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Abstract: Trust-region algorithms have been proved to globally converge with
probability one when the accuracy of the trust-region models is imposed with a
certain probability conditioning on the iteration history. In this paper, we study
their complexity, providing global rates and worst case complexity bounds on the
number of iterations (with overwhelmingly high probability), for both first and
second order measures of optimality. Such results are essentially the same as the
ones known for trust-region methods based on deterministic models. The derivation
of the global rates and worst case complexity bounds follows closely from a study
of direct-search methods based on the companion notion of probabilistic descent.
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1. Introduction
Trust-region methods form a well established and understood class of meth-

ods for the minimization of a nonlinear (possibly nonsmooth) function sub-
ject or not to constraints on its variables (see the book [7] and the recent
survey [28]). They have also been comprehensively studied in the context of
derivative-free optimization (DFO), where the derivatives of the objective or
constraint functions cannot be computed or approximated (see the book [12]
and the recent survey [14]). In this paper we focus on the unconstrained
minimization of a smooth objective function f : Rn → R without using its
derivatives.

In the derivative-free setting, trust-region algorithms use sampled points to
build a model of the objective function around the current iterate, typically
by quadratic interpolation. The quality of these models is measured by the
accuracy they provide relatively to a Taylor expansion in a ball B(x, δ) of
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center x and radius δ. Models that are as accurate as first-order Taylor ones
are called fully linear [9, 12].

Definition 1.1. Given a function f ∈ C1 and constants κef , κeg > 0, a C1

function m : Rn → R is called a (κeg, κef)-fully linear model of f on B(x, δ)
if, for all s ∈ B(0, δ),

|m(s)− f(x+ s)| ≤ κefδ
2,

‖∇m(s)−∇f(x+ s)‖ ≤ κegδ.

Fully linear models are not necessarily linear or affine functions. Models
that are as accurate as second-order Taylor ones are called fully quadratic [9,
12]. Similarly, such models are not necessarily quadratic functions.

Definition 1.2. Given a function f ∈ C2 and constants κef , κeg, κeh > 0, a
C2 function m : Rn → R is called a (κeh, κeg, κef)-fully quadratic model of f
on B(x, δ) if, for all s ∈ B(0, δ),

|m(s)− f(x+ s)| ≤ κefδ
3,

‖∇m(s)−∇f(x+ s)‖ ≤ κegδ
2,

‖∇2m(s)−∇2f(x+ s)‖ ≤ κehδ.

The construction of fully linear/quadratic models based on sampled sets
raises a number of geometrical questions. Conn, Scheinberg, and Vicente [9,
10, 12] provided a systematic approach to the subject of deterministic sam-
pling geometry in DFO, establishing error bounds for polynomial interpola-
tion and regression models in terms of a constant measuring the quality or
well poisedness of the corresponding sample set (ensuring then the fully lin-
ear/quadratic properties). They also showed how to deterministically build
or update such sets to ensure that such a constant remains moderate in size.
Some numerical studies pioneered by [15] have however shown that trust-
region methods can tolerate the use of models updated without strict geom-
etry requirements, although it is also known [25] that convergence cannot be
ensured to first-order critical points without appealing to fully linear models
when the size of the model gradient becomes small (a procedure known as
the criticality step).

A DFO context of expensive function evaluations often makes it unaf-
fordable to construct a deterministic model that is guaranteed to be fully
quadratic, as such a process requires (n + 1)(n + 2)/2 function evaluations.
Practical approaches rely on considerably less points (but at least n + 1 to
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preserve fully linearity), and use the remaining degrees of freedom to mini-
mize the norm of the model Hessian or its distance to the previous one. The
most studied examples use minimum Frobenius type norms [8, 23], yet in [1]
it was proposed to apply the theory of sparse `1-recovery to build quadratic
models based on random sampling. Such models were proved to be fully qua-
dratic with high probability even when considerably less than (n+1)(n+2)/2
points were used, depending on the sparsity of the Hessian of the objective.

Such findings have then called for a probabilistic analysis of derivative-free
trust-region algorithms [2], where the accuracy of the models is only guaran-
teed with a certain probability. It was shown in [2] that the resulting trust-
region methods converge with probability one to first and second order critical
points. The main purpose of this paper is to establish (with overwhelmingly
high probability) the rate under which these methods drive to zero the cor-
responding criticality measures: the norm of the gradient ‖∇f(xk)‖ (in the
first-order case) and the minimum σ(xk) = min{‖∇f(xk)‖,−λmin(∇2f(xk))}
between the gradient and the symmetric of the smallest eigenvalue of the
Hessian (in the second-order case). We will see that these results match
the convergence rates known for deterministic trust-region algorithms. The
proofs rely heavily on the technique developed in [19] for establishing global
rates and worst case complexity bounds for randomized algorithms in which
the new iterate depends on some object (directions in [19], models here) and
the quality of the object is favorable with a certain probability. The technique
is based on counting the number of iterations for which the quality is favor-
able and examining the probabilistic behavior of this number. Although the
road map for our paper was described in [19, Section 6], its actual concretiza-
tion poses a few delicate issues and, in addition, we go beyond [19, Section 6]
in other aspects (bounds in expectation, coverage of the second-order case).

