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1. Introduction
A classical result known as the generalized Hurwitz Theorem asserts that,

over a field of characteristic different from 2, if A is a finite dimensional
composition algebra with identity, then its dimension is equal to 1, 2, 4 or 8.
Furthermore, A is isomorphic either to the base field, a separable quadratic
extension of the base field, a generalized quaternion algebra or a generalized
octonion algebra, [8].

A consequence of the cited theorem is that the values of n for which the
Euclidean spaces Rn can be equippped with a binary vector cross product,
satisfying the same requirements as the usual one in R3, are restricted to
1 (trivial case), 3 and 7. A complete account on the existence of r-fold
vector cross products for d-dimensional vector spaces, where they are used
to construct exceptional Lie superalgebras, is in [3].

The interest in octonions, seemingly forgotten for some time, resurged in
the last decades, not only for their intrinsic mathematical relevance but also
because of their applications, as well as those of the vector cross product in
R

7. This product was used for the implementation of the seven-dimensional
vector analysis method in [15], to estimate the amount of abnormalities in
algorithms that provide accurate feedback in rehabilitation.

Moreover, as it is mentioned in [9], the octonions play an important role in
Physics. Namely, they led up to the theory of fundamental particles known
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as eightfold way. More recently, in [11], it was shown that if the fundamental
particles, the fermions, are assumed to have seven time-spatial dimensions,
then the so called hierarchy problem, concerning the unknown reason for the
weak force to be stronger than the gravity force, could be solved.

In this work, we extend the results, devoted to the vector cross product
in R3 and real skew-symmetric matrices of order 4, in [16]. Concretely, we
study real skew-symmetric matrices of orders 7 and 8 defined through the
vector cross product in R7. These are denoted, for any a, b ∈ R7, by Sa and
Ma,b, respectively.

The latter ones, called hypercomplex matrices in [9], can be used to write
the coordinate matrix of the left multiplication by an octonion. The particu-
lar case b = a leads to Ma,a, an orthogonal design which, according to [14] and
references therein, can be used in the construction of space time block codes

for wireless transmissions. Furthermore, if b = a =
[

1 1 1 1 1 1 1
]T

then I8 +Ma,a is a Hadamard matrix of skew-symmetric type.
For completeness, in section 2 we recall some definitions and results re-

lated to the binary vector cross product in R7, inverses and skew-symmetric
matrices. Throughout the work, for simplicity, we omit the word binary.

In section 3 we approach the vector cross product in R7 from a matrix
point of view. For this purpose, we consider the matrices Sa and establish
some related properties.

As far as section 4, we devote it to the eigenvalues of Sa and Ma,b. We
obtain the characteristic polynomials of these matrices, using adequate Schur
complements in the latter case.

In section 5, we deduce either the inverse or the Moore-Penrose inverse
of Ma,b depending on its determinant. The Moore-Penrose inverse of Sa is
presented in section 3.

We dedicate section 6, the last one of this work, to the generation of rota-
tion matrices from the Cayley transforms and the exponentials of the skew-
symmetric matrices Sa and Ma,b.

2. Preliminaries
Throughout this work, Rm×n denotes the set of all m × n real matrices.

With n = 1, we identify Rm×1 with Rm. With m = n = 1, we identify R1×1

with R.
Consider the usual real vector space R8, with canonical basis {e0, . . . , e7},

equipped with the multiplication ∗ given by ei ∗ ei = −e0 for i ∈ {1, . . . , 7},
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being e0 the identity, and the below Fano plane, where the cyclic ordering of
each three elements lying on the same line is shown by the arrows.

e6

e3

e1

e4

e5

e7

e2

Figure 1. Fano plane for O.

Then O = (R8, ∗) is the real (non-split) octonion algebra. Every element
x ∈ O may be represented by

x = x0 + x, where x0 ∈ R and x =
7∑
i=1

xiei ∈ R7

are, respectively, the real part and the pure part of the octonion x.
The multiplication ∗ can be written in terms of the Euclidean inner pro-

duct and the vector cross product in R7, hereinafter denoted by 〈·, ·〉 and ×,
respectively. Concretely, as in [9], we have

x ∗ y = x0y0 − 〈x, y〉+ x0y + y0x+ x× y.

