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Abstract: Direct search is a methodology for derivative-free optimization whose
iterations are characterized by evaluating the objective function using a set of polling
directions. In deterministic direct search applied to smooth objectives, these direc-
tions must somehow conform to the geometry of the feasible region and typically
consist of positive generators of approximate tangent cones (which then renders the
corresponding methods globally convergent in the linearly constrained case). One
knows however from the unconstrained case that randomly generating the polling
directions leads to better complexity bounds as well as to gains in numerical ef-
ficiency, and it becomes then natural to consider random generation also in the
presence of constraints.

In this paper, we study a class of direct search based on sufficient decrease for
solving smooth linearly constrained problems where the polling directions are ran-
domly generated (in approximate tangent cones). The random polling directions
must satisfy probabilistic feasible descent, a concept which reduces to probabilistic
descent in the absence of constraints. Such a property is instrumental in establishing
almost-sure global convergence and worst-case complexity bounds with overwhelm-
ing probability. Numerical results show that the randomization of polling directions
compares favorably to the classical deterministic approach. In some cases, one can
observe a clear superiority of randomization, as it is suggested by our complexity
results.

Keywords: Derivative-free optimization, direct-search methods, positive genera-
tors, probabilistic feasible descent, bounds, linear constraints.
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1. Introduction
In various practical scenarios, derivative-free algorithms are the single way

to solve optimization problems for which no derivative information can be
computed or approximated. Among the various classes of such schemes, di-
rect search is one of the most popular, due to its simplicity, robustness, and
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easiness of parallelization. Direct-search methods [18, 7] explore the objec-
tive function along suitably chosen sets of directions, called polling directions.
When there are no constraints on the problem variables and the objective
function is smooth, those directions must provide a suitable angle approxima-
tion to the unknown negative gradient, and this is guaranteed by assuming
that the polling vectors positively span the whole space (by means of non-
negative linear combinations). In the presence of constraints, such directions
must conform to the shape of the feasible region in the vicinity of the cur-
rent feasible point, and are typically given by the positive generators of some
approximate tangent cone identified by nearby active constraints. When the
feasible region is polyhedral, it is possible to decrease a smooth objective
function value along such directions without violating the constraints, pro-
vided a sufficiently small step is taken.

Bound constraints are a classical example of such a polyhedral setting.
Direct-search methods tailored to these constraints have been introduced
by [21] where polling directions can (and must) be chosen among the coordi-
nate directions and their negatives, which naturally conform to the geometry
of such a feasible region. A number of other methods have been proposed and
analyzed based on these polling directions (see [12, 14, 25] and [17, Chapter
4]).

In the general linearly constrained case, polling directions have to be com-
puted as positive generators of cones tangent to a set of constraints that are
nearly active (see [22, 19]). The identification of the nearly active constraints
can be tightened to the size of the step taken along the directions [19], and
global convergence is guaranteed to a true stationary point as the step size
goes to zero. In the presence of constraint linear dependence, the compu-
tation of these positive generators is problematic and may require enumera-
tive techniques [1, 20, 30], although the practical performance of the corre-
sponding methods does not seem much affected. Direct-search methods for
linearly constrained problems have been successfully combined with global
exploration strategies by means of a search step [8, 32, 33].

Several strategies for the specific treatment of linear equality constraints
have also been proposed, one way being to remove those constraints by chang-
ing of variables [2, 11]. Another possibility is to design the algorithm so that
it explores the null space of the linear equality constraints, which is also
equivalent to solving the problem in a lower-dimensional subspace [24, 20].
Such techniques may lead to a possibly less separable problem.
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All aforementioned strategies involve the deterministic generation of the
polling directions. Recently, it has been shown in [16] that the random gen-
eration of the polling directions outperforms the classical choice of determin-
istic positive spanning sets for unconstrained optimization (whose cardinality
is at least n + 1, where n is the dimension of the problem). Inspired by the
concept of probabilistic trust-region models [3], the authors in [16] introduced
the concept of probabilistic descent, which essentially imposes on the random
polling directions the existence of a direction that makes an acute angle with
the negative gradient with a probability sufficiently large conditioning on the
history of the iterations. This approach has been proved globally convergent
with probability one. More importantly, a complexity bound of the order
nε−2 has been showed (with overwhelming high probability) for the number
of function evaluations needed to reach a gradient of norm below a posi-
tive threshold ε, which contrasts with the n2ε−2 bound of the deterministic
case [34] (for which the factor of n2 cannot be improved [9]). It was also re-
ported a substantial gain in numerical efficiency while generating the polling
directions randomly, with the choice of only two directions (supported by the
theory) leading to the best observed performance.

Motivated by these results for unconstrained optimization, we introduce
in this paper the concept of probabilistic feasible descent for the linearly
constrained setting, essentially by considering the projection of the nega-
tive gradient on an approximate tangent cone identified by nearby active
constraints. We prove for smooth objectives that direct search based on
probabilistic feasible descent (and sufficient decrease) enjoys global conver-
gence with probability one and takes (with overwhelming high probability)
a number of iterations of the order of ε−2 to reduce an optimality measure
of the problem below ε > 0. As a by-product of our work we will also show
a similar complexity bound for the deterministic choice of polling directions
— left open in the literature until now. We then quantify the number of
function evaluations required for the same goal, and we do this for two ran-
domized strategies: one where the directions are a random subset of the
positive generators of the approximate tangent cone; and another where one
first decomposes the approximate tangent cone into a subspace and a cone
orthogonal to the subspace. In the latter case, the subspace component (if
nonzero) is handled by generating random directions in it, and the cone com-
ponent is treated by considering a random subset of its positive generators.
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Throughout the paper we particularize our results for the cases where there
are only bounds on the variables or there are only linear equality constraints.

