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Abstract: We study the gradient flow of the potential energy on the infinite-
dimensional Riemannian manifold of spatial curves parametrized by the arc length,
which models overdamped motion of a falling inextensible string. We prove existence
of generalized solutions to the corresponding nonlinear evolutionary PDE and their
exponential decay to the equilibrium. We also observe that the system admits
solutions backwards in time, which leads to non-uniqueness of trajectories.
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1. Introduction
Consider a regular arc of unit length in Rd with one end fixed at zero.

By natural parametrization, it can be identified with a map η : [0, 1] → Rd

subject to the constraints

η(1) = 0, |∂sη(s)| = 1 for each s ∈ [0, 1].

The space of all arcs can thus be at least formally viewed as an infinite-
dimensional submanifold

A = {η ∈ H2(0, 1;Rd) : η(1) = 0, |∂sη(s)| = 1 for all s ∈ [0, 1]}

of the Hilbert space H2(0, 1;Rd). The (weak) Riemannian metric on
H2(0, 1;Rd) given by the L2 inner product restricts to each tangent space
TηA, η ∈ A, i.e.

〈·, ·〉TηA = 〈·, ·〉L2(0,1;Rd) ,
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and thus A becomes a Riemannian submanifold. Here the tangent space
TηA is the vector space consisting of all vector fields v ∈ H2(0, 1;Rd) which
satisfy the compatibility conditions

v(1) = 0, ∂sη(s) · ∂sv(s) = 0 for all s ∈ [0, 1].

Note that we endow A with the L2 inner product and not with the Hilbertian
inner product on H2; for this reason it is called a weak Riemannian metric.
We refer to [11] for a rigorous treatment of the geometric properties of this
manifold of arcs. Various geometries on spaces of curves are discussed in the
review papers [9, 3]. The geodesics on A are the solutions to the PDE system{

∂ttη(t, s) = ∂s(ς(t, s)∂sη(t, s)),

|∂sη(t, s)| = 1
(1)

subject to the boundary conditions

η(t, 1) = 0, ς(t, 0) = 0. (2)

The auxiliary unknown scalar function ς can be viewed as the Lagrange
multiplier coming from the pointwise constraint |∂sη| = 1. These equations
have been known in mechanics since very old times (and thus much before any
geodesic interpretation). They are the equations of motion of inextensible
strings and can be used to describe the dynamics of whips, chains, flagella
etc.

In the presence of a constant gravity g ∈ Rd, the motion equations for the
inextensible string become{

∂ttη(t, s) = ∂s(ς(t, s)∂sη(t, s)) + g,

|∂sη(t, s)| = 1.
(3)

Galileo [12] thought that the shape of a stationary chain with two fixed ends,
which is a time-independent solution to (3), was a parabola, but Johann
Bernoulli proved that it was a catenary. System (3), (2) can be deemed as a
manifestation of the physical principle of least action [7] for the Lagrangian
action ∫ t1

t0

1

2
‖∂sη(t)‖2

L2 − E(η(t)) dt, η(t) ∈ A,

where

E(η) :=

∫ 1

0

(−g) · η
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is the potential energy of the string. We refer to [13, Section 2.6] for the
details and for a discussion of links between the inextensible string (3), the
geodesic interpretation of motion of an ideal incompressible fluid (associ-
ated with the names of Arnold and Brenier), and the optimal transport the-
ory. In particular, Euler’s equations for ideal incompressible fluid, together
with the whip equations (1), are examples of geodesic equations on infinite-
dimensional manifolds of volume preserving immersions endowed with the
L2 metric [4]. Apart from that, (3) can be recast [13] into a discontinuous
system of conservation laws as well as into so-called “total variation wave
equation”.

Not much is known (see [10, 13] and the references therein) about exis-
tence and regularity of the exponential map on A, which is equivalent to the
question of well-posedness of the inextensible string equations (1) (or, more
generally, (3)) with the boundary conditions (2) and the initial conditions

η(0, ·) = η0 ∈ A, ∂tη(0, ·) = v0 ∈ Tη0A. (4)

The applicability of standard geometric tools is impeded by low regularity of
the Levi-Civita connection on A, but PDE methods appeared to be slightly
more helpful. Smooth solutions to (1), (2), (4) exist locally in time [10].
Global solvability of (3), (2), (4) has only been shown in the sense of gener-
alized Young measures [13].

In this paper, we study the related system{
∂tη(t, s) = ∂s(σ(t, s)∂sη(t, s)) + g

|∂sη(t, s)| = 1
for (t, s) ∈ (0,∞)× (0, 1) (5)

with the initial/boundary conditions

η(t, 1) = 0, σ(t, 0) = 0, η(0, s) = η0(s). (6)

Here η : [0,∞)× [0, 1]→ Rd is the position vector, σ : [0,∞)× [0, 1]→ R is
an unknown scalar multiplier (we opt to denote it with σ instead of ς), and
g ∈ Rd is the given gravity vector (we assume that |g| = 1 for definiteness).
This system can be (formally) derived by considering the gradient flow on A
driven by the potential energy E(η)

∂tη = −∇AE(η), (7)

see Section 2. This is a model for motion of a falling inextensible string (e.g.,
whip or flagellum) which is overdamped by a heavily dense environment. We
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also point out that its study may shed more light on the geometry of the
space of arcs since (5) might have many common features with its higher-
order counterpart (3); e.g., non-uniqueness of generalized solutions for both
systems seems to be of similar nature, cf. Remark 6.5.

In this paper we consider generalized solutions for the system (5)-(6) (cf.
Definition 4.1). Roughly speaking, a generalized solution pair (η, σ) solves
the equation ∂tη = ∂s(σ∂sη) + g almost everywhere and satisfies a relaxed
constraint. Furthermore, any generalized solution which is C2-regular solves
the original system (5)-(6) (cf. Remark 4.2). Our first result concerns the
global existence of generalized solutions. More precisely, we prove

Theorem 1. For any Lipschitz initial datum η0 with |∂sη0| = 1 and η0(1) =
0, there exists a solution η : [0,∞)× [0, 1]→ Rd, which solves (5)-(6) in the
sense of Definition 4.1. In addition, its Lagrange multiplier satisfies σ ≥ 0
almost everywhere.

The generalized solutions may not be unique. For example, it is easy to
check that η−∞(s) = (s − 1)g is a smooth stationary solution to (5) with
σ−∞(s) = −s ≤ 0, hence it is a generalized solution. However applying the
above theorem with the initial datum η0 = η−∞ we obtain another generalized
solution with σ ≥ 0. The branching of trajectories is actually ubiquitous, and
we refer to Section 6 for a more involved discussion on the non-uniqueness
issue.

In the second part of the paper we study the long time asymptotics of
a generalized solution. We show that any generalized solution with σ ≥
0 converges to the downwards vertical stationary solution with a universal
exponential convergence rate.

Theorem 2. Let η be a generalized solution, whose Lagrange multiplier σ is
nonnegative almost everywhere. Let η∞ = (1− s)g be the downwards vertical
stationary solution. Then there exists a universal constant c0 > 0 such that

‖η(t, ·)− η∞(·)‖2
L2(0,1;Rd) ≤ (4c0)

−1 (E(η(0, ·))− E(η∞)) e−c0t, t ∈ [0,∞).

Let us briefly comment on the difficulties and main ideas used in the
proofs. Firstly, the evolutionary system (5) is nonlinear due to the constraint
|∂sη| = 1, and it is parabolic merely provided σ > 0. The Lagrange multiplier
σ(t, ·) is formally determined by a nonlinear ODE involving |∂ssη(t, ·)|2 with
Dirichlet-Neumann boundary condition (cf. Section 2). Secondly, by explor-
ing the geodesic convexity of the energy functional it is possible to show
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that the condition σ ≥ 0 is preserved along the trajectories of our gradient
flow, making the problem formally parabolic. However, the parabolicity is
degenerate at the boundary (recall the boundary condition σ(t, 0) = 0) and
possibly also in the interior. Thirdly, there are some intrinsic obstructions
to regularity of solutions (cf. Section 2).