A formula for the double vector cross product in R7 is

x× (y × z) = 〈x, z〉y − 〈x, y〉z +
1

3
J(x, y, z),

[10]. Here J stands for the Jacobian, the alternate application defined by

J(x, y, z) = x× (y × z) + y × (z × x) + z × (x× y).

For (R3,×), a Lie algebra, the well known formula for the double vector cross
product in R3 arises since, for any x, y, z ∈ R3, J(x, y, z) = 0.

Let A ∈ Rm×n.
A matrix A− ∈ Rn×m is a generalized inverse of A if AA−A = A.
The Moore-Penrose inverse of A is the unique matrix A† ∈ Rn×m satisfying

AA†A = A, A†AA† = A†, (A†A)T = A†A and (AA†)T = AA†,

[1]. In particular, if u is a nonzero vector in Rm×1, then its Moore-Penrose
inverse is given by
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u† =
uT

||u||2
,

where, hereinafter, || · || denotes the Euclidean norm.
In the remaining part of this section, assume that m = n.
The matrix A is a rotation matrix if A is orthogonal (ATA = I) and

detA = 1.
From now on, assume also that A is a skew-symmetric matrix. Hence,

according to a classical result on skew-symmetric matrices, the eigenvalues
of A are purely imaginary or null.

If n is odd, then detA = 0. If n is even, then detA = (pf A)2, where pf A
denotes the Pfaffian of A. This is the homogeneous polynomial of degree n

2 ,
in the entries of A, defined by

pf(A) =
1

N !2N

∑
σ∈S2N

sgn(σ)
N∏
i=1

aσ(2i−1)σ(2i)

where n = 2N . For the numeric and symbolic evaluation of the pfaffian, see,
for instance, [6].

Due to the skew-symmetry of A, In+A is invertible. The Cayley transform
of A is the matrix given by C(A) = (In +A)−1(In−A). It is well known that
C(A) is a rotation matrix and, as In − A = 2In − (In + A),

C(A) = 2(In + A)−1 − In.
This is one of the Cayley formulas in [5], that allow to establish a one-to-one
correspondence between the skew-symmetric matrices and the orthogonal
matrices that do not have the eigenvalue −1.

As it is known, R = eA is the rotation matrix, called exponential of A,
defined by the absolute convergent power series

eA =
∞∑
k=0

Ak

k!
.

Conversely, given a rotation matrixR ∈ SO(n), there exists a skew-symmetric
matrix A such that R = eA, [5]. The combination of these two facts is equiva-
lent to saying that the map exp : so(n)→ SO(n), from the Lie algebra so(n)
of skew-symmetric n× n matrices to the Lie group SO(n), is surjective, [7].

3.Matrix properties of Sa
In the present section, following [9] and [10], we consider a matrix rep-

resentation of the Maltsev algebra (R7,×) in terms of particular cases of
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hypercomplex matrices. If a ∈ R7, then let Sa be the matrix in R7×7 defined
by

Sax = a× x
for any x ∈ R7. Hence, for a =

[
a1 a2 a3 a4 a5 a6 a7

]T
, Sa is the

skew-symmetric matrix

0 −a3 a2 −a5 a4 −a7 a6

a3 0 −a1 −a6 a7 a4 −a5

−a2 a1 0 a7 a6 −a5 −a4

a5 a6 −a7 0 −a1 −a2 a3

−a4 −a7 −a6 a1 0 a3 a2

a7 −a4 a5 a2 −a3 0 −a1

−a6 a5 a4 −a3 −a2 a1 0


.

We now establish some properties related to Sa.

Proposition 3.1. Let a, c ∈ R7 and α, γ ∈ R. Then:

(i) Sαa+γc = αSa + γSc;
(ii) Sac = −Sca;
(iii) Sa is singular;
(iv) S2

a = aaT − aTaI7;
(v) S3

a = −aTaSa;

(vi) S†a =

{
0 if a = 0

− 1
aTaSa if a 6= 0

;

(vii) SSab = 3
2(baT − abT ) − 1

2 [Sa, Sb], where [·, ·] denotes the matrix commu-
tator.

Proof : Properties (i) and (ii) are direct consequences of the bilinearity and
of the skew-symmetry of ×.

