad on Ord, where P pXq is ordered by inclusion,
with unit η and multiplication µ given by

P 2
pXq ÝÑ P pXq

`

U Ď P pXq
˘

ÞÑ YtY P Uu Ď X.

This Ord-monad on the Ord-category Ord is lax idempotent, since
PηXpZq “ YxPZÓpÓxq Ď ÓZ “ ηP pXqpZq.

The Ord-category P-Alg is the category of complete lattices (posets with
arbitrary suprema or joins) with morphisms those monotone maps that pre-
serve arbitrary suprema.

Example 2.8. If Top0 is the category of t0 topological spaces and Top0
is the associated Ord-category, with ordering induced by the opposite of
the specialisation order, as in Example 2.2, there is an endo-Ord-functor
F : Top0 Ñ Top0 that sends X to the set F pXq of filters of open sets of
X, with topology generated by the subsets U# “ tϕ P F pXq : U P ϕu, for
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U P OX. This is in fact the functor part of the lax idempotent filter monad
on Top0 that will be studied in Section 13.

There is a well-known result about algebras for lax idempotent monads on
Ord-categories (see [22] and [12]) that can be summarised by saying that
algebras are closed under retracts. More precisely:

Lemma 2.9. If T “ pT, η, µq is a lax idempotent monad on an Ord-category,
the following conditions on an object A are equivalent.

(1) A admits a (unique) T-algebra structure (we simply say that A is a
T-algebra).

(2) ηA : AÑ TA has a right inverse.
(3) A is a retract of TA.
(4) A is a retract of a T-algebra.

Given two monads S “ pS, ν, θq and T “ pT, η, µq on the category C we
recall that a monad morphism ϕ : S Ñ T is a natural transformation such
that, for every object X of C, the following diagrams commute.

TSX TϕX
**

SSX

ϕSX 44

θX

��

SϕX

**
TTX

µX

��

STX ϕT X

44

SX
ϕX // TX

X
νX

~~

ηX

  

SX
ϕX // TX

(There is a more general notion of morphism between monads on different
categories, which we will not need.)

Lemma 2.10. Let T and S be monads on an Ord-category. Then there is
at most one monad morphism T Ñ S if T is lax idempotent.

Proof : Suppose that ϕX : TX Ñ SX are the components of a monad mor-
phism. The morphism

ψX : TSX ϕSX
ÝÝÑ S2X

µS
X
ÝÑ SX

is a T-algebra structure on SX, and therefore it is uniquely defined as the
left adjoint to the unit SX Ñ TSX. Therefore, ϕX “ ψX ¨T pη

S
Xq is uniquely

defined.
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3. Orthogonal factorisations and simple reflections, re-
visited

In this section we revisit some of the material of Cassidy–Hébert–Kelly
work on simple reflections [5] from a slightly different perspective, more
amenable to generalisation.

Suppose that T : A Ñ A is a reflection, with unit ηA : A Ñ TA, on the
category A, which we assume to admit pullbacks. The corresponding reflec-
tive subcategory will be denoted by T-Alg, as it consists of the algebras for
the idempotent monad T associated to T , whose invertible multiplication we
denote by µ : T 2 ñ T .

We say that a morphism f in A is a T -isomorphism, or is T -invertible, if
Tf is an isomorphism.

Each morphism f : AÑ B can be factorised through a pullback square, as
displayed.

f “ Rf ¨ Lf

A

Lf !!

ηA

##

f

��

Kf

pb

qf
//

Rf
��

TA

Tf
��

B
ηB // TB

(3.1)

Remark 3.2. The factorisation f “ Rf ¨ Lf is functorial, in the sense that,
if ph, kq : f Ñ g is a morphism in the arrow category A2, then there is a
morphism Kph, kq : Kf Ñ Kg

¨

f
��

h // ¨

g
��

¨
k // ¨

ÞÝÑ

¨
h //

Lf
��

¨

Lg
��

Kf
Kph,kq

//

Rf
��

Kg

Rg
��

¨
k // ¨

yielding a functor K : A2 Ñ A.

Remark 3.3. The assignment that sends a morphism f ÞÑ Lf is part of an
endofunctor on A2, given on morphisms by

f
ph,kq
ÝÝÝÑ g ÞÝÑ Lf

ph,Kph,kqq
ÝÝÝÝÝÝÑ Lg.
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Furthermore, there is a natural transformation Φ: Lñ 1 with components

Φf “

¨

Lf
��

¨

f
��

¨
Rf
// ¨

Remark 3.4. The assignment f ÞÑ Rf underlies a monad on the arrow cate-
gory A2. Its unit and multiplication are given by

Λf “

¨

f
��

Lf
// ¨

Rf
��

¨ ¨

Πf “

¨

R2f
��

πf
// ¨

Rf
��

¨ ¨

where the morphism πf : KRf Ñ Kf is the unique morphism into the pull-
back Kf such that

qf ¨ πf “ µdompfq ¨ Tqf ¨ qRf and Rf ¨ πf “ RRf.

One of the contributions of [5] is to introduce a property on the reflec-
tion T that guarantees that the factorisation f “ Rf ¨ Lf is an orthogonal
factorisation system (ofs): the property of being simple.

Definition 3.5. The reflection T “ pT, ηq is simple if Lf is a T -isomorphism.

As pointed out in [5], if T is simple then the factorisation f “ Rf ¨ Lf
defines an orthogonal factorisation system, with left class of morphisms that
of T -isomorphisms. To say only a few words about this fact, any morphism of
the form Tf is orthogonal to T -isomorphisms, and so Rf , as a pullback of Tf ,
is also orthogonal to T -isomorphisms; together with the simplicity hypothesis
that Lf be a T -isomorphism, we obtain an orthogonal factorisation.

If we denote by F T : AÑ T-Alg the left adjoint of the inclusion T-Alg Ă A,
then we can consider the full subcategory T-Iso Ă A2 whose objects are those
morphisms of A that are T -isomorphisms (equivalently, those morphisms f
such that F T pfq is an isomorphism) as a pullback.

T-Iso //

��
pb

Iso

��

A2 pFT q2
// T-Alg2

(3.6)

Lemma 3.7. The subcategory T-Iso ãÑ A2 is coreflective if and only if the
reflection T is simple. In this case, the associated idempotent comonad is
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given by f ÞÑ Lf and has counit
¨

Lf
��

¨

f
��

¨
Rf
// ¨

Proof : If T is simple, we know that the T -isomorphisms are the left class of
an orthogonal factorisation system, and thus coreflective in A2. To be more
explicit, if pE ,M q is an orthogonal factorisation system in A, and f “ m ¨ e
with e P E and m P M , then the morphism

¨

e
��

¨

f
��

¨
m // ¨

exhibits e as a coreflection of f into the full subcategory of A2 defined by E .
Before moving to proving the converse, we make the observation that, for

any category B, the full subcategory Iso Ă B2 of isomorphisms is coreflective
(as well as reflective) with coreflection given by Υf : Ipfq “ 1dompfq Ñ f

Ψf “

¨

1dompfq
��

¨

f
��

¨
f
// ¨

To prove the converse, suppose that the inclusion of T-Iso into A2 is core-
flective, with coreflection given by counits Ψf : Gf Ñ f in A2. Then the
pullback diagram (3.6) can be rewritten in the following form, where the
categories of coalgebras are those for the respective copointed endofunctors
Ψ: Gñ 1 and Υ: I ñ 1.

pG,Ψq-Coalg //

��
pb

pI,Υq-Coalg

��

A2 pFT q2
// T-Alg2

It is well known that, in these circumstances, pG,Ψq is given by a pullback
in the category of endofunctors of A2

G

Ψ
��

// pUT q2IpF T q2

pUT q2ΥpFT q2

��

1A2
η2

// T 2
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If we apply the domain functor dom: A2 Ñ A to this pullback, we obtain that
dompΨq can be taken to be the identity transformation, since dompUTΥFT pfqq

is an identity morphism for any f . If we apply the codomain functor cod
instead, we obtain a pullback square

codpGfq //

cod Ψf
��

T dom f

Tf
��

codpfq ηcodpfq
// T codpfq

(we have used that codUT IpF T pfqq “ UT codp1dompFT pfqqq “ T dompfq). In
other words, cod Ψf “ Rf and codpGfq “ Kf as defined in diagram (3.1).
From here it is straightforward to verify thatGf “ Lf . Therefore Lf P T-Iso,
which says that T is a simple reflection, concluding the proof.

The lemma proved above gives a characterisation of simple reflections, so
one could define simple reflections as those reflections T on A such that
the full subcategory T-Iso Ă A2 is coreflective. The associated idempotent
comonad on A2 is given by f ÞÑ Lf .

4. Lax orthogonal factorisations
We now proceed to study lax orthogonal factorisation systems on Ord-

categories. Before that, we briefly recall basic facts on algebraic weak fac-
torisation systems.

4.a. Weak factorisation systems. This short section recalls the definition
of weak factorisation system, a notion that appeared as part of Quillen’s
definition of model category [27].

We say that a morphism g has the right lifting property with respect to
another f , and that f has the left lifting property with respect to g, if every
time we have a commutative square as shown, there exists (a not necessarily
unique) diagonal filler.

¨ //

f
��

¨

g
��

¨

@@

// ¨

A weak factorisation system (wfs) in a category consists of two families of
morphisms L and R such that:
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‚ R consists of those morphisms with the right lifting property with
respect to each morphism of L.

‚ L consists of those morphisms with the left lifting property with re-
spect to each morphism of R.

‚ Each morphism in the category is equal to the composition of one
element of L followed by one of R.

4.b. Algebraic weak factorisation systems. Algebraic weak factorisation
systems (awfss) where first introduced by M. Grandis and W. Tholen in [14],
with an extra distributivity condition later added by R. Garner in [13]. In
this section we shall give the definition of awfss on order-enriched categories,
which is the case we will need, even though the definitions remain virtually
unchanged.

Definition 4.1. An Ord-functorial factorisation on an Ord-category C con-
sists of a factorisation

dom λ
ùñ E

ρ
ùñ cod

in the category of locally monotone functors C2 Ñ C of the natural transfor-
mation dom ñ cod with component at f P C2 equal to f : dompfq Ñ codpfq.
It is important that in this factorisation E should be a locally monotone func-
tor.

As in the case of functorial factorisations on ordinary categories, an Ord-
functorial factorisation as the one described in the previous paragraph can
be equivalently described as:

‚ A copointed endo-Ord-functor Φ: Lñ 1C2 on C2 with dompΦq “ 1.
‚ A pointed endo-Ord-functor Λ: 1C2 ñ R on C2 with codpΛq “ 1.

The three descriptions of an Ord-functorial factorisation are related by:

dompΛfq “ Lf “ λf codpΦfq “ Rf “ ρf . (4.2)

Definition 4.3. An algebraic weak factorisation system, abbreviated awfs,
on an Ord-category C consists of a pair pL,Rq, where L “ pL,Φ,Σq is an Ord-
comonad and R “ pR,Λ,Πq is an Ord-monad on C2, such that pL,Φq and
pR,Λq represent the same Ord-functorial factorisation on C (ie, the equali-
ties (4.2) hold), plus a distributivity condition that we proceed to explain.

The unit axiom Π¨pΛRq “ 1 of the monad R implies, since codpΛq “ 1, that
codpΠq “ 1; dually dompΣq “ 1, so these transformations have components
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that look like:

Σf “

¨

Lf
��

¨

L2f
��

¨
σf
// ¨

and Πf “

¨

R2f
��

πf
// ¨

Rf
��

¨ ¨

One can form a transformation

∆: LR ùñ RL ∆f “

Kf
1
$$

LRf
��

σf
//

��

KLf

RLf
��

KRf
πf
// Kf

The distributivity axiom requires ∆ to be a mixed distributive law between
the comonad L and the monad R; this amounts to the commutativity of the
following diagrams.

LR2 ∆R //

LΠ
��

RLR
R∆ // R2L

ΠL
��

LR
∆ // RL

LR

ΣR
��

∆ // RL

RΣ
��

L2R
L∆ // LRL

∆L // RL2

(4.4)

(The two axioms of a mixed distributive law that involve the unit of the
monad and the counit of the comonad automatically hold.)

Example 4.5. Each ofs pE ,M q on C gives rise (upon choosing an pE ,M q-
factorisation for each morphism) to an awfs pL,Rq, where L is the idempotent
comonad associated to the coreflective subcategory E Ă C2 and R is the
idempotent monad associated to the reflective inclusion M Ă C2. Conversely,
an awfs pL,Rq with both L and R idempotent induces an ofs. This was first
shown in [14, Thm. 3.2], and [3, Prop. 3] further shows that it suffices that
either L or R be idempotent.

If pL,Rq is an awfs on C, an L-coalgebra structure on f and an R-algebra
structure on g can be depicted by commutative squares

¨

f
��

¨

Lf
��

¨
s // ¨

¨

Rg
��

p
// ¨

g
��

¨ ¨
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and the (co)algebra axioms can be written in the following way (where the
morphisms σf and πg are those described in Definition 4.3).

Rf ¨ s “ 1 Kp1, sq ¨ s “ σf ¨ s

p ¨ Lg “ 1 p ¨Kpp, 1q “ p ¨ πg

A morphism of L-coalgebras pf, sq Ñ pf 1, s1q is a morphism ph, kq : f Ñ f 1 in
C2 that is compatible with the coalgebra structures in the usual way:

Kph, kq ¨ s “ s1 ¨ k.

Similarly, a morphism of R-algebras pg, pq Ñ pg1, p1q is a morphism pu, vq : g Ñ
g1 such that

p1 ¨Kpu, vq “ u ¨ p.

With the obvious composition and identities we obtain categories L-Coalg and
R-Alg, equipped with forgetful functors into C2. These are Ord-categories by
stipulating that the ordering of morphisms of (co)algebras is inherited from
the ordering of morphisms in C2; as a consequence, the forgetful functors
from L-Coalg and R-Alg to C2 become Ord-enriched.

4.c. Underlying wfss. Each awfs pL,Rq (enriched or not) has an under-
lying wfs pL,Rq. The class L consists of all those morphisms that admit a
structure of coalgebra over the copointed endofunctor pL,Φq that underlies
L; similarly, R consists of all those morphisms that admit a structure of an
algebra over the pointed endofunctor pR,Λq that underlies R.

4.d. Laris and awfss. One of the most important examples of awfss for
us will be provided by the so-called laris.

Definition 4.6. A left adjoint right inverse, or lari, in an Ord-category is
a morphism f that is part of an adjunction f % g with 1 “ g ¨f . In the same
situation, we say that g is a right adjoint left inverse, or rali.

Suppose given another adjunction f 1 % g1 with 1 “ g1 ¨ f 1, and morphisms
h and k as in the displayed diagram.

X

f
��
%

OO

g

h // X 1

f 1
��
%

OO

g1

Y
k

// Y 1
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We say that ph, kq is a morphism of laris f Ñ f 1, and that ph, kq is a mor-
phism of ralis g Ñ g1, if f 1¨h “ k¨f and g1¨k “ h¨g. With the obvious notion
of composition, laris and ralis form categories that come equipped with
forgetful functors into C2. Furthermore, if C is an Ord-category, there are
Ord-categories LaripCq and RalipCq with objects and morphisms described
above, and ordering between morphisms those of C2.