Although the induced geodesic distance on A is not degenerate [11], liter-
ally nothing is known about the corresponding metric space. In particular,
we do not expect it to be a complete metric space since the Riemannian met-
ric is weak, cf. [3], and such issues are non-trivial even for strong metrics [5].
Moreover, arbitrarily small pieces of geodesics might be non-minimizing [11],
so it is plausible that A is not a geodesic space (in the sense that any two
points can be joined by a constant-speed minimizing geodesic). These pecu-
liarities make the general theory of metric gradient flows [2] hardly applicable
to wellposedness of our problem.

Our idea is to construct a suitable family of L2-gradient flows on the am-
bient flat Hilbert space, which relax the constraint and at the same time
approximate the original gradient flow on the manifold A. We show that the
solutions to the approximation problems satisfy uniform energy and point-
wise estimates (cf. Section 3). Furthermore, we are able to recover the
constraint |∂sη| = 1 in a weak sense in the limit, and obtain a generalized
solution to the original system. We point out that the Bakry-Emery strategy
[14, 2] is not applicable (cf. Section 2) for the proof of exponential decay of
the relative energy E(η(t))−E(η∞), but we manage to prove the inequality
between the relative energy and its dissipation in a different way.

The remainder of the paper is organized as follows: In Section 2 we ex-
plore the gradient flow structure of our problem, which provides a heuristic
intuition for the rest of the argument. Having the gradient flow structure in
mind, we consider in Section 3 a family of approximation problems, which
are quasilinear and parabolic. We show that solutions to the approximation
problems satisfy uniform energy estimates (cf. Proposition 3.1) and L∞-
estimates (cf. Proposition 3.3). Moreover, we derive compactness results
and in addition show that in the limit the constraint is satisfied in a weak
sense (cf. Proposition 3.4). In Section 4 we define the generalized solution
to the original problem (cf. Definition 4.1) and prove that those limit so-
lutions coming from the approximation problems are generalized solutions,
which gives the main existence result (cf. Theorem 3). In Section 5 we show
that any generalized solution converges exponentially fast to the downwards
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vertical stationary solution (cf. Theorem 4). Finally, in Section 6 we discuss
backward solutions and the non-uniqueness issue.

2. The gradient flow structure
We start this section by showing that the gradient flow (7) is at least

formally equivalent to (5), (6). Observe first that

−∇L2E(η) = g,

and the orthogonal projection of g onto the tangent space TηA is given by

g + ∂s(σ∂sη)

where

∂ssσ − |∂ssη|2σ = 0 for s ∈ (0, 1), (8)

and

σ(0) = 0,

cf. [11, Proposition 3.2]. Hence, any trajectory η(t) of the gradient flow
emanating from η0 satisfies (5), (6). For the converse implication, it suffices
to show that (5) formally yields (8). Indeed, differentiating the constraint
|∂sη|2 = 1 we find that

∂sη · ∂ssη = 0, ∂sη · ∂tsη = 0.

Taking the scalar product of the first equation of (5) with ∂sη, we get

∂tη · ∂sη = ∂s(σ∂sη) · ∂sη + g · ∂sη = ∂sσ + g · ∂sη. (9)

Differentiation in s implies

(∂tη − g) · ∂ssη = ∂ssσ.

Remembering that ∂tη − g = ∂s(σ∂sη), we deduce (8).
By (6) and (9), σ satisfies the Dirichlet-Neumann condition at the two ends

σ(t, 0) = 0, ∂sσ(t, 1) = cosα, (10)

where α = α(η(t)) is the angle between the vertical direction g and the
tangent line to the arc at the fixed end:

cosα = −g · ∂sη(t, 1).

By the maximum principle, for each fixed t, we find from (8) that the function
σ(t, s) is either convex, increasing and non-negative (provided α is acute)



THE GRADIENT FLOW OF THE POTENTIAL ENERGY 7

or concave, decreasing and non-positive (provided α is obtuse). Moreover,
σ(t, s) = 0 for all s provided α is right. Consequently,

|∂sσ(t, s)| ≤ |∂sσ(t, 1)| = | cosα| ≤ 1,

and thus
|σ(t, s)| ≤ |s cosα| ≤ s.

We now compute the dissipation of the potential energy E(t) := E(η(t, ·))
along the trajectories of our gradient flow, employing integration by parts:

D(t) := −E ′(t) =

∫ 1

0

g · ∂tη =

∫ 1

0

g · (g + ∂s(σ∂sη))

= 1 + σ(t, 1)g · ∂sη(t, 1) = 1− σ(t, 1) cosα(η(t)). (11)

The energy dissipation vanishes merely at the two equilibria of our problem,
namely, at the downwards vertical state (η∞, σ∞) = ((1 − s)g, s) (where
α = 0 and the potential energy attains its minimum) and at the upward
whip (η−∞, σ−∞) = ((s − 1)g,−s) (where α = π and the potential energy
attains its maximum). Define the relative potential energy by

Ẽ(t) := E(t)− E(η∞) ≥ 0.

Now we formally calculate the Hessian of the potential energy on A by the
well-known formula

〈HessAE(η0) · v0, v0〉Tη0A =
d2

dt2

∣∣∣
t=0
E(η(t)),

where η(t) is the geodesic curve on A emanating from η0 with the initial
velocity field v0, that is, a solution to (1), (2), (4). We thus compute

〈HessAE(η0) · v0, v0〉Tη0A = −
∫ 1

0

g · ∂ttη(0, s) ds

= −
∫ 1

0

g · ∂s(ς(0, s)∂sη(0, s)) = −ς(0, 1)g · ∂sη0(1) = ς(0, 1) cosα(η0). (12)

But ς(s) = ς(0, s) formally satisfies

∂ssς − |∂ssη0|2ς + |∂sv0|2 = 0, ς(0) = 0, ∂sς(1) = 0, (13)

which in particular yields ς ≥ 0, see [10, 13]. Thus the potential energy
E : A → R is geodesically convex at a point η0 if α(η0) ≤ π

2 (and concave if
α(η0) ≥ π

2 ). We however claim that it is possible to construct some sequences
ηε0 ∈ A, vε0 ∈ Tηε0A, with α(ηε0) = α0 being a constant angle strictly between 0
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and π, and with ‖vε0‖L2 bounded away from 0, so that for the corresponding
solutions to (13) one has ςε(1) → 0. Indeed, assume for definiteness that
d = 3 and g = (0, 0,−1). Then we can consider

ηε0(s) = (ε sinα0(cos
s

ε
− cos

1

ε
), ε sinα0(sin

s

ε
− sin

1

ε
), (s− 1) cosα0)

and

vε0(s) = (ε cosα0(cos
s

ε
− cos

1

ε
), ε cosα0(sin

s

ε
− sin

1

ε
), (1− s) sinα0).

Then (13) becomes

∂ssς
ε − sin2 α0

ε2
ςε + 1 = 0, ςε(0) = 0, ∂sς

ε(1) = 0,

and an explicit computation shows that ςε(1) ≤ ε2

sin2 α0
→ 0. This counterex-

ample prevents the inequality

〈HessAE(η0) · v0, v0〉Tη0A ≥ λ 〈v0, v0〉Tη0A , v0 ∈ Tη0A

to hold with a uniform λ > 0 even if we restrict ourselves to small angles
α(η0) > 0. Moreover, E is not uniformly λ-convex for any positive λ even in
a neighbourhood of η∞ defined by the inequality Ẽ(η) < ε for any ε.

A natural way to prove the exponential decay of the relative energy for
a gradient flow [14, 15] is to establish a functional inequality between the
relative energy Ẽ and its dissipation D. We are not able to apply the Bakry-
Emery strategy [14] based on the identity

D′(t) = −2 〈HessAE(η(t)) · ∇AE(η(t)),∇AE(η(t))〉Tη(t)A (14)

due to the lack of λ-convexity. However, in Section 5 we will still manage
to uniformly control the relative energy by its dissipation. The proof will
heavily rely on Hardy type inequalities.

Setting D̃(t) = D(t) for α(η(t)) ≤ π
2 and D̃(t) = 2−D(t) for α(η(t)) ≥ π

2 ,

we derive from (11), (12) and (14) that D̃ decays along the trajectories of
our gradient flow. If σ(0, s) ≥ 0 for all s, or, equivalently, if α(η0) ≤ π

2 , then

D̃(t) ≤ 1 for all t > 0, hence α(η(t)) remains acute (or at least right) along
the whole trajectory, whence σ(t, s) ≥ 0 for all t and s. A similar property
(conservation of non-negativity of ς along trajectories) was conjectured in
[13] for the smooth solutions to the inextensible string equations (3), (2), (4)
but we do not know any proof yet. In Section 4 we will construct generalized
solutions with non-negative σ for any initial datum. There is no paradox
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here since any initial datum with obtuse α can be approximated in L2 by
data with acute α.