We organize our paper as follows. In Section 2, we describe the prob-
lem at hand as well as the direct-search framework under consideration. In
Section 3 we motivate the concept of feasible descent and show how to de-
rive from this the already known global convergence of [19] — although not
providing a new result, this setup is crucial for the rest of the paper. It
allows us to establish right away (see Section 4) the complexity of this class
of direct-search methods based on sufficient decrease for linearly constrained
optimization, establishing bounds for the worst-case effort when measured
in terms of number of iterations and function evaluations. In Section 5 we
introduce the concept of probabilistic feasible descent and prove almost-sure
global convergence for direct-search methods based on it. The corresponding
worst-case complexity bounds are established in Section 6. In Section 7 we
discuss how to take advantage of subspace information in the random gen-
eration of the polling directions. Then we report in Section 8 a numerical
comparison between direct search based on probabilistic feasible descent and
a built-in MATLAB direct-search solver, which enlightens the potential of
random polling directions. Finally, conclusions are drawn in Section 9.

We will use the following notation. Throughout the document, any set of
vectors V = {v1, . . . , vm} ⊂ Rn will be identified with the matrix [v1 · · · vm] ∈
Rn×m. We will thus allow ourselves to write v ∈ V even though we may
manipulate V as a matrix. Given a closed, convex cone K in Rn, PK [x]
will denote the uniquely defined projection of the vector x onto the cone K
(with the convention P∅[x] = 0 for all x). The polar cone of K is the set
{x : y>x ≤ 0,∀y ∈ K}. For every space considered, the norm ‖ · ‖ will be
the Euclidean one. The notation O(A) will stand for a scalar times A, with
this scalar depending solely on the problem considered or constants from
the algorithm. The dependence on the problem dimension n will explicitly
appear in A when considered appropriate.

2. Direct search for linearly constrained problems
In this paper, we consider optimization problems given in the following

form:
min
x∈Rn

f(x)

s.t. Ax = b,
` ≤ Aiqx ≤ u,

(1)
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where f : Rn → R, A ∈ Rm×n, Aiq ∈ Rmiq×n, b ∈ Rm, and (`, u) ∈
(R ∪ {−∞,∞})miq , with ` < u. We consider that the matrix A can be
empty (i.e., m can be zero), in order to encompass unconstrained and bound-
constrained problems into this general formulation (when miq = n and
Aiq = In). Whenever m ≥ 1, we suppose that the matrix A is of full row
rank. We define the feasible region as

F = {x ∈ Rn : Ax = b, ` ≤ Aiqx ≤ u} .

The algorithmic analysis in this paper requires a measure of first-order
criticality for problem (1). Given x ∈ F , we will work with

χ (x)
def
= max

x+d∈F
‖d‖≤1

d> [−∇f(x)] . (2)

The criticality measure χ (·) is a non-negative, continuous function that
equals zero only at a KKT first-order stationary point of problem (1) (see [35]).
It has been successfully used to derive convergence analyzes of direct-search
schemes applied to linearly constrained problems [18]. Given an orthonormal
basis W ∈ Rn×(n−m) for the null space of A, this measure can be reformulated
as

χ(x) = max
x+Wd̃∈F
‖Wd̃‖≤1

d̃>[−W>∇f(x)] = max
x+Wd̃∈F
‖d̃‖≤1

d̃>[−W>∇f(x)]. (3)

Algorithm 2.1 presents the basic direct-search method under analysis in
this paper. We suppose that a feasible initial point is provided by the user.
At every iteration, using a finite number of polling directions, the algorithm
attempts to compute a new feasible iterate that reduces the objective function
value by a sufficient amount (measured by the value of a forcing function ρ
on the step size αk).

Algorithm 2.1. Feasible Direct Search based on sufficient decrease. Inputs:
x0 ∈ F , αmax ∈ (0,∞], α0 ∈ (0, αmax), θ ∈ (0, 1), γ ∈ [1,∞), and a forcing
function ρ : (0,∞) → (0,∞). For k = 0, 1, . . . do: Poll Step Choose a
finite set Dk of non-zero polling directions. Evaluate f at the polling points
{xk + αkd : d ∈ Dk} following a chosen order. If a feasible poll point
xk +αkdk is found such that f(xk +αkdk) < f(xk)− ρ(αk) then stop polling,
set xk+1 = xk + αkdk, and declare the iteration successful. Otherwise declare
the iteration unsuccessful and set xk+1 = xk. Step Size Update If the
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iteration is successful, (possibly) increase the step size by setting αk+1 =
min {γαk, αmax}; Otherwise, decrease the step size by setting αk+1 = θαk.

We consider that such a method runs under the following assumptions.

Assumption 2.1. For each k ≥ 0, Dk is a finite set of normalized vectors.

As it was done in [16] for unconstrained optimization, the constants in
the derivation of complexity bounds simplify if we assume that all polling
directions are normalized. However, all global convergence limits and worst-
case complexity orders remain true when the norms of polling directions are
only assumed to be above and below certain positive constants.

Assumption 2.2. The forcing function ρ is positive, non-decreasing, and
ρ(α) = o(α) when α→ 0+. There exist constants θ̄ and γ̄ satisfying 0 < θ̄ <
1 ≤ γ̄ such that, for each α > 0, ρ(θα) ≤ θ̄ρ(α) and ρ(γα) ≤ γ̄ρ(α).

Typical examples of such functions include monomials of the form ρ(α) =
c αq, with c > 0 and q > 1. The case q = 2 gives rise to optimal worst-case
complexity bounds [34].

The directions used by the algorithm should promote feasible displace-
ments. As the feasible region is polyhedral this can be achieved by select-
ing polling directions from tangent cones. However, the algorithm is not of
active-set type and thus the iterates may get very close to the boundary but
never lie at the boundary. In such a case, when no constraint is active, tan-
gent cones promote all directions equally, not reflecting the proximity to the
boundary. A possible fix is then to consider tangent cones corresponding to
nearby active constraints as in [19, 20].

