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1. Introduction

A classical result known as the generalized Hurwitz Theorem asserts that,
over a field of characteristic different from 2, if A is a finite dimensional
composition algebra with identity, then its dimension is equal to 1,2,4 or 8.
Furthermore, A is isomorphic either to the base field, a separable quadratic
extension of the base field, a generalized quaternion algebra or a generalized
octonion algebra, [§].

A consequence of the cited theorem is that the values of n for which the
Fuclidean spaces R"™ can be equippped with a binary vector cross product,
satisfying the same requirements as the usual one in R3, are restricted to
1 (trivial case), 3 and 7. A complete account on the existence of r-fold
vector cross products for d-dimensional vector spaces, where they are used
to construct exceptional Lie superalgebras, is in [3].

The interest in octonions, seemingly forgotten for some time, resurged in
the last decades, not only for their intrinsic mathematical relevance but also
because of their applications, as well as those of the vector cross product in
R’. This product was used for the implementation of the seven-dimensional
vector analysis method in [15], to estimate the amount of abnormalities in
algorithms that provide accurate feedback in rehabilitation.

Moreover, as it is mentioned in [9], the octonions play an important role in
Physics. Namely, they led up to the theory of fundamental particles known
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as eightfold way. More recently, in [11], it was shown that if the fundamental
particles, the fermions, are assumed to have seven time-spatial dimensions,
then the so called hierarchy problem, concerning the unknown reason for the
weak force to be stronger than the gravity force, could be solved.

In this work, we extend the results, devoted to the vector cross product
in R? and real skew-symmetric matrices of order 4, in [16]. Concretely, we
study real skew-symmetric matrices of orders 7 and 8 defined through the
vector cross product in R”. These are denoted, for any a,b € R”, by S, and
M., respectively.

The latter ones, called hypercomplex matrices in [9], can be used to write
the coordinate matrix of the left multiplication by an octonion. The particu-
lar case b = a leads to M, ,, an orthogonal design which, according to [14] and
references therein, can be used in the construction of space time block codes

for wireless transmissions. Furthermore, if b=a =11 11 1 1 1 }T
then Iy + M, , is a Hadamard matrix of skew-symmetric type.

For completeness, in section [2| we recall some definitions and results re-
lated to the binary vector cross product in R, inverses and skew-symmetric
matrices. Throughout the work, for simplicity, we omit the word binary.

In section [3| we approach the vector cross product in R’ from a matrix
point of view. For this purpose, we consider the matrices S, and establish
some related properties.

As far as section [d, we devote it to the eigenvalues of S, and M,,. We
obtain the characteristic polynomials of these matrices, using adequate Schur
complements in the latter case.

In section [5, we deduce either the inverse or the Moore-Penrose inverse
of M,; depending on its determinant. The Moore-Penrose inverse of S, is
presented in section [3

We dedicate section [0], the last one of this work, to the generation of rota-
tion matrices from the Cayley transforms and the exponentials of the skew-
symmetric matrices S, and M.

2. Preliminaries

Throughout this work, R™*" denotes the set of all m X n real matrices.
With n = 1, we identify R™*! with R™. With m = n = 1, we identify R!
with R.

Consider the usual real vector space R®, with canonical basis {ey, ..., er},
equipped with the multiplication * given by e; x e; = —eg for i € {1,...,7},
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being e the identity, and the below Fano plane, where the cyclic ordering of
each three elements lying on the same line is shown by the arrows.

FIGURE 1. Fano plane for O.

Then O = (R®, %) is the real (non-split) octonion algebra. Every element

z € O may be represented by
7

T = 1x9+ x, where g € R and = = inei e R’
i=1
are, respectively, the real part and the pure part of the octonion z.
The multiplication * can be written in terms of the Euclidean inner pro-
duct and the vector cross product in R, hereinafter denoted by (-, ) and X,
respectively. Concretely, as in [9], we have

T xy = xoYo — (T,Y) + ToY + YT + T X y.

A formula for the double vector cross product in R is

v x (yx 2) = (o, 2)y — (@9)7 + 2T (w0,2),
[10]. Here J stands for the Jacobian, the alternate application defined by
J(ry,z2) = x (yxz)+yx(zxx)+2zx(xxy).
For (R3, x), a Lie algebra, the well known formula for the double vector cross
product in R? arises since, for any z,y,2 € R?, J(z,y,2) = 0.
Let A e R™".