Example 4.7. Consider the free (split) opfibration monad M on Ord, given
on f : X Ñ Y by Mpfq

Kf “ f Ó 1codpfq “
 

px, yq P X ˆ Y : fpxq ď y
( Mf
ÝÝÑ Y px, yq ÞÑ y

with ordering inherited from that of X ˆ Y . Furthermore, M is a locally
monotone endofunctor of Ord2. The category M-Alg of algebras for this
monad has objects the (split) opfibrations, ie monotone functions f : X Ñ Y
with a choice for each x P X and y P Y that satisfy fpxq ď y, of an xy P X
such that: x ď xy, fpxyq “ y, and px ď x1q ^ pfpx1q “ yq implies xy ď x1. As
an aside comment, we note that there is no difference between the notions
of an opfibration and of a split opfibration in Ord due to the antisymmetry
property satisfied by the orderings.

Any monotone function f : X Ñ Y can be factorised as

f : X Ef
ÝÝÑ Kf

Mf
ÝÝÑ Y

where Efpxq “ px, fpxqq P f Ó Y “ f Ó 1Y . This is in fact part of an
awfs, as we proceed to show. As the functorial factorisation is the one
just described, the locally monotone endofunctor E of Ord2 has a copoint
Φf “ p1X ,Mfq : Ef Ñ f . The monotone function Ef : X Ñ f Ó Y has a
right adjoint rf : f Ó Y Ñ X, given by rfpx, yq “ xy. We can define

σf : Kf “ f Ó Y ÝÑ KEf “ Ef Ó Kf px, yq ÞÑ prfpx, yq, px, yqq

and morphisms Σf that form the comultiplication of a comonad E “ pE,Φ,Σq.

Σf : Ef ÝÑ E2f

X

Ef
��

X

E2f
��

Kf
σf
// KEpfq

The morphism MEpfq : KEf Ñ Kf is a left adjoint to σf , as can be easily
verified. Furthermore, ΦEf % Σf , which means that the comonad E is lax
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idempotent. The distributivity axiom of awfss can be verified by hand, or,
alternatively, one can appeal to Theorem 7.2.

We conclude with the observation that the endofunctors E and M preserve
filtered colimits; equivalently, the functor K : Ord2

Ñ Ord preserves filtered
colimits. This is so because K is constructed by means of comma-objects and
the comments at the end of §2.b.

Example 4.8. Precisely the same construction can be carried out in any Ord-
category that admits comma-objects (see §2.b); for example, in any Ord-
category that admits cotensor products with 2 and pullbacks. The morphism
Mf is a projection in the comma-object depicted.

Kf
rf
//

Mf
��

ě

X

f
��

B B

The left part of the factorisation Ef : X Ñ Kf is the unique morphism
defined by the conditions

Mf ¨ Ef “ f and rf ¨ Ef “ 1X .
It is not hard to show that Ef % rf .

The endo-Ord-functor f ÞÑMf is part of the free (split) opfibration monad
on C. The endo-Ord-functor E is part of a comonad with counit ΦE

f “

p1,Mfq : Ef Ñ f and comultiplication Σf “ p1, σfq : Ef Ñ E2f defined by
rEf ¨ σf “ rf and MEf ¨ σf “ 1Kf .

Lemma 4.9. Suppose that C is an Ord-category with comma-objects and
pE,Mq the awfs constructed in the previous example. If ΦE : E ñ 1 is the
underlying copointed endofunctor of the comonad E, then:

(1) There is an isomorphism LaripCq – E-Coalg over C2.
(2) The forgetful functor

E-Coalg ÝÑ pE,ΦE
q-Coalg (4.10)

is an isomorphism.

Proof : This proof follows a direction not suggested by the statement. We
shall first prove that there is an isomorphism between LaripCq and pE,ΦEq-Coalg
and then show that (4.10) is an isomorphism. The reason the lemma is stated
in the present form is that this form extends to 2-categories [7].
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Suppose given a morphism in C2 as depicted.

A

f
��

A

Ef
��

B
s // Kf

(4.11)

The morphism s : B Ñ Kf “ f Ó B corresponds to a pair of morphisms
r : B Ñ A and u : B Ñ B that satisfy f ¨ r ď u. The morphisms r and u
are the composition of s with, respectively, the projections f Ó B Ñ A and
Mf : f Ó B Ñ B. The commutativity of (4.11) translates into r ¨ f “ 1 and
u ¨ f “ f .

Now suppose that (4.11) is a morphism of pE,ΦEq-coalgebras, ie that Mf ¨
s “ 1. By definition of u, this is equivalent to saying that u “ 1. Therefore, to
give an pE,ΦEq-coalgebra structure on f is equivalent to giving a morphism
r : B Ñ A such that f ¨ r ď 1 and r ¨ f “ 1. In other words, an pE,ΦEq-
coalgebra structure on f is the same as a lari structure on f .

To conclude the proof, we show that any pE,ΦEq-coalgebra structure
p1, sq : f Ñ Ef is an E-coalgebra, ie it satisfies the coassociativity equal-
ity

σf ¨ s “ Kp1, sq ¨ s. (4.12)
The codomain of the morphisms at both sides of the equality is KEf , so
(4.12) holds precisely when it does after composing with the projections
MEf : KEf Ñ Kf and rEf : KEf Ñ X. One of these equalities is obvious,
since

MEf ¨ σf ¨ s “ 1 ¨ s “ s “ s ¨ 1 “ s ¨Mf ¨ s “MEf ¨Kp1, sq ¨ s.
The second equality holds by the following string of equalities, the first of
which uses the definition of σf and the last uses rEf ¨Kp1, sq “ rf .

rEfσf ¨ s “ rf ¨ s “ rEf ¨Kp1, sq ¨ s.
This completes the proof of the lemma.

4.e. Lax orthogonal factorisation systems.

Definition 4.13. An awfs pL,Rq on an Ord-category C is a lax orthogonal
factorisation system (abbreviated lofs) if either of the following equivalent
conditions holds:

‚ The comonad L is lax idempotent.
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‚ The monad R is lax idempotent.

Before proving the equivalence between the above properties we describe
more explicitly what it means for pL,Rq to be lax orthogonal.

According to our notation, the unit and multiplication of R and the counit
and comultiplication of L are depicted as morphisms in C2 as follows.

¨

Λf

Lf
//

f
��

¨

Rf
��

¨ ¨

¨

Πf

πf
//

R2f
��

¨

Rf
��

¨ ¨

¨

ΦfLf
��

¨

f
��

¨
Rf
// ¨

¨

ΣfLf
��

¨

L2f
��

¨ σf

// ¨

Then, pL,Rq is lax orthogonal if and only if any of the following conditions
hold (the equivalence of these conditions will be shown in Proposition 4.16):

KpLf, 1q ¨ πf ď 1 1 ď LRf ¨ πf 1 ď σf ¨RLf σf ¨Kp1, Rfq ď 1.
(4.14)

In terms of R-algebras and L-coalgebras, the lax idempotency of pL,Rq is
described as follows. If pf, sq is an L-coalgebra and pg, pq is an R-algebra, as
displayed below,

¨

pf,sqf
��

¨

Lf
��

¨ s
// ¨

¨

pg,pq

p
//

Rg
��

¨

g
��

¨ ¨

then the awfs is lax orthogonal if and only if any of the following two
equivalent conditions hold, for all pf, sq and pg, pq (again, the equivalence
will be shown in Proposition 4.16):

1 ď s ¨Rf and 1 ď Lg ¨ p. (4.15)

Proposition 4.16. If pL,Rq is an awfs on an Ord-category C, then L is lax
idempotent if and only if R is lax idempotent.

Proof : In this proof we use the following general property of awfss, whose
details can be found in [3, §2.8]. If pL,Rq is an awfs on an (ordinary) cat-
egory and f , g are two composable morphisms each one of which carries
an L-coalgebra structure, then their composition g ¨ f carries a canonical L-
coalgebra structure. We regard morphisms of the form Lf as L-coalgebras
with structure given by the comultiplication Σf “ p1, σfq : Lf Ñ L2f . Fur-
thermore, we use the following fact, whose proof can be found in [3, §3.1]:
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the morphism p1, πfq depicted is a morphism of L-coalgebras from LRf ¨ Lf
to Lf .

A
Lf ��

A

Lf

��

Kf
LRf ��

KRf
πf
// Kf

Assuming that L is lax idempotent, we shall show that R is lax idempotent
by exhibiting an inequality RΛ ¨ Π ď 1, where Λ and Π are the unit and
multiplication of the monad. The converse, namely that L is lax idempotent
if R is so, is not necessary to prove, as it follows by a duality argument, more
specifically, by taking the opposite Ord-category.

Let f : A Ñ B be a morphism of C, and consider the composition of the
morphisms p1A, πfq : LRf ¨ Lf Ñ Lf with LΛf “ pLf,KpLf, 1qq : Lf Ñ
LRf , as depicted.

A
Lf ��

A

Lf

��

Lf
// Kf

LRf

��

Kf
LRf ��

KRf
πf
// Kf

KpLf,1q
// KRf

(4.17)

The composition of this diagram with the counit ΦRf “ p1, R2fq equals the
morphism pLf,R2fq : LRf ¨ Lf Ñ Rf , depicted on the right below, since

R2f ¨KpLf, 1q ¨ πf “ Rf ¨ πf “ R2f.

A
Lf ��

Lf
// Kf

Rf

��

Kf
LRf ��

KRf
R2f

// B

(4.18)

Since L is lax idempotent, the L-coalgebra morphism (4.17) is a left lifting
of (4.18) through ΦRf (see Definition 2.6).
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On the other hand, the morphism in C2 depicted below is also equal
to (4.18) upon composition with the counit ΦRf

A
Lf

//

Lf ��

Kf

LRf

��

Kf
LRf ��

KRf KRf

(4.19)

and by the universal property of liftings we deduce that (4.17) is less or equal
than (4.19), so KpLf, 1q ¨πf ď 1KRf . It remains to prove that this defines an
inequality in C2 with identity codomain component; in other words, that the
inequality becomes an equality upon composition with R2f . But this holds,
since both sides become equal:

R2f ¨KpLf, 1q ¨ πf “ Rf ¨ πf “ R2f,

concluding the proof.

Example 4.20. The awfs pE,Mq of Example 4.7, for which M-algebras are op-
fibrations and E-coalgebras are laris, is lax orthogonal. Indeed, the monad
M is well-known to be lax idempotent.

4.f. Categories of awfss. There is a category AWFSpCq whose objects are
awfss on the Ord-category C. A morphism pL,Rq ÝÑ pL1,R1q is a natural
family of morphisms ϕf that make the following diagrams commute.

¨

Lf
��

¨

L1f
��

Kf
ϕf
//

Rf
��

K 1f

R1f
��

¨ ¨

(4.21)

Furthermore, the morphisms p1, ϕfq : Lf Ñ L1f must form a comonad mor-
phism L Ñ L1, and the morphisms pϕf , 1q : Rf Ñ R1f must form a monad
morphism R Ñ R1.

There is a full subcategory LOFSpCq of AWFSpCq consisting of the lofss.

Lemma 4.22. LOFSpCq is a preorder.
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Proof : If the morphisms ϕf as in (4.21) form a morphism from pL,Rq to
pL1,R1q, then the morphisms pϕf , 1q : Rf Ñ R1f define a morphism of monads.
There can only be one such, by Lemma 2.10.

5. Lifting operations
In this section we introduce kz lifting operations and explain the motiva-

tion behind the definition of lax orthogonal factorisation systems. Before all
that, we must say something about how lifting operations work in relation
to awfss on Ord-categories.

5.a. Lifting operations on Ord-categories. Suppose that U : AÑ C2 Ð
B : V are locally monotone functors between Ord-categories. A lifting oper-
ation from U to V can be described as a choice of a diagonal filler φa,bph, kq
for each morphism ph, kq : UaÑ V b in C2.

¨
h //

Ua
��

¨

V b
��

¨
k

//

φa,bph,kq

88

¨

These diagonal fillers must satisfy a naturality condition with respect to
morphisms in A and B. If α : a1 Ñ a and β : bÑ b1 are morphisms in A and
B respectively, then

φa1,b1
`

dom V β ¨h¨domUα, codV β ¨k¨codUα
˘

“ pdom V βq¨φa,bph, kq¨pcodUαq

as depicted in the following diagram.

¨
domUα //

Ua1
��

¨
h //

Ua
��

¨

V b
��

domV β
// ¨

V b1
��

¨
codUα

//

22

¨
k

//

88

¨
codV β

// ¨

So far, the definition of lifting operation is the one given in [13], but our cat-
egories are enriched in Ord and the functors U and V are locally monotone,
so we require that the diagonal filler satisfies: if ph, kq and ph1, k1q : UaÑ V b
are commutative squares in C with ph, kq ď ph1, k1q (ie h ď h1 and k ď k1)
then

φa,bph, kq ď φa,bph
1, k1q.
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5.b. Lifting operations from Ord-functorial factorisations. The idea
of a functorial factorisation dom ñ E ñ cod, as defined in Definition 4.1,
is that it induces a canonical lifting operation between the forgetful Ord-
functors U and V

U : pL,Φq-Coalg ÝÑ C2
ÐÝ pR,Λq-Alg : V.

Here Φ: L ñ 1C2 and Λ: 1C2 ñ R are, respectively, the copointed endo-
Ord-functor and the pointed endo-Ord-functor on C2 associated to the given
Ord-functorial factorisation.

A coalgebra for pL,Φq can be depicted as the commutative square on the
left below, while an algebra for pR,Λq is a commutative square on the right

pf, sq “

¨

f
��

¨

Lf
��

¨
s // ¨

pg, pq “

¨
p
//

Rg
��

¨

g
��

¨ ¨

satisfying Rf ¨s “ 1 and p ¨Lg “ 1. Given a commutative square ph, kq : f Ñ
g, there is a canonical diagonal filler

φpf,sq,pg,pqph, kq “ p ¨ Eph, kq ¨ s.

It is immediate to see that these diagonal fillers form a lifting operation from
U to V .
Remark 5.1. Even though an (Ord-)functorial factorisation f “ Rf ¨ Lf as
the one discussed in the previous paragraphs yields a lifting operation of
pL,Φq-coalgebras against pR,Λq-algebras, there is no guarantee of being able
to find a diagonal filler for a commutative diagram of the form

¨

Lf
��

// ¨

Rg
��

¨ // ¨

since Lf may not support an pL,Φq-coalgebra structure, and Rg may not
support an pR,Λq-algebra structure. A natural way of endowing Lf and
Rg with the corresponding structures is to require that pL,Φq extends to
a comonad and pR,Λq extends to a monad; in this way, Lf is a (cofree)
coalgebra and Rg is a (free) algebra. This one of the reasons for the form
that the definition of awfs takes (see Definition 4.3).

There is an useful fact that is worth including at this point, and will be
useful in the proof of Theorem 5.6.
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Lemma 5.2. For any awfs pL,Rq, the diagonals φLf,RfpLf,Rfq are identity
morphisms.