As far as (iii), on the one hand, if a = 0 then Sa = 0, being Sa singular.
On the other hand, if a 6= 0 then, from (ii), we have Saa = 0. If Sa was
invertible then a = 0, a contradiction.

Regarding (iv), for any x ∈ R7, we have

SaSax = a× (a×x) = 〈a, x〉a−〈a, a〉x = (aaT )x− (aTa)x = (aaT −aTaI7)x.

Concerning (v), note that aaTSa = −a(Saa)T = 0 by (ii). Hence, by (iv),
S3
a = S2

aSa = −aTaSa.
To obtain (vi), since the case a = 0 is trivial, assume that a 6= 0. By (v),
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Sa
(
− 1
aTaSa

)
Sa = − 1

aTaS
3
a = Sa.

Taking into account the skew-symmetry of Sa,(
Sa
−1
aTaSa

)T
= − 1

aTaS
T
a S

T
a = Sa

−1
aTaSa.

The remaining equalities of the Moore-Penrose inverse definition can be
proved in a similar way.

By (ii), for any x ∈ R7, we get

SSabx = −SxSab = −x× (a× b) = −〈x, b〉a+ 〈x, a〉b− 1
3J(x, a, b).

As J(x, a, b) = x× (a× b) + a× (b× x) + b× (x× a) = −Sa×bx+ [Sa, Sb]x,
then we obtain

SSabx = (baT − abT + 1
3SSab − 1

3 [Sa, Sb])x

and (vii) follows.

4. Eigenvalues of Sa and Ma,b

In this section and in the following ones, we consider real skew-symmetric
matrices of order 8 written as bordered matrices in the partitioned form

Ma,b =

[
Sa b
−bT 0

]
,

with b =
[
b1 b2 b3 b4 b5 b6 b7

]T
, a =

[
a1 a2 a3 a4 a5 a6 a7

]T ∈
R

7×1. These 8× 8 matrices constitute a generalization of the 4× 4 matrices
in [16].

Theorem 4.1. The determinant of Ma,b is

det(Ma,b) = (aTa)2(aT b)2.

Proof : Using the Mathematica implementation in [6], the Pfaffian of Ma,b is

pf(Ma,b) = −(aTa)(aT b)

and the stated result follows.

Before proceeding to the problem of determining the eigenvalues of Sa and
Ma,b, we recall a result related to block determinants.

Proposition 4.2. [13] Let E ∈ Rr×r, F ∈ Rr×s, G ∈ Rs×r and H ∈ Rs×s.

det

[
E F
G H

]
=

{
det(E) det(H −GE−1F ) when E−1 exists
det(H) det(E − FH−1G) when H−1 exists

,
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where H − GE−1F and E − FH−1G are the Schur complements of E and
H, respectively.

Theorem 4.3. The characteristic polynomial of Ma,b is

pMa,b
(λ) = (λ2 + aTa)2(λ4 + λ2(aTa+ bT b) + (aT b)2).

Proof : The characteristic polynomial of Ma,b is given by

pMa,b
(λ) = det(Ma,b − λI8) = det

[
Sa − λI7 b
−bT −λ

]
.

If λ = 0 then pMa,b
(0) = det(Ma,b) = (aTa)2(aT b)2. Assume that λ 6= 0.

Then Sa− λI7 is invertible. Since the adjugate and, using Mathematica, the
determinant of this matrix are, respectively,

(λ2 + aTa)2(λ(Sa + λI7) + aaT ) and −λ(λ2 + aTa)3,

then

(Sa − λI7)
−1 = − 1

λ2 + aTa

(
Sa + λI7 +

1

λ
aaT
)

.

By Proposition 4.2,

det(Ma,b − λI8) = det(Sa − λI7)(−λ+ bT (Sa − λI7)
−1b).

As bTaaT b = (aT b)2 and, by (ii) of Proposition 3.1, bTSab = 0, we arrive at
(λ2 + aTa)2(λ4 + λ2(aTa+ bT b) + (aT b)2).

Corollary 4.4. The eigenvalues of Sa are 0 and ±||a||i.

Proof : A consequence of the proof of Theorem 4.3 since the characteristic
polynomial of Sa is −λ(λ2 + aTa)3.