A matrix A~ € R"™"™ is a generalized inverse of A if AA~A = A.
The Moore-Penrose inverse of A is the unique matrix AT € R™*™ satisfying

AATA = A ATAAT = AT (ATA)T = ATA and (AAT)T = AAT,
[1]. In particular, if u is a nonzero vector in R™*!, then its Moore-Penrose
inverse is given by
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T
Lu
u' = ————
[Juf[*
where, hereinafter, || - || denotes the Euclidean norm.

In the remaining part of this section, assume that m = n.

The matrix A is a rotation matriz if A is orthogonal (ATA = I) and
det A = 1.

From now on, assume also that A is a skew-symmetric matrix. Hence,
according to a classical result on skew-symmetric matrices, the eigenvalues
of A are purely imaginary or null.

If n is odd, then det A = 0. If n is even, then det A = (pf A)?, where pf A
denotes the Pfaffian of A. This is the homogeneous polynomial of degree 7,
in the entries of A, defined by

N
1
pf(A) = NN E SQH(U)H%@@—UO—@@')
T 0€Syy i=1

where n = 2N. For the numeric and symbolic evaluation of the pfaffian, see,
for instance, [6].

Due to the skew-symmetry of A, I,,+ A is invertible. The Cayley transform
of A is the matrix given by C(A) = (I,, + A)~*(I, — A). Tt is well known that
C(A) is a rotation matrix and, as I,, — A = 2I,, — (I, + A),

C(A)=2(I,+ A~ -1,
This is one of the Cayley formulas in [5], that allow to establish a one-to-one
correspondence between the skew-symmetric matrices and the orthogonal
matrices that do not have the eigenvalue —1.

As it is known, R = e’ is the rotation matrix, called exzponential of A,
defined by the absolute convergent power series

et = —.
k!

k=0
Conversely, given a rotation matrix R € SO(n), there exists a skew-symmetric
matrix A such that R = e, [5]. The combination of these two facts is equiva-
lent to saying that the map exp : so(n) — SO(n), from the Lie algebra so(n)
of skew-symmetric n x n matrices to the Lie group SO(n), is surjective, [7].

3. Matrix properties of S,

In the present section, following [9] and [10], we consider a matrix rep-
resentation of the Maltsev algebra (R7, x) in terms of particular cases of
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hypercomplex matrices. If a € R, then let S, be the matrix in R™" defined
by
S, =aXx

T .
for any z € R7. Hence, for a = [al as a3 a4 as Qg a7} , S, is the
skew-symmetric matrix

i 0 —as a2 —as a, —ary ag ]
as 0 —a; —0ag ay aqs —as
—ay  a 0 ay ag —as —ay
as ag —ary 0 —a; —a9 as
—ay —ay —ag G 0 ag3 a9
ay —ay as as —das 0 —a
—ag A a4 —az —as  ap 0

We now establish some properties related to S,,.

Proposition 3.1. Let a,c € R" and a,v € R. Then:

(1) Sagtye = @Sq + ¥Se;
(i) Sec = —S.a;
(iii) S, zs Smgular
(iv) S? = aa® — alaly;
(v) S2 = —a’aS,;
0 if a=0
(vi) § { LS, if a0’
(vii) Ss,p = 3(ba” — ab”) — 3[S,, Sp], where [-,-] denotes the matriz commu-
tator.

Proof: Properties ({i) and are direct consequences of the bilinearity and
of the skew-symmetry of x.

As far as , on the one hand, if a = 0 then S, = 0, being .S, singular.
On the other hand, if a # 0 then, from , we have S,a = 0. If S, was
invertible then a = 0, a contradiction.

Regarding , for any € R, we have
(aTa)xr = (aa®

SaSsr =ax (axzx) = {a,x)a—{a,a)r = (aaT):r — —alal;)z.

Concerning ( . note that aa’S, = —a(S,a)’ = 0 by ( . Hence, by .
S3 =825, = —alas,.
To obtain (i), since the case a = 0 is trivial, assume that a # 0. By (),
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Se (—a%—aSa) Sy = —ﬁSZ’ = Sq-
Taking into account the skew-symmetry of S,

(SuztS,)" = =878 = 5,5LS,.

a

The remaining equalities of the Moore-Penrose inverse definition can be
proved in a similar way.