¨
Lf
//

Lf
��

¨

Rf
��

¨
Rf
//

1
@@

¨

Proof : If we write the commutative square of the statement as a pasting of
two commutative squares p1, Rfq and pLf, 1q, as displayed, we can easily
compute the diagonal filler.

¨

Lf
��

¨

f
��

Lf
// ¨

Rf
��

¨
Rf
// ¨ ¨

φLf,RfpLf,Rfq “ πf ¨KpLf,Rfq¨σf “ πf ¨KpLf, 1q¨Kp1, Rfq¨σf “ 1 ¨1 “ 1.
Remark 5.3. As pointed out in [3, §2.5], the commutativity of the two dia-
grams (4.4) that express the fact that ∆: LR ñ RL is a mixed distributive
law is equivalent to the requirement that the diagonal filler of the displayed
square be σf ¨ πf .

Kf

LRf
��

σf
// KLf

RLf
��

KRf πf

//

σf ¨πf

::

Kf

5.c. KZ lifting operations. In the previous section we saw that each awfs
canonically induced a lifting operation. It is logical to expect that lifting
operations that arise from lax orthogonal awfss carry extra structure. In
this section we identify this structure.
Definition 5.4. Suppose given a lifting operation φ from U : A Ñ C2 to
V : B Ñ C2 on an Ord-category C as defined in §5.a. We say that φ is a
kz-lifting operation if, for all a P A, b P B and each commutative diagram as
on the left, the inequality on the right holds.

¨

Ua
��

h // ¨

V b
��

¨
k
//

d
@@

¨

ùñ φa,bph, kq ď d
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In other words, the diagonal filler given by the lifting operation φ is a lower
bound of all possible diagonal fillers.

Example 5.5. Consider the Ord-functor 0 : 1 Ñ 2 that includes the terminal
ordered set as the initial element of the ordered set 2 “ p0 ď 1q. There is a
bijection between opfibration structures on a morphism g : X Ñ Y in Ord
and kz lifting operations on g against the morphism 0. To see this, first
notice that a commutative square

1 //

0
��

X

g
��

2 //

??

Y

is equally well given by an element x P X and an element y P Y such that
gpxq ď y. The existence of a diagonal filler is the existence of an element
xy P X with x ď xy and gpxyq “ y. This diagonal filler is a lower bound if for
any other x ď x̄ with gpx̄q “ y there is an inequality xy ď x̄. The element xy
is unique and the assignment px, yq ÞÑ xy defines a split opfibration structure
on g.

Theorem 5.6. The following conditions are equivalent for an awfs pL,Rq
on an Ord-category C.

(1) The awfs is a lofs.
(2) The lifting operation from the forgetful functor U : L-Coalg Ñ C2 to

the forgetful functor V : R-Alg Ñ C2 is a kz-lifting operation.

Proof : Assume that pL,Rq is lax orthogonal, pf, sq is an L-coalgebra and
pg, pq is an R-algebra. Given a diagonal filler d as depicted, we must show
φpf,sq,pg,pqph, kq ď d.

¨
h //

f
��

¨

g
��

¨
k
//

d
@@

¨

Using the inequalities 1 ď s ¨Rf and 1 ď Lg ¨ p from (4.15), we obtain
`

φpf,sq,pg,pqph, kq “ p ¨Kph, kq ¨ s ď d
˘

ô
`

Kph, kq ď Lg ¨ d ¨Rf
˘

.

There is a morphism pLg ¨d¨Rf, kq : Rf Ñ Rg in C2, as shown by the diagram
below, which precomposed with the unit Λf “ pLf, 1q : f Ñ Rf of R equals
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Λg ¨ ph, kq “ pLg ¨ h, kq : f Ñ Rg.

¨
Rf
//

Rf
��

¨

k &&

d // ¨
g

��

Lg
// ¨

Rg
��

¨
k // ¨

On the other hand, by the lax idempotency of R, we have that Kph, kq is a
left extension of Λg ¨ ph, kq along Λf , so there exists Kph, kq ď Lg ¨ d ¨Rf , as
desired.

Conversely, assume that the lifting operation φ induced by the awfs is kz,
and consider the commutative square

¨
1

''

LRf
//

LRf

��

¨

R2f

��

¨

LRf

77

Rf

¨
R2f

//
πf

77

¨

By Lemma 5.2, φ provides the diagonal filler φLRf,R2fpLRf,R
2fq “ 1, so we

have an inequality 1 ď LRf ¨ πf as required.

Theorem 5.7. Let pL,Rq be a lofs on an Ord-category C. Then, the fol-
lowing statements about a morphism f of C are equivalent:

(1) f has an (unique) R-algebra structure (we simply say that f is an
R-algebra).

(2) f is injective with respect to L-coalgebras, in the sense that any com-
mutative square

¨

`
��

// ¨

f
��

¨ // ¨

with ` P L-Coalg has a diagonal filler.
(3) f admits a (non-necessarily unique) pR,Λq-algebra structure.
(4) f is a retract in C2 of an R-algebra.

The wfs that underlies pL,Rq has as left part those morphisms in the image
of the forgetful functor L-Coalg Ñ C2 and as right part those morphisms in
the image of the forgetful functor R-Alg Ñ C2.
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Proof : We have seen in §5.b that (1) implies (2). To prove that (2) im-
plies (3), consider the diagonal filler below, which shows that pp, 1q : Rf Ñ f
is is an pR,Λq-algebra structure.

¨

Lf
��

¨

f
��

¨

p
@@

Rf
// ¨

The implications (3)ñ(4)ñ(1) are particular instances of part of Lemma 2.9,
since R is lax idempotent.

As mentioned in §4.c, the underlying wfs pL,Rq of pL,Rq has as right class
the algebras for the pointed endofunctor pR,Λq. Then, f P R (or, by duality,
f P L) precisely when f is an R-algebra (an L-coalgebra).

6. Horizontally ordered double categories and lofss
6.a. Horizontally ordered double categories. Double categories, intro-
duced by C. Ehresmann [9], can be succinctly described as internal cate-
gories in the cartesian category of categories. They consist of an internal
graph of categories and functors G1 Ñ G0 (domain and codomain) with an
identity functor id : G0 Ñ G1 and a composition functor G1 ˆG0 G1 Ñ G1 that
satisfy the usual associativity and identity axioms. The morphisms of G0
will be represented as horizontal arrows. The objects of G1 have a domain
and a codomain that are objects of G0, and will be represented as vertical
morphisms. Morphisms of G1 will be represented as squares; for example a
morphism α : xÑ y in G1 will be represented as

¨

x
��

//

α

¨

y
��

¨ // ¨

Objects of G1, ie vertical arrows, can be vertically composed, as well as
squares as the one above.

Definition 6.1. A horizontally ordered double category is an internal cate-
gory in the cartesian category Ord-Cat of Ord-categories and Ord-functors.
This means that in a horizontally ordered double category we can speak of
inequalities between horizontal morphisms and between squares. A mono-
tone double functor between two horizontally ordered double categories is a
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double functor that preserves the inequalities between horizontal morphisms
and between squares.

Example 6.2. Let C be an Ord-category. The horizontally ordered double
category SqpCq has underlying graph dom, cod: C2 Ñ C, so both horizontal
and vertical morphisms are morphisms of C, and squares are commutative
squares in C. The inequality between horizontal morphisms is the inequal-
ity between morphisms of C. One square is less or equal than another, as
depicted,

¨

x
��

h // ¨

y
��

¨
k // ¨

ď

¨

x
��

u // ¨

y
��

¨ v
// ¨

if and only if h ď u and k ď v.

Example 6.3. laris form a horizontally ordered double category. If f : AÑ B
and g : B Ñ C are laris, with respective right adjoints f ˚ and g˚, then their
composition g ¨ f : A Ñ B is also a lari with right adjoint f ˚ ¨ g˚. This
composition of laris is clearly associative and has identities, namely the
identity morphisms.

6.b. Lifting operations. If U : JÑ C2 is an Ord-functor, there is an Ord-
category J&kz over C2 whose objects are morphisms f of C with a kz-lifting
operation against U , ie with a rali structure on each

φ´,f : CpcodUj, dom fq ÝÑ C2
pUj, fq. (6.4)

A morphism is a morphism in C2 that is compatible with these rali struc-
tures in the obvious way. The ordering of morphisms is that of C2. The
forgetful Ord-functor

U&kz : J&kz ÝÑ C2 (6.5)
is injective on objects, since (6.4) can be a rali in a unique way.

The construction pJ, Uq ÞÑ pJ&kz, U&kzq is part of a functor
p´q

&kz : pCat{C2
q
op
ÝÑ CAT{C2.

Explicitly, if S : JÑ I is an Ord-functor over C2

J
S //

U ""

I

V||
C2
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then there is an Ord-functor

S&kz : I&kz ÝÑ J&kz

defined by the obvious observation that if the morphism on the left hand side
of (6.6) is a rali, then so is the one on the right hand side, since Uj “ V Sj.

CpcodV i, dom fq ÝÑ C2
pV i, fq CpcodUj, dom fq ÝÑ C2

pUj, fq. (6.6)

Proposition 6.7. Given an Ord-functor U : JÑ C2, there is a horizontally
ordered double category with:

‚ objects, those of C;
‚ vertical morphisms those morphisms of C that are objects of J&kz;
‚ horizontal morphisms, the morphisms of C;
‚ squares, commutative squares in C.

We denote this horizontally ordered category by J&kz. Moreover, U defines
an identity on objects double functor J&kz Ñ SqpCq.

Proof : We have to prove the following: (a) if f and g are two composable
morphisms and both are in J&kz, then their composition g¨f is also in J&kz; (b)
this composition is associative; (c) that any identity morphism is an object
of J&kz; (d) identity morphisms are identities for the composition of part (a).

The first observation is that (b) and (d) are automatic because (6.5) is
injective on objects, so we only need to prove (a) and (c).

(a) Suppose that f and g are composable objects of J&kz, with lifting
operations that we denote, respectively, φ´,f and φ´,g. If j P J, then
θjph, kq – φj,fph, φj,gpf ¨ h, kqq provides a diagonal filler for the solid square
ph, kq : Uj Ñ g ¨ f , as displayed.

¨

Uj

��

h // ¨

f
��
¨

g
��

¨
k

//

φj,gpf ¨h,kq

44
φj,f ph,φj,gpf ¨h,kqq

99

¨

To prove that the lifting operation θ is a kz-lifting operation we have to prove
that θjph, kq is the least diagonal filler. Suppose that d is another diagonal
filler of the square. This implies that f ¨ d is a diagonal filler of the square
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pf ¨ h, kq : Uj Ñ g, and therefore φj,gpf ¨ h, kq ď f ¨ d. We now have two
morphisms in C2, namely

ph, φj,gpf ¨ d, kqq ď ph, f ¨ dq : Uj ÝÑ f

from where we obtain the required inequality
θjph, kq “ φj,fph, φj,gpf ¨ d, kqq ď φj,fph, f ¨ dq ď d; (6.8)

the first inequality in (6.8) above arises from the fact that the lifting operation
φ is Ord-enriched (see §5.a), while the second inequality exists because d is
a diagonal filler of ph, f ¨ dq : Uj Ñ f .

(c) It remains to prove that identity morphisms are in J&kz, for which we
note that there is only one possible diagonal filler for a square of the form

¨

Uj
��

// ¨

1
��

¨
k
// ¨

namely, k itself. This completes the proof.
Given an Ord-functor U : JÑ C2, there is another

&kzU : &kzJ ÝÑ C2

that is constructed dually to J&kz. More explicitly, &kzJ has objects pf, φf,´q
where f P C2 and φ is a kz-lifting operation from f to U .

¨

f
��

h // ¨

Uj
��

¨
k

//

φf,jph,kq

::

¨

The kz-lifting operation φf,´ is a rali structure on the monotone morphisms
Cpcodpfq, domUjq Ñ C2pf, Ujq.

Theorem 6.9. Suppose given Ord-functors

J
U

ÝÝÝÑ C2 V
ÐÝÝÝ I.

There is a bijection between:
‚ kz-lifting operations from U to V ;
‚ Ord-functors IÑ J&kz;
‚ Ord-functors JÑ &kzI.
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These correspondences yield a contravariant adjunction in Ord-Cat{C2 be-
tween &kzp´q and p´q&kz.

6.c. lofss and kz lifting operations. Suppose that pL,Rq is a lofs on
the Ord-category C. There is an Ord-functor

R-Alg ÝÑ L-Coalg&kz (6.10)
introduced in [7], that equips each R-algebra with its canonical kz-lifting
operation against L-coalgebras (see Theorem 5.6). Using [3, §6.3] one could
deduce that (6.10) is an isomorphism. We prefer, however, to give a self-
contained proof.

Theorem 6.11. The Ord-functor (6.10) induced by a lofs pL,Rq is an
isomorphism.

Proof : Supposing that pg, φ´,gq is a kz-lifting operation against the forgetful
Ord-functor U : L-Coalg Ñ C2, we want to construct an R-algebra structure
on g : A Ñ B. There is a kz-diagonal filler p “ φLg,gp1, Rgq as depicted
below.

A

Lg
��

A

g
��

Kg
Rg
//

p
==

B

Then pp, 1q : Rg Ñ g will be our candidate for an algebra structure. By
the lax idempotency of R, we only have to show pp, 1q % Λg “ pLg, 1q (see
§4.e). We know that p ¨ Lg “ 1, and it remains to show 1 ď Lg ¨ p. The
commutativity the following diagram shows that Lg ¨ p is a diagonal filler of
the square pLg,Rgq : Lg Ñ Rg.

A

Lg

��

1 !!

Lg
// Kg

Rg

��

A

Lg ==

g

!!
Kg

p ==

Rg
// B

The canonical kz-lifting operation, exhibited in Theorem 5.6, chooses the
identity morphism as the diagonal filler of the outer square, by Lemma 5.2,
so we deduce 1 ď Lg ¨ p. This completes the proof that pp, 1q : Rg Ñ g is an
algebra structure.
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The next part of the proof is the verification that the assignment
ob
`

L-Alg&kz
˘

ÝÑ ob
`

R-Alg
˘

(6.12)
constructed in the previous paragraph is an inverse of the effect of (6.10)
on objects. Both (6.10) and (6.12) commute with the injective forgetful
assignments from ob

`

L-Alg&kz
˘

and ob
`

R-Alg
˘

to ob
`

C2˘. This immediately
implies that (6.12) is the inverse of (6.10) on objects.

It remains to prove that (6.10) is fully faithful, in the Ord-enriched sense.
Suppose that ph, kq : pf, φ´,fq Ñ pg, φ´,gq is a morphism in L-Coalg&kz, and
let pf : Rf Ñ f and pg : Rg Ñ g be the associated algebra structures. We
have the following string of equalities
h¨pf “ h¨φLf,fp1, Rfq “ φLf,gph, k ¨Rfq “ φLg,gp1, Rgq¨Kph, kq “ pg ¨Kph, kq,

which are a result of the definition of lifting operations.