Let us now review what is known about the complexity of trust-region
methods in the deterministic unconstrained case1. Using first-order Taylor
models, trust-region methods are known [20] to take at most O(ε−2) itera-
tions to reduce the ‖∇f(·)‖ below ε ∈ (0, 1) (see also [18] for the correspond-
ing bounds under convexity O(ε−1) and strong convexity O(− log(ε))). Using
second-order Taylor models, it has been proved [4] that at most
O(max{ε−2

g ε−1
h , ε−3

h }) iterations are needed to reduce simultaneously ‖∇f(·)‖

1The notation O(A) will stand for a scalar times A, with this scalar depending solely on the
problem considered or constants from the algorithm. The dependence on the problem dimension n
will explicitly appear in A when considered appropriate.
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below εg ∈ (0, 1) and −λmin(∇2f(·)) below εh ∈ (0, 1). Later in [17] it was
also proved a complexity bound of the type O(max{ε−3

g , ε−3
h }). In a recent pa-

per [13] it was suggested a modification to the classical trust-region approach
to make it achieving the first-order O(ε−1.5) bound of cubic regularization
methods.

In the derivative-free case, we are also interested in counting function eval-
uations and to understand the dependence of the complexity bounds in terms
of the dimension n of the problem. Using fully linear models instead, the
first-order bound [16] is then of the form O(κ−2

eg ε
−2), and since interpolation

techniques can ensure κeg = O(
√
n) with at most O(

√
n) evaluations per

iteration, one recovers the bounds O(nε−2) for iterations and O(n2ε−2) for
function evaluations, also known for direct search [27]. Using fully quadratic
models, the second-order complexity bounds [16, 21] do not entirely match
the derivative-based case as a single tolerance ε must be used, being of the
form O(n3ε−3) (resp. O(n5ε−3)) for measuring the number of iterations (resp.
function evaluations) needed to drive σ(·) below ε.

We are ready to start presenting our ideas on how to derive global rates and
complexity bounds for trust-region methods based on probabilistic models.
We will do so in Section 2 for first-order stationarity and in Section 3 for the
second-order counterpart. In Section 4 we comment on the extension of our
work to other settings.

2. Complexity of first-order trust-region methods based
on probabilistic models

We consider now the scenario analyzed in [2] where the models used in a
trust-region method are randomly generated at each iteration. As a result,
the iterates and trust-region radii produced by the algorithm will also be ran-
dom. Upper case letters will be then used to designate random variables and
lower case their realizations. Hence, mk, xk, δk will denote respectively the
realizations of the random model, iterate, and trust-region radius Mk, Xk,∆k

at iteration k. The random models are then asked to be fully linear with a
certain favorable property regardless of the past iteration history. The fol-
lowing definition was proposed in [2] to analyze global convergence of the
corresponding trust-region methods to first-order critical points.

Definition 2.1. We say that a sequence of random models {Mk} is (p)–
probabilistically (κeg, κef)-fully linear for a corresponding sequen-
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ce {B(Xk,∆k)} if the events

Sk = {Mk is a (κeg, κef)-fully linear model of f on B(Xk,∆k)}

satisfy Pr(S0) ≥ p and, for each k ≥ 1, the following submartingale-like
condition

Pr (Sk|M0, . . . ,Mk−1) ≥ p.

An example is given in [2] where, using random matrix theory, it was shown
that linear interpolation based on Gaussian sample sets of cardinality n+ 1
(with a fixed point and the remaining n points being generated randomly
from a standard Gaussian distribution) gives rise to fully linear models with
a favorable probability (say p > 1/2). By using increasingly more sample
points and building the models by linear regression it is possible to reach a
probability as high as desired ([12, Chapter 4]; see also [22]).

2.1. Algorithm and assumptions. To simplify the presentation, we de-
scribe the trust-region methods under consideration (later given in Algo-
rithm 2.1) for each realization of the model randomness. A few components
of these methods are classical, with or without derivatives. At each itera-
tion k, one minimizes a quadratic model

mk(xk + s) = f(xk) + g>k s+
1

2
s>Hks

in a trust region of the form B(xk, δk). For global convergence to first-
order criticality, the Hessian models are assumed uniformly bounded and
the step sk is asked to satisfy a fraction of the model decrease given by the
negative model gradient within the trust region. These two assumptions are
formalized next.