Corollary 4.5. The eigenvalues of Ma,b are the purely imaginary numbers

±||a|| i and ±
√

1
2(||a||2 + ||b||2 ± ||a− b||||a+ b||) i.

Proof : From Theorem 4.3, putting λ2 = x in pMa,b
(λ), we obtain

(x+ aTa)2(x2 + (aTa+ bT b)x+ (aT b)2) = 0.

Thus,

x = −aTa or x1,2 = −a
Ta+ bT b

2
±
√

(aTa+ bT b)2 − 4(aT b)2

2
,
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We have x1 + x2 = −(aTa + bT b) and x1x2 = (aT b)2. So, invoking Girard-
Newton-Viète laws, x1 ≤ 0 and x2 ≤ 0. Finally, a straightforward computa-
tion leads to the result since

x = −aTa or x1,2 = −a
Ta+ bT b

2
±
√

(a− b)T (a− b)(a+ b)T (a+ b)

2
.

Remark 4.6. Assume that a and b are orthogonal vectors. So, ||a||2+||b||2 =
||a+ b||2. By Corollary 4.5, the eigenvalues of Ma,b are ±||a|| i, 0 and ±||a+
b|| i. Invoking Gerschgorin’s Theorem in [13], we obtain

||a+ b|| ≤ max{ri : i ∈ {1, . . . , 8}},

where rt =
7∑
s=1
s6=t

|as|+ |bt| for t ∈ {1, . . . , 7}, r8 =
7∑

k=1

|bk|.

Taking a =
[

1 −1 1 −1 0 0 0
]T

and b =
[

1 1 1 1 1 1 1
]T

, we
see that this upper bound can be sharper than ||a|| + ||b||, the one given by
the triangle inequality. Concretely, we get max{3, 4} < 2 +

√
7.

5. Inverses of Ma,b

The Moore-Penrose inverse of Sa was characterized in section 3. Depending
on the determinant of Ma,b, either the inverse or the Moore-Penrose inverse
of Ma,b may be determined. For this purpose, we recall the following result
where *, R(A) and N(A) stand for the conjugate transpose of a matrix, the
column space of A and the nullspace of A, respectively.

Theorem 5.1. [12] Let T denote the complex bordered matrix[
A c
d∗ α

]
where A is m × m, c and d are columns, and α is a scalar. Let k = A†c,
h∗ = d∗A†, u = (I −AA†)c, v = (I −A†A)d, w1 = 1 + k∗k, w2 = 1 +h∗h and
β = α− d∗A†c. Then

(i) rank(T ) = rank(A) + 2 if and only if c /∈ R(A) and d /∈ R(A∗),
(ii) rank(T ) = rank(A) if and only if c ∈ R(A), d ∈ R(A∗) and β = 0.

The Moore-Penrose inverse of T is as follows.

(i) When rank(T ) = rank(A) + 2,

T † =

[
A† − ku† − v∗†h∗ − βv∗†u† v∗†

u† 0

]
.
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(ii) When rank(T ) = rank(A),

T † =

[
A† − w−1

1 kk∗A† − w−1
2 A†hh∗ w−1

2 A†h
w−1

1 k∗A† 0

]
+
k∗A†h

w1w2

[
k
−1

] [
h∗ −1

]
.

Proposition 5.2. Consider the matrix

Ma,b =

[
Sa b
−bT 0

]
.

Following the notation in Theorem 5.1, let:

k = S†ab, h = −(S†a)
T b, w1 = 1 + kTk, w2 = 1 + hTh,

α = 0, β = bTS†ab, u = (I7 − SaS†a)b, v = −(I7 − S†aSa)b.
Then β = 0 and the subsequent equalities hold:

k = h =

{
0 if a = 0

1
aTaS

T
a b if a 6= 0

,

w1 = w2 =

{
1 if a = 0

1 + (aTa)(bT b)−(aT b)2

(aTa)2 if a 6= 0
, u = −v =

{
b if a = 0
aT b
aTaa if a 6= 0

.