¨

Lf
��

¨
h //

f
��

¨

g
��

¨
Rf
//

pf

@@

¨
k
// ¨

“

¨

Lf
��

h // ¨

g
��

¨
k¨Rf

//

φLf,gpLf,k¨Rfq

77

¨

“

¨

Lf
��

h // ¨

Lg
��

¨

g
��

¨
Kph,kq

// ¨

pg

@@

Rg
// ¨

This shows that (6.10) is full on morphisms. That is faithful and full on 2-
cells, or inequalities, follows from the fact (6.10) commutes with the forgetful
Ord-functors into C2 and these forgetful Ord-functors are faithful and full
on inequalities.

Corollary 6.13. For any lofs pL,Rq, the Ord-categories L-Coalg and R-Alg
are the object of the arrow part of horizontally ordered categories that we
denote by L-Coalg and R-Alg. Furthermore, the respective Ord-functors into
C2 are the arrow part of horizontally monotone double functors into SqpCq.

Proof : We use the isomorphism of Theorem 6.11 to transfer the structure of
a horizontally ordered double category from L-Coalg&kz to R-Alg; see Propo-
sition 6.7. The statement about L-coalgebras is dual.

A straightforward modification of [3, Thm. 6] yields the following theorem.

Theorem 6.14. A horizontally monotone double functor U “ pU,U0q : DÑ
SqpCq is isomorphic over SqpCq to R-Alg Ñ SqpCq for a lofs pL,Rq if and
only if

‚ U is monadic and the induced Ord-monad is lax idempotent.
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‚ for each vertical arrow f in D the following square is in the image of
U .

¨

f
��

f
// ¨

1
��

¨ ¨

We conclude the section with a result on morphisms of lofss.

Proposition 6.15. Suppose that pL,Rq and pL1,R1q are lofs on the Ord-
category C, and ϕf : Kf Ñ K 1f a natural family of morphisms. Then, there
is a bijection between the following sets, which, moreover, can have at most
one element.

(a) Morphisms of lofss pL,Rq ÝÑ pL1,R1q.
(b) Comonad morphisms L Ñ L1.
(c) Monad morphisms R Ñ R1.

Proof : First, there is at most one morphism of the kind in (a), (b) and (c) by
Lemma 4.22, Lemma 2.10 and its dual form (ie, the version for comonads).
Clearly, if there is a morphism as in (a), then there are morphisms as in (b)
and (c), just by definition of morphism of awfss (§4.f).

Suppose there is a morphism of comonads Q from L to L1, with components
Qf : Lf Ñ L1f . Due to the counit axiom, p1, R1fq ¨ Qf “ p1, Rfq, we have
that Qf is of the form p1, ϕfq for a morphism ϕf : Kf Ñ K 1f . Let

Q˚ : L-Coalg ÝÑ L1-Coalg

be the Ord-functor induced by Q; it commutes with the forgetful Ord-
functors into C2. Applying the functor p´q&kz to Q˚ and employing the
isomorphisms (6.10) (Theorem 6.11) we obtain an Ord-functor, depicted by
a dashed arrow.

R1-Alg
–
��

// R-Alg
–
��

L1-Coalg&kz
Q&kz
˚ // L-Coalg&kz

The vertical isomorphisms were described in the proof of Theorem 6.11, and
this description can be used to describe the dashed arrow. If pp, 1q : R1f Ñ f
is an R1-algebra structure, the associated kz-lifting operation φ´,f defines a
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diagonal filler for each commutative square

¨

`
��

h // ¨

f
��

¨
k

//

φ`,f ph,kq

::

¨

φ`,fph, kq “ p ¨Kph, kq ¨ s

for any L1-coalgebra p1, sq : ` Ñ L`. Uppon applying Q&kz
˚ we obtain a kz-

lifting operation ψ´,f of f against all L-coalgebras. If p1, tq : g Ñ Lg is an
L-coalgebra, its image under Q˚ is

g
p1,tq
ÝÝÑ Lg

p1,ϕgq
ÝÝÝÑ L1g

and therefore ψg,fph, kq is the form

ψg,fph, kq “ φQ˚g,fph, kq “ p ¨K 1
ph, kq ¨ ϕg ¨ t “ p ¨ ϕf ¨Kph, kq ¨ t.

We now obtain the R-algebra structure on f by ψLf,fp1, Rfq,

ψLf,fp1, Rfq “ p ¨ ϕf ¨Kp1, Rfq ¨ σf “ p ¨ ϕf .

In conclusion, the dashed arrow in page 37 represents the Ord-functor that
sends an R1-algebra pp, 1q : R1f Ñ f to the R-algebra pp ¨ ϕf , 1q : Rf Ñ f .
This implies that pϕf , 1q : Rf Ñ R1f is a monad morphism, and the set (c)
is non-empty.

We have seen that (c) has a member if (b) has a member. By a duality ar-
gument, ie by taking the opposite Ord-category of C, we deduce the converse:
(b) has a member if (c) does. Furthermore, from the construction of the pre-
vious paragraph, we know that if p1, ϕfq : Lf Ñ L1f is a comonad morphism,
then the monad morphism must be of the form pϕf , 1q : Rf Ñ R1f , and vice
versa. Therefore, the existence of a comonad morphism L Ñ L1, or the ex-
istence of a monad morphism R Ñ R1, are equivalent to the existence of a
unique ϕf : Kf Ñ K 1f such that p1, ϕfq : Lf Ñ L1f is a comonad morphism
and pϕf , 1q : Rf Ñ R1f is a monad morphism. In other words, equivalent to
the existence of a unique morphism of awfss pL,Rq Ñ pL1,R1q.

The above proposition is a reminder of the differences that exist between
general awfss and those enriched over Ord. In the general case, the propo-
sition does not hold; see [28, Lemma 6.9] or [3, Prop. 2].
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7. The definition of LOFS revisited
Lax orthogonal factorisation systems on Ord-categories were defined in

§4.e as Ord-enriched awfss pL,Rq whose comonad L is lax idempotent, or
equivalently, by Proposition 4.16, whose monad R is lax idempotent. The
definition of awfs includes a mixed distributive law ∆: LR ñ RL, with
components pσf , πfq : LRf Ñ RLf . The axioms of a mixed distributive law
in this case amount to the commutativity of the diagrams in (4.4), and they
are equivalent, as mentioned in Remark 5.3, to the requirement that the
diagonal filler of the square below be σf ¨ πf .

Kf

LRf
��

σf
// KLf

RLf
��

KRf πf

//

σf ¨πf

::

Kf

(7.1)

The main result of the section is the following.

Theorem 7.2. In the definition of lofs, the distributive law axiom is re-
dundant. More precisely, the following suffices to define a lofs: a domain-
preserving Ord-comonad L and a codomain-preserving monad R on C2 that
define the same Ord-functorial factorisation f “ Rf ¨ Lf ; both L and R
should be lax idempotent.

Proof : All we need to show is that σf ¨πf is the diagonal filler of the square (7.1).
The existence of a kz-lifting operations for R-algebras against L-coalgebras
does not depend on the distributivity axiom but it only suffices that both L
and R be lax idempotent. Then, we only need to show that

σf ¨ πf ď d (7.3)

for the kz-diagonal filler d of the square (7.1), for, in this case, the inequal-
ity is necessarily an equality. There are adjunctions σf % Kp1, Rfq and
KpLf, 1q % πf since L and R are lax idempotent. Thus, the inequality (7.3)
is equivalent to 1 ď Kp1, Rfq ¨ d ¨KpLf, 1q, due to the inequalities (4.14) of
§4.e. Consider the following diagram, where pLf,KpLf, 1qq “ LpLf, 1q is a
morphism of L-coalgebras and pKp1, Rfq, Rfq “ Rp1, Rfq is a morphism of
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R-algebras.

¨
Lf

//

Lf
��

¨
σf

//

LRf
��

¨

RLf
��

Kp1,Rfq
// ¨

Rf
��

¨
KpLf,1q

// ¨ πf

//

d
<<

¨
Rf

// ¨

¨
Lf

//

Lf
��

¨

Rf
��

¨
Rf

//

1
<<

¨

By the naturality of the diagonal fillers with respect to morphisms of L-
coalgebras and morphism of R-algebras, we deduce that Kp1, Rfq¨d¨KpLf, 1q
is the diagonal filler of the square on the right hand side, and hence equal
to the identity morphism (see Lemma 5.2). Therefore the inequality (7.3)
holds, completing the proof.

We can summarise the theorem above and Proposition 4.16 in the following
way: given a domain-preserving Ord-comonad L and a codomain-preserving
Ord-monad R on C2 that induce the same Ord-functorial factorisation f “
Rf ¨Lf , the following two statements are equivalent, and when they hold we
are in the presence of a lofs.

‚ One of L,R is lax idempotent and the distributive law axiom holds.
‚ Both L and R are lax idempotent.

8. Embeddings with respect to a monad
Embeddings with respect to a lax idempotent monad were extensively ex-

ploited in [11, 12] and in [10], where topological embeddings were exhibited
as an example (more on this in §13). In this section we begin our analysis of
the interplay between these embeddings and lofss.

Definition 8.1. If S : C Ñ B is a locally monotone functor between Ord-
categories, an S-embedding structure on a morphism f in C is a lari structure
in Sf in B. Recall that lari structures on a morphism in an Ord-category
are unique, which one usually rephrases by saying that being a lari is a prop-
erty of a morphism. Therefore, being an S-embedding in an Ord-category
is a property of morphisms.

The Ord-category of S-embeddings, denoted by S-Emb, is the category
whose objects are pairs pf, rq where f is a morphism in C and Sf % r is
a lari in B. A morphism pf, rq Ñ pg, tq in this category is a morphism
ph, kq : f Ñ g in C2 satisfying Sh ¨ r “ t ¨ Sk. There is an obvious forgetful
functor S-Emb Ñ C2 given on objects by pf, rq ÞÑ f . We make S-Emb into
an Ord-category by declaring ph, kq ď ph1, k1q if this inequality holds in C2;
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this makes the forgetful functor U into a locally monotone functor that fits
in a pullback square.

S-Emb //

U
��

pb

LaripBq

��

C2
S2

// B2
(8.2)

Lemma 8.3. S-embeddings in C are the vertical morphisms of a horizontally
ordered double category, with objects those of C, horizontal morphisms the
morphisms of C and squares those commutative squares in C that represent
morphisms of S-embeddings. Furthermore, the pullback diagram displayed
above is part of a pullback diagram of horizontally ordered double categories.

S-Emb //

U
��

pb

LaripBq

��

SqpCq
SqpSq

// SqpBq
(8.4)

Proof : At the level of Ord-categories of objects, the square of the state-
ment has identity vertical arrows and obS : obC Ñ obD as horizontal ar-
rows. Hence, it is a pullback at the level of Ord-categories of objects. At
the level of Ord-categories of arrows, the square is precisely the pullback
square (8.2). Therefore, S-Emb Ñ C has a unique internal category struc-
ture that makes (8.4) a pullback square of internal categories.

Lemma 8.5. The forgetful Ord-functor S-Emb Ñ C2 creates colimits, pro-
vided that C has and S preserves colimits.

Proof : In the pullback diagram (8.2), the leftmost vertical Ord-functor cre-
ates any colimit that is preserved by S (and thus by S2), since the rightmost
vertical Ord-functor creates colimits.

Definition 8.6. If T is an Ord-monad on C, we shall call FT-embeddings
T-embeddings, and denote the Ord-category FT-Emb by T-Emb.

Lemma 8.7. Let T be an Ord-monad on C and FT % V T : T-Alg Ñ C the
associated Eilenberg-Moore adjunction. If V T is locally full, ie if V Tf ď V Tg
implies f ď g for parallel morphism of algebras f and g, then T-embeddings
coincide with T -embeddings.

For example, the above lemma applies when T is lax idempotent.
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Proposition 8.8. Let T be a lax idempotent monad on an Ord-category with
a terminal object. The obvious Ord-functor

T-Emb ÝÑ &kz
`

T-Alg{1
˘

(8.9)
is an isomorphism.

Proof : We define the Ord-functor (8.9) and show that it is bijective on ob-
jects at the same time by showing that a morphism f of C is a T-embedding
if and only if it has a right kz-lifting operation against morphisms A Ñ 1
for all T-algebras A.

The forgetful Ord-functor V : T-Alg Ñ C can be composed with the in-
clusion C Ñ C2 that sends X to pX Ñ 1q, and then consider the &kzp´q

of the resulting functor into C2. An object of &kzpT-Alg{1q is a morphism
f : X Ñ Y of C with a rali structure on

CpY, V pAqq “ C2
pf, V 1Aq ÝÑ C2

pf, pV AÑ 1qq “ CpX, V Aq (8.10)
In other words, each morphism X Ñ A can be extended along f and this
extension is a left Kan extension.

X

f
��

// A

Y

>>

The morphism (8.10) can be written as

CpY, V pAqq – T-AlgpFTY,Aq
T-AlgpFTf,1q
ÝÝÝÝÝÝÝÑ T-AlgpFTX,Aq – CpX, V pAqq

(8.11)
which has a rali structure, for all T-algebras A, if and only if FTf has a
lari structure. This defines a bijection between the objects of the domain
and codomain of (8.9).

It remains to define (8.9) on morphisms and to verify that it is bijective on
these morphisms, and locally full on inequalities. Suppose that f and g are
T-embeddings. A morphism ph, kq : f Ñ g is a morphism in the codomain
of (8.9) if it is compatible with the rali structures on the morphisms (8.10)
corresponding to f and g; in other words, if ph, kq induces a morphism of
ralis. This is equivalent to requiring that ph, kq should induce a morphism
of ralis between the ralis (8.11) that correspond to f and g. By Yoneda
lemma, this means that ph, kq is a morphism of T-embeddings. This defines
a functor (8.9) that is bijective on morphisms.
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It remains to show that (8.9) is locally full on morphisms, but this is easy
and left to the reader.
Proposition 8.12. Let T be a lax idempotent monad on an Ord-category
with a terminal object. The obvious Ord-functor

T-Alg{1 ÝÑ pT-Embq&kz
1 Ă pT-Embq&kz

is an isomorphism between T-Alg and the fiber of cod: pT-Embq&kz ÝÑ C

over 1.
Proof : We will show that a morphism AÑ 1 is in pT-Embq&kz if and only if
A is a T-algebra.

The components ηX : X Ñ TX of the unit of the monad T are T-embeddings
due to the adjunction TηX % µX . Furthermore, for any morphism u : X Ñ Y ,
there is a morphism pu, Tuq : ηX Ñ ηY in T-Emb because Tu ¨µX “ µY ¨T

2u.
Suppose that A Ñ 1 has a kz-lifting operation against T-embeddings,

which provides a diagonal filler to the square displayed below.
A

ηA
��

A

��
TA //

a
==

1
We will show that a is a T-algebra structure.

It is not hard to verify that the diagonal filler of the square

A
ηA //

ηA
��

TA

��
TA // 1

is the identity morphism, where TA is equipped with the kz-lifting operation
induced by its free T-algebra structure. On the other hand, ηA ¨ a is another
diagonal filler, so there is a inequality 1TA ď ηA ¨ a. Thus, a % ηA which is
equivalent to saying that a is a T-algebra structure on A.