In this paper we will make use of concepts and properties from [19, 22]
where the problem has been stated using a linear inequality formulation. To
be able to apply them to problem (1), where the variables are also subject
to the equality constraints Ax = b, we first consider the feasible region F
reduced to the nullspace of A (by writing x = x̄ + Wx̃ for a fix x̄ such that
Ax̄ = b),

F̃ =
{
x̃ ∈ Rn−m : `− Aiqx̄ ≤ AiqWx̃ ≤ u− Aiqx̄

}
, (4)

where, again, W is an orthonormal basis for null(A). Then we define two in-
dex sets corresponding to approximate active inequality constraints/bounds,
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namely

Iu(x, α) =
{
i : |ui − [Aiqx̄]i − [AiqWx̃]i| ≤ α‖W>A>iqei‖

}
I`(x, α) =

{
i : |`i − [Aiqx̄]i − [AiqWx̃]i| ≤ α‖W>A>iqei‖

}
,

(5)

where e1, . . . , emiq
are the coordinate vectors in Rmiq and α is the step size

in the algorithm. The indices in these sets contain the inequality con-
straints/bounds where the Euclidean distance from x to the corresponding
boundary is less than or equal to α. Note that one can assume without loss
of generality that ‖W>A>iqei‖ 6= 0, otherwise given that we assume that F
is nonempty, the inequality constraints/bounds `i ≤ [Aiqx]i ≤ ui would be
redundant.

Now we consider an approximate tangent cone T (x, α) as if these inequality
constraints/ bounds were active. This corresponds to considering a normal
cone N(x, α) positively generated by the vectors

{W>A>iqei}i∈Iu(x,α) ∪ {−W>A>iqei}i∈I`(x,α) (6)

and to take T (x, α) as the polar of N(x, α)1.
The feasible directions we are looking for are given by Wd̃ with d̃ ∈ T (x, α),

as supported by the lemma below.

Lemma 2.1. Let x ∈ F , α > 0, and d̃ ∈ T (x, α). If ‖d̃‖ ≤ α, then
x+Wd̃ ∈ F .

Proof : First we observe that x + Wd̃ ∈ F is equivalent to x̃ + d̃ ∈ F̃ . Then
we apply [19, Proposition 2.2] to the reduced formulation (4).

This results also holds for displacements of norm α in the full space as
‖Wd̃‖ = ‖d̃‖. Hence, by considering steps of the form αWd̃ with d̃ ∈ T (x, α)
and ‖d̃‖ = 1 we are ensured to remain in the feasible region.

We point out that the previous definitions and the resulting analysis can
be extended by replacing α in the definition of the nearby active inequality

1When developing the convergence theory in the deterministic case, the authors in [22, 19] have
considered a formulation only involving linear inequality constraints. In [20] they have suggested to
include linear equality constraints by adding to the positive generators of the approximate normal
cone the transposed rows of A and their negatives, which in turn implies that the tangent one
lies in the null space of A. In this paper we take an equivalent approach by explicitly considering
the iterates in null(A). Not only this allows a more direct application of the theory in [22, 19]
but it also renders the consideration of the particular cases (only bounds or only linear equalities)
simpler.
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constraints/bounds by a quantity of the order of α (that goes to zero when
α does); see [19]. For matters of simplicity of the presentation we will work
with α instead which was also the practical choice suggested in [20].

3. Feasible descent and deterministic global convergence
In the absence of constraints, all that is required for the set of polling

directions is the existence of a descent direction, in other words,

cm(D,−∇f(x)) ≥ κ with cm(D, v) = max
d∈D

d>v

‖d‖‖v‖
,

for some κ > 0. The quantity cm(D, v) is the cosine measure of D given v,
introduced in [16] as an extension of the cosine measure of D [18] (and both
measures are bounded away from zero for positive spanning sets D). To
generalize this concept for problem (1), where the variables are subject to
inequality constraints/bounds and equalities, we first consider the feasible
region F in its reduced version (4), so that we can apply in the reduced
space the concepts and properties of [19, 22] where the problem has been
stated using a linear inequality formulation.

Let ∇̃f(x) be the gradient of f reduced to the null space of the matrix A
defining the equality constraints, namely ∇̃f(x) = W>∇f(x). Given an
approximate tangent cone T (x, α) and a set of directions D̃ ⊂ T (x, α), we
will use

cmT (x,α)(D̃,−∇̃f(x))
def
= max

d̃∈D̃

d̃>(−∇̃f(x))∥∥d̃∥∥∥∥PT (x,α)[−∇̃f(x)]
∥∥ (7)

as the cosine measure of D̃ given −∇̃f(x). If PT (x,α)[−∇̃f(x)] = 0, then we
define the quantity in (7) as equal to 1. This cosine measure given a vector is
motivated by the analysis given in [19] for the cosine measure (see Condition 1
and Proposition A.1 therein). It is clear that | cmT (x,α)(D̃,−∇̃f(x))| ≤ 1, and

cmT (x,α)(D̃,−∇̃f(x)) is close to 1 if D̃ contains a vector that is nearly in the

direction of −∇̃f(x).2

2We note that cm(D̃,−∇̃f(x)) may well be quite small when cmT (x,α)(D̃,−∇̃f(x)) is close to

1, as ‖PT (x,α)[−∇̃f(x)]
∥∥ can be arbitrarily small compared with ‖∇̃f(x)‖.
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Given a finite set C of cones, where each cone C ∈ C is positively generated
from a set of vectors G(C), one knows from [22, Proposition 10.3] that

λ(C) = min
C∈C

 inf
u∈Rn−m
PC [u]6=0

max
v∈G(C)

v>u

‖v‖‖PC [u]‖

 > 0. (8)

Thus, if D̃ positively generates T (x, α),

cmT (x,α)(D̃) = inf
u∈Rn−m

PT (x,α)[u]6=0

max
d̃∈D̃

d̃>u

‖d̃‖
∥∥PT (x,α)[u]

∥∥ ≥ κmin > 0,

where κmin = λ(T) and T is formed by all possible tangent cones T (x, ε)
(with some associated sets of positive generators), for all possible values of
x ∈ F and ε > 0. Note that T is necessarily finite given that the number of
constraints also is. This guarantees that the cosine measure (7) of such a D̃
given −∇̃f(x) would be necessarily bounded away from zero.