We finish this section by observing that smooth solutions to our gradient
flow can fail to exist. Indeed, let η0 be any smooth function such that

|cosα(η0)||∂ssη0(1)| < 1− | cosα(η0)|. (15)

In particular, (15) holds for the whips with |∂ssη0(1)| = 0 and α(η0) 6= 0
(different from the steady states), or for α = π

2 . Then the corresponding
regular solution would satisfy

0 = ∂tη(0, 1) = ∂sσ(0, 1)∂sη0(1) + σ(0, 1)∂ssη0(1) + g (16)

But

|∂sσ(0, 1)∂sη0(1) + σ(0, 1)∂ssη0(1)| ≤ | cosα|(1 + |∂ssη0(1)|) < 1,

which contradicts (16) since |g| = 1. This might look like as a tame compat-
ibility issue at the point (t, s) = (0, 1). However, any compatibility assump-
tion would rule out an unacceptably large set of physically reasonable initial
data, in particular, the open set in C2 determined by (15).

3. Approximation
In this section we approximate problem (5) by L2-gradient flows in the

ambient space. We derive uniform energy estimates for the approximation
problem and show that the limiting functions are generalized solutions to the
overdamped whip equations (5).

First we rewrite the equation (5) as a first order system: let κ := σ∂sη,
then (η, κ, σ) ∈ Rd × Rd × R solves

∂tη = ∂sκ+ g

κ = σ∂sη

σ = κ · ∂sη,
(17)

and we keep the initial/boundary conditions (6). Noticing that |κ| = |σ|
by the constraint |∂sη| = 1, one can rewrite the second equation as κ =
sgn(σ)|κ|∂sη. If we assume furthermore that σ ≥ 0 and κ 6= 0, then ∂sη = κ

|κ| .

This motivates us to consider the following approximation problem: for ε > 0,
let

F ε : Rd → Rd, F ε(κ) := εκ+
κ√

ε+ |κ|2
, (18)
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and let

Gε(τ) := (F ε)−1(τ).

An explicit computation yields ∇Gε is positive definite and

λε(τ)|ξ|2 ≤ ∇Gε(τ)ξ · ξ ≤ Λε(τ)|ξ|2, ∀ξ ∈ Rd, τ ∈ Rd,

where λε(τ) and Λε(τ) satisfy

λε(τ) =
1

ε+ (ε+ |Gε(τ)|2)−1/2
,

Λε(τ) =
ε−1

1 + (ε+ |Gε(τ)|2)−3/2
.

(19)

Then we consider the approximation problem:

∂tη
ε = ∂s(G

ε(∂sη
ε)) + g in (0,∞)× (0, 1), (20)

with the initial/boundary conditions

ηε(t, 1) = 0, ∂sη
ε(t, 0) = 0,

ηε(0, s) = ηε0(s).
(21)

Here ηε0 are smooth functions with compact support in (0, 1), which are
chosen to approximate the given initial datum η0 in the strong topology
of L2(0, 1) (here and in what follows we often omit the dimension d for
brevity). Since ∇Gε is smooth in its argument and positive definite, the
above semi-linear system is well-posed: given any smooth initial datum ηε0
satisfying the compatibility conditions, the existence of a unique smooth so-
lution ηε : [0,∞) × [0, 1] → Rd to the above system follows from Amann’s
theory [1] (cf. [13, Proof of Theorem 4.2]). In comparison with the original
equation (17) we define

κε := Gε(∂sη
ε), σε := Gε(∂sη

ε) · ∂sηε. (22)

In Section 4 we will show that the limit of (ηε, κε, σε) provides a solution to
(17)-(6).

We may consider the associated energy to the above approximation system

E ε(η) :=

∫ 1

0

G̃ε(∂sη) ds+

∫ 1

0

(−g) · η ds, (23)
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where

G̃ε : Rd → R, G̃ε(u) = ε

(
|Gε(u)|2

2
− 1√

ε+ |Gε(u)|2

)
.

Then (20) can be interpreted as a gradient flow with respect to the flat
Hilbertian structure inherited from L2, which is driven by this functional:

∂tη = −∇L2E ε(η).

We refer to the proof of Theorem 3 for a detailed computation.
Now we derive some energy inequalities with uniform (in ε) bounds for the

solutions ηε in terms of the initial datum. We stress that in the sequel C will
always stand for a constant independent of ε. For simplicity in the sequel we
sometimes drop the dependence on ε and write η = ηε, G = Gε, etc. We also
write Ω := (0, 1) and Qt := (0, t)× Ω for t ∈ (0,∞].

Proposition 3.1. Given ηε0 ∈ C∞c (Ω), let ηε be the solution to the approx-
imation problem (20)-(21) in Q∞. Then for any T ∈ (0,∞) there exists a
constant C = C(T ) > 0 such that

max
t∈[0,T ]

‖ηε(t, ·)‖L2(Ω) + ‖∂sηε‖L2(QT ) ≤ C(T )
(
‖ηε0‖L2(Ω) + 1

)
, (24)

‖∂tηε‖L2(QT )+‖∇G(∂sη
ε)·∂ssηε‖L2(QT ) ≤ 3E ε(ηε0)+C(T )

(
‖ηε0‖L2(Ω) + 1

)
+3
√
ε.

(25)
Here E ε, as defined in (23), is the associated energy for the approximation
problem.

Proof : Proof of (24). We take the inner product of the equation with η and
integrate in space and time. After an integration by parts in space we obtain∫

Qt

∂tη · η dsdt = −
∫
Qt

G(∂sη) · ∂sη dsdt+

∫
Qt

g · η dsdt for any t ∈ (0, T ].

After an integration in time and applying Cauchy-Schwartz we have

1

2

∫
Ω

|η(t, s)|2 ds+

∫
Qt

G(∂sη) · ∂sη dsdt

≤ 1

2

∫
Ω

|η0(s)|2 ds+
1

2

∫
Qt

|η|2 dsdt+
1

2

∫
Qt

|g|2 dsdt.
(26)
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Observe that the second term on the left side of (26) is nonnegative. By
Gronwall’s inequality∫

Ω

|η(t, s)|2 ds ≤ et
(∫

Ω

|η0|2 ds+ t

)
for any t ∈ [0, T ]. (27)

Maximizing both sides in t, we obtain the estimate for maxt∈[0,T ] ‖η(t, ·)‖L2(Ω).
To show the estimate for ‖∂sη‖L2(QT ), we assume for now the following

estimate holds (whose proof will be provided later):

G(∂sη) · ∂sη ≥
1

ε+
√
ε
|∂sη|2 in {(t, s) ∈ Qt : |∂sη(t, s)| ≥ 1 +

√
ε}. (28)

Applying (28) to (26) we obtain∫
Qt

|∂sη|2 dsdt ≤ (ε+
√
ε)

∫
Qt

G(∂sη) · ∂sη dsdt+ (1 +
√
ε)2|Qt|

≤ ε+
√
ε

2

∫
Ω

|η0(s)|2ds+
ε+
√
ε

2

∫
Qt

|η|2 dsdt+

(
2 +

ε+
√
ε

2

)
|Qt|.

This together with (27) (after taking the suprema over t) yields

max
t∈[0,T ]

∫
Ω

|η(t, ·)|2 ds+

∫
QT

|∂sη|2 dsdt ≤ C(T )

(
1 +

∫
Ω

|η0|2 ds
)
.

It remains to prove (28). By the explicit expression of F in (18) and
G = F−1 one has τ = εG(τ)+(ε+ |G(τ)|2)−1/2G(τ), τ ∈ Rd. Thus G(τ) · τ =

|τ |2
ε+(ε+|G(τ)|2)−1/2

. Using the monotonicity of r 7→ F̃ (r) := εr + r√
ε+r2

in [0,∞)

and F̃ ( 1√
ε
) < 1 +

√
ε one can conclude that

|G(τ)| ≥ 1√
ε

in {τ : |τ | ≥ 1 +
√
ε}. (29)

Hence

G(τ) · τ ≥ |τ |2

ε+ (ε+ ε−1)−1/2
≥ 1

ε+
√
ε
|τ |2

if |τ | ≥ 1 +
√
ε. This implies the claimed estimate (28).