We leave to the reader the verification that the Ord-functor of the state-
ment if full and faithful.
Corollary 8.13. In the conditions of Proposition 8.12, the unit of the com-
ponent at T-Emb of the adjunction of Theorem 6.9

T-Emb ÝÑ &kz`T-Emb&kz
˘

is an isomorphism.
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Proof : Continuing with the notation used in Proposition 8.12, the inclusion
of T-Emb&kz

1 into T-Emb&kz induces an Ord- functor in the opposite direction
&kz`T-Emb&kz

˘

ÝÑ
&kz`T-Emb&kz

1
˘

.

We can form a morphism from right to left, displayed below, where the two
isomorphisms are those given by the Propositions 8.8 and 8.12.

T-Emb –
ÝÑ

&kz
`

T-Alg{1
˘

–
ÝÑ

&kz`T-Emb&kz
1

˘

ÐÝ
&kz`T-Emb&kz

˘

The resulting Ord-functor
&kz`T-Emb&kz

˘

ÝÑ T-Emb (8.14)

commutes with the forgetful Ord-functors into C2. Since these forgetful
functors are injective on objects and on morphisms, and full on inequalities
between morphisms, we deduce that (8.14) is necessarily an inverse for the
component of the unit of the statement.

Corollary 8.15. If pL,Rq is a lofs on an Ord-category with a terminal
object, then there is a canonical Ord-functor

L-Coalg ÝÑ R1-Emb

where R1 is the Ord-monad on C – C{1 that is the restriction of R.

Proof : The inclusion of R1-Alg ãÑ R-Alg, given by A ÞÑ pA Ñ 1q, induces
the unlabelled arrow in the following string of Ord-functors over C2,

L-Coalg – &kz
`

R-Alg
˘

ÝÑ
&kz

`

R1-Alg{1
˘

– R1-Emb

where the last isomorphism is provided by Proposition 8.8.

The Ord-functor of Corollary 8.15 may be described more explicitly. If
f : X Ñ Y is an L-coalgebra, then the corresponding R1-embedding structure
is given by the adjunction R1f % r : R1Y Ñ R1X where r is the unique
morphism of R1-algebras that composed with the unit ηY : Y Ñ R1Y equals
the kz-lifting corresponding to the square displayed below.

X
ηX //

f
��

R1A

!“Rp!q
��

Y

r¨ηY

<<

!
// 1
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9. KZ-reflective LOFSs
We begin by summarising the most basic definitions of [5] around reflective

factorisation systems.
An ofs pE ,M q (or even a pre-factorisation system, which is similar to

a ofs but without the requirement that each morphism should be a com-
position of one in E followed by one in M ) on a category with a terminal
object C, induces a reflective subcategory of C formed by those objects X
for which X Ñ 1 belongs to M . In the other direction, each reflective
subcategory B Ď C induces a pre-factorisation system pE ,M q whose E is
formed by all the morphisms that are orthogonal to each object of B. With
an obvious ordering on reflective subcategories and pre-factorisation systems,
these two constructions form an adjunction (a Galois correspondence). Those
pre-factorisation systems obtained from reflective subcategories are called re-
flective, and are characterised as those for which g ¨ f P E and g P E implies
f P E .

In this section we consider the analogous notion of kz-reflective lofs and
find a characterisation that mirrors the case of ofss.

Definition 9.1. We say that the Ord-monad T on C is fibrantly kz-generating
if the forgetful Ord-functor T-Emb Ñ C2 has a right adjoint (in the Ord-
enriched sense).

Proposition 9.2. Assume that C is a cocomplete and finitely complete Ord-
category. Then T is fibrantly kz-generating if and only if there exists an Ord-
enriched awfs pL,Rq for which L-Coalg – T-Emb over C2. Furthermore, this
awfs is lax orthogonal.

Proof : The implication in one direction is clear; indeed, if T-Emb is isomor-
phic over C2 to L-Coalg then the condition of Definition 9.1 holds.

Assume that T is fibrantly kz-generating. The forgetful Ord-functor
LaripCq Ñ T-Alg2 is comonadic by Lemma 4.9. The Ord-functor T-Emb Ñ
C2 is a pullback of the comonadic Ord-functor mentioned, therefore, it satis-
fies all the hypotheses of (the Ord-enriched version) of Beck’s comonadicity
theorem, except perhaps for the hypothesis of being a left adjoint. Together
with Definition 9.1, we deduce that T-Emb is comonadic over C2.

The Ord-category of T-embeddings forms part of a horizontally ordered
double category T-Emb, as in Lemma 8.3. We will be able to apply the dual
of Theorem 6.14 if we show the following: if f is a T-embedding, then the
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square on the left is a morphism of T-embeddings 1 Ñ f . This is equivalent
to saying that the square on the right is a morphism of laris 1 Ñ F Tf ,
which is easily seen to hold.

¨

1
��

¨

f
��

¨
f
// ¨

¨

1
��

¨

FT f
��

¨
FT f

// ¨

We deduce, by a dual form of Theorem 6.14, that T-Emb is L-Coalg for an
awfs pL,Rq.

It remains to show that this awfs is a lofs, for which we appeal to the dual
version of [25, Cor. 6.9], which we explain here without proof. By definition
of T-Emb, there is a pullback diagram

T-Emb //

U
��

E-Coalg

��

C2 pFT q2
// T-Alg2

where C is cocomplete and the free algebra Ord-functor F T is a left adjoint.
The comonad E on T-Alg2 is the one of §4.d and exists since C, and thus
T-Alg, has finite limits. We are in the dual conditions of Corollaries 6.9
and 6.10 of [25], which guarantees that the comonad corresponding to the
comonadic U is lax idempotent.

Definition 9.3. The Ord-category of lax idempotent monads on the Ord-
category C, denoted by LIMndpCq, has morphisms T Ñ S natural transfor-
mations that are compatible with the multiplication and unit of the monads,
in the usual manner.

We will denote by LIMndfibpCq the full sub-Ord-category of LIMndpCq
consisting of those monads that are fibrantly kz-generating, in the sense of
Definition 9.1.

When C is cocomplete and finitely complete, we have a situation that can
be summarised by the following diagram of Ord-functors.

LOFSpCq
� _

p´q-Coalg
��

Φ̃
((

LIMndfibpCq� _

I
��

Ψoo

Ord-Cat{C2 LIMndpCqΨ̃oo

(9.4)
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The vertical Ord-functors are full and faithful, the one on the right being just
an inclusion. The one on the left sends each lax orthogonal awfs on C to the
Ord-category L-Coalg over C2. The Ord-functor Ψ̃ sends a lax idempotent
monad T on C to the category &kzpT-Alg{1q over C2, and has a lifting to an
Ord-functor Ψ that sends a fibrantly kz-generating T to the lofs pL,Rq on
C that satisfies L-Coalg – T-Emb – see Proposition 9.2. Finally, Φ̃ sends
pL,Rq to R1, the restriction of R to the slice C{1 – C.

It will be convenient to use the following relaxed notion of adjunction.
Suppose given a diagram of functors and a natural transformation, that may
be enriched as needed, as displayed.

A

F &&

+3θ

B

I
��

Goo

D

Definition 9.5. Following [31, §2], we say that θ exhibits G as a I-right
adjoint of F , and F as a I-left adjoint of G denoted by F %I G, if

ApA,GpBqq F
ÝÑ DpF pAq, FGpBqq

Dp1,θBq
ÝÝÝÝÑ DpF pAq, IpBqq

is invertible.

It is easy to prove that if I : BÑ D is fully faithful and θ is an isomorphism,
then G is fully faithful.

Theorem 9.6. In the situation of the diagram (9.4), the Ord-functor Φ̃ is
a I-left adjoint of Ψ. Moreover, Ψ is fully faithful.

Proof : We have to exhibit a natural bijection
LIMndpCqpR1,Tq – LOFSpCqppL,Rq,ΨpTqq

using our knowledge of the existence of natural isomorphisms
LIMndpCqpR1,Tq “ MndpCqpR1,Tq – Ord-Cat{C

`

T-Alg,R1-Alg
˘

LOFSppL,Rq,ΨpTqq “ AWFSppL,Rq,ΨpTqq –
`

Ord-Cat{C2˘`L-Coalg,T-Emb
˘

.

Suppose that H : L-Coalg Ñ T-Emb is an Ord-functor over C2. From this
data we have to produce a monad morphism R1 Ñ T, or what is equivalent,
an Ord-functor

T-Alg ÝÑ R1-Alg (9.7)
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where the notation on the right means the Ord-category of R-algebras with
codomain 1. We can use H, the adjunction between &kzp´q and p´q&kz, and
Theorem 6.11 to define an Ord-functor over C2

T-Alg{1 ÝÑ
`&kz

`

T-Alg{1
˘˘&kz

–
`

T-Emb
˘&kz H&kz

ÝÝÝÑ
`

L-Coalg
˘&kz

– R-Alg
(9.8)

that assigns to each T-algebra A an R-algebra of the form A Ñ 1. This is
the Ord-functor (9.7) we seek.

In addition, the adjunction between &kzp´q and p´q&kz implies that for any
N : T-Alg{1 Ñ R-Alg over C2 there exists a unique H : L-Coalg Ñ T-Emb
over C2 such that (9.8) equals N . This means that we have established the
necessary bijection.

If pL,Rq “ ΨpTq, the counit θ of the I-adjunction,

LOFSpCq

Φ̃ ))

LIMndfibpCq� _

I
��

+3θ

Ψoo

LIMndpCq

has component at T the morphism of monads
θT : Φ̃ΨpTq ÝÑ T

corresponding in the construction of the previous paragraphs to the Ord-
functor H that is the isomorphism L-Coalg – T-Emb. It follows from (9.8)
that θT is an isomorphism provided that

T-Alg{1 ÝÑ
`

T-Emb
˘&kz

is an isomorphism, which was proved in Proposition 8.12. As mentioned
above the present theorem, the invertibility of θ implies that Ψ is fully faith-
ful.

Definition 9.9. We call a lofs kz-reflective if it is isomorphic to one of the
form ΨpTq, for a fibrantly kz-generating lax idempotent monad T.

Proposition 9.10. For a reflective lofs pL,Rq on an Ord-category with
terminal object, there is an isomorphism L-Coalg – R1-Emb over C2 and
pL,Rq – ΨpR1q.

Proof : Suppose that pL,Rq – ΨpTq for a lax idempotent monad T. By hy-
pothesis, L-Coalg – T-Emb for an Ord-monad T on C2. On the other hand,



LAX ORTHOGONAL FACTORISATIONS IN ORDERED STRUCTURES 49

R-Alg – L-Coalg&kz for any lofs, as we saw in Theorem 6.11. Therefore,
R1-Alg “ R-Alg1 – T-Emb&kz

1 – T-Alg
where the subscript 1 denotes the fiber of the various categories fibered over
C via the codomain functor. The last isomorphism of the sequence is the
one provided by Proposition 8.12. Since the isomorphism R1-Alg – R-Alg
constructed is over C, we obtain an isomorphism between R1 and T.

Notation 9.11. In this section we will denote by pE,Mq the lofs on C whose
E-coalgebras are laris in C and whose M-algebras are split opfibrations in
C.

Definition 9.12. We will refer to those lofss pL,Rq that admit a morphism
pE,Mq Ñ pL,Rq as sub-lari lofss. If such morphism exists, it is unique.

Not all lofss are sub-lari. For example, the initial awfs (the one that
factors a morphism f as f “ Rf ¨ Lf with Lf “ 1dompfq and Rf “ f) is
orthogonal and, thus, lax orthogonal. Coalgebras for the associated comonad
are the invertible morphisms in C. It is clear that not every lari is an
isomorphism, so this lofs is not sub-lari.

Proposition 9.13. kz-reflective lofss are sub-lari.

Proof : By definition, L-Coalg is isomorphic over C2 to T-Emb, for a certain
T. We have to show that there exists a (unique) Ord-functor

LaripCq ÝÑ T-Emb
over C2. By definition of T-Emb as a pullback (see Definition 8.1) it suffices
to exhibit a commutative square

LaripCq //

��

LaripT-Algq

��

C2
FT

// T-Alg2

where the vertical arrows are the obvious forgetful Ord-functors. The Ord-
functor FT obviously induces another LaripCq Ñ LaripT-Algq that makes the
diagram commutative, since any Ord-functor preserves laris.

Definition 9.14. We shall be interested in lofs pL,Rq that satisfy the fol-
lowing cancellation properties:
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‚ If g and g ¨ f are L-coalgebras, then f is an L-coalgebra.
‚ If, in the following diagram, g, g1, g ¨ f and g1 ¨ f 1 are L-coalgebras

and pv, wq and pu,wq are morphisms of L-coalgebras, then pu, vq is a
morphism of L-coalgebras.

¨
f ��

u // ¨
f 1��

¨
v //

g
��

¨
g1��

¨
w // ¨

We call these lofss cancellative.
The definition of cancellative lofs regards being a lari as a property.

As a result, it does not extend from Ord-categories to 2-categories without
modification.
Example 9.15. For lofss that are ofss on a category, or in other words, when
both the comonad and the monad of the lofss are idempotent, the second
condition of the definition above is superfluous. Therefore, cancellative ofss
are precisely the reflective ofs, as shown in [5, Thm. 2.3]. This is the result
that we will generalise in Theorem 9.17.
Lemma 9.16. The lofs pE,Mq is cancellative.
Proof : Recall that E-coalgebras are the same as laris. Suppose that f and g
are composable morphisms and that g % r and pg ¨fq % t are lari structures.
Defining s “ t ¨ g, we have that s ¨ f “ t ¨ g ¨ f “ 1. It remains to prove that
f ¨ s “ f ¨ t ¨ g ď 1, which is equivalent to g ¨ f ¨ t ¨ g ď g, and this inequality
holds since g ¨ f ¨ t ď 1.

‚OO

t $

f
��

u // ‚ OO

t1%

f 1

��
‚

g
��

OO

r%

v // ‚

g1

��

OO

r1 $

‚
w // ‚

Now suppose given morphisms of laris pu,wq : g ¨f Ñ g1 ¨f 1 and pv, wq : g Ñ
g1, as depicted. We have to show that pu, vq : f Ñ f 1 is a morphism of laris,
ie that u ¨ t ¨ g “ t1 ¨ g1 ¨ v, which holds by the following string of equalities

u ¨ t ¨ g “ t1 ¨ w ¨ g “ t1 ¨ g1 ¨ v

completing the proof.
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Theorem 9.17. For a sub-lari lofs pL,Rq on a finitely complete Ord-
category, the following statements are equivalent:

(1) It is cancellative.
(2) It is reflective.

Proof : When L-Coalg is isomorphic to T-Emb for some lax idempotent T, it
always satisfies the cancellation properties of Definition 9.14 since laris do:
if g and g ¨ f are T-embeddings, ie if Tg and T pg ¨ fq “ Tg ¨ Tf are laris,
then Tf is a lari, which is to say that f is a T-embedding; and similarly
for morphisms. See Lemma 9.16.