We can now naturally impose a lower bound on (7) to guarantee the exis-
tence of a feasible descent direction in a given D̃. However, we will do it in
the full space Rn by considering directions of the form d = Wd̃ for d̃ ∈ D̃.

Definition 3.1. Let x ∈ F and α > 0. Let D be a set of vectors in Rn of
the form {d = Wd̃, d̃ ∈ D̃} for some D̃ ⊂ T (x, α) ⊂ Rn−m. Given κ ∈ (0, 1),
the set D is κ-feasible descent in the approximate tangent cone WT (x, α) if

cmWT (x,α)(D,−∇f(x))
def
= max

d∈D

d>(−∇f(x))

‖d‖‖PWT (x,α)[−∇f(x)]‖
≥ κ, (9)

where W is an orthonormal basis of the null space of A, and we assume by
convention that the above quotient is equal to 1 if

∥∥PWT (x,α)[−∇f(x)]
∥∥ = 0.

In fact, using both PWT (x,α)[−∇f(x)] = PWT (x,α)[−WW>∇f(x)]

= WPT (x,α)[−W>∇f(x)] and the fact that the Euclidean norm is preserved
under multiplication by W , we note that

cmWT (x,α)(D,−∇f(x)) = cmT (x,α)(D̃,−W>∇f(x)), (10)

which helps passing from the full to the reduced space. Definition 3.1 char-
acterizes the polling directions of interest to the algorithm. Indeed, if D is a
κ-feasible descent set, it contains at least one descent direction at x feasible
for a displacement of length α (see Lemma 2.1). Furthermore, the size of κ
controls how much away from the projected gradient such a direction is.
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In the remaining of the section we will show that the algorithm is globally
convergent to a first-order stationary point. There will be no novelty here
as the result is the same as in [19], but there is a subtlety as we weaken the
assumption in [19] when using polling directions which are feasible descent
instead of positive generators. This relaxation will be instrumental when
later we derive results based on probabilistic feasible descent, generalizing [16]
from unconstrained to linearly constrained optimization.

Assumption 3.1. The function f is bounded below on the feasible region F
(and let flow > −∞ be a lower bound).

It is well known that under the boundedness below of f the step size con-
verges to zero for direct-search methods based on sufficient decrease [18]. This
type of reasoning carries naturally from unconstrained to constrained opti-
mization as long as the iterates remain feasible, and it is essentially based on
the sufficient decrease condition imposed on successful iterates. We present
the result in the stronger form of a convergence of a series, as the series limit
will be later needed for complexity purposes. The proof is given in [16] for
the unconstrained case but it applies verbatim to the feasible constrained
setting.

Lemma 3.1. Consider a run of Algorithm 2.1 applied to problem (1) under
Assumptions 2.1, 2.2, and 3.1. Then,

∑∞
k=0 ρ(αk) < ∞ (thus limk→∞ αk =

0).

Lemma 3.1 is central to the analysis (and practical stopping criteria) of
direct-search schemes. It is usually combined with a bound of the critical-
ity measure in terms of the step size. For stating such a bound we need
the following assumption, standard in the analysis of direct search based on
sufficient decrease for smooth problems.

Assumption 3.2. The function f is continuously differentiable with Lips-
chitz continuous gradient in an open set containing F (and let ν > 0 be a
Lipschitz constant of ∇f).

As it will be clearer later, the treatment of the linearly constrained case
also requires (see, e.g., [19]):

Assumption 3.3. The gradient of f is bounded in norm in the feasible set,
i.e., there exists Bg > 0 such that ‖∇f(x)‖ ≤ Bg for all x ∈ F .
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The next lemma shows that the criticality measure is of the order of the
step size for unsuccessful iterations under our assumption of feasible descent.
It is a straightforward extension of what can be proved using positive gener-
ators [19] but later fundamental in the probabilistic setting.

Lemma 3.2. Consider a run of Algorithm 2.1 applied to problem (1) under
Assumptions 2.1 and 3.2. Let Dk be κ-feasible descent in the approximate
tangent cone WT (xk, αk). Then, denoting Tk = T (xk, αk) and gk = ∇f(xk),
if the k-th iteration is unsuccessful,∥∥PTk[−W>gk]

∥∥ ≤ 1

κ

(
ν

2
αk +

ρ(αk)

αk

)
. (11)

Proof : The result clearly holds whenever the left-hand side in (11) is equal to
zero, therefore we will assume for the rest of the proof that PTk[−W>gk] 6= 0
(Tk is thus non-empty). From (10) we know that cmTk(D̃k,−W>gk) ≥ κ and
thus there exists a d̃k ∈ D̃k such that

d̃>k [−W>gk]

‖d̃k‖ ‖PTk [−W>gk]‖
≥ κ.

On the other hand, from Lemma 2.1 and Assumption 2.1, we also have
xk+αkWd̃k ∈ F . Hence, using the fact that k is the index of an unsuccessful
iteration, followed by a Taylor expansion,

−ρ(αk) ≤ f(xk + αkWd̃k)− f(xk) ≤ αkd̃
>
kW

>gk +
ν

2
α2
k

≤ −καk‖d̃k‖‖PTk[−W>gk]‖+
ν

2
α2
k,

which leads to (11).