Proof of (25). We take the inner product of the equation with ∂tη and
integrate over Qt. After some integration by parts we obtain∫

Qt

|∂tη|2 dsdt = −
∫
Qt

G(∂sη)∂stη dsdt+

∫
Ω

g · η(t, ·) ds−
∫

Ω

g · η0 ds.
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Here we have used the boundary conditions ∂tη(t, 1) = 0 and ∂sη(t, 0) = 0.

Observing that G(∂sη)∂stη = ∂tG̃(∂sη) we obtain∫
Qt

|∂tη|2 dsdt+

∫
Ω

G̃(∂sη)(t, ·) ds+

∫
Ω

(−g) · η(t, ·) ds

=

∫
Ω

G̃(∂sη0) ds+

∫
Ω

(−g) · η0 ds,

or in other words ∫
Qt

|∂tη|2 dsdt+ E(η(t, ·)) ≤ E(η0).

This in particular gives the decay of the energy

E(η(t, ·)) ≤ E(η0) <∞ for any t ∈ (0, T ].

By virtue of G̃ ≥ −
√
ε, (27) and recalling the definition of E in (23), we have

E(η(t, ·)) ≥ −C(T )(‖η0‖L2(Ω) + 1)−
√
ε.

Thus ∫
QT

|∂tη|2 dsdt ≤ E(η0) + C(T )(‖η0‖L2(Ω) + 1) +
√
ε.

On the other hand, from the equation ∂sG(∂sη) = ∂tη − g we deduce∫
QT

|∇G · ∂ssη|2 dsdt =

∫
QT

|∂sG(∂sη)|2 dsdt ≤ 2

∫
QT

|∂tη|2 + 2

∫
QT

|g|2.

The last two inequalities together yield (25).

Remark 3.2. Given any initial datum η0 ∈ W 1,∞(Ω) with |∂sη0(s)| ≤ 1 to
the original problem (17)-(6), it is possible to approximate the initial data by
ηε0 ∈ C∞c (Ω) such that E ε(ηε0) and ‖ηε0‖L2(Ω) are uniformly bounded with respect
to ε. For example, for those approximations ηε0 ∈ C∞c (Ω) with |∂sηε0| ≤ 1+

√
ε,

we have E ε(ηε0) are uniformly bounded. This can be seen by using a similar
argument as for (29) and the explicit expression of E ε in (23). Indeed, let F̃
be the same as in the proof for (29). Observing that F̃ ( 1√

ε
+ ε) > 1 +

√
ε and

using the monotonicity of F̃ one has |Gε(τ)| ≤ 1√
ε

+ ε if |τ | ≤ 1 +
√
ε. Then

it is not hard to see from (23) that E ε(ηε0) ≤ 2 provided |∂sηε0| ≤ 1 +
√
ε and

ε ≤ 1
4.
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Next we estimate supQT |∂sη
ε|. The proof is inspired by the L∞-estimate

for the parabolic quasi-linear system (cf. [8, Chapter VII]). For this we take
∂s of the equation and let uε := ∂sη

ε. Then uε solves the problem
∂tu

ε = ∂s(∇G(uε)∂su
ε),

uε(t, 0) = 0, ∂sG(uε)(t, 1) = −g,
uε(0, s) = ∂sη

ε
0(s) =: uε0(s).

We aim to prove the weak type maximum principle:

Proposition 3.3. Let uε and uε0 be as above. Then there exists a positive
constant C = C(T ) such that

sup
QT

|uε| ≤ C sup
Ω
|uε0|.

Proof : In the proof we drop the dependence on ε for simplicity. Let k be a
constant and k ≥ max{supΩ |u0|, (1 +

√
ε)2}. We take the inner product of

the equation with u(|u|2 − k)+ and denote v(k) := (|u|2 − k)+. Integrating
over QT and after an integration by part we obtain∫

QT

∂tu · uv(k) dsdt =

∫ T

0

(−g) · (uv(k))(t, 1) dt

−
∫
QT

∇G(u)∂su · ∂suv(k) dsdt−
∫
QT

∇G(u)∂su · u∂sv(k) dsdt.

(30)

We denote Ak(t) := {s ∈ Ω : |u|2(t, s) > k} and Qk := {(t, s) ∈ QT :
|u|2(t, s) > k}. First we note that using

∂tu · uv(k) =
1

4
∂t|v(k)|2

and the choice of k (such that v(k)(0, ·) = 0) we deduce∫
QT

∂tu · uv(k) dsdt =
1

4

∫
Ω

|v(k)|2(T, ·) ds.

For the last two terms in the right hand side of (30), using λε(τ) ≥ 1 if
|τ |2 ≥ (1 +

√
ε)2 (which follows from the expression for λε in (19) and (29))

we get ∫
QT

∇G(u)∂su · ∂suv(k) dsdt ≥
∫
QT

|∂su|2v(k) dsdt.
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Similarly, ∫
QT

∇G(u)∂su · u∂sv(k) dsdt ≥
∫
QT

|∂sv(k)|2 dsdt.

For the first term on the right hand side of (30), we use the the boundary
condition u(t, 0) = 0 and fundamental theorem of calculus to write∫ T

0

(−g) · (uv(k))(t, 1) dt =

∫
QT

(−g) · ∂s(uv(k)) dsdt

=

∫
QT

(−g) · ∂suv(k) dsdt+

∫
QT

(−g) · u∂sv(k) dsdt.

By Cauchy-Schwartz and that supp(∂sv
(k)) ⊂ Qk,∫ T

0

(−g) · (uv(k))(t, 1) dt ≤ 1

4

∫
QT

|∂su|2v(k) dsdt+

∫
QT

v(k) dsdt

+
1

4

∫
QT

|∂sv(k)|2 dsdt+

∫
Qk

|u|2 dsdt.

Combining all above inequalities we deduce that there exists a universal
constant C (independent of ε) such that

sup
t∈[0,T ]

∫
Ω

|v(k)|2(t, ·) ds+

∫
QT

|∂su|2v(k) dsdt+

∫
QT

|∂sv(k)|2 dsdt

≤ C

∫
QT

v(k) dsdt+ C

∫
Qk

|u|2 dsdt

≤ C

∫
QT

v(k) dsdt+ C

∫
Qk

k dsdt,

where in the last inequality we have used |u|2 ≤ (|u|2 − k)+ + k = v(k) + k.
Using Cauchy-Schwartz and Hölder inequality, we have

(RHS) ≤ 1

4
sup
t∈[0,T ]

∫
Ω

|v(k)|2(t, ·) ds+ C

∫ T

0

|Ak(t)| dt+ Ck

∫ T

0

|Ak(t)| dt.

Note that the first term can be absorbed by the left hand side. Thus,

sup
t∈[0,T ]

∫
Ω

|v(k)|2(t, ·) ds+

∫
QT

|∂sv(k)|2 dsdt ≤ Ck

∫ T

0

|Ak(t)| dt.
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By Theorem 6.1 in Chapter II of [8] we conclude

sup
QT

|u|2(t, s) ≤ 2(1 + C) sup
Ω
|u0|2(s).

This completes the proof.

In the next proposition we derive compactness results and show that weak
limits of approximation solutions solve almost everywhere the original evo-
lutionary equation with a slightly relaxed constraint.

Proposition 3.4. Given any T > 0, let ηε be a solution to (20) in QT with
the initial/boundary conditions (21). Let (κε, σε) be as in (22). Assume that
‖ηε0‖L2(Ω) and E ε(ηε0) are bounded uniformly in ε. Then

(i) Along a subsequence ε→ 0 one has

ηε → η weakly* in L∞(0, T ;W 1,∞(Ω))d and strongly in L2(QT )d,

∂tη
ε → ∂tη weakly in L2(QT )d,

σε → σ weakly in L2(0, T ;H1(Ω)).

(ii) The limit (η, σ) satisfies

σ∂sη ∈ L2(0, T ;H1(Ω))d

and solves (5)-(6) in the sense that

∂tη = ∂s(σ∂sη) + g, σ
(
|∂sη|2 − 1

)
= 0 a.e. in QT ,

η(t, 1) = 0, σ(t, 0) = 0 for a.e. t and η(0, s) = η0(s) for a.e. s.