Proof : The equalities hold trivially when a = 0. So, assume that a 6= 0. By
the properties of Sa in Proposition 3.1, we have

k = S†ab = − 1
aTaSab = 1

aTaS
T
a b,

h = (S†a)
T (−b) = − 1

aTaS
T
a (−b) = k,

w1 = 1 + kTk
= 1− 1

(aTa)2b
TS2

ab

= 1 + bT (aTa)b−(aT b)T (aT b)
(aTa)2

= 1 + (aTa)(bT b)−(aT b)2

(aTa)2 ,

w2 = 1 + hTh = 1 + kTk = w1,

β = bTS†ab = − 1
aTab

TSab = 1
aTab

TSba = − 1
aTa(Sbb)

Ta = 0,

u = (I7 − SaS†a)b = (I7 + 1
aTaS

2
a)b = (I7 + 1

aTa(aa
T − aTaI7))b = aT b

aTaa,

v = −(I7 − S†aSa)b = −(I7 − SaS†a)b = −u.

Theorem 5.3. Consider the matrix Ma,b =

[
Sa b
−bT 0

]
.
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(1) If a = 0 and b 6= 0 then

M †
a,b = − 1

bT b

[
07 b
−bT 0

]
.

(2) If a = b = 0 then M †
a,b = 08.

(3) If a 6= 0 and aT b 6= 0 then

M−1
a,b = − 1

aT b

 aT b
3aTaSa + 2

3Sb −
1

3aTa [Sa, Sa×b] a

−aT 0

 .
(4) If a 6= 0 and aT b = 0 then

M †
a,b = − 1

aTa+ bT b

 (1 + bT b
3aTa)Sa −

1
3aTa [Sb, Sa×b] b

−bT 0


and a generalized inverse of Ma,b is

M−
a,b =

[
S†a a
−aT 0

]
.

Proof : Suppose now that a = 0 and b 6= 0. Then rank(Sa) = 0 and
rank(Ma,b) = 2. So, the case 1. is a consequence of (i) in Theorem 5.1
and Proposition 5.2.

The case 2. is straightforward.
As far as 3., assume that a 6= 0 and aT b 6= 0. Hence, by Proposition

5.2 and Theorem 4.1, u 6= 0 and det(Ma,b) 6= 0. Consequently, b does not
belong to the column space of Sa and, so, −b does not belong to the column
space of STa . By Theorem 5.1, we have rank(Ma,b) = rank(Sa) + 2. Thus,
rank(Sa) = 6. Also by the cited theorem,

M−1
a,b =

[
S†a − ku† − (vT )†hT (vT )†

u† 0

]
.

Invoking Proposition 5.2, we conclude that:

u† =
uT

uTu
= 1

aT ba
T ,

ku† = 1
aTaS

T
a b

1
aT ba

T = − 1
(aTa)(aT b)Saba

T ,

(vT )† = (−uT )† = −(u†)T = − 1
aT ba,
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(vT )†hT = − 1
aT ba

1
aTab

TSa = − 1
(aTa)(aT b)ab

TSa.

From these equalities, we arrive at

M−1
a,b = − 1

aT b

[
−aT bS†a − 1

aTa(Saba
T + abTSa) a

−aT 0

]
.

Applying the properties of Sa in Proposition 3.1, we obtain

Saba
T + abTSa = Saba

T − abTSTa
= 2

3SSaSab + 1
3 [Sa, SSab]

= 2
3SaaT b−aTab + 1

3 [Sa, Sa×b]

= 2
3(aT bSa − aTaSb) + 1

3 [Sa, Sa×b].

Therefore, (aT b)S†a+ 1
aTa(Saba

T +abTSa) = − aT b
3aTaSa−

2
3Sb+

1
3aTa [Sa, Sa×b] and

3. follows.
In order to prove 4., suppose now that a 6= 0 and aT b = 0. Thus,

det(Ma,b) = 0. By Proposition 5.2, we have
k = h = − 1

aTaSab,

w1 = w2 = 1 + bT b
aTa ,

u = v = 0.
Moreover, b ∈ N(aT ) and N(aT ) = R(Sa) since R(Sa) = (N(STa ))⊥ = 〈a〉⊥.
Consequently, rank(Ma,b) = rank(Sa) and, by Theorem 5.1, we get

M †
a,b =

[
S†a − w−1

1 kkTS†a − w−1
2 S†ahh

T w−1
2 S†ah

w−1
1 kTS†a 0

]
+
kTS†ah

w1w2

[
k
−1

] [
hT −1

]
.