Assumption 2.1. There exists a positive constant κbhm such that, for every
k, the Hessians Hk of all realizations mk of Mk satisfy

‖Hk‖ ≤ κbhm.

Assumption 2.2. For every k, and for all realizations mk of Mk (and of Xk

and ∆k), we are able to compute a step sk so that it satisfies a fraction of
Cauchy decrease, i.e.,

m(xk)−m(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
, (1)
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for some constant κfcd ∈ (0, 1], and with the convention that ‖gk‖
‖Hk‖ = ∞ if

‖Hk‖ = 0.

Finally, the step acceptance and trust-region radius update are based on
the ratio between the actual decrease in the objective function and the one
predicted by the model, namely

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

What is different now from the classical derivative-based case is that some
form of criticality step has to be taken into account, where models are recom-
puted in regions small enough compared to the size of the model gradient.
Following [2], the presentation and the analysis can be significantly simplified
if this requirement is mitigated at each iteration. So, in Algorithm 2.1, the
trust-region radius is reduced (at iterations where ρk is large enough and the
step is taken) provided δk is too large compared to ‖gk‖.

Algorithm 2.1. A simple first-order derivative-free trust-region framework.
Fix parameters η1, η2, δmax > 0 and 0 < γ1 < 1 < γ2. Select initial x0 and
δ0 ∈ (0, δmax). For k = 0, 1, . . . do: Build a quadratic model mk(xk + s) of
f , and compute sk by approximately minimizing mk in B(xk, δk) so that it
satisfies (1). If ρk ≥ η1, set xk+1 = xk + sk and

δk+1 =

{
min {γ2δk, δmax} if ‖gk‖ ≥ η2δk,
γ1δk otherwise.

Otherwise, set xk+1 = xk and δk+1 = γ1δk.

Note that we have slightly extended the framework in [2] by using two
different parameters (namely γ1 and γ2) to update the trust-region radius,
instead of using a single one and its inverse. As we will see, these parameters
are intimately connected to the minimum probability with which the models
are required to be fully linear. Also, the safeguard δmax is not used in the
analysis of the first-order methods and is only there for coherence with the
second-order case (where it appears in the analysis) as well as with [2].

The algorithm will be analyzed under the following two assumptions on f .
As in [2] it would be enough to assume continuously differentiability in an
enlarged initial level set, but we skip this detail for keeping the presentation
simple.
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Assumption 2.3. The function f is continuously differentiable on Rn, and
its gradient is Lipschitz continuous.

Assumption 2.4. The objective function f is bounded from below on Rn,
and we denote by flow a lower bound.

At this point we can state a fundamental result for establishing the com-
plexity of trust-region methods based on probabilistic models. As in the
classical setting of trust-region methods, it ensures that the step is taken if
the trust-region radius is small enough compared to the size of the true gra-
dient. There are two differences compared to [2, Lemma 3.2]: first, the result
is stated for the true gradient, in alignment to what is needed to establish
complexity bounds; second, it is inferred additionally that the trust-region
radius is increased under the same condition.

Lemma 2.1. If mk is (κeg, κef)-fully linear on B(xk, δk) and

δk <

(
κeg + max

{
η2, κbhm,

4κef
κfcd(1− η1)

})−1

‖∇f(xk)‖, (2)

then at the k-th iteration the step is taken (xk+1 = xk+sk) and δk is increased.

Proof : From (2), one has

κegδk + max

{
η2, κbhm,

4κef
κfcd(1− η1)

}
δk < ‖∇f(xk)‖,

and from this and Definition 1.1,

max

{
η2, κbhm,

4κef
κfcd(1− η1)

}
δk < ‖∇f(xk)‖ − ‖gk −∇f(xk)‖ ≤ ‖gk‖.

Hence,

δk < min

{
1

η2
,

1

κbhm
,
κfcd(1− η1)

4κef

}
‖gk‖,

and from [12, Proof of Lemma 10.6] we obtain ρk ≥ η1. Since the first term
in the minimum gives η2δk < ‖gk‖, the trust-region radius is increased.