Remark 3.5. The initial and boundary conditions make sense due to the
embeddings (37) and (38) which appear below in the proof.

Proof of Proposition 3.4 (i). The compactness results for ηε follow immedi-
ately from the uniform energy bound in Proposition 3.1. We will mainly
derive the uniform boundedness of σε.

By a direct computation ∂sσ
ε = ∂sκ

ε · ∂sηε + κε · ∂ssηε. We will estimate
the two terms in the summation separately. First by (25) and Poincaré’s
inequality we immediately obtain that κε = Gε(∂sη

ε) are uniformly bounded
in L2(0, T ;H1(Ω)). This together with Proposition 3.3 gives the uniform
boundedness of ∂sκ

ε · ∂sηε in L2(QT ). To estimate κε · ∂ssηε, we are going to
show that

|∇Gε(∂sη
ε)∂ssη

ε| ≥ (c(T ) + 2)−1|Gε(∂sη
ε) · ∂ssηε|. (31)
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Here c(T ) is the constant in Proposition 3.3. To see this we first observe
from the the explicit expression of λε in (19) that

λε(τ) =

√
ε+ |Gε(τ)|2

ε
√
ε+ |Gε(τ)|2 + 1

≥ |Gε(τ)|
ε|Gε(τ)|+ 1

, τ ∈ Rd.

Thus

|∇Gε(∂sη
ε)∂ssη

ε| ≥ |λε∂ssηε| ≥
|Gε(∂sη

ε)|
ε|Gε(∂sηε)|+ 1

|∂ssηε|

By the expression of F ε and Proposition 3.3,

ε|Gε(∂sη
ε)| = ε|κε| ≤ |∂sηε|+ 1 ≤ c(T ) + 1.

Combining the above two inequalities we thus obtain (31).
The estimate (31) immediately implies that κε · ∂ssηε = Gε(∂sη

ε) · ∂ssηε are
uniformly bounded in L2(QT ) (since ∇Gε(∂sη

ε)∂ssη
ε are uniformly bounded

in L2(QT ) by (25)). Thus we have shown the uniform boundedness of σε in
L2(0, T ;H1(Ω)).

Proof of (ii). From the uniform energy bound in Proposition 3.1 we see
that there exists κ := limκε in the weak topology of L2(0, T ;H1(Ω)). Let us
show that

κ = σ∂sη,

σ = κ · ∂sη
(32)

a.e. in QT . Since both sides of the equalities (32) are integrable on QT ,
it suffices to prove (32) in the sense of distributions, i.e. that for any ϕ ∈
L2(0, T ;H1(Ω))∫

QT

κϕ dsdt = −
∫
QT

ση∂sϕ dsdt−
∫
QT

∂sσηϕ dsdt, (33)

∫
QT

σϕ dsdt = −
∫
QT

κ · η∂sϕ dsdt−
∫
QT

∂sκ · ηϕ dsdt. (34)

Indeed, integrating by parts the distributional form of the equality σε =
κε · ∂sηε we see that∫

QT

σεϕ dsdt = −
∫
QT

κε · ηε∂sϕ dsdt−
∫
QT

∂sκ
ε · ηεϕ dsdt,
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and due to the strong compactness property of {ηε} in (i) we can pass to the
limit to get (34). We now claim

lim
ε→0

∫
QT

|κε|
∣∣|∂sηε|2 − 1

∣∣ = 0. (35)

Before proving the claim we show how (33) follows from (35). Indeed, with
(35) at hand and noting that κε|∂sηε|2 = (κε · ∂sηε)∂sηε = σε∂sη

ε we have

lim
ε→0
‖σε∂sηε − κε‖L1(QT ) = 0. (36)

In particular, for any ϕ ∈ L2(0, T ;H1(Ω))

lim
ε→0

∫
QT

κε · ϕ dsdt = lim
ε→0

∫
QT

σε∂sη
ε · ϕ dsdt.

An integration by parts applied to the integral on the right side gives

lim
ε→0

∫
QT

κε · ϕ dsdt = lim
ε→0

(
−
∫
QT

σεηε∂sϕ dsdt−
∫
QT

∂sσ
εηεϕ dsdt

)
.

This together with the compactness results in (i) yields (33).
We now provide the proof for (35). By the definition of F ε in (18),

|∂sηε| − 1 = |F ε(κε)| − 1 = ε|κε|+ |κε|√
ε+ |κε|2

− 1

= ε|κε| − ε√
ε+ |κε|2

(√
ε+ |κε|2 + |κε|

) .
Thus

|κε| ||∂sηε| − 1| = ε

∣∣∣∣∣∣|κε|2 − |κε|√
ε+ |κε|2

(√
ε+ |κε|2 + |κε|

)
∣∣∣∣∣∣

≤ ε|κε|2 +
ε√

ε+ |κε|2
≤ ε|κε|2 +

√
ε.

This together with Proposition 3.3 yields∫
QT

|κε|
∣∣|∂sηε|2 − 1

∣∣ ≤ (c(T ) + 1)

∫
QT

|κε| ||∂sηε| − 1|

≤ (c(T ) + 1)

∫
QT

ε|κε|2 + (c(T ) + 1)
√
ε|QT |.
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Since κε are uniformly bounded in L2(QT ) by (i), passing to the limit ε→ 0
we recover (35).

Passing to the weak limit in L2(QT ) in the equation ∂tη
ε = ∂sκ

ε + g and
using (32) we obtain ∂tη = ∂s(σ∂sη) + g. To get σ(|∂sη|2 − 1) = 0, it suffices
to express κ from the first equality in (32) and to substitute the result into
the second one.

We now observe that by, e.g., [16, Corollary 2.2.1]

H1(0, T ;L2(Ω)) ⊂ C([0, T ];L2(Ω)), (37)

and the embedding is continuous. Hence, by the Aubin-Lions-Simon theorem,
the embedding

H1(0, T ;L2(Ω)) ⊂ C([0, T ];H−1(Ω))

is compact. Without loss of generality, we may therefore assume that ηε → η
strongly in C([0, T ];H−1(Ω)). Hence, ηε0 = ηε(0, ·)→ η(0, ·) in H−1(Ω). But
just by construction ηε0 → η0 in L2(Ω). We conclude that η(0, ·) and η0 are
actually the same element of L2(Ω), and the claimed initial condition for η
holds for a.e. s.

To check the validity of the boundary conditions, we make the following
trick. We swap the variables t and s, noting that σε and ηε are uniformly
bounded and weakly converging in H1(0, 1;L2(0, T )). Repeating the reason-
ing above, mutatis mutandis, we find that

H1(0, 1;L2(0, T )) ⊂ C([0, 1];L2(0, T )) (38)

and that the embedding

H1(0, 1;L2(0, T )) ⊂ C([0, 1];H−1(0, T ))

is compact, whence we may assume that σε → σ, ηε → η strongly in
C([0, 1];H−1(0, T )). Using (21) and (22), we get 0 = σε(·, 0) → σ(·, 0) in
H−1(0, T ). Consequently, σ(t, 0) = 0 in L2(0, T ) and for a.e. t. In a very
similar way we obtain the required boundary condition for η.

Proposition 3.6. Let (η, σ) be a limiting solution obtained in Proposition
3.4. Then

(i) |∂sη(t, s)| ≤ 1 for a.e. (t, s) ∈ QT ;
(ii) σ(t, s) ≥ 0 for a.e. (t, s) ∈ QT .

Proof : (i) Observe that the set

B = {ξ ∈ L2(QT ) : |ξ(t, s)| ≤ 1 for a.e. (t, s) ∈ QT}
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is weakly closed in L2(QT ). By the definition of F ε in (18) we have that

εκε +
κε√

ε+ |κε|2
= ∂sη

ε.

As ε → 0, the first term in the left-hand side goes to zero in L2(QT ). Since
the second term on the left belongs to B, so does the weak limit ∂sη of the
right-hand side.

(ii) Recall the definition of σε in (22): σε = κε · ∂sηε = κε · F ε(κε) for each
ε > 0. Thus from the definition of F ε we obtain σε ≥ 0. This implies that in
the limit σ ≥ 0.