Conversely, suppose that pL,Rq is cancellative (Definition 9.14) and there
is a morphism of awfss pE,Mq Ñ pL,Rq, or equivalently, there is an Ord-
functor LaripCq Ñ L-Coalg over C2. We shall show that the Ord-functor
L-Coalg Ñ R1-Emb of Corollary 8.15 is an isomorphism, so pL,Rq – ΨpR1q is
reflective.

If f : X Ñ Y is an R1-embedding, then consider the following commutative
diagram.

X

L!
��

f
// Y

L!
��

R1X

��

R1f // R1Y

��
1 1

The morphisms L! are cofree L-coalgebras while R1f is a lari and therefore
an L-coalgebra. So, L! ¨ f is an L-coalgebra and f is an L-coalgebra by
the cancellation hypothesis. This means that each R1-embedding is an L-
coalgebra, and all that remains to prove is that morphisms of R1-embeddings
are morphisms of L-coalgebras.

Let pu, vq : f Ñ f 1 be a morphism of R1-embeddings, so pR1u,R1vq : R1f Ñ
R1f

1 is a morphism of laris, and, therefore, a morphisms of L-coalgebras.
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It follows that pu,R1vq, depicted on the left below, is a morphism of L-
coalgebras.

X

L!
��

u // X 1

L!
��

R1X

R1f
��

R1u // R1X
1

R1f
1

��

R1Y
R1v // R1Y

1

“

X
u //

f
��

X 1

f 1
��

Y
v //

L!
��

Y 1

L!
��

R1Y
R1v // R1Y

1

On the other hand, pv,R1vq is a morphism of L-coalgebras, being the image
under L of the morphism pv, 1q : pY Ñ 1q Ñ pY 1 Ñ 1q. By the second part
of Definition 9.14, we deduce that pu, vq is a morphism of L-coalgebras, as
required. This shows that L-Coalg Ñ R1-Emb is an isomorphism, completing
the proof.

10. Simple adjunctions
In §3 we saw that a reflection T on C is simple if and only if T-Iso Ñ C2 is

comonadic. In this section we generalise that result in three directions. First,
we work with Ord-enriched categories, Ord-enriched functors and so on.
Secondly, the 2-dimensional aspect introduced by the enrichment over Ord
allows us to substitute isomorphisms by laris and T -isomorphisms by T-
embeddings. Thirdly, even though §3 speaks of reflections, the constructions
therein only need an adjunction (not necessarily a reflection) and this is the
framework we choose.

Definition 10.1. Let S % G : B Ñ C be an adjunction between locally
monotone functors on Ord-categories, of which we require C to have pull-
backs and B to have comma-objects. We can always construct a monad
R on C2 by considering the comma-object Kf “ GSf Ó ηY and defining
Rf : Kf Ñ Y as the second projection.

X

Lf
!!

ηX

""

f

!!

Kf
qf
//

Rf
��

GSX

GSf
��

Y ηY

//

ě

GSY
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The Ord-functorial factorisation f “ Rf ¨Lf has an associated locally mono-
tone copointed endofunctor Φ: Lñ 1, where the component Φf is provided
by the commutative square displayed.

¨

Lf
��

¨

f
��

¨
Rf
// ¨

We continue with the notation of previous sections, where pE,Mq denotes
the lofs whose E-coalgebras are the laris.

Remark 10.2. The comma-square of Definition 10.1 can be obtained by pulling
back along ηY the image under G of the projection MpSfq : Sf Ó SY Ñ SY .

Kf

Rf
��

//

pb

GpSf Ó SY q

GpMSfq
��

//

ě

GSX

GSf
��

Y ηY

// GSY GSY

Lemma 10.3. There is a pullback square of locally monotone endofunctors
of C2, as depicted on the left. There is a pullback of Ord-categories, as
depicted on the right.

L

pb

//

Φ
��

G2ES2

G2ΦES2
��

1C2
η2
// G2S2

pL,Φq-Coalg //

U
��

pb

pE,ΦEq-Coalg

��

C2
S2

// B2

Proof : In order to obtain a pullback square as on the left hand side of the
statement, we need to give two pullback squares: one corresponding to the
domain component and another corresponding to the codomain component.
We define the domain component of LÑ G2ES2 to be the unit η : 1 Ñ GS;
this is possible since domE “ 1. The resulting has horizontal morphisms
both equal to η and vertical morphisms equal to the identity, since dom ΦE “

1. This square is manifestly a pullback. The codomain component we choose
is the pullback square of Remark 10.2.

The fact that there is a pullback of Ord-functors as on the right hand
side of the statement follows easily, and it is a well-known fact (see, eg, [16,
Prop. 9.2]).
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As a consequence of the previous lemma, the pullback square in (8.2) that
defines S-Emb factors as two pullback squares, as depicted.

S-Emb

��

//

pb

E-Coalg
–
��

pL,Φq-Coalg //

pb
��

pE,ΦEq-Coalg

��

C2 S2
// B2

The isomorphism E-Coalg – pE,ΦEq-Coalg, which is just the inclusion, was
exhibited in Lemma 4.9. The Ord-functor S-Emb Ñ pL,Φq-Coalg is an
isomorphism, being the pullback of an isomorphism. The remark that follows
describes this functor and its inverse in more explicit terms.

Remark 10.4. Suppose that f : X Ñ Y has a structure of pL,Φq-coalgebra,
given by p1, sq : f Ñ Lf , where s : Y Ñ Kf . This structure corresponds
bijectively to an rf : SY Ñ SX in B with rf ¨ Sf “ 1 and Sf ¨ rf ď 1, in a
way that can be explicitly described: rf : SY Ñ SX is the morphism whose
transpose under the adjunction S % G is qf ¨ s : Y Ñ Kf Ñ GSX, ie

rf “
`

SY Ss
ÝÑ SKf

Sqf
ÝÝÑ SGSX

εSX
ÝÝÑ SX

˘

.

and
Rf ¨ s “ 1 qf ¨ s “

`

Y
ηY
ÝÑ GSY

Grf
ÝÝÑ GSX

˘

.

Definition 10.5. We say that the adjunction S % G is simple (or simple
with respect to pE,Mq) if, for each f : X Ñ Y in C, the morphism Lf has an
S-embedding structure given by

`

SX
SLf
ÝÝÑ SKf

˘

%
`

SKf
Sqf
ÝÝÑ SGSX

εSX
ÝÝÑ SX

˘

.

where ε is the counit of S % G. This amounts to the existence of the
inequality SLf ¨ εSX ¨ Sqf ď 1.

The following theorem is an analogue to the characterisation of simple
reflections of §3.

Theorem 10.6. The following statements are equivalent.
(1) The adjunction S % G is simple.
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(2) The locally monotone forgetful functor U : S-Emb Ñ C2 has a right
adjoint and the induced comonad has underlying functor L and counit
Φ: Lñ 1C2.

(3) The locally monotone copointed endofunctor Φ: L ñ 1C2 admits a
comultiplication Σ: L ñ L2 making L “ pL,Φ,Σq into a comonad
whose category of coalgebras is isomorphic to S-Emb over C2.

Proof : Clearly (3) implies (2). The opposite implication holds if U is
comonadic, which is if it has a right adjoint, by Beck’s Theorem 10.10 and
Lemma 10.11, showing that (2) implies (3).

Let us now prove that (3) implies (1). Let f : X Ñ Y be a morphism
of C. The comultiplication Σf : Lf Ñ L2f is of the form Σf “ p1, σfq for
σf : Kf Ñ KLf . One of the counit axioms of the comonad says

1 “
`

Kf
σf
ÝÑ KLf

Kp1,Rfq
ÝÝÝÝÝÑ Kf

˘

and upon composing with the projection qf : Kf Ñ GSX we have

qf “ qf ¨Kp1, Rfq ¨ σf “ qLf ¨ σf “ GrLf ¨ ηX (10.7)

where we have used, first the definition of K as a comma-object (Defini-
tion 10.1), and then the fact that σf is an pL,Φq-coalgebra structure on
Lf together with the explicit description of the isomorphism S-Emb –

pL,Φq-Coalg (Remark 10.4); as before, rLf : SKf Ñ SX denotes the right
adjoint retract that endows Lf with an S-embedding structure. By adjoint-
ness, the equality (10.7) is equivalent to rLf “ εSX ¨ Sqf , which is precisely
saying that S % G is simple.

Finally, we prove that (1) implies (2). For each g : X Ñ Y , the morphism
Lg : X Ñ Kg has an S-embedding structure, given by

rLg “ εSX ¨ Sqg : SKg ÝÑ SX. (10.8)

This defines a functor J : C2 Ñ S-Emb, since the image of any morphism
ph, kq : f Ñ g is compatible with the right adjoints rLf and rLg. To wit,

rLg¨SKph, kq “ εSZ ¨Sqg¨SKph, kq “ εSZ ¨SGSh¨Sqf “ Sh¨εSX ¨Sqf “ Sh¨rLf .

It is clear that J is a locally monotone functor. We shall show that it is a
right adjoint to the forgetful functor U : S-Emb Ñ C2.
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Given an S-embedding pf, rfq in C, consider its associated pL,Φq-coalgebra
structure, as described in Remark 10.4:

p1, sfq : pf, rfq ÝÑ pLf, rLfq

X

f
��

X

Lf
��

Y
sf
// Kf

(10.9)

where sf is defined by the equalities
Rf ¨ sf “ 1X qf ¨ sf “ Grf ¨ ηY : Y Ñ GSY Ñ GSX.

If we equip Lf with the S-embedding structure rLf of (10.8), then p1, sfq
becomes a morphism in S-Emb, since

rLf ¨ Ssf “ εSX ¨ Sqf ¨ Ssf “ εSX ¨ SGrf ¨ SηY “ rf ¨ εSY ¨ SηY “ rf .

Furthermore, (10.9) are the components of a natural transformation
Ψ: 1S-Emb ñ JU . To see this, if ph, kq : f Ñ g is a morphism in S-Emb,
where g : Z Ñ W , we have to show the equality Kph, kq ¨ sf “ sg ¨ k. This
holds since we have

qg ¨Kph, kq ¨ sf “ GSh ¨ qf ¨ s “ GSh ¨Grf ¨ ηY “

“ Grg ¨GSk ¨ ηY “ Grg ¨ ηW ¨ k “ qg ¨ sg ¨ k

Rg ¨Kph, kq ¨ sf “ k ¨Rf ¨ s “ k “ Rg ¨ sg ¨ k.

To complete the proof, we show that the transformation Ψ with compo-
nents (10.9) is the unit of an adjunction U % J with counit Φ: JU “ Lñ 1C2.
The triangle identity ΦUpf,rf q ¨UΨf “ 1 holds, since it amounts to Rf ¨sf “ 1.
The other triangle identity, JΦf ¨ΨJf “ 1, requires a bit more of work. The
morphism of S-embeddings ΨJf has the form p1, σfq : Lf Ñ L2f , and is
defined by RLf ¨ σf “ 1 and

qLf ¨ σf “
`

Kf
qf
ÝÑ GSX

˘

.

The morphism JΨf equals p1, Kp1, Rfqq, so the triangular equality translates
into Kp1, Rfq ¨ σf “ 1. Both sides are equal to Rf upon composing with
Rf , so it remains to show that qf ¨Kp1, Rfq ¨ σf “ qf . This equality follows
easily from what we already know about σf .

qf ¨Kp1, Rfq ¨ σf “ qLf ¨ σf “ qf .

This completes the proof of the statement (2), and so, the proof of the
theorem.
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Theorem 10.10 (Beck). A functor U : T Ñ A is comonadic if and only if

(1) It has a right adjoint.
(2) U creates equalisers of parallel pairs of morphisms in T whose image

under U has an absolute equaliser in A.

Lemma 10.11. In a pullback diagram of functors, as displayed, U satisfies
condition (2) of Beck’s Theorem 10.10 if V does so.

T
Q
//

U
��

S

V
��

A
S // B

Remark 10.12. Even if U : S-Emb Ñ C2 is comonadic, the requirement that
the associated comonad has underlying copointed endofunctor pL,Φq is nec-
essary for Theorem 10.6 to hold. This can be seen at the same time as
exploring what the theorem means in the case that the Ord-categories C

and B are ordinary categories. In this case, a lari in B is an isomorphism,
so S-Emb is the full subcategory S-Emb Ă C2 of morphisms inverted by S.
It may very well be the case that S-Emb Ă C2 is a coreflective subcategory
while the adjunction S % G is not simple. For example, if C has finite limits
and intersection of all strong monomorphisms [5, Thm. 3.3].

11. Simple monads
Definition 11.1. Let C be an Ord-category that admits comma-objects
and pullbacks. A monad T “ pT, η, µq on C whose functor part T is locally
monotone (ie, Ord-enriched) is simple if the free T-algebra adjunction is
simple in the sense of Definition 10.5.

C
FT
//

oo
UT
K T-Alg

Explicitly, T is simple when, for each f : X Ñ Y in C, the morphism
FTpLTfq is a right adjoint of εT

FTX ¨ F
TqT

f , with these morphisms defined by
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the following diagram, where the square is a comma-object.
X

Lf
!!

ηX

!!

f

!!

Kf

Rf
��

ě

qf
// TX

Tf
��

Y ηY

// TY

(11.2)

We will be specially interested in simple monads that are lax idempotent.

Lemma 11.3. A lax idempotent Ord-monad T on C is simple if and only if
there is an adjunction T pLfq % µX ¨ Tqf , where µX is the multiplication of
T.

Proof : The simplicity of T is the existence of an inequality
FTLf ¨ εFTX ¨ F

Tqf ď 1. (11.4)
Applying the forgetful Ord-functor UT one obtains

TLf ¨ µX ¨ Tqf ď 1 (11.5)
and thus the adjunction of the statement. All this holds for a general Ord-
monad T. If T is lax idempotent, the forgetful Ord-functor UT : T-Alg Ñ C

is locally full and in particular it reflects inequalities between morphisms. It
follows that (11.5) implies (11.4).

Corollary 11.6. A lax idempotent Ord-monad T on C is simple if and only
if TLf ¨ qf ď ηKf .

Proof : By lax idempotency of T, the left extension of TLf ¨ qf : Kf Ñ TKf
along ηKf is µKf ¨ T pTLf ¨ qfq “ TLf ¨ µX ¨ Tqf ; see Definition 2.5 (7).
Therefore, (11.5) holds if, and only if, TLf ¨ qf ď ηKf .

Putting together Theorem 10.6 and Definition 9.1, we have:

Corollary 11.7. Simple lax idempotent monads on Ord-categories with
comma-objects are fibrantly generating.

This means that, if C has comma-objects, each simple lax idempotent
monad T induces a lofs pL,Rq with L-Coalg isomorphic to T-Emb over
C2.

Proposition 11.8. The monad P on Ord described in Example 2.7 is simple.



LAX ORTHOGONAL FACTORISATIONS IN ORDERED STRUCTURES 59

Proof : The proof uses Corollary 11.6, for which we shall need the description
of the comma-object Kf of (11.2) as
Kf “

 

pW, yq P P pXqˆY : f˚pW q Ď Óy
(

“
 

pW, yq P P pXqˆY : W Ď f ˚pÓyq
(

and of the morphism Lf : X Ñ Kf as Lfpxq “ pÓx, fpxqq.
We must show that

pLfq˚ ¨ qf ď ηKf .