2.2. Behavior of the trust-region radius. We will now prove that the
sequence of the trust-region radii is square summable and establish an ex-
plicit upper bound for the sum. The proof makes use of the set of indices
corresponding to iterations where the trust-region radius is increased, that is

K = {k ∈ N : ρk ≥ η1 and ‖gk‖ ≥ η2δk} . (3)
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Remark 2.1. In context of direct search based on probabilistic descent [19,
Lemma 4.1], it was proved a similar result for the sequence of the step size αk.
There, an iteration attains a decrease of the order of α2

k whenever the step
is taken, in which case such direct-search algorithms always increase the step
size. In the trust-region context, as we will see in the proof below, a decrease
of the order of δ2

k corresponds only to the iterations where the trust-region
radius is increased. There are iterations where the step is taken and the trust-
region is decreased, in which case the decrease obtained is not necessarily of
this order.

Lemma 2.2. For any realization of Algorithm 2.1,

∞∑
k=0

δ2
k ≤ β :=

γ2
2

1− γ2
1

[
δ2

0

γ2
2

+
f0 − flow

η

]
,

where f0 = f(x0) and

η = η1η2
κfcd

2
min

{
η2

κbhm
, 1

}
.

Proof : We only need to address the case where there are infinitely many
iterations at which the trust-region radius is increased (i.e., |K| = ∞). For
any k ∈ K, from (1),

f(xk)− f(xk + sk) ≥ η1 (mk(xk)−mk(xk + sk))

≥ η1
κfcd

2
η2 min

{
η2

κbhm
, 1

}
δ2
k = ηδ2

k.

Consequently, if we sum a finite number of consecutive iterations in K, we
obtain

η
∑
j∈K
j≤k

δ2
j ≤

∑
j∈K
j≤k

[f(xj)− f(xj+1)]

≤
∑
j≤k

[f(xj)− f(xj+1)] ≤ f0 − f(xk+1) ≤ f0 − flow,

leading to ∑
k∈K

δ2
k ≤

f0 − flow

η
.
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From now on the proof is as in the proof of [19, Lemma 4.1]. Let K =
{k1, k2, . . .} and, for auxiliary reasons, k0 = −1 and δ−1 = δ0/γ2. The sum∑∞

k=0 δ
2
k can thus be rewritten as

∞∑
k=0

δ2
k =

∞∑
i=0

ki+1∑
k=ki+1

δ2
k.

Besides, one has for each index i, δk ≤ γ2(γ1)
k−ki−1δki for k = ki+1, . . . , ki+1.

Hence,
ki+1∑

k=ki+1

δ2
k ≤

γ2
2

1− γ2
1

δ2
ki
,

and we finally obtain the desired result:

∞∑
k=0

δ2
k ≤

γ2
2

1− γ2
1

∞∑
i=0

δ2
ki
≤ γ2

2

1− γ2
1

[
δ2

0

γ2
2

+
f0 − flow

η

]
.

This is a stronger version of the result limk→∞ δk = 0 proved in [2] for the
purpose of global convergence.

2.3. Number of iterations with fully linear models. Recall the set of
indices (3) corresponding to iterations where the step is taken and the trust-
region radius is increased, and let yk denote the corresponding indicator
(yk = 1 if k ∈ K, yk = 0 otherwise). One sees that δk and K play the same
roles as the step size αk and the set of successful iterations for the analysis
of the direct search based on probabilistic descent [19].

Let now ∇f(x̃k), with x̃k ∈ {x0, . . . , xk}, represent a minimum norm gra-
dient among ∇f(x0), . . . ,∇f(xk). Let us also consider the minimum proba-
bility

p0 =
ln(γ1)

ln (γ1/γ2)
(4)

that will be assumed when applying Definition 2.1. When γ1 = 1/2 and
γ2 = 2, one has p0 = 1/2.

The next step in the analysis is to show, similarly to [19, Lemma 4.2], that
if ‖∇f(x̃k)‖ is too large then necessarily not too many iterations benefited
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from a fully linear model2. The binary variable zk below indicates whether
mk is (κeg, κef)-fully linear or not.

Lemma 2.3. Given a realization of Algorithm 2.1 and a positive integer k,

k−1∑
l=0

zl ≤
β

(min{δ0/γ2, κ‖∇f(x̃k)‖})2
+ p0k,

where

κ =

(
κeg + max

{
η2, κbhm,

4κef
κfcd(1− η1)

})−1

.

Proof : For each l ∈ {0, 1, . . . , k − 1}, define

vl =

{
1 if δl < min{γ−1

2 δ0, κ‖∇f(x̃k)‖},
0 otherwise.