In order to state a result involving the criticality measure χ(xk), one
needs to also bound the projection of the reduced gradient onto the po-
lar of T (xk, αk). As in [19], one uses the following uniform bound (derived
from polyhedral geometry) on the normal component of a feasible vector.

Lemma 3.3. [19, Proposition B.1] Let x ∈ F and α > 0. Then, for any
vector d̃ such that x+Wd̃ ∈ F , one has∥∥∥PN(x,α)[d̃]

∥∥∥ ≤ α

ηmin
, (12)
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where ηmin = λ(N) and N is formed by all possible approximate normal cones
N(x, ε) (generated positively by the vectors in (6)) for all possible values of
x ∈ F and ε > 0.

We remark that the definition of ηmin is independent of x and α.

Lemma 3.4. Consider a run of Algorithm 2.1 applied to problem (1) under
Assumptions 2.1, 3.2, and 3.3. Let Dk be κ-feasible descent in the approxi-
mate tangent cone WT (xk, αk). Then, if the k-th iteration is unsuccessful,

χ(xk) ≤
[
ν

2κ
+

Bg

ηmin

]
αk +

ρ(αk)

καk
. (13)

Proof : We make use of the classical Moreau decomposition [29], which states
that any vector v ∈ Rn−m can be decomposed as v = PTk[v] + PNk[v] with
Nk = N(xk, αk) and PTk[v]>PNk[v] = 0, and write

χ(xk) = max
xk+Wd̃∈F
‖d̃‖≤1

(
d̃>PTk[−W>gk] +

(
PTk[d̃] + PNk[d̃]

)>
PNk[−W>gk]

)

≤ max
xk+Wd̃∈F
‖d̃‖≤1

(
d̃>PTk[−W>gk] + PNk[d̃]>PNk[−W>gk]

)
≤ max

xk+Wd̃∈F
‖d̃‖≤1

(
‖d̃‖‖PTk[−W>gk]‖+ ‖PNk[d̃]‖‖PNk[−W>gk]‖

)
.

We bound the first term in the maximum using ‖d̃‖ ≤ 1 and Lemma 3.2. For
the second term, we apply Lemma 3.3 together with Assumption 3.3, leading
to

‖PNk[d̃]‖‖PNk[−W>gk]‖ ≤
αk
ηmin

Bg,

yielding the desired conclusion.

The use of feasible descent enables us then to establish a global convergence
result. Note that one can easily show from Lemma 3.1 that there must exist
an infinite sequence of unsuccessful iterations with step size converging to
zero, to which one then applies Lemma 3.4 and concludes the following result.

Theorem 3.1. Consider a run of Algorithm 2.1 applied to problem (1) under
Assumptions 2.1, 2.2, 3.1, 3.2, and 3.3. Suppose that Dk is κ-feasible descent
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in the approximate tangent cone WT (xk, αk) for all k. Then,

lim inf
k→∞

χ(xk) = 0. (14)

4. Complexity in the deterministic case
In this section, our goal is to provide an upper bound on the number of

iterations and function evaluations sufficient to achieve

min
0≤l≤k

χ(xl) ≤ ε, (15)

for a given threshold ε > 0. Such complexity bounds have already been
obtained for derivative-based methods addressing linearly constrained prob-
lems. In particular, it was shown that adaptive cubic regularization meth-
ods [5] take O(ε−1.5) iterations to satisfy (15) in the presence of second-order
derivatives. Higher-order regularization algorithms require O(ε−(q+1)/q) it-
erations provided derivatives up to the q-th order are used [4]. A short-
step gradient algorithm was also proposed in [6] to address general equality-
constrained problems requiring O(ε−2) iterations to reduce the corresponding
criticality measure below ε.

A worst-case complexity bound on the number of iterations taken by direct
search based on sufficient decrease for linearly constrained problems can be
derived based on the simple evidence that the methods share the iteration
mechanism of the unconstrained case [34]. In the remaining of this section, we
will assume that ρ(α) = c α2/2, as q = 2 is the power q in ρ(α) = constant×αq
that leads to the least negative power of ε in the complexity bounds for the
unconstrained case [34].

In fact, since feasibility is maintained, the sufficient decrease condition for
accepting new iterates is precisely the same as for unconstrained optimiza-
tion. Moreover, Lemma 3.4 gives us a bound on the criticality measure for
unsuccessful iterations that only differs (from the unconstrained case) in the
multiplicative constants. So, we can state the complexity for the linearly con-
strained case in Theorem 4.1, and refer the reader to [34] for a proof which
is verbatim the same with ‖gk‖ replaced by χ(xk) up to the multiplicative
constants.

Theorem 4.1. Consider a run of Algorithm 2.1 applied to problem (1) under
the assumptions of Theorem 3.1. Suppose that Dk is κ-feasible descent in
the approximate tangent cone WT (xk, αk) for all k. Suppose further that
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ρ(α) = c α2/2. Then, the first index kε satisfying (15) is such that

kε ≤
⌈
E1ε

−2 + E2

⌉
,

where

E1 = (1− logθ(γ))
f(xk0)− flow

0.5θ2L2
1

− logθ(exp(1)),

E2 = logθ

(
θL1 exp(1)

αk0

)
+
f(x0)− flow

0.5α2
0

,

L1 = min(1, L−1
2 ), L2 = C =

ν + c

2κ
+

Bg

ηmin
.

and k0 is the index of the first unsuccessful iteration (assumed ≤ kε). The
constants C, κ, ηmin depend on n,m,miq: C = Cn,m,miq

, κ = κn,m,miq
, ηmin =

ηn,m,miq
.