Evaluating on pW, yq P Kf , we have
pLfq˚ ¨ qfpW, yq “ pLfq˚pW q Ď ηKfpW, yq “ ÓpW, yq

if and only if
W Ď pLfq˚

`

ÓpW, yq
˘

“
 

x P X : pÓx, fpxqq ď pW, yq
(

.

This last inequality always holds, since, for w P W , the inclusion Ów Ď W
always holds, and fpwq ď y, because f˚pW q Ď Óy.

For each morphism f : X Ñ Y there is a “comparison” morphism
κ : T pTf Ó ηY q ÝÑ T 2f Ó TηY

induced by the universal property of comma-objects. More explicitly, κ is a
morphism, as displayed in the diagram below, unique with the property of
making the triangles 1 and 2 commutative.

TX
TηX //

Tf

��

TLf ''

T 2X

T 2f

��

TKf

Tqf

1

11

TRf

��

2

κ
))

T 2f Ó TηY

pf

55

pY
tt

ě

TY
TηY

// TTY

Proposition 11.9. A lax idempotent Ord-monad T is simple provided that,
for every f and u : Kf Ñ TKf , u ď ηKf whenever κ ¨ u ď κ ¨ ηKf , where κ
is the comparison morphism TKf Ñ T 2f Ó TηY .

Proof : From
pf ¨ κ ¨ TLf ¨ qf “ TηX ¨ qf ď ηTX ¨ qf “ pf ¨ κ ¨ ηKf

pY ¨ κ ¨ TLf ¨ qf “ Tf ¨ qf ď ηY ¨Rf “ pY ¨ κ ¨ ηKf



60 M M CLEMENTINO AND I LÓPEZ FRANCO

and the definition of comma-object one has κ ¨ TLf ¨ qf ď κ ¨ ηKf , and the
conclusion follows from the hypothesis and Corollary 11.6.

For example, the above proposition applies in the cases when κ is a full
morphism.

12. Submonads of simple monads
The aim of the present section is to provide easy criteria that will allow

us to recognise simple submonads of simple lax idempotent monads. These
results will be later used in Corollary 13.3 of §13.

Lemma 12.1. Let T be an Ord-monad. If T is lax idempotent, then T-
embeddings are full if and only if the components of the unit X Ñ TX are
full.

Proof : By definition of lax idempotent monad, the unit components ηX : X Ñ

TX are T-embeddings, and, hence, they are full provided that T-embeddings
are full.

Conversely, suppose that f : X Ñ Y is a T-embedding. Then, ηY ¨ f “
Tf ¨ ηX is full, being a composition of the lari Tf and the full morphism
ηX . Therefore, f is full.

Proposition 12.2. Suppose that ϕ : S Ñ T is a monad morphism between
Ord-monads and that its components ϕX are T-embeddings. If T is lax
idempotent and the components of the unit ηX : X Ñ TX are full, then S is
lax idempotent, with full unit components eX : X Ñ SX.

Proof : That S is lax idempotent follows from the following calculations and
fullness of TϕX ¨ ϕSX “ ϕTX ¨ SϕX :

ϕTX ¨ SϕX ¨ SeX “ TηX ¨ϕX ď ηTX ¨ϕX “ ϕTX ¨ eTX ¨ϕX “ ϕTX ¨ SϕX ¨ eSX .

Moreover, with ηX “ ϕX ¨ eX full, also eX is full.

We say that a morphism f : X Ñ Y is a pullback-stable T-embedding if the
pullback of f along any morphism into Y is a T-embedding.

Theorem 12.3. Suppose that ϕ : S Ñ T is a monad morphism between
Ord-monads whose components are pullback-stable T-embeddings, and that
T-embeddings are full. If T is lax idempotent, then S is simple whenever T
is so.
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Proof : Let us denote the unit of S by e : 1 ñ S, and the Ord-functorial fac-
torisations obtained from S and T following the construction of the comma-
object (11.2), respectively, by

`

X
LSf
ÝÝÑ KSf

RSf
ÝÝÑ Y

˘

“
`

X
f
ÝÑ Y

˘

“
`

X
LT f
ÝÝÑ KTf

RT f
ÝÝÑ Y

˘

Consider the following diagram where KTf “ Tf Ó ηY , KSf “ Sf Ó eY , and
LTf “ ϕf ¨ LSf , and note that 1 is a pullback.

X
eX //

f

��

LSf
$$

SX
ϕX // TX

Tf

��

KSf
tf

44

ϕf

%%

RSf

��

1

KTf

qf

66

RT f
ww

ě

Y eY

// SY ϕY

// TY

By Corollary 11.6 to conclude that S is simple it is enough to show that
SLSf ¨ tf ď eKSf . And this inequality follows from the following calculations,
using the fullness of Tϕf ¨ ϕKSf .

Tϕf ¨ ϕKSf ¨ SLSf ¨ tf “ Tϕf ¨ TLSf ¨ ϕX ¨ tf “ Tϕf ¨ TLSf ¨ qf ¨ ϕf ď

ď ηKf ¨ ϕf “ Tϕf ¨ ϕKSf ¨ eKSf

Corollary 12.4. Suppose that ϕ : S Ñ T is a monad morphism between Ord-
monads whose components are T-embeddings, and where T is lax idempotent
and simple, with full unit components X Ñ TX. Then:

(1) S is lax idempotent and simple, with full unit components X Ñ SX;
(2) every S-embedding is a T-embedding;
(3) S-embeddings are full.

Proof : (1) follows from Proposition 12.2, while (3) follows directly from (2)
and our assumptions. To show (2), first note that the unit components
eX : X Ñ SX are T-embeddings since both ηX “ ϕX ¨ eX and ϕX are. Now
let f : X Ñ Y be an S-embedding. As a lari, Sf is a T-embedding, and so
is f because both eY and eY ¨ f “ Sf ¨ eX are T-embeddings.
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13. Filter monads
In this section we exhibit awfss on the Ord-category of t0 topological

spaces arising from simple lax idempotent Ord-monads. These factorisations
were constructed in [4].

As mentioned in Example 2.2 each t0 topological space X carries an order
given by

x ď y if and only if y P txu (13.1)
– this is the opposite of what is usually called the specialisation order. This
induces an order structure on each hom-set Top0pX, Y q by defining f ď g if
fpxq ď gpxq, for all x P X, making Top0 into an Ord-enriched category.

A comma-object f Ó g in Top0 can be described as the subspace of X ˆ Y
defined by the subset tpx, yq P X ˆ Y : fpxq ď gpyqu.

f Ó g
d1 //

d0
��

ď

Y

g
��

X
f
// Z

Denote by F : Top0 Ñ Top0 the filter monad. If X is a t0 space, FX is the
set of filters of open sets of X, with topology generated by the subsets U# “

tϕ P FX : U P ϕu, where U P OpXq. The (opposite of the) specialisation
order on FX results in the opposite of the inclusion of filters. In particular,
FX is a poset. If f : X Ñ Y is continuous, then Ff is defined by Ffpϕq “
tV P OpY q : f´1pV q P ϕu. The unit of the monad has components ηX : X Ñ

FX, where ηXpxq is the principal filter generated by x, that is ηXpxq “
tU P OpXq : x P Uu. The multiplication of the monad has components
µX : F 2X Ñ FX, given by µXpΘq “ tU P OpXq : U# P Θu.

Observe that ηX is a full morphism. It is in fact an embedding meaning
a topological embedding, in the usual sense: a continuous function that is
an homeomorphism onto its image, where the latter is equipped with the
subspace topology.

It was shown in [8] that the category of algebras for this monad is isomor-
phic to the category whose objects are continuous lattices [29] and morphisms
poset maps that preserve directed sups and arbitrary infs. Our choice of the
(opposite of the) specialisation order on spaces, which is the opposite of the
order used in [8], grants a few comments as a way of avoiding confusion. A
space X P Top0 has an F-algebra structure precisely when the opposite of
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the poset pX,ďq is a continuous lattice, where ď is the order (13.1). The
topology of the space X can be recovered as the Scott topology of the contin-
uous lattice pX,ďqop. A morphism of F-algebras f : X Ñ Y is a continuous
function that preserves arbitrary suprema, as a poset map pX,ďq Ñ pY,ďq
[8, Thm. 4.4].

The filter monad F was shown to be lax idempotent in [12], where it is also
proved that a continuous function f between t0 spaces is an embedding if
and only if Ff is a lari. In other words, F-embeddings are precisely the
topological embeddings.

Theorem 13.2. The Ord-monad F is simple.

Proof : We verify the hypothesis of Proposition 11.9. For any pair of contin-
uous maps f : X Ñ Z and g : Y Ñ Z, the comparison morphism

κ : F pf Ó gq ÝÑ Ff Ó Fg Ă FX ˆ FY

sends a filter ϕ on f Ó g to the pair of filters pψ0, ψ1q

ψ0 “ tU P OpXq : d´1
0 pUq P ϕu ψ1 “ tV P OpY q : d´1

1 pV q P ϕu

where d0 and d1 are the projections from f Ó g to X and Y , respectively.
Given px, yq P f Ó g, recall that its image under the unit is

ηfÓgpx, yq “ tW P Opf Ó gq : px, yq P W u
We have pFd0qηfÓgpx, yq “ ηXd0px, yq “ ηXpxq, and similarly,
pFd1qηfÓgpx, yq “ ηY pyq.

The hypothesis of Proposition 11.9 will be satisfied if we show that κ ¨ u ď
κ ¨ ηfÓg implies u ď ηfÓg; or, in terms of filters, if we show that, given ϕ P
F pf Ó gq, px, yq P f Ó g as above, the inequalities ψ0 ď ηXpxq and ψ1 ď ηY pyq
imply ϕ ď ηfÓgpx, yq. By definition of the (opposite) specialisation order, we
need to show the two inclusions

tU P OpXq : d´1
0 pUq P ϕu Ě tU P OpXq : x P Uu

tV P OpY q : d´1
1 pV q P ϕu Ě tV P OpY q : y P V u

imply ϕ Ě tW P Opf Ó gq : px, yq P W u. Given x P U P OpXq, y P V P OpY q,
then

pU ˆ V q X pf Ó gq “ d´1
0 pUq X d

´1
1 pV q P ϕ.

But any neighbourhood W of px, yq contains another of the form pU ˆ V q X
pf Ó gq, so W P ϕ, completing the proof.
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Since every principal filter is completely prime, and so in particular prime
and proper, and µXpΘq is completely prime (resp. prime, proper) whenever
Θ is so, the functors F1, Fω and FΩ that assign to each space X the space
of proper (resp. prime, completely prime) filters are the functor part of sub-
monads F1, Fω and FΩ of the filter monad, with the monad morphisms defined
pointwise by the corresponding embeddings. Hence, using Corollary 12.4, we
can immediately conclude:

Corollary 13.3. The Ord-monads of proper filters, of prime filters and of
completely prime filters are lax idempotent and simple.

Therefore these monads induce lofss pLα,Rαq, with α “ 0, 1, ω,Ω (denot-
ing F by F0), with associated weak factorisation systems pLα,Rαq, where L0
is the class of embeddings, L1 is the class of dense embeddings, Lω is the
class of flat embeddings, and LΩ is the class of completely flat embeddings
[11, 12, 4]. Moreover, Rα is the class of morphisms which are injective with
respect to Lα (see [4] for details).

14. Metric spaces
It is an insight of Bill Lawvere [23, 24] that metric spaces can be regarded

as enriched categories and that, from this point of view, completeness can be
interpreted in terms of “modules.” The necessary base of enrichment is the
category of extended real numbers R̄`.

The category R̄` has objects the real non-negative numbers plus an extra
object 8, and has one morphism αÑ β if and only if α ě β; 8 is an initial
object and 0 a terminal object. One can use the addition of real numbers
to define a symmetric monoidal structure on R̄`, with the convention that
adding 8 always produces 8. The unit object of this tensor product is 0.
Furthermore, R̄` is closed, with internal hom rα, βs equal to β ´ α if this
difference is non-negative, and equal to zero otherwise, with the convention
that rα,8s “ 8, r8,8s “ 0 and r8, αs “ 0.

A small R̄`-category can be described as a set A with a distance function
Ap´,´q : A ˆ A Ñ R̄` that satisfies Apa, aq “ 0 for all a P A and the
triangular inequality. In general, it may very well happen that Apa, bq “ 0
even if a ‰ b; the distance may not be symmetric, ie Apa, bq ‰ Apb, aq, and,
the distance between two points may be 8. We regard R̄`-categories as
generalised metric spaces and think of Apa, bq P R̄` as the “distance” from a
to b.
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For example, R̄` itself is a generalised metric space with distance from α
to β given by rα, βs.

Each generalised metric space A has an opposite Aop with the same points
and distance Aoppa, bq “ Apb, aq. We will concentrate on skeletal generalised
metric spaces, ie those spaces A for which Apa, bq “ 0 “ Apb, aq implies a “ b.
For example, R̄` is skeletal.
R̄`-enriched functors f : AÑ B are identified with functions AÑ B that

are non-expansive: Apa, bq ě Bpfpaq, fpbqq. It is easy to verify that there
exists a unique R̄`-natural transformation f ñ g : A Ñ B if and only if
0 “ Bpfpaq, gpaqq for all a P A. In this way we obtain an Ord-category
Metsk of skeletal generalised metric spaces, with objects the skeletal R̄`-
categories, morphisms the R̄`-functors and inequality f ď g between two of
them given by the existence of a R̄`-natural transformation f ñ g. Observe
that MetskpA,Bq is not only a preorder but a poset, because B is skeletal.

There is a notion of colimit suited to enriched categories, known as weighted
colimit (or indexed colimit in older texts); see [17, 19] for a standard refer-
ence. Each family of weights induces a lax idempotent Ord-monad on Metsk
whose algebras are the skeletal generalised metric spaces that admit colimits
with weights in the family (see [21, Theorems 6.1 and 6.3]). This monad
is in fact simple (§11), as shown in the more general context in [7, §12].
It follows from the theory developed herein that there is a lofs on Metsk
whose left morphisms are the embeddings with respect to that monad and
whose fibrant objects are the skeletal generalised metric spaces that admit all
Φ-colimits (see Proposition 9.2 and Corollary 11.7). The rest of the section
is occupied by the example of a particular class of colimits that admit an
explicit description.

The class of absolute colimits, ie the weights whose associated colimits are
preserved by any R̄`-functor whatsoever, generates a simple lax idempotent
monad Q on Metsk. Putting together [23] and [30] one can give a description
of Q in terms of Cauchy sequences.

Cauchy sequences in a skeletal generalised metric space A are defined in
the same way as for classical metric spaces. Two Cauchy sequences panq and
pbnq are equivalent if both Apan, bnq and Apbn, anq have limit 0. Denote by
QA the set of equivalence classes of Cauchy sequences in A with distance
QAprans, rbnsq “ limnApan, bnq. It is not hard to see that QA is a skeletal
generalised metric space.
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The assignment A ÞÑ QA is part of an Ord-monad Q on Metsk, with unit
A Ñ QA the map that sends a P A to the constant sequence on a, that we
denote by ca.