4. Limiting problem
Definition 4.1. Let Ω := (0, 1). Given an initial datum η0 ∈ W 1,∞(Ω)d with
η0(1) = 0 and |∂sη0(s)| ≤ 1 for almost every s ∈ Ω, we call a pair (η, σ) a
generalized solution to (5), (6) in Q∞ := (0,∞)× Ω if

(i) η ∈ L∞loc([0,∞);W 1,∞(Ω))d, ∂tη ∈ L2
loc([0,∞);L2(Ω))d,

σ ∈ L2
loc([0,∞);H1(Ω)) and σ∂sη ∈ L2

loc([0,∞);H1(Ω))d.
(ii) The pair (η, σ) satisfies for a.e. (t, s) ∈ Q∞

∂tη(t, s) = ∂s(σ(t, s)∂sη(t, s)) + g, (39)

σ(t, s)
(
|∂sη(t, s)|2 − 1

)
= 0, (40)

|∂sη(t, s)| ≤ 1, (41)

and the initial/boundary conditions

η(t, 1) = 0, σ(t, 0) = 0 for a.e. t and η(0, s) = η0(s) for a.e. s.

(iii) The solution η satisfies the energy dissipation inequality∫
Ω

|∂tη(t, s)|2ds ≤
∫

Ω

g · ∂tη(t, s)ds (42)

for a.e. t ∈ (0,∞).

We point out that Remark 3.5 concerning the initial and boundary condi-
tions applies to this definition.

Remark 4.2. It is not hard to see that if (η, σ) is a C2 regular solution pair
of (5), (6), then it is also a generalized solution in the sense of Definition
4.1; in particular, (41) and (42) become strict equalities. On the other hand
we claim that any generalized solution (η, σ) with η ∈ C1(Q∞)∩C2(Q∞) and



THE GRADIENT FLOW OF THE POTENTIAL ENERGY 21

|∂sη0| = 1 is a solution to (5), (6). It is an open problem whether there exist
generalized solutions which violate the constraint |∂sη| = 1 on a subset of Q∞
of positive Lebesgue measure.

To prove the claim it suffices to show that the open set U := {(t, s) ∈ Q∞ :
|∂sη(t, s)| < 1} is empty. Suppose not, then σ = 0 a.e. in U due to the
constraint σ(|∂sη| − 1) = 0. This implies that ∂tη = g hence ∂stη = 0 in U .
For each (t0, s0) ∈ U , let t1 = inf{t ≥ 0 : (t, t0)× {s0} ⊂ U}. If t1 = 0 then

|∂sη(t1, s0)| = 1 (43)

due to our assumption about η0, and if t1 > 0 then (43) also holds by the con-
tinuity of ∂sη. From ∂stη = 0 in U and the up to the boundary C1 continuity
of η, we deduce that

|∂sη(t0, s0)| = |∂sη(t1, s0)| = 1,

arriving at a contradiction.

The next theorem provides the global existence of generalized solutions.

Theorem 3. For every η0 ∈ W 1,∞(Ω)d with η0(1) = 0 and |∂sη0(s)| ≤ 1 for
a.e. s ∈ Ω, there exists a generalized solution to (5), (6) in Q∞. Moreover,
those solutions satisfy σ(t, s) ≥ 0 for almost every (t, s) ∈ Q∞.

Proof : Let Tk be a sequence of time with Tk → ∞ as k → ∞. For each
Tk fixed let {(ηεk, σεk)}ε be solutions to the approximation problems (20)-(21)
in [0, Tk) × (0, 1). Remember that by Remark 3.2 we could approximate
the initial datum by smooth ones with uniformly bounded energies. By
Proposition 3.4 and a standard diagonal argument one can obtain a sub-

sequence (ηj, σj) := (η
εkj
kj
, σ

εkj
kj

) and (η, σ), such that ηj → η weakly* in

L∞loc([0,∞);W 1,∞(Ω)), strongly in L2
loc([0,∞);L2(Ω)), ∂tηj → ∂tη weakly in

L2
loc([0,∞);L2(Ω)) and σj → σ weakly in L2

loc([0,∞);H1(Ω)). Furthermore,
by (ii) of Proposition 3.4 and by Proposition 3.6, the limit (η, σ) is a gen-
eralized solution in the sense of (ii) of Definition 4.1 with a.e. non-negative
σ.

Now we show (η, σ) satisfies (iii) of Definition 4.1. Indeed, multiplying
∂tηjϕ, ϕ = ϕ(t) ∈ C∞c ((0,∞)), to the both sides of the equation of ηj gives∫

Q∞

|∂tηj|2ϕ dsdt =

∫
Q∞

∂sGj(∂sηj)∂tηjϕ dsdt+

∫
Q∞

g · ∂tηjϕ dsdt.
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HereGj = Gεkj . Thus we only need to show that
∫
Q∞

∂sGj(∂sηj)·∂tηjϕ dsdt→
0 as j →∞. After one integration by parts in the space variable (and recall-
ing κj = Gj(∂sηj)) it suffices to show that∫

Q∞

κj · ∂tsηjϕ dsdt→ 0. (44)

For this using ∂sηj = εkjκj +
κj√

εkj+|κj |2
we have

κj · ∂stηj = κj ·

(
εkjκj +

κj√
εkj + |κj|2

)
t

= εkjκj∂tκj + κj ·

(
∂tκj√

εkj + |κj|2
− κj(κj · ∂tκj)

(
√
εkj + |κj|2)3

)

= εkjκj∂tκj + εkj
κj · ∂tκj

(
√
εkj + |κj|2)3

= εkj
d

dt

(
|κj|2

2
− 1√

εkj + |κj|2

)
.

Thus∫
Q∞

κj · ∂tsηjϕ dsdt = −εkj
∫
Q∞

(
|κj|2

2
− 1√

εkj + |κj|2

)
d

dt
ϕ dsdt.

From (i) in Proposition 3.4, |κj| is uniformly bounded in L2(0, T ;H1(Ω))
where T is such that ϕ vanishes outside of (0, T ). Passing to the limit j →∞
we obtain (44).

5. Exponential decay
In this section we show that the relative potential energy decays along the

trajectories of the generalized solutions exponentially fast.
We start by recalling the potential energy

E(t) := E(η(t, ·)) =

∫ 1

0

(−g) · η(t, s)ds.

We note that given a generalized solution the associated energy may not
decrease along the trajectories. Indeed, let (η, σ) be a generalized solution
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in the sense of Definition 4.1. Then for 0 ≤ t1 < t2 <∞,

E(t2)− E(t1) =

∫ t2

t1

∫ 1

0

(−g) · ∂tη(t, s)dsdt

=

∫ t2

t1

∫ 1

0

(−g) · ∂s(σ∂sη) + (−g) · gdsdt

=

∫ t2

t1

(σ(t, 1)(−g) · ∂sη(t, 1)− 1) dt.

Since for generalized solutions we do not have any control on σ(t, 1), it is
not clear whether the integral is nonpositive or not. On the other side, as
already seen in Section 2, if (η, σ) is C2-regular, using the equation of σ it is
possible to show that σ(t, 1) ≤ 1 for all t, which implies E(t2) ≤ E(t1).

For any generalized solution (η, σ) with σ ≥ 0 almost everywhere, we will
show that the relative energy Ẽ(t) := E(t) − E(η∞), where (η∞, σ∞)(s) =
((1−s)g, s) is the downwards vertical stationary solution, has an upper bound
which decays exponentially fast to zero as t → ∞. This together with the
nonnegativity of the relative energy (cf. Remark 5.1) implies the convergence
of η(t, ·) to η∞ in L2(Ω) with an exponential convergence rate (cf. Corollary
5.2).

Before we state our exponential convergence theorem we remark that using
an integration by parts one can rewrite the energy as

E(t) =

∫ 1

0

sg · ∂sη(t, s)ds.