Under the assumptions of Theorem 4.1, the number of iterations kε and
the number of function evaluations kfε sufficient to meet (15) satisfy

kε ≤ O
(
C2
n,m,miq

ε−2
)
, kfε ≤ O

(
rn,m,miq

C2
n,m,miq

ε−2
)
, (16)

where rn,m,miq
is a uniform upper bound on |Dk|. The dependence of κn,m,miq

and ηn,m,miq
(and consequently of Cn,m,miq

which is O(max{κ−2
n,m,miq

, η−2
n,m,miq

}))
in terms of the numbers of variables n, equality constraints m, and inequality
constraints/bounds miq is not straightforward. Indeed, those quantities de-
pend on the polyhedral structure of the feasible region, and can significantly
differ from one problem to another. Regarding rn,m,miq

, in the presence of
a non-degenerate condition such as the one of Proposition A.1, one can say
that rn,m,miq

≤ 2n (see the sentence after this proposition in Appendix A).
In the general possibly degenerate case, the combinatorial aspect of the faces
of the polyhedral may lead to an rn,m,miq

that depends exponentially on n
(see [30]).

Only bounds. When only bounds are enforced on the variables (m = 0, miq =
n, Aiq = W = In), the numbers κ, η, r depend only on n, and the set D⊕ =
[In − In] formed by the coordinate directions and their negatives is the
preferred choice for the polling directions. In fact, given x ∈ F and α > 0,
the cone T (x, α) defined in Section 2 is always generated by a set G ⊂
D⊕, while its polar N(x, α) will be generated by D⊕ \ G. The set of all
possible occurrences for T (x, α) and N(x, α) thus coincide, and it can be
shown (see [21] and [18, Proposition 8.1]) that κn ≥ κmin = 1/

√
n as well
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as ηn = ηmin = 1/
√
n. In particular, D⊕ is (1/

√
n)-feasible descent in the

approximate tangent cone WT (x, α) for all possible values of x and α. Since
rn ≤ 2n, one concludes from (16) that O(n2ε−2) evaluations are taken in the
worst case, matching the known bound for unconstrained optimization.

Only linear equalities. When there are no inequality constraints/bounds on
the variables and only equalities (m > 0), the approximate normal cones
N(x, α) are empty and T (x, α) = Rn−m, for any feasible x and any α > 0.
Thus, κn,m ≥ 1/

√
n−m and by convention ηn,m = ∞ (or Bg/ηn,m could be

replaced by zero). Since rn,m ≤ 2(n−m), one concludes from (16) thatO((n−
m)2ε−2) evaluations are taken in the worst case. A similar bound [34] would
be obtained by first rewriting the problem in the reduced space and then
considering the application of deterministic direct search (based on sufficient
decrease) on the unconstrained reduced problem — and we remark that the
factor of (n−m)2 cannot be improved [9] using positive spanning vectors.

5. Probabilistic feasible descent and almost-sure global
convergence

We now consider that the polling directions are independently randomly
generated from some distribution in Rn. Algorithm 2.1 will then represent
a realization of the corresponding generated stochastic process. We will use
Xk, Gk,Dk, Ak to represent the random variables corresponding to the k-th
iterate, gradient, set of polling directions, and step size, whose realizations are
respectively denoted by xk, gk = ∇f(xk), Dk, αk (as in the previous sections
of the paper).

The first step towards the analysis of the corresponding randomized algo-
rithm is to pose the feasible descent property in a probabilistic form. This
is done below in Definition 5.1, generalizing the definition of probabilistic
descent given in [16] for the unconstrained case.

Definition 5.1. Given κ, p ∈ (0, 1), the sequence {Dk} in Algorithm 2.1 is
said to be p-probabilis- tically κ-feasible descent, or (p, κ)-feasible descent
in short, if

Pr
(
cmWT (x0,α0) (D0,−G0) ≥ κ

)
≥ p, (17)

and, for each k ≥ 1,

Pr
(
cmWT (Xk,Ak) (Dk,−Gk) ≥ κ

∣∣D0, . . . ,Dk−1

)
≥ p. (18)
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Observe that at iteration k ≥ 1, the probability (18) involves conditioning
on the σ-algebra generated by D0, . . . ,Dk−1, expressing that the feasible
descent property is to be ensured with probability at least p regardless of the
outcome of iterations 0 to k − 1.

As in the deterministic case of Section 3, the results from Lemmas 3.1
and 3.4 will form the necessary tools to now establish global convergence with
probability one. Lemma 3.1 states that for every realization of Algorithm 2.1,
thus for every realization of the random sequence {Dk}, the step size sequence
converges to zero. Lemma 3.4 is first rewritten in its reciprocal form.

Lemma 5.1. Consider Algorithm 2.1 applied to problem (1), and under As-
sumptions 2.1, 3.2, and 3.3. The k-th iteration in Algorithm 2.1 is successful
if

cmWT (xk,αk) (Dk,−gk) ≥ κ and αk < ϕ(κχ(xk)), (19)

where

ϕ(t)
def
= inf

{
α : α > 0,

ρ(α)

α
+

[
ν

2
+
κBg

η

]
α ≥ t

}
. (20)

Note that this is exactly [16, Lemma 2.1] but with cmWT (xk,αk)(Dk,−gk)
and χ(xk) in the respective places of cm(Dk,−gk) and ‖gk‖.

For any k ≥ 0, let Yk be the indicator function of the event

{the kth iteration is successful}
and Zk be the indicator function of the event{

cmWT (Xk,Ak) (Dk,−Gk) ≥ κ
}
,

with yk, zk denoting their respective realizations. One can see from Theo-
rem 4.1 that, if the feasible descent property is satisfied at each iteration,
that is zk = 1 for each k, then Algorithm 2.1 is guaranteed to converge in the
sense that lim infk→∞ χ(xk) = 0. Conversely, if lim infk→∞ χ(xk) > 0, then
it is reasonable to infer that zk = 1 did not happen sufficiently often during
the iterations. This is the intuition behind the following lemma which does
not assume any a priori property on the sequence {Dk}.