Taking into account the properties in Proposition 3.1 and in Proposition 5.2,
we have

kTS†ah

w1w2
= hTS†

ah
w2

1
= − bTSaS

†
aSab

(aTa+bT b)2 = − bTSab
(aTa+bT b)2 = 0,

kTS†a = hTS†a = − 1
(aTa)2b

TS2
a = −1

(aTa)2b
T (aaT − aTaI7) = 1

aTab
T ,

S†ah = S†ak = (kT (S†a)
T )T = −(kTS†a)

T = − 1
aTab,

−kkTS†a − S†ahhT = 1
aTa(−kb

T + bkT ) = 1
(aTa)2 (Sabb

T + bbTSa).

We also obtain
Sabb

T + bbTSa = Sabb
T − bbTSTa

= 2
3SSbSab + 1

3 [Sb, SSab]
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= 2
3S−SbSba + 1

3 [Sb, Sa×b]

= 2
3SbT ba−bbTa + 1

3 [Sb, Sa×b]

= 2
3b
T bSa + 1

3 [Sb, Sa×b],

S†a + 1
(aTa)2w1

(Sabb
T + bbTSa) = −1

aTa+bT b

(
aTa+bT b
aTa Sa − 1

aTa(Sabb
T + bbTSa)

)
= −1

aTa+bT b

(
Sa + bT b

aTaSa −
2bT b
3aTaSa −

1
3aTa [Sb, Sa×b]

)
= − 1

aTa+bT b

(
(1 + bT b

3aTa)Sa −
1

3aTa [Sb, Sa×b]
)

,

w−1
2 S†ah = − 1

w1aTa
b = − 1

aTa+bT bb,

w−1
1 kTS†a = 1

w1aTa
bT = 1

aTa+bT bb
T .

Hence, the first part of 4. follows. To finish the proof, observe that[
Sa b
−bT 0

] [
S†a a
−aT 0

] [
Sa b
−bT 0

]
=

[
SaS

†
aSa − SaabT SaS

†
ab

−bTS†aSa −bTS†ab

]
= Ma,b

since

SaS
†
aSa − SaabT = Sa,

SaS
†
ab = −1

aTaS
2
ab = −1

aTa(aa
T b− aTab) = b,

−bTS†aSa = 1
aTab

TS2
a = 1

aTa(b
TaaT − bTaTa) = −bT ,

−bTS†ab = 1
aTab

TSab = − 1
aTab

TSba = 1
aTa(Sbb)

Ta = 0.

6. Rotation matrices from Sa and Ma,b

Possible representations for rotation operators are the ones in the form of
rotation matrices. In particular, the Cayley transform and the exponential
of a skew-symmetric matrix may be considered.

Let us begin with the Cayley transform of Sa and with the Cayley transform
of Ma,b, writing the latter in terms of the former one. With this purpose in
mind, we first recall the following result.

Proposition 6.1. [13] Let E ∈ Rr×r, F ∈ Rr×s, G ∈ Rs×r and H ∈ Rs×s.
If E and J = H −GE−1F , the Schur complement of E, are invertible, then[

E F
G H

]−1

=

[
E−1 + E−1FJ−1GE−1 −E−1FJ−1

−J−1GE−1 J−1

]
.
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Theorem 6.2. The Cayley transform of Ma,b is the rotation matrix

C(Ma,b) =


C(Sa)−

2

s
S−1bbTS−1 −2

s
S−1b

2

s
bTS−1 2

s
− 1

 ,
where S stands for Sa + I7, s is the Schur complement of S in I8 +Ma,b and
C(Sa) is the Cayley transform of Sa given by the rotation matrix

C(Sa) =
1

1 + aTa
(−2Sa + 2aaT + (1− aTa)I7).

Proof : Let us denote Sa + I7 by S. Invoking the proof of Theorem 4.3, we
have

S−1 = − 1

1 + aTa
(Sa − I7 − aaT ).

As C(Sa) = 2S−1 − I7, then the stated formula for C(Sa) follows. Further-
more, the Schur complement 1 + bTS−1b of S in I8 +Ma,b is equal to

s =
1 + aTa+ bT b+ (aT b)2

1 + aTa
.

and, so, is invertible. By Proposition 6.1, we obtain

(I8 +Ma,b)
−1 =

1

s

[
sS−1 − S−1bbTS−1 −S−1b

bTS−1 1

]
.