(5)

The proof relies then on zl ≤ (1−vl)+vlyl, which is true because, when vl = 1,
Lemma 2.1 implies that yl ≥ zl (since ‖∇f(x̃k)‖ ≤ ‖∇f(x̃k−1)‖ ≤ ‖∇f(x̃l)‖).
It suffices then to separately prove

k−1∑
l=0

(1− vl) ≤
β

(min{δ0/γ2, κ‖∇f(x̃k)‖})2
(6)

and
k−1∑
l=0

vlyl ≤ p0k. (7)

Inequality (6) is justified by Lemma 2.2 and the fact that (5) implies

1− vl ≤
δ2
l

(min{δ0/γ2, κ‖∇f(x̃k)‖})2
.

The proof of inequality (7) is verbatim as in the proof of [19, Lemma 4.2]. It
is in here that the particular choice (4) for p0 comes into a play.

2As opposed to Lemma 2.2 this result follows more directly from the theory in [19], given that
the discrepancy mentioned in Remark 2.1 does not need special treatment.
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2.4. Worst case complexity and global rate. From Lemma 2.3, one then
has the following inclusion of events{

‖∇f(X̃k)‖ ≥ ε
}
⊂

{
k−1∑
l=0

Zl ≤
β

κ2ε2
+ p0k

}
, (8)

for any ε satisfying

0 < ε <
δ0

κγ2
. (9)

On the other hand the probabilistic behavior of the event on the right-hand
side is known from the application of the Chernoff bound to the lower tail of∑k−1

l=0 Zl (see, e.g., [19, Lemma 4.4]), and here is where the conditioning on
the past in Assumption 2.1 comes to play a role.

Lemma 2.4. Suppose that {Mk} is (p)–probabilistically (κeg, κef)-fully linear
and λ ∈ (0, p). Then

πk(λ) := Pr

(
k−1∑
l=0

Zl ≤ λk

)
≤ exp

[
−(p− λ)2

2p
k

]
.

Thus, when ε < δ0/(κγ2) and

k ≥ 2β

(p− p0)κ2ε2
, (10)

the inclusion (8) and the monotonicity of πk(·) will give us (setting λ =
(p+ p0)/2 in Lemma 2.4)

Pr
(
‖∇f(X̃k)‖ ≤ ε

)
≥ Pr

(
‖∇f(X̃k)‖ < ε

)
≥ 1− πk

(
β

kκ2ε2
+ p0

)
≥ 1− πk

(
p− p0

2
+ p0

)
≥ 1− exp

[
−(p− p0)

2

8p
k

]
,

(11)

leading to the following global rate result.
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Theorem 2.1. Suppose that {Mk} is (p)–probabilistically (κeg, κef)-fully lin-
ear with p > p0 and

k ≥ 2βγ2
2

(p− p0)δ2
0

. (12)

Then, the minimum gradient norm ‖∇f(X̃k)‖ satisfies

Pr

(
‖∇f(X̃k)‖ ≤

√
2β

1
2 (p− p0)

1
2

κ
1
2

1√
k

)
≥ 1− exp

[
−(p− p0)

2

8p
k

]
.

Proof : Let

ε =

√
2β

1
2 (p− p0)

1
2

κ
1
2

1√
k
.

Then (10) holds with equality, and ε < δ0/(κγ2) is guaranteed by (12).
Hence (11) gives us the bound.

We have thus proved a global rate of 1/
√
k for the norm of the gradient

with overwhelmingly high probability.
Similarly, one can prove a worst-case bound of the order of O(ε−2) for the

first iteration index Kε for which ‖∇f(X̃Kε
)‖ ≤ ε, also with overwhelmingly

high probability (and we note that Kε is a random variable due to the ran-
domness of the models). The proof relies on again applying (11), on the
observation that Pr(Kε ≤ k) = Pr(‖∇f(X̃k)‖ ≤ ε), and on taking k as

k =

⌈
2β

(p− p0)κ2ε2

⌉
.

Theorem 2.2. Suppose that {Mk} is (p)–probabilistically (κeg, κef)-fully lin-
ear with p > p0 and that ε satisfies (9). Then, Kε satisfies

Pr

(
Kε ≤

⌈
2β

(p− p0)κ2ε2

⌉)
≥ 1− exp

[
−β(p− p0)δ

2

4pκ2ε2

]
.

Results in expectation are a natural byproduct of our analysis. It can be
shown that E(‖∇f(X̃k)‖) is bounded by a function of the order of k−

1
2 +

exp(−k) up to multiplicative constants (see [19, Proposition 5.2]). It is also
possible to bound the expected value of Kε [24].
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Theorem 2.3. Suppose that {Mk} is (p)–probabilistically (κeg, κef)-fully lin-
ear with p > p0 and that ε satisfies (9). Then,

E (Kε) ≤ c1ε
−2 +

1

1− exp(−c2)
,

where

c1 =
2β

(p− p0)κ2
, c2 =

(p− p0)
2

8p
.