Lemma 5.2. Under the assumptions of Lemmas 3.1 and 5.1, it holds for the
stochastic processes {χ(Xk)} and {Zk} that{

lim inf
k→∞

χ(Xk) > 0
}
⊂

{ ∞∑
k=0

[Zk ln γ + (1− Zk) ln θ] = −∞

}
. (21)
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Proof : The proof is identical to that of [16, Lemma 3.2], using χ(xk) instead
of ‖gk‖.

Our goal is then to refute with probability one the occurrence of the event
on the right-hand side of (21). To this end, we ask the algorithm to always
increase the step size in successful iterations (γ > 1), and we suppose that
the sequence {Dk} is (p0, κ)-feasible descent, with

p0 =
ln θ

ln(γ−1θ)
. (22)

Under this condition, one can proceed as in [3, Theorem 4.1] to show that
the random process

k∑
l=0

[Zl ln γ + (1− Zl) ln θ]

is a submartingale with bounded increments. Such sequences have a zero
probability of diverging to −∞ ([3, Theorem 4.2]), thus the right-hand event
in (21) also happens with probability zero. This finally leads to the following
almost-sure global convergence result.

Theorem 5.1. Consider Algorithm 2.1 applied to problem (1), with γ > 1,
and under Assumptions 2.1, 2.2, 3.1, 3.2, and 3.3. If {Dk} is (p0, κ)-feasible
descent, then

Pr
(

lim inf
k→∞

χ (Xk) = 0
)

= 1. (23)

The minimum probability p0 is essential for applying the martingale argu-
ments that ensure convergence. Note that it depends solely on the constants
θ and γ in a way directly connected to the updating rules of the step size.

6. Complexity in the probabilistic case
The derivation of an upper bound for the effort taken by the probabilistic

variant to reduce the criticality measure below a tolerance also follows closely
its counterpart for unconstrained optimization [16]. As in the deterministic
case, we focus on the most favorable forcing function ρ(α) = c α2/2, which
renders the function ϕ(t) defined in (20) linear in t,

ϕ(t) =

[
ν + c

2
+
Bgκ

η

]−1

t.
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A complexity bound for probabilistic direct search is given in Theorem 6.1
below for the linearly constrained case, generalizing the one proved in [16,
Corollary 4.2] for unconstrained optimization. The proof is exactly the
same but with cmWT (Xk,Ak)(Dk,−Gk) and χ(Xk) in the respective places of
cm(Dk,−Gk) and ‖Gk‖. Let us quickly recall the road map of the proof.
First, it is derived a bound on the probability Pr (min0≤l≤k χ(Xl) ≤ ε) in

terms of a probability involving
∑k−1

l=0 Zl [16, Lemma 4.3]. Assuming that
the set of polling directions is (p, κ)-feasible descent with p > p0, a Chernoff-
type bound is then obtained for the tail distribution of such a sum, yielding
a lower bound on the probability Pr (min0≤l≤k χ(Xl) ≤ ε) [16, Theorem 4.1].
By expressing the event min0≤l≤k χ(Xl) ≤ ε as Kε ≤ k, where Kε is the
random variable counting the number of iterations performed until the sat-
isfaction of the approximate optimality criterion (15), one reaches an upper
bound on Kε of the order of ε−2, holding with overwhelming probability (more
precisely, with probability at least 1−exp(O(ε−2)); see [16, Theorem 4.2 and
Corollary 4.2]). We point out that in the linearly constrained setting the
probability p of feasible descent may depend on n, m, and miq, and hence we
will write p = pn,m,miq

.

Theorem 6.1. Consider Algorithm 2.1 applied to problem (1), with γ > 1,
and under the assumptions of Theorem 5.1. Suppose that {Dk} is (p, κ)-
feasible descent with p > p0. Suppose also that ρ(α) = c α2/2 and that ε > 0
satisfies

ε ≤ Cα0

2γ
.

Then, the first index Kε for which (15) holds satisfies

Pr

(
Kε ≤

⌈
βC2

c(p− p0)
ε−2

⌉)
≥ 1− exp

[
−β(p− p0)C2

8cp
ε−2

]
, (24)

where β = 2γ2

c(1−θ)2
[
c
2γ
−2α2

0 + f0 − flow

]
is an upper bound on

∑∞
k=0 α

2
k (see [16,

Lemma 4.1]). The constants C, κ, p depend on n,m,miq: C = Cn,m,miq
, κ =

κn,m,miq
, p = pn,m,miq

.

Let Kf
ε be the random variable counting the number of function evaluations

performed until satisfaction of the approximate optimality criterion (15).
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From Theorem 6.1, we have:

Pr

(
Kf
ε ≤ rn,m,miq

⌈
βC2

n,m,miq

c(pn,m,miq
− p0)

ε−2

⌉)

≥ 1− exp

[
−
β(pn,m,miq

− p0)C2
n,m,miq

8c pn,m,miq

ε−2

]
. (25)

As C2
n,m,miq

= O(max{κ−2
n,m,miq

, η−2
n,m,miq

}), and emphasizing the dependence
on the numbers of variables n, equality constraints m, and linear inequal-
ity/bounds miq, one can finally assure with overwhelming probability that

Kf
ε ≤ O

(
rn,m,miq

max{κ−2
n,m,miq

, η−2
n,m,miq

}
pn,m,miq

− p0
ε−2

)
. (26)