By , for any z € R”, we get
Sspr = —Sp8.b = —z x (a X b) = —(z,b)a + (z,a)b — 3.J(z,a,b).

As J(z,a,b) =z x (axb)+ax (bxx)+bx(xxa)=—Supx+ [Ss, S|z,
then we obtain

Ss.px = (ba” — ab” + £Ss,6 — 5[4, Sb])x
and follows. [
4. Eigenvalues of S, and M,

In this section and in the following ones, we consider real skew-symmetric
matrices of order 8 written as bordered matrices in the partitioned form

S. b

Ma,b: [_bT 0]7

with b = [bl by b3 by by bg b7]T, a = [al as a3 a4 a5 Aag CL7}T €

R™!. These 8 x 8 matrices constitute a generalization of the 4 x 4 matrices

in [16].

Theorem 4.1. The determinant of M,y s
det(M, ) = (a’a)?*(a®bh)?.

Proof: Using the Mathematica implementation in [6], the Pfaffian of M, is
pf(M,p) = —(a’a)(a™b)

and the stated result follows. |

Before proceeding to the problem of determining the eigenvalues of S, and
M, 1, we recall a result related to block determinants.

Proposition 4.2. [I3] Let E € R™", F € R™*, G € R**" and H € R***.
E F] [ det(E)det(H — GE™'F) when E~! exists

det [ G H| { det(H)det(E — FH'G) when H ! exists ’
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where H — GE7'F and E — FH'G are the Schur complements of E and
H, respectively.

Theorem 4.3. The characteristic polynomial of M,y is

pu,,(N) = (A 4+ a"a)’ (A + N2 (a"a + b"D) + (a'b)?).
Proof: The characteristic polynomial of M, is given by
Se—M7; b
A

If A\ = 0 then pay,,(0) = det(Map) = (a’a)?(a’b)?. Assume that X # 0.
Then S, — A7 is invertible. Since the adjugate and, using Mathematica, the
determinant of this matrix are, respectively,

(A2 +ala)> (NS, + A7) + aa’) and —A(\? + ala)?,

Pty (\) = det(Myy — Alg) = det [

then
_ 1 1
(Sq — N7)7t = T aTa (Sa + M7 + XaaT)
By Proposition [4.2],

det(M,, — Mg) = det(Sy — M) (= + b7 (S, — AI;)~1b).

As blaa’b = (a’h)? and, by of Proposition , b1'S,b = 0, we arrive at
(A2 +aTa)> (At + X2(aTa + bTb) + (aTh)?). u

Corollary 4.4. The eigenvalues of S, are 0 and %||alli.

Proof: A consequence of the proof of Theorem since the characteristic
polynomial of S, is —A(\? + aTa)?. ]

Corollary 4.5. The eigenvalues of M, are the purely imaginary numbers

*+llal 7 and i\/%(\l@\l“r 10[1* £ [la = 0ll[|a +b]]) 7.

Proof: From Theorem [4.3| putting A = 2 in pyy,,(A), we obtain
(z +a’a)*(z* + (a’a + bTb)x + (a’b)?) = 0.

Thus,

Ty + bTh Ta L bTH)2 — 4(aTh)2
x:—aTaorng:—a a—2|— :I:\/(a o 2> (a ),




8 P. D. BEITES, A. P. NICOLAS AND JOSE VITORIA

We have z1 + 22 = —(a’a + bTb) and 2129 = (a’b)?. So, invoking Girard-
Newton-Viete laws, 1 < 0 and x9 < 0. Finally, a straightforward computa-
tion leads to the result since

. a’a+bTb N V(a—=b)T(a—b)(a+b)T(a+b)

= —a a0r ri19= — . |
’ 2 2

Remark 4.6. Assume that a and b are orthogonal vectors. So, ||a||?+||b||* =
la+b||*. By Corollary[§.5, the eigenvalues of My, are £||al| i,0 and £||a+
b|| i. Invoking Gerschgorin’s Theorem in [13], we obtain

l|la + b|| <max{r;: i€ {l,...,8}},

7

7
where r; = Z las| + |b] fort € {1,...,7}, rs = Z bk -

s=1 k=1
s#t
Takinga:[l—ll—lOOO}Tcmdb:[ll11111}T,we

see that this upper bound can be sharper than ||al| + ||b||, the one given by
the triangle inequality. Concretely, we get max{3,4} < 2+ /7.