Proof : Since Kε only takes non-negative integer values, the expected value
of Kε satisfies:

E (Kε) =
∞∑
j=0

j Pr (Kε = j) =
∑
j≥0

∑
k≥0
k<j

Pr (Kε = j)

=
∑
k≥0

∑
j≥0
k<j

Pr (Kε = j) =
∑
k≥0

Pr (Kε > k) .

Hence,

E (Kε) =
∑

0≤k<c1ε−2

Pr (Kε > k) +
∑

k≥c1ε−2

Pr (Kε > k)

≤ c1ε
−2 + 1 +

∑
k≥c1ε−2

Pr (Kε > k)

= c1ε
−2 + 1 +

∑
k≥c1ε−2

Pr
(
‖∇f(X̃k)‖ > ε

)
.

For any index k ≥ c1ε
−2, similar to (11), we have

Pr
(
‖∇f(X̃k)‖ > ε

)
≤ exp(−c2k).

As a result,

E (Kε) ≤ c1ε
−2 + 1 +

∑
k≥c1ε−2

exp(−c2k)

≤ c1ε
−2 +

∑
k≥0

exp(−c2k) ≤ c1ε
−2 +

1

1− exp(−c2)
,

which proves the desired result.



14 S. GRATTON, C. W. ROYER, L. N. VICENTE AND Z. ZHANG

The obtained bound is thus

O
(
κ−2ε−2

p− p0

)
+O(1),

which matches the results of [5] for line-search methods based on probabilistic
models (where p0 is taken as 1/2). We also emphasize that these expectation
bounds exhibit a dependence on the inverse of p− p0.

2.5. A note on global convergence. Our complexity theory implies
(see [19, Proposition 5.1])

Pr

(
inf
k≥0
‖∇f(Xk)‖ = 0

)
= 1.

If we assume for all realizations of Algorithm 2.1 that the iterates never
arrive at a stationary point in a finite number of iterations, then the events
{lim infk→∞ ‖∇f(Xk)‖ = 0} and {infk≥0 ‖∇f(Xk)‖ = 0} are identical and we
recover the liminf result in probability one of [2, Theorem 4.2]. Note also
that such a result could be derived even more directly by using the argument
of [19, Lemma 3.2 and Theorem 3.1]. The paper [2] takes it one step further,
establishing also a lim-type result.

3. Complexity of second-order trust-region methods
based on probabilistic models

The same proof technology enables us to derive a similar complexity study
for the class of trust-region algorithms under consideration but now with the
goal of approaching or converging to second-order critical points. To do so,
additional assumptions need to be enforced regarding both the quality of the
models and the properties of the step resulting from the approximate solution
of the trust-region subproblem. We start by the probabilistic counterpart to
the concept of fully quadratic models of Definition 1.2.

Definition 3.1. We say that a sequence of random models {Mk} is (p)–
probabilistically (κeh, κeg, κef)-fully quadratic for a corresponding sequence
{B(Xk,∆k)} if the events

Sk = {Mk is a (κeh, κeg, κef)-fully quadratic model of f on B(Xk,∆k)}
satisfy Pr(S0) ≥ p and, for each k ≥ 1, the following submartingale-like
condition

Pr (Sk|M0, . . . ,Mk−1) ≥ p.
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It was shown in [1] how to build fully quadratic models with high probabil-
ity from quadratic interpolation and uniformly generated sample sets. It is
also proved there that such a procedure may recover such models with con-
siderably less than (n + 1)(n + 2)/2 function evaluations when the Hessian
of the function is sparse.

3.1. Algorithm and assumptions. As before, we consider quadratic mod-
els around the iterate xk, with the same definitions for mk, gk, and Hk (and
the imposition of Assumption 2.1). As curvature is now present in our anal-
ysis, we will make use of the notation τk = λmin(Hk). The solution of the
trust-region subproblem has now to be second-order accurate.

Assumption 3.1. For every k, and for all realizations mk of Mk (and of Xk

and ∆k), we are able to compute a step sk so that it satisfies both a fraction
of Cauchy decrease and a fraction of eigendecrease, i.e.,

m(xk)−m(xk + sk) ≥
κfod

2
max

{
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
,−τkδ2

k

}
. (13)

for some constant κfod ∈ (0, 1].

The first part of (13) can be satisfied by a Cauchy step, while considering a
step of norm δk along an eigenvector of the model Hessian associated with the
eigenvalue τk yields the second-order decrease in δ2

k. A step satisfying (13) can
be obtained by taking the one corresponding to the largest decrease caused
in the model value.