Convergence of a sequence pxnq to a point a in generalised metric space A
differs from ordinary convergence in metric spaces only in that we have to
require that both Apa, xnq and Apxn, aq converge to 0 in R̄`. The following
assertions are equivalent for a skeletal generalised metric space A: it is an
algebra for Q; the canonical isometryAÑ QA has a left adjoint; A is a retract
of a space of the form QB; every Cauchy sequence in A converges. Spaces
that satisfy these equivalent properties are known as Cauchy-complete.

If pLQ,RQq is the kz-reflective lofs on Metsk generated by Q, the LQ-
coalgebras, or left maps of the factorisation, are the Q-embeddings and can
be characterised as follows.

Proposition 14.1. A non-expansive map f : AÑ B between skeletal genen-
eralised spaces is a Q-embedding if and only if it is an isometry and for
each b P B the non-expansive function Bpf´, bq : Aop Ñ B can be written as
Bpf´, bq “ limnAp´, xnq for a Cauchy sequence pxnq in A.

Proof : First, if Qf has a retract r, then Qf is an isometry and thus f is
an isometry; for, Bpfpaq, fpa1qq “ QBpcfpaq, cfpa1qq “ QBpQfpcaq, Qfpc

1
aqq “

QApca, ca1q “ Apa, a1q.
If r is moreover a right adjoint of Qf , and, for a given b P B, rpcbq has an

associated Cauchy sequence pxnq in A, we must have

Bpfpaq, bq “ QB
`

cfpaq, cb
˘

“ QB
`

Qfpcaq, cb
˘

“ QA
`

ca, rpcbq
˘

“ lim
n
Apa, xnq

for all a P A.
Conversely, suppose that f is an isometry and Bpf´, bq “ limnAp´, xnq.

We must define an equivalence class of Cauchy sequences rrbns P QA for each
rbns P QB in a way such that QBprfpanqs, rbnsq “ QAprans, rrbnsq. Since any
Cauchy sequence is a limit of constant sequences (eg, bn “ limn cbn

), it suffices
to define r and to verify this equality for constant sequences; ie we have to
give rrcbs P QA such that Bpfpaq, bq “ QApca, rrcbsq. Since we know that
Bpf´, bq “ limnAp´, xnq, we may set rrcbs “ rxns and the equality holds.
In this way we prove that there is an adjunction Qf % r : QB Ñ QA. It
remains to prove that r ¨ Qf “ 1, but f is an isometry, which implies that
Qf is an isometry and therefore one-to-one, so the equality follows from the
adjunction triangle equation Qf ¨ r ¨Qf “ Qf .
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It follows from the general theory that, given a Q-embedding f : A Ñ

B and a non-expansive function h : A Ñ C into Cauchy-complete skeletal
generalised metric space C, there is an extension d.

A
h //

f ��

C

B
d

<<

Furthermore, Cauchy-complete skeletal generalised metric spaces are pre-
cisely those injective with respect to the Q-embeddings. In terms of se-
quences, the extension d is given by dpbq “ limn hpxnq, where pxnq is a Cauchy
sequence in A such that Bpf´, bq “ limnAp´, xnq.

Corollary 14.2. Let f : AÑ B be a non-expansive function between skeletal
generalised metric spaces, and assume that B is a metric space. Then, f is
a Q-embedding if and only if it is a dense isometry.

Proof : If f is a Q-embedding and b P B, there is a Cauchy sequence pxnq in
A such that limnAp´, xnq “ limnBpf´, bq. Given ε ą 0, there is a n0 such
that Apxn, xmq ă ε{2 if n,m ě n0. Thus, for m ě n0 we have

Bpfpxmq, bq “ lim
n
Bpfpxmq, fpxnqq “ lim

n
Apxm, xnq ď ε{2 ă ε.

It follows that pfpxmqq converges to b, and f is dense. Observe that we have
used that the distance of B is symmetric.

Conversely, if f is a dense isometry, any b P B is limn fpxnq for some se-
quence pxnq in A, which is Cauchy since f preserves distances and pfpxnqq
converges. Then Bpfpaq, bq “ limnApa, xnq for all a P A, and Proposi-
tion 14.1 applies.

The definition of QA given in terms of Cauchy sequences immediately tells
us that if A is a metric space then QA is a metric space too; ie, its distance
function is symmetric. We deduce:

Corollary 14.3. The lofs pLQ,RQq restricts to an ofs on the category of
metric spaces. Its left maps are the dense isometries.

Appendix A.Accessible AWFSs
In §9 we characterised those lofss “fibrantly generated” by a lax idempo-

tent monad. In this section we explore what more can be said in the case
when the base Ord-category is locally presentable and all the monads and
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comonads involved are accessible. We confine our discussion to this appendix,
as we will assume familiarity with the basic theory of accessible and locally
presentable categories, for which the standard references are [26] and [1].

We start with a result about ordinary (instead of enriched) accessible
awfss. These are awfs whose comonad and monad are accessible func-
tors; in fact, it suffices that only one of them should be accessible. See [3]
for details.

Proposition A.1. Let F be a left adjoint functor between a locally pre-
sentable category C and an accessible category A, and pG, Sq be an accessible
awfs on A. Given the following pullback of double categories

L //

��

G-Coalg

��

SqpCq
SqpF q

// SqpAq

there exists an accessible pL,Rq on C such that L-Coalg – L over SqpCq and
the vertical category of L is locally presentable.

Proof : If suffices to prove that the functor U : L Ñ C2 is comonadic (see [3,
Prop. 4]). By the dual version of Lemma 10.11, it suffices to show that
it has a left adjoint. Being the pullback of a functor that creates colimits
(indeed, comonadic) along a cocontinuous functor, U creates colimits too, so
L is cocomplete and U cocontinuous. On the other hand, L is accessible,
being the limit of a diagram of accessible categories and accessible functors
(see [26, Thm. 5.1.6]). It follows that L is locally presentable, and therefore
the cocontinuous functor U is a left adjoint.

Definition A.2. Ord-enriched categories or functors will be called accessible
or locally presentable if their underlying (ordinary) categories or functors are
so. An awfs pL,Rq on an accessible Ord-category is accessible if one of the
following equivalent conditions holds: the endofunctor L is accessible; the
endofunctor R is accessible; the category of L-coalgebras is accessible; the
category of R-algebras is accessible.

In what follows we maintain the terminology and notations of §9. Split
opfibrations in an Ord-category with comma-objects C are the algebras for
the monad M on C2 given by Mpfq “ pf Ó 1q (see Notation 9.11).

Lemma A.3. Split opfibrations in Ord-categories are full morphisms.
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Proof : Recall from §2 that a morphism p : X Ñ Y in an Ord-category A is
full if the monotone morphism ApZ, pq : ApZ,Xq Ñ ApZ, Y q between posets
is full in the usual sense. If p is a split opfibration, then ApZ, pq is a split
opfibration of posets. Then, it suffices to prove that split opfibrations of
posets are full. This is an easy verification: if p : X Ñ Y is a split opfibration
and ppxq ď ppyq, then there is an opcartesian lifting x ď ỹ with ppỹq “ ppyq,
and ỹ ď y. Thus x ď y.

In this section we will make explicit the distinction between Ord-enriched
categories, functors and monads and their ordinary counterparts by adding
to the latter the subscript p´q˝; this is the same notation employed in [17, 19]
and elsewhere.

There is a theory of locally finitely presentable enriched categories, de-
veloped in detail in [18]. Furthermore, much of this theory carries over to
locally presentable categories enriched in a locally finitely presentable sym-
metric monoidal closed category (in our case, Ord). There will be very few
facts about locally presentable Ord-categories that we shall need, so we point
the reader to [18, 7.4] for some guidance about the overall theory.

Definition A.4. Let κ be a regular cardinal. An object X of a cocomplete
Ord-category is κ-presentable if CpX,´q : C˝ Ñ Ord preserves κ-filtered
colimits. We say that C is a locally κ-presentable Ord-category if it is co-
complete (in the Ord-enriched sense) and has a small full sub-Ord-category
G Ď C consisting of κ-presentable objects and such that the associated
“nerve” functor CÑ rGop,Ords reflects isomorphisms. A locally presentable
Ord-category is one that is κ-presentable for some κ.

The first thing we need to mention is that if C is a locally presentable Ord-
category, then it is automatically complete and its underlying category C˝ is
locally presentable in the usual sense (with the same accessibility exponent).
An Ord-functor between locally presentable Ord-categories is said to be
accessible when its underlying functor is accessible in the usual sense; this is
because preservation of conical colimits is just preservation of those colimits
by the underlying functor. An Ord-monad is accessible if its underlying
functor is so. If T is an accessible Ord-monad on the locally presentable
Ord-category C, then T-Alg is locally presentable.

Remark A.5. In locally κ-presentable category C, finite limits commute with
κ-filtered colimits. In fact all that is necessary is the existence of a family of
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κ-presentable objects tGiu such that the functors CpGi,´q : C0 Ñ Ord are
jointly conservative (ie, a morphism f is an isomorphism if each CpGi, fq is
an isomorphism).

Definition A.6. An Ord-enriched awfs pL,Rq on a locally presentable Ord-
category C is accessible if its underlying ordinary awfs on the accessible
ordinary category C˝ is accessible.

Theorem A.7. Let C be a locally presentable Ord-category. Then, accessible
lax idempotent monads on C are fibrantly kz-generating. The lofs ΨpTq
generated by an accessible lax idempotent monad T is accessible.

Proof : We have to show that there is an Ord-enriched awfs pL,Rq for which
L-Coalg – T-Emb. We first show LaripT-Algq˝ is an accessible category. Even
though we know that the category T-Alg˝ is accessible by [26, Thm. 5.1.6], it
is not enough for our purposes, as our proof involves Ord-enriched (co)limits,
and we have to argue as follows.

The existence of limits in the Ord-category C ensures the same for T-Alg.
By hypothesis, C is locally κ-presentable and T preserves κ1-filtered colimits,
but we may assume κ “ κ1 by raising the accessibility exponent (see [26]).
Then T-Alg has κ-filtered colimits and the family tT pGq : G P Gu satisfies the
conditions of Remark A.5, so finite limits commute with κ-filtered colimits
in T-Alg (the latter can be shown to be cocomplete but we do not need it
here). The comonad E on T-Alg2 whose coalgebras are laris (Lemma 4.9)
was described in §4.d by means of finite limits (specifically, comma-objects)
and therefore preserves κ-filtered colimits. In particular, LaripT-Algq˝ is
accessible and comonadic over T-Alg2

˝ .
We next show that that there is an accessible ordinary awfs pL,Rq with an

isomorphism of categories L-Coalg – T-Emb˝ over C2
˝ by applying Proposi-

tion A.1, whose hypotheses we now verify. We have an accessible awfs pE,Mq
on T-Alg˝, by the previous paragraph. By definition, T-Emb is the pullback
of LaripT-Algq˝ Ñ T-Alg2

˝ along pFTq2˝ : C2
˝ Ñ T-Alg2

˝ . An application of
Proposition A.1 produces the required accessible awfs on C˝.

All that remains is to show that it is an Ord-enriched awfs, or equiv-
alently, that the comonad L (whose category of coalgebras is T-Emb˝) is
Ord-enriched. Or, equivalently still, that U : T-Emb Ñ C2 has an Ord-
enriched right adjoint. We have shown above that the ordinary functor U˝
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has a right adjoint, say W . All we have to show is that the monotone map

T-Embpf,Wgq U
ÝÑ C2

pUf, UWgq
C2p1,p1,Rgqq
ÝÝÝÝÝÝÝÑ C2

pUf, gq (A.8)
is not only an isomorphism of sets but also an isomorphism of posets. This
amounts to showing that it is a full morphism of posets. Before doing so, we
need the following observation.

The functor E˝-Coalg Ñ L-Coalg that expresses the fact that each lari is
canonically a T-embedding, induces a morphism of awfs pE˝,M˝q Ñ pL,Rq,
and thus a morphism of monads M˝ Ñ R; in this argument we have used
[3, Prop. 2] twice. It follows that each R-algebra is an M-algebra, ie a split
opfibration.

Returning to (A.8), the first arrow is full because an inequality between
morphims of T-embeddings is, by Definition 8.1, an inequality between them
as morphisms in C2. The second morphism in (A.8) is also full, because Rg is
a split opfibration (see the previous paragraph) and Lemma A.3. Therefore,
W extends to an Ord-enriched adjoint to U , completing the proof.

Theorem A.9. If C is a locally presentable Ord-category, the fully faithful
Ord-functor

Ψ: LIMndaccpCq ÝÑ LOFSaccpCq

exhibits the Ord-category of accessible lax idempotent monads as a reflective
full sub-Ord-category of the category of accessible lofss. Its replete image
consists of all cancellative sub-lari lofss that are accessible.

Proof : The Ord-functor Ψ from LIMndfibpCq to LOFS restricts to the sub-
categories of accessible lax idempotent monads and accessible lofss, by The-
orem A.7 yielding an Ord-functor as in the statement. We know from Propo-
sition 9.13 that ΨpTq is always sub-lari.

Clearly, the monad ΦpL,Rq “ R1 is accessible if pL,Rq is an accessible
awfs, so we obtain a left adjoint Φ to the fully faithful Ord-functor Ψ of
the statement. Its unit

$ : pL,Rq ÝÑ ΨΦpL,Rq “ ΨpR1q

is the morphism of awfss that corresponds to the Ord-functor that is the
inclusion of L-Coalg into R1-Emb, and the former is invertible if and only if
the latter is so. We may now apply Theorem 9.17 to deduce that pL,Rq is
cancellative precisely when the unit $ is invertible, which is another way of
saying that pL,Rq is in the replete image of Φ.
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Example A.10. There are accessible monads that are not simple, as exhib-
ited below. This means that, even though the monad induces an lofs, it
cannot be obtained through the methods of §10 and §11. One example that
involves only ordinary categories, which we may regard as locally discrete
Ord-categories, is [5, Example 4.2], where the monad D on the category of
abelian groups Ab is given by A ÞÑ A{2A (quotient by 2A “ t2a : a P Au).
If f : 0 Ñ DpZq “ Z{2Z is the unique possible morphism, then the comma-
object Kf is the pullback of f along the quotient map Z Ñ Z{2Z. In other
words, this pullback is the inclusion 2Z ãÑ Z. The morphism Lf : 0 Ñ 2Z is
the unique possible, and DpLfq is not an isomorphism (equivalently, a lari)
since Dp2Zq fl 0.

This example can be modified to show that, for example, the monads on
the Ord-categories of (commutative) monoids in Ord that sends a monoid
pV, e,bq to the coequalizer of the pair of morphisms V Ñ V that are x ÞÑ
px b xq and x ÞÑ e, is not simple. Nonetheless, this monad gives rise to a
lofs, by Theorem A.9.
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[25] I. López Franco. Cofibrantly generated lax orthogonal factorisation systems. In preparation.
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