5. Inverses of M,

The Moore-Penrose inverse of S, was characterized in section [3} Depending
on the determinant of M,, either the inverse or the Moore-Penrose inverse
of M, may be determined. For this purpose, we recall the following result
where *| R(A) and N(A) stand for the conjugate transpose of a matrix, the
column space of A and the nullspace of A, respectively.

Theorem 5.1. [12] Let T' denote the complex bordered matrix

|7 2
d* «
where A is m x m, ¢ and d are columns, and o is a scalar. Let k = Ale,
W =d*AT, u= (I —AANc, v = (I — ATA)d, wy = 1+ k*k, wy = 1 +h*h and
B=a—d*Alc. Then

(1) rank(T) = rank(A) + 2 if and only if ¢ ¢ R(A) and d ¢ R(A*),

(i) rank(T) = rank(A) if and only if c € R(A),d € R(A*) and 5 = 0.
The Moore-Penrose inverse of T is as follows.

(i) When rank(T) = rank(A) + 2,

T Al — kut — o*Th* — go*Tut o

n 0
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(ii) When rank(T) = rank(A),

AT — wikk* AT — wy LAt R w;lATh] L kAT [ k

T *
i T ; MG

wrw?

Proposition 5.2. Consider the matriz

Se b
Ma,b: |:_bT 0]
Following the notation in Theorem let:
k=Sib, h=—(SHTb, w =1+k"k, wy =1+ h'h,

a=0, B =bTShb, u=(I; —S,SHb, v=—(I; —SIS,)b.
Then B =0 and the subsequent equalities hold:

0 ifa=0
’f—h—{a;—asg“b ifa 0"
1 ita=0 b ifa=0
Wy = wy = 1+(aTa)((bij()l);(aTb)2 ifat0’ 77 %a if a0

Proof: The equalities hold trivially when a = 0. So, assume that a # 0. By
the properties of S, in Proposition [3.1], we have

k= S8ib = ——-5,b = 5Tp,

h=(S))T(~b) = —k=ST(~b) = k,

w1 = 1+ ]{ZTk
— ]_ - ﬁstﬁb

— 14+ b' (a a)lE;T(ZPb) (a'b)

1 4 T,

Wy = 1—|—hTh:1+l{?Tk':’w1,
B=bTSib=—-LbTS,b = bTSpa = —(Syb)Ta =0,

w= (I — SuSHb = (I + ---82)b = (I + -+ (aa” — aTaly))b = %la,

V= —(]7 — SlSa)b = —(]7 — SaSj;)b = —U. |
. . S, b

Theorem 5.3. Consider the matriz M, = T o |
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(1) Ifa=0 and b # 0 then

1 07 b
T 7

(2) Ifa=b=0 then Mg’b = Os.
(3) If a # 0 and a®b # 0 then

1 %Sﬂ—i_%sb_ﬁ[smsaxb] a
M} =——
a7b CLTb
—aT 0
(4) If a # 0 and a’b = 0 then
; 1 (1+ o) Sa = garlSh, Saxa] b
Mab — T T
ata+ b'b T 0

and a generalized inverse of Mgy is
I a
- [ % 1]
Proof: Suppose now that a = 0 and b # 0. Then rank(S,) = 0 and
rank(M,3) = 2. So, the case [I is a consequence of (i) in Theorem
and Proposition [5.2]

The case [2 is straightforward.

As far as ., assume that @ # 0 and a’b # 0. Hence, by Proposition
and Theorem [4.1 w # 0 and det(M,;) # 0. Consequently, b does not
belong to the column space of S, and, so, —b does not belong to the column
space of SI'. By Theorem , we have rank(M,,) = rank(S,) + 2. Thus,
rank(S,) = 6. Also by the cited theorem,

St — kul — (v1)TRT (7)1

-1
Moy = ul 0
Invoking Proposition [5.2, we conclude that:
T
=L LT
Ty et

]{T’UJ]L = %STbﬁCLT = —msabaT,

(@7 = (~u")! = ~ (@ = ~7ho,
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TN T _ T T
(W)Wl = ——a—-b"S, = ab" S,.