Taking into account that 2
s(sS

−1 − S−1bbTS−1) − I7 = C(Sa) − 2
sS
−1bbTS−1

and that C(Ma,b) = 2(I8 + Ma,b)
−1 − I8, we arrive at the stated matrix for

C(Ma,b).

An explicit expression for computing the exponential of an order 3 skew-
symmetric matrix B is given by the Rodrigues’ formula, a consequence of
B3 = −α2B for a certain scalar α. Although this does not hold in general
for an order n ≥ 4, hypercomplex matrices are an exception, [9]. More-
over, a generalization of the Rodrigues’ formula that allows to compute the
exponential of a skew-symmetric matrix of order n ≥ 3 was proposed in [4].

Theorem 6.3. [9] Let a = a0 + a ∈ O with ||a|| = α 6= 0. Then

etSa = I cos(αt) + Sa
sin(αt)

α
+

1− cos(αt)

α2
aaT .
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Theorem 6.4. [4] Given any non-null skew-symmetric n×n matrix B, where
n ≥ 3, if {iθ1,−iθ1, . . . , iθp,−iθp} is the set of distinct eigenvalues of B,
where θj > 0 and each iθj (and −iθj) has multiplicity kj ≥ 1, there are p
unique skew-symmetric matrices B1, . . . , Bp such that

B = θ1B1 + . . .+ θpBp, BiBj = BjBi = 0n(i 6= j), B3
i = −Bi

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n. Furthermore,

eB = eθ1B1+...θpBp = In +

p∑
i=1

(sin θiBi + (1− cos θi)B
2
i ).

Theorem 6.5. Let a, b ∈ R7 such that a 6= 07×1. The exponentials of Sa and
of Ma,b are, respectively, the rotation matrices

eSa = I7 +
sin ||a||
||a||

Sa +
1− cos ||a||
||a||2

S2
a

and

eMa,b = I8 +

p∑
k=1

(sin θkMa,b,k + (1− cos θk)M
2
a,b,k),

where p =

{
2 if aT b = 0
3 if aT b 6= 0

,

{θj : 1 ≤ j ≤ p} =

{
{||a||, ||a+ b||} if p = 2{
||a||,

√
1
2(||a||2 + ||b||2 ± ||a− b||||a+ b||)

}
if p = 3

and the p unique skew-symmetric matrices Ma,b,k can be obtained through the
solution of a 28p× 28p linear equations system deduced from

Ma,b =

p∑
k=1

θkMa,b,k, M3
a,b = −

p∑
k=1

θ3
kMa,b,k, . . . ,

M 2p−1
a,b = (−1)p−1

p∑
k=1

θ2p−1
k Ma,b,k.

Proof : Let a, b ∈ R7 such that a 6= 07×1.
From (iv) in Proposition 3.1, we have aaT = S2

a + ||a||2I7. Hence, by
Theorem 6.3, we obtain the stated Rodrigues-like formula for the exponential
of Sa.

By Theorem 6.4, we obtain the stated formulas for the exponential of
Ma,b and its odd powers, where {±θji : θj > 0, 1 ≤ j ≤ p} is the set of
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distinct non-null eigenvalues of Ma,b. From Theorem 4.1, we have det(Ma,b) =
(aTa)2(aT b)2. If aT b = 0 then Ma,b has, at least, an eigenvalue equal to 0 and
b 6= −a. By Corollary 4.5, we obtain θ1 = ||a|| and θ2 = ||a + b||. Hence,
p = 2. If aT b 6= 0 then all eigenvalues of Ma,b are different from 0. Thus,
p = 3. Concretely, once again by Corollary 4.5, we get

θ1 = ||a||, θ2 =

√
1

2
(||a||2 + ||b||2 − ||a− b||||a+ b||),

θ3 =

√
1

2
(||a||2 + ||b||2 + ||a− b||||a+ b||).

The generalization in [4] is theoretically interesting, however, according to
[2], its computational cost seems prohibitive unless n is small. See [2] for de-
tails on effective methods for performing the computation of the exponential
of a skew-symmetric matrix.
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