Such considerations lead us from Algorithm 2.1 to Algorithm 3.1, preserv-
ing the overall structure of the method (and, in particular, the updating rules
for the trust-region radius). As mentioned in the Introduction we make use
of the second-order criticality measure

σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
,

for which a natural estimator at xk is

σm(xk) := max {‖gk‖,−τk} .
In the case of a fully quadratic model, the two quantities are related as
follows.

Lemma 3.1. [12, Lemma 10.15] If mk is (κeh, κeg, κef)-fully quadratic on
B(xk, δk), then

|σ(xk)− σm(xk)| ≤ κσδk, (14)
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where κσ = max {κegδmax, κeh}.

Algorithm 3.1. A simple second-order derivative-free trust-region frame-
work. Fix parameters η1, η2, δmax > 0 and 0 < γ1 < 1 < γ2. Select initial x0

and δ0 ∈ (0, δmax). For k = 0, 1, 2, . . . do: Build a quadratic model mk(xk+s)
of f , and compute sk by approximately minimizing mk in B(xk, δk) so that it
satisfies (13). If ρk ≥ η1, set xk+1 = xk + sk and

δk+1 =

{
min {γ2δk, δmax} if σm(xk) ≥ η2δk,
γ1δk otherwise.

Otherwise, set xk+1 = xk and δk+1 = γ1δk.

Lemma 3.2. If mk is (κeh, κeg, κef)-fully quadratic on B(xk, δk) and

δk <

(
κσ + max

{
η2, κbhm,

4κefδmax

κfod(1− η1)
,

4κef
κfod(1− η1)

})−1

σ(xk),

then at the k-th iteration the step is taken (xk+1 = xk+sk) and δk is increased.

Proof : The proof is similar to the one of Lemma 2.1. Combining (14) with
the error bound of Lemma 3.1 yields

δk < min

{
1

η2
,

1

κbhm
,
κfod(1− η1)

4κef
,
κfod(1− η1)

4κefδmax

}
σm(xk).

This allows to directly conclude that ρk ≥ η1 (see [12, Lemma 10.17]). Also,
since the first term in the minimum gives η2δk ≤ σm(xk), the trust-region
radius is increased.

3.2. Behavior of the trust-region radius. Given the decrease properties
now enforced by the algorithm, similar to Lemma 2.2, we can prove that
the sequence of the trust-region radii is cube summable. Let K2nd be the
set of indexes corresponding to iterations where the step is taken and the
trust-region radius is increased, i.e.,

K2nd = {k ∈ N : ρk ≥ η1 and σm(xk) ≥ η2δk} .

Lemma 3.3. For any realization of Algorithm 3.1,

∞∑
k=0

δ3
k ≤ β2nd :=

γ3
2

1− γ3
1

[
δ3

0

γ3
2

+
f0 − flow

η2nd

]
,
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where

η2nd = η1η2
κfod

2
min

{
min

{ η2

κbhm
, 1
} 1

δmax
, 1

}
.

Proof : Similar to the proof of Lemma 2.2, we only need to consider the
case where |K2nd| = ∞. For any k ∈ K2nd, if σm(xk) = ‖gk‖, we have by
Assumption 3.1 that

f(xk)− f(xk+1) ≥ η1 [mk(xk)−mk(xk + sk)]

= η1
κfod

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
≥ η1η2

κfod
2

min
{ η2

κbhm
, 1
}
δ2
k

≥ η1η2
κfod

2
min

{ η2

κbhm
, 1
} 1

δmax
δ3
k.

Meanwhile, if σm(xk) = −τk, a similar reasoning leads to:

f(xk)− f(xk+1) ≥ η1η2
κfod

2
δ3
k.

As a result, for any index k ∈ K2nd, one has

f(xk)− f(xk+1) ≥ η1η2
κfod

2
min

{
min

{ η2

κbhm
, 1
} 1

δmax
, 1

}
δ3
k = η2ndδ

3
k.

The rest of the proof follows the lines of Lemma 3.3 replacing the squares of
the trust-region radii by cubes.

3.3. Number of iterations with fully quadratic models. An upper
bound on the number of iterations where the models are fully quadratic
is derived similarly as in the first-order case, and all that is required is
to define x̃k ∈ {x0, . . . , xk} such that σ(x̃k) is a minimum value among
{σ(x0), . . . , σ(xk)} and zk as the binary variable indicating if mk is (κeh, κeg,
κef)-fully quadratic or not.