From these equalities, we arrive at

Mol 1 —a’bS] — ——(Sba” + ab”'S,) a
ab = ~aTh ST 0

aTa (a™'h)

Applying the properties of S, in Proposition [3.1, we obtain
S.bal + ab’'S, = S,ba® — ab? ST

= 259,5.6 + 5[4, Ss,0]

= 2Suatb—aTab + 554> Saxi)

= 2(a’bS, — a’'aSy) + 5[Sas Saxs)-
Therefore, (a’b)S] + ——(S,ba” +ab” S,) =
Bl follows.

In order to prove ., suppose now that a # 0 and a’b = 0. Thus,
det(M,;) = 0. By Proposition [5.2], we have

G Sy — 28+ 5= [Su, Saxs) and

" 3dTa

k=h=— a%aSb
w1:w2:1+;’;2,
u=uv=0.

Moreover, b € N(a’) and N(a®) = R(S,) since R(S,) = (N(SI))*+ = (a)*.

Consequently, rank(M, ) = rank(S,) and, by Theorem [5.1], we get

St — w kkTS! — wy tSTRRT wylSih +kTSgh k (T 1]
w; kT ST 0 —1 '

Taking into account the properties in Proposition [3.1] and in Proposition [5.2],

we have

T
A4éb __

W1wW2

kTSIh _ TSI BTS.SISh VSh
wWiws w?  — (aTa+bTh)?2 T (aTa+bTh)2 — U
KTSH =TS = aTa bTS2 = a;clz) v’ (aa” — aTal;) = a%abT

Sth = Sik = (kT(SHT ) = —(kTSHT = ——1-b,
—kkTS] — SIhA" = 1o (kb + bk") = ro (Sabb" + BbTS,).

We also obtain
S,bbT + vb’'S, = S,bbT — bbTST

= 25,5, + 396, 5,0]
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- %S—Sbsba _I_ %[Sba Saxb]
= 2SbTba boTa T l[Sba axb]
2bTbS + 3 [Sb, Saxb]

SI+ Grmr (Sabb” + b07S,) = o] ( Tatbhg 1 (g pbT + bbTSa))

a aTa+bTh ala ala
bTb 26Tp 1
= Tt (5 + 0650 = 547a % — 3575, Saxb})

=~z (14 580) 5 — a5, S,

N A N S

Wo S h = wlaTab o aTa—|—bTbb’
TSt = T _ 1 T
k S wlaTab - aTa—l—bTbb :

Hence, the first part of |4 follows. To finish the proof, observe that

Se b1[ SI all S. b 5451Ss — Saab”  SuSI 1 _ -
T 0| | —aT 0| | b 0|7 |  eTsiS,  —bTSiy b

since
S.S1S, — S,ab’ = S,
SaSib = =52 = L (aaTb —alab) = b,

_bTSJ;Sa — ﬁbTS’g = m(bTa/aT _ bTaTCL) — _bT,
—0"Sb = 20" S = — b Spa = 1o (Sph) T a = 0. -

6. Rotation matrices from S, and M,

Possible representations for rotation operators are the ones in the form of
rotation matrices. In particular, the Cayley transform and the exponential
of a skew-symmetric matrix may be considered.

Let us begin with the Cayley transform of S, and with the Cayley transform
of Mgy, writing the latter in terms of the former one. With this purpose in
mind, we first recall the following result.

Proposition 6.1. [13] Let E € R™", FF € R"™*, G € R**" and H € R***.
IfE and J = H— GE'F, the Schur complement of E, are invertible, then
E F1' [E'4+E'FJ'GE' —E'FJ!

G H a —JlGE! J1
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Theorem 6.2. The Cayley transform of M,y is the rotation matriz

2 2
C(S,) — =S~ TSt —=8-1p
S S
C(Ma’b) - )
2prg 21
S S

where S stands for S, + 17-, s is the Schur complement ofLS; in Ig + Mgy and
C(S,) is the Cayley transform of S, given by the rotation matriz

1
C(S,) =
(Sa) 1+ ala
Proof: Let us denote S, + I7 by S. Invoking the proof of Theorem [4.3], we
have

(=28, + 2aa’ + (1 —a’a)I;).