A direct computation gives that E(η∞) ≡ −1
2 . The main result of this section

is the following:

Theorem 4. Let (η, σ) be a generalized solution in the sense of Definition
4.1. Let Ẽ(t) := E(t)−E(η∞) denote the relative energy. Assume that σ ≥ 0
almost everywhere in Q∞. Then there exists a universal constant c0 > 0 such
that

Ẽ(t) ≤ e−c0tẼ(0), t ∈ [0,∞). (45)
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Proof : Using that ∂sη∞ = −g, one can rewrite E(t) = −
∫ 1

0 s∂sη∞ · ∂sηds.
Thus

Ẽ(t) = −
∫ 1

0

s∂sη∞ · ∂s(η − η∞)ds

=

∫ 1

0

s|∂s(η − η∞)|2ds−
∫ 1

0

s∂sη · ∂s(η − η∞)ds

Noting that ∫ 1

0

s∂sη · ∂s(η − η∞) =

∫ 1

0

s
(
|∂sη|2 − 1

)
ds+ Ẽ(t),

we obtain an equivalent expression of the relative energy

Ẽ(t) =
1

2

∫ 1

0

s|∂s(η − η∞)|2ds− 1

2

∫ 1

0

s
(
|∂sη|2 − 1

)
ds. (46)

Claim: There exists a universal c̄0 > 0 such that

Ẽ(t) ≤ c̄0

∫ 1

0

|∂tη(t, s)|2ds (47)

in the sense of distributions.
Proof of the claim: We first prove a lower bound for

∫ 1

0 |∂tη|
2 ds. Indeed,

using the equation of η and Hardy’s inequality one has for a.e. t ∈ (0,∞),∫ 1

0

|∂tη|2ds =

∫ 1

0

|∂sκ+ g|2ds =

∫ 1

0

|∂sκ− ∂sκ∞|2ds

≥ C̄

∫ 1

0

s−1|κ− κ∞|2ds = C̄

∫ 1

0

s−1|σ∂sη − s∂sη∞|2ds.
(48)

Here C̄ is a universal constant which is independent of t, and

κ∞ := σ∞∂sη∞ = −gs.

This implies that for any φ = φ(t) ∈ C∞c ((0,∞)), φ ≥ 0,∫
Q∞

|∂tη|2φ dsdt ≥ C̄

∫
Q∞

s−1|σ∂sη − s∂sη∞|2φ dsdt. (49)
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We take the precise representatives of ∂sη and σ (cf. [6, Section 1.7.1]) and
define (still use the same notation for the representatives)

Ω1 := {(t, s) ∈ Q∞ : |∂sη(t, s)| = 1},
Ω2,1 := {(t, s) ∈ Q∞ : |∂sη(t, s)| 6= 1, σ(t, s) = 0},
Ω2,2 := {(t, s) ∈ Q∞ : |∂sη(t, s)| 6= 1, σ(t, s) 6= 0}.

(50)

Using that σ = 0 in Ω2,1 we furthermore obtain from (49) that∫
Q∞

|∂tη|2φ(t) dsdt ≥ C̄

∫
Ω2,1

sφ(t) dsdt. (51)

Next we prove an upper bound for the relative energy Ẽ(t). By (46),∫
Ẽ(t)φ(t)dt =

1

2

∫
Ω1∪Ω2,1

s|∂s(η − η∞)|2φ dsdt+
1

2

∫
Ω2,2

s|∂s(η − η∞)|2φ dsdt

− 1

2

∫
Ω2,1

s
(
|∂sη|2 − 1

)
φ dsdt− 1

2

∫
Ω2,2

s
(
|∂sη|2 − 1

)
φ dsdt

Note that by (40) in Definition 4.1 we have |Ω2,2| = 0. This together with
η ∈ L∞loc([0,∞);W 1,∞(Ω))d (cf. (i) of Definition 4.1) yields that the integrals
over Ω2,2 are zero, i.e.∫

Ω2,2

s|∂s(η − η∞)|2φ dsdt,
∫

Ω2,2

s
(
|∂sη|2 − 1

)
φ dsdt = 0.

To estimate the integrals over Ω2,1, we note that by (41) of Definition 4.1,
|Ω2,1 ∩ {(t, s) ∈ QT : |∂sη(t, s)| > 1}| = 0. This gives

1

2

∫
Ω2,1

s|∂s(η − η∞)|2φ dsdt− 1

2

∫
Ω2,1

s
(
|∂sη|2 − 1

)
φ dsdt

=

∫
Ω2,1

s (1− ∂sη · ∂sη∞)φ dsdt

≤
∫

Ω2,1

2sφ dsdt.
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For the integral over Ω1 we use Cauchy-Schwartz to obtain

1

2

∫
Ω1

s|∂s(η − η∞)|2φ dsdt =
1

2

∫
Ω1

s−1|σ∂sη − s∂sη∞ + (s− σ)∂sη|2φ dsdt

≤
∫
Q∞

s−1|σ∂sη − s∂sη∞|2φ dsdt+

∫
Ω1

s−1|s− σ|2φ dsdt.

Since |∂sη| = 1 almost everywhere in Ω1, then by the triangle inequality
and σ ≥ 0 we have |s − σ| = ||s∂sη∞| − |σ∂sη|| ≤ |σ∂sη − s∂sη∞| almost
everywhere in Ω1. Thus∫

Ω1

s−1|s− σ|2φ dsdt ≤
∫

Ω1

s−1|σ∂sη − s∂sη∞|2φ dsdt.

Therefore combining all together we have, for all φ = φ(t) ≥ 0 and φ ∈
C∞c ((0,∞))∫ ∞

0

Ẽ(t)φ(t) dt ≤ 2

∫
Q∞

s−1|σ∂sη − s∂sη∞|2φ(t) dsdt+

∫
Ω2,1

2sφ(t) dsdt.

Recalling the lower bound in (49) and (51) we thus obtain a universal c̄0 =
4/C̄ > 0 such that∫ ∞

0

Ẽ(t)φ(t) dt ≤ c̄0

∫
Q∞

|∂tη|2φ(t) dsdt.

This completes the proof of the claim.
Now we use (iii) in Definition 4.1 to obtain the exponential decay of the

relative energy. Indeed, given (η, σ) a solution pair in the sense of Definition
4.1, (47), (iii) of Definition 4.1 and an integration by parts yield∫ ∞

0

Ẽ(t)φ(t) dt ≤ c̄0

∫ ∞
0

∫ 1

0

g · ∂tη(t, s)φ(t) dsdt

= c̄0

∫ ∞
0

Ẽ(t)
d

dt
φ(t) dt.

Denoting c0 = c̄0
−1 = C̄/4 we have∫ ∞

0

Ẽ(t)ec0t
d

dt
(e−c0tφ(t))dt ≥ 0,

for all φ = φ(t) ≥ 0, φ ∈ C∞c ((0,∞)). This implies that d(ec0tẼ(t))/dt is
a nonpositive distribution. Since t 7→ Ẽ(t) is continuous, we have Ẽ(t) ≤
e−c0tẼ(0) for all t ∈ [0,∞).
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Remark 5.1. From the equivalent expression of the relative energy Ẽ(t) in
(46), |∂sη| ≤ 1 a.e. (cf. (41) in Definition 4.1) and the continuity of t 7→
Ẽ(t), we immediately obtain that Ẽ(t) ≥ 0 for all t ∈ [0,∞).

We also stress that the assumption σ ≥ 0 a.e. in Q∞ in Theorem 4 is not
restrictive. On one hand, it is satisfied by the generalized solutions existing
by Theorem 3 for all Lipschitz initial data with η0(1) = 0 and |∂sη0(s)| ≤ 1
for a.e. s ∈ Ω. On the other hand, it automatically holds for any C2-smooth
solution (η, σ) with α(η0) ≤ π/2 (cf. Section 2).

The exponential decay of the relative energy implies the exponential decay
of the generalized solution to the stationary solution η∞ in L2(Ω) as t→∞.

Corollary 5.2. Let (η, σ) be a generalized solution in the sense of Definition
4.1 with σ ≥ 0. Let Ẽ(t) = E(η(t, ·)) − E(η∞) be the relative energy as in
Theorem 4, where (η∞, σ∞) = ((1 − s)g, s) is the stable stationary solution.
Then there exist a universal constant c0 > 0 such that for all t ∈ [0,∞),

‖η(t, ·)− η∞(·)‖2
L2(Ω) ≤ (4c0)

−1Ẽ(0)e−c0t, (52)∫ ∞
t

∥∥∥s−1/2
(
σ(t̃, ·)− σ∞(·)

)∥∥∥2

L2(Ω)
dt̃ ≤ (4c0)

−3/2Ẽ(0)1/2e−c0t/2. (53)

Proof : Proof of (52): By (45) for any nonnegative ϕ = ϕ(t) ∈ C∞c ((0,∞)),∫ ∞
0

Ẽ(t)ϕ(t)dt ≤
∫ ∞

0

e−c0tẼ(0)ϕ(t)dt.