Lemma 3.4. Given a realization of Algorithm 3.1 and a positive integer k,

k−1∑
l=0

zl ≤
β2nd

(min{δ0/γ2, κ2ndσ(x̃k)})3
+ p0k,
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where

κ2nd =

(
κσ + max

{
η2, κbhm,

4κefδmax

κfod(1− η1)
,

4κef
κfod(1− η1)

})−1

.

3.4. Worst case complexity and global rate. The derivation of the
second-order complexity theory is based on observing that Lemma 3.4 implies
now {

‖σ(X̃k)‖ ≥ ε
}
⊂

{
k−1∑
l=0

Zl ≤
β2nd

κ3
2ndε

3
+ p0k

}
,

for any ε satisfying

0 < ε <
δ0

κ2ndγ2
. (15)

Then a result identical to Lemma 2.4 can be ensured considering the defi-
nition of Zl based on fully quadratic models and replacing the probabilistic
fully linear assumption by the probabilistic fully quadratic one. The rest of
the analysis proceeds similarly with minor changes in constants. The global
rate is now 1/ 3

√
k, as shown below.

Theorem 3.1. Suppose that {Mk} is (p)–probabilistically (κeh, κeg, κef)-fully
quadratic with p > p0 and

k ≥ 2β2ndγ
3
2

(p− p0)δ3
0

.

Then, the minimum second-order criticality measure σ(X̃k) satisfies

Pr

(
σ(X̃k) ≤

3
√

2β
1
3

2nd(p− p0)
1
3

κ
1
3

2nd

1
3
√
k

)
≥ 1− exp

[
−(p− p0)

2

8p
k

]
.

Similar conclusions as those of Subsection 2.5 can be drawn here regarding
global convergence results of the inf and liminf type that can be deduced
from the above result, and regarding their interplay with the second-order
convergence theory of [2]. The only difference from the first-order case is the
difficulty in obtaining a lim-type result [2].

A worst-case complexity bound of the order of ε−3 is established similarly
with overwhelmingly high probability.
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Theorem 3.2. Suppose that {Mk} is (p)–probabilistically (κeh, κeg, κef)-fully
quadratic with p > p0 and that ε satisfies (15). Let Kε be the first iteration
index for which σ(X̃Kε

) ≤ ε. Then, Kε satisfies

Pr

(
Kε ≤

⌈
2β2nd

(p− p0)κ3
2ndε

3

⌉)
≥ 1− exp

[
−β2nd(p− p0)

4pκ3
2ndε

3

]
.

As in Theorem 2.3, we can also bound the expected number of iterations
needed to reach the desired accuracy.

Theorem 3.3. Suppose at {Mk} is (p)–probabilistically (κeh, κeg, κef)-fully
quadratic with p > p0 and that ε satisfies (15). Then,

E (Kε) ≤ c3ε
−3 +

1

1− exp(−c2)
,

where

c3 =
2β2nd

(p− p0)κ3
2nd

,

and c2 is defined as in Theorem 2.3.

4. Remarks on open questions
Recently a number of papers have appeared proposing and analyzing deri-

vative-free trust-region methods for the unconstrained optimization of a sto-
chastic function. In this setting, what is observable is f̃(x, ε(ω)), where ε is
a random variable. The objective function f(x) may be given by E(f̃(x, ε)).
One approach [26] extended the framework [11] using Sample-Average Ap-
proximation (SAA). The number of observations in each Monte Carlo oracle
may be up to O(δ−4

k ). First-order global convergence was proved with prob-
ability one but for algorithmic parameters that depend on unknown problem
constants. Another approach [6] extended trust-region methods based on
probabilistic models [2] to cover also probabilistic estimates of the objective
function. In the non-biased case with f(x) = E(f̃(x, ε)), the probabilistic
assumptions can be ensured by SAA within O(δ−4

k ) observations. This ap-
proach can also handle biased cases like failures in function evaluations or
even processor failures (thus accommodating gradient failures when using
finite differences). First-order global convergence was also proved with prob-
ability one but again for algorithmic parameters that depend on unknown
problem constants. A similar approach [22] led to first-order global con-
vergence in probability (weaker than with probability one), but under more
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practical assumptions. Very recently, a paper [3] developed a complexity
analysis for the approach in [6] showing a complexity bound of O(ε−2) on the
expected number of iterations needed to satisfy ‖∇f(Xk)‖ ≤ ε (again under
unverifiable assumptions on algorithmic parameters).

It is an open question whether our proof technology can improve upon
these stochastic optimization approaches in the sense of establishing global
convergence with probability one and global rates and complexity bounds
with overwhelmingly high probability without unverifiable assumptions on
algorithmic parameters. Another challenging prospect for future work is to
develop better rates and bounds for the convex and strongly cases for either
deterministic or stochastic functions.
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