1
1+4d%a
As C(S,) = 2571 — I, then the stated formula for C(S,) follows. Further-
more, the Schur complement 1+ 575710 of S in Is + M, is equal to

1+a'a+b"b+ (a'b)?
B 1+a’a '
and, so, is invertible. By Proposition [6.1], we obtain

_ 1[sSt—8sppls—t —g-1p
(Is + Myp) "t = 3 BT g1 1

Taking into account that 2(sS—t — S~'ob"S™) — I; = C(S,) — 25~ 1bb" S
and that C(M,;) = 2(Is + M,;)" ' — Is, we arrive at the stated matrix for
C(M(I?b). |

An explicit expression for computing the exponential of an order 3 skew-
symmetric matrix B is given by the Rodrigues’ formula, a consequence of
B3 = —a?B for a certain scalar . Although this does not hold in general
for an order n > 4, hypercomplex matrices are an exception, [9]. More-
over, a generalization of the Rodrigues’ formula that allows to compute the
exponential of a skew-symmetric matrix of order n > 3 was proposed in [4].

Theorem 6.3. [9] Let a = ap +a € O with ||a|| = a # 0. Then

S = (S, — I; — aa®).

S

in(at 1 — t
oS — I cos(at) + Sasm(oz ) N COQS(a )aaT.
e! e
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Theorem 6.4. [4] Given any non-null skew-symmetric nxn matriz B, where
n > 3, if {6y, —ib1,...,i0,, —ib,} is the set of distinct eigenvalues of B,
where 6; > 0 and each i6; (and —if;) has multiplicity k; > 1, there are p
unique skew-symmetric matrices By, ..., B, such that
B=0,B+...+0,B,, B;Bj=B;B;=0,(i#3j), B =-B;

for all 1,5 with 1 <1i,5 <p, and 2p < n. Furthermore,

p
eB _ 691B1+...9po =1, + Z(Sjn @ZBZ + (1 — COS (92)312)
i=1
Theorem 6.5. Let a,b € R7 such that a # O7y1. The exponentials of S, and
of M, are, respectively, the rotation matrices

o5 — 1, 4 Snllallg 1= cosllall g,
||al] ||al]
and »
eMav = Jg 4 Z(Sin O Maps + (1 — cos0p) M7, 1),
k=1
o2 ifalb=0
WETEP =03 ifaTb£0

1<y d el if p=2
: < _p — .
s {Ilall. \/31lall2 + 16112 % lla — blllla + bll)} if p =3

and the p unique skew-symmetric matrices M,y ;. can be obtained through the
solution of a 28p x 28p linear equations system deduced from

p p
M@:Eﬁmm@ M&z—EﬁM@mm,
k=1 k=1

p
Mffé_l = (=1 Z 0.7 Moy
k=1

Proof: Let a,b € R such that a # 07x1.

From in Proposition [3.1, we have aa” = S% + ||a]|*I;. Hence, by
Theorem [6.3], we obtain the stated Rodrigues-like formula for the exponential
of S,.

By Theorem [6.4, we obtain the stated formulas for the exponential of
M, and its odd powers, where {£6;i : 6; > 0,1 < j < p} is the set of
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distinct non-null eigenvalues of M, ;. From Theorem , we have det(M, ;) =

(aTa)?(ab)?. If a’b = 0 then M, has, at least, an eigenvalue equal to 0 and

b # —a. By Corollary 4.5 we obtain #; = ||a|| and 6, = ||a + b||. Hence,
p = 2. If a’h # 0 then all eigenvalues of M, are different from 0. Thus,
p = 3. Concretely, once again by Corollary [4.5 we get

1
0p = llall, 62 = \/§(Ha|\2+ 10[1* = lla = bl|[|a + b]]),

1
03 = \/i(l\al\” 0[] +[la = 0f[|]a +b]]). =

The generalization in [4] is theoretically interesting, however, according to
[2], its computational cost seems prohibitive unless n is small. See [2] for de-
tails on effective methods for performing the computation of the exponential
of a skew-symmetric matrix.
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