Using the equivalent expression (46) for Ẽ(t) we obtain∫
Q∞

s|∂s(η − η∞)|2ϕ dsdt−
∫
Q∞

s
(
|∂sη|2 − 1

)
ϕ dsdt ≤

∫ ∞
0

e−c0tẼ(0)ϕ dt.

Since ∂sη ∈ L2
loc(Q∞) and |∂sη| ≤ 1 for almost every (t, s) ∈ Q∞ (cf. Def-

inition 4.1), we have −
∫
Q∞

s
(
|∂sη|2 − 1

)
ϕ dsdt ≥ 0. Thus we immediately

obtain the exponential decay of the Sobolev distance:∥∥√s(∂sη − ∂sη∞)
∥∥2

L2(Ω)
≤ Ẽ(0)e−c0t for almost every t ∈ [0,∞). (54)

To derive the decay for the L2 distance we apply again the Hardy’s inequality

C̄

∫ 1

0

|η(t, s)− η∞(s)|2 ds ≤
∫ 1

0

s|∂s(η(t, s)− η∞(s))|2ds
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for almost every t. Here C̄ = 4c0 is the same as in the proof for Theorem 4.
This together with (54) yields

C̄

∫
Q∞

|η(t, s)− η∞(s)|2 ϕ(t) dsdt ≤
∫ ∞

0

e−c0tẼ(0)ϕ(t) dt.

Since this holds for arbitrary nonnegative ϕ ∈ C∞c ((0,∞)) and since the map
t 7→ ‖η(t, ·)− η∞(·)‖L2(Ω) is continuous by virtue of (37), we conclude that

C̄‖η(t, ·)− η∞(·)‖2
L2(Ω) ≤ Ẽ(0)e−c0t for all t ∈ [0,∞).

Recalling that C̄ = 4c0 we obtain (52).

Proof of (53): Firstly, (42) in Definition 4.1 and the exponential decay of
‖η(t, ·)− η∞(·)‖L2(Ω) in (52) yield that for all T ≥ 0∫ ∞

T

∫
Ω

|∂tη|2 dsdt ≤
∫ ∞
T

∫
Ω

g · ∂tη dsdt =

∫
Ω

g · (η∞(s)− η(T, s)) ds

≤ ‖η(T, ·)− η∞(·)‖L2(Ω) ≤ (4c0)
−1/2Ẽ(0)1/2e−c0T/2.

Integrating (48) from T to ∞ and then using the above estimate we obtain

C̄

∫ ∞
T

∫
Ω

s−1|σ∂sη − σ∞∂sη∞|2 dsdt

≤
∫ ∞
T

∫
Ω

|∂tη|2 dsdt ≤ (4c0)
−1/2Ẽ(0)1/2e−c0T/2. (55)

We write the left side of (55) as a sum of integrals over Ω1, Ω2,1 and Ω2,2

and estimate them separately (cf. (50) for the definition of those sets). In
Ω1 we have |∂sη| = 1. Thus by the triangle inequality and σ, σ∞ ≥ 0 we
have |σ − σ∞| = ||σ∂sη| − |σ∞∂sη∞| | ≤ |σ∂sη − σ∞∂sη∞| in Ω1. In Ω2 using
σ = 0 and the explicit expression of (σ∞, η∞) we have s−1|σ∂sη−σ∞∂sη∞|2 =
s−1|σ∞∂sη∞|2 = s = s−1|σ− σ∞|2. Finally |Ω2,2| = 0 by (ii) of Definition 4.1.
These observations together with (55) yield∫ ∞

T

∫
Ω

s−1|σ − σ∞|2 dsdt ≤ (4c0)
−3/2Ẽ(0)1/2e−c0T/2.

This completes the proof for (53).
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6. Backward solutions and non-uniqueness
In this section we present some consequences of our previous results provid-

ing existence of solutions backwards in time and branching of (generalized)
trajectories of our gradient flow.

Definition 6.1. Given an initial datum η0 ∈ W 1,∞(Ω)d with η0(1) = 0 and
|∂sη0(s)| ≤ 1 for almost every s ∈ Ω, a pair (η, σ) is generalized solution to
(5), (6) in Q−∞ := (−∞, 0) × Ω if it satisfies (i) and (iii) of Definition 4.1
with (0,∞) replaced by (−∞, 0), and satisfies (ii) with Q∞ replaced by Q−∞.

Proposition 6.2. For every η0 ∈ W 1,∞(Ω)d with η0(1) = 0 and |∂sη0(s)| ≤ 1
for a.e. s ∈ Ω, there exists a generalized solution to (5), (6) in Q−∞. The

solution satisfies σ(t, s) ≤ 0 a.e. in Q−∞. Set Ê(t) := E(η−∞) − E(η(t, ·)),
where (η−∞, σ−∞)(s) := ((s − 1)g,−s) is the unstable upright stationary so-
lution. Then

0 ≤ Ê(t) ≤ ec0tÊ(0), t ∈ (−∞, 0], (56)

where c0 > 0 is the same as in Theorem 4.

Proof : By Theorem 3, there exists a generalized solution (η−, σ−), σ− ≥ 0
a.e. in Q∞, to the problem{

∂tη
−(t, s) = ∂s(σ

−(t, s)∂sη
−(t, s))− g

|∂sη−(t, s)| = 1
for (t, s) ∈ (0,∞)× (0, 1) (57)

completed with the conditions (6). The potential energy corresponding to
(57) is

E−(η−) :=

∫ 1

0

g · η−.

Noting that (η−∞, σ∞) = ((s−1)g, s) is the stable stationary solution to (57),
we introduce the relative energy Ẽ−(t) := E−(η−(t, ·)) − E−(η−∞). Define
the pair of functions (η, σ) : Q−∞ → Rd × R by

(η, σ)(t, ·) := (η−,−σ−)(−t, ·).
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This pair solves (5), (6) in Q−∞, and σ ≤ 0 a.e. in Q−∞. Observe that (42)
holds since∫

Ω

|∂tη(t, s)|2ds =

∫
Ω

|∂tη−(−t, s)|2ds ≤
∫

Ω

(−g) · ∂tη−(−t, s)ds

=

∫
Ω

g · ∂tη(t, s)ds

for a.e. t < 0. Finally,

Ê(t) = E(η−∞)− E(η(t, ·)) = E−(η−(−t, ·))− E−(η−∞) = Ẽ−(−t),
so (56) follows from Theorem 4.

The next statement shows that the generalized solutions are non-unique
for almost all (in a certain sense) initial data.

Proposition 6.3. Let (η̄, σ̄) be any backward generalized solution provided
by Proposition 6.2. Then there exists a null set O ⊂ (0,∞) so that for every
initial datum of the form η0 := η̄(−T ), T > 0, T 6∈ O, there are at least two
different generalized solutions on QT emanating from η0.

Proof : Since |∂sη̄(t, s)|2 ≤ 1 a.e. in Q−∞, we have

|∂sη0(s)|2 = |∂sη̄(−T, s)|2 ≤ 1

a.e. in Ω for a.e. T > 0. Moreover, without loss of generality, η0(1) = 0. By
Theorem 3 there exists a generalized solution (η+, σ+) on Q∞ emerging from
η0, and σ+ ≥ 0 almost everywhere. On the other hand, consider the pair
(η−, σ−) : QT → Rd × R, (η−, σ−)(t, ·) := (η̄, σ̄)(t− T, ·). Then (η−, σ−) is a
generalized solution to (5), (6) on QT originating from η0, and σ− ≤ 0 a.e.
in QT . If it were that (η+, σ+) = (η−, σ−) a.e. in QT , then σ+ would vanish
a.e. in QT , whence η+ = η0 + gt, which would violate the first boundary
condition in (6).

Remark 6.4. It is clear that a similar non-uniqueness property holds for the
backward solutions.

Remark 6.5. In particular, Proposition 6.3 applies to the case (η̄, σ̄)(t, s) =
(η−∞, σ−∞)(s) = ((s − 1)g,−s), showing that there is a non-stationary so-
lution which originates from the stationary upright solution (η−∞, σ−∞) and
exponentially converges in the energetic sense to the stationary downwards
vertical solution (η∞, σ∞) as t → ∞. In [13, Section 5.2], a very similar
phenomenon was observed for the Young measure solutions to (3), (2).
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