Only bounds. Using the simpler setting where there are only bounds on the
variables (m = 0, miq = n, Aiq = W = In), we will show now that proba-
bilistic direct search does not yield a better complexity bound when a certain
subset of positive generators of T (xk, αk) is randomly selected for polling at
each iteration. Without loss of generality, we reason around the worst case
T (xk, αk) = Rn. Suppose that instead of selecting the entire set D⊕, we
restrict ourselves to a subset of uniformly chosen d2npe elements, with p
being a constant in (p0, 1). Then the corresponding sequence of polling di-
rections is (p, 1/

√
n)-feasible descent (this follows an argument included in

the proof of Proposition 7.1; see (40) in Appendix B). The complexity re-
sult (25) can then be refined by setting rn = d2npe, κn ≥ κmin = 1/

√
n, and

ηn = κmin = 1/
√
n, leading to

Pr

(
Kf
ε ≤ d2npe

⌈
C̄nε−2

p− p0

⌉)
≥ 1− exp

[
−C̄(p− p0)ε

−2

8p

]
, (27)

for some positive constant C̄ independent of n. This bound on Kf
ε is thus

O(n2ε−2) (with overwhelming probability), showing that such a random strat-
egy does not lead to an improvement over the deterministic setting. To
achieve such an improvement we will need to uniformly generate directions
on the unit sphere of the subspaces contained in T (xk, αk) as it will be shown
in Section 7.
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Only linear equalities. As in the bound-constrained case, one can also here
randomly select the polling directions from [W −W ] (of cardinal 2(n−m)),
leading to a complexity bound of O((n −m)2ε−2) with overwhelming prob-
ability. However, if instead we uniformly randomly generate on the unit
sphere of Rn−m (and post multiply by W ), the complexity bound reduces
to O((n − m)ε−2), a fact that translates directly from unconstrained opti-
mization [16] (see also the argument given in Section 7 as this corresponds
to explore the null space of A).

7. Randomly generating directions while exploring sub-
spaces

A random generation procedure for the polling directions in the approxi-
mate tangent cone should explore possible subspace information contained in
the cone. In fact, if a subspace is contained in the cone, one can generate the
polling directions as in the unconstrained case (with as few as two directions
within the subspace), leading to significant gains in numerical efficiency as
we will see in Section 8.

In this section we will see that such a procedure still yields a condition
sufficient for global convergence and worst-case complexity. For this purpose,
consider the k-th iteration of Algorithm 2.1. To simplify the presentation,
we will set ñ = n −m for the dimension of the reduced space, g̃k = W>gk
for the reduced gradient, and Tk for the approximate tangent cone. Let Sk
be a linear subspace included in Tk and let T ck = Tk ∩ S⊥k be the portion of
Tk orthogonal to Sk. Note that any set of positive generators for Tk can be
transformed into a set Vk = [V s

k V c
k ], with Vk,V

s
k ,V c

k being sets of positive
generators for Tk,Sk,T

c
k , respectively. Proposition 7.1 describes a procedure

to compute a probabilistically feasible descent set of directions by generating
random directions on the unit sphere of Sk and by randomly selecting positive
generators from V c

k (in the latter case as it was already mentioned in Section 6
for the bound-constrained case). Its proof is left to Appendix B. Details on
how to compute Sk and V c

k are given in the next section.

Proposition 7.1. Consider an iteration of Algorithm 2.1 and let Tk be the
associated approximate tangent cone. Suppose that Tk contains a linear sub-
space Sk and let T ck = Tk ∩ S⊥k . Let V c

k be a set of positive generators for
T ck .
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Let U s
k be a set of rs vectors generated on the unit sphere of Sk, where

rs =

⌊
log2

(
1− ln θ

ln γ

)⌋
+ 1. (28)

and U c
k be a set of dpc|V c

k |e vectors chosen uniformly at random within V c
k

such that

p0 < pc < 1. (29)

Then, there exist κ ∈ (0, 1) and p ∈ (p0, 1), with p0 given in (22), such that

Pr
(

cmTk([U
s
k U

c
k],−G̃k) ≥ κ

∣∣∣σk−1

)
≥ p,

where σk−1 represents the σ-algebra generated by D0, . . . ,Dk−1.
The constant κ depend on n,m,miq: κ = κn,m,miq

, while p depends solely
on θ, γ, pc.

In the procedure presented in Proposition 7.1, we conventionally set U s
k = ∅

when Sk is zero, and U c
k = ∅ when T ck is zero. As a corollary of Proposi-

tion 7.1, the sequence of polling directions {Dk = W [U s
k U

c
k]} corresponding

to the subspace exploration is (p, κ)-feasible descent. By Theorem 5.1, such
a technique guarantees almost-sure convergence and it also falls into the as-
sumptions of Theorem 6.1, thereby admitting a general complexity bound in
terms of iterations and evaluations. Contrary to Section 6, we can now show
improvement in specific instances of linearly constrained problems.

Improving the complexity when there are only bounds. Suppose that the cones
Tk always include an (n − nb)-dimensional subspace with nb ≥ 1 (this is
the case if only nb < n problem variables are actually subject to bounds).
Then, using3 |V c

k | ≤ nb, the number of polling directions to be generated per
iteration varies between rs and rs + pcnb, where rs given in (28) does not
depend on n nor on nb, and pc is a constant in (p0, 1). This implies that we
can replace r by rs + nb, κ by t/

√
n with t ∈ (0, 1] independent of n (see

3V c
k corresponds to the coordinate vectors in Tk for which their negatives do not belong to Vk,

and hence the corresponding variables must be subject to bound constraints. Since there only are
nb bound constraints, one has 0 ≤ |V c

k | ≤ nb.
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Appendix B) and η by 1/
√
n so that (25) becomes

Pr

(
Kf
ε ≤

(⌊
log2

(
1− ln θ

ln γ

)⌋
+ 1 + nb

)⌈
C̄nε−2

p− p0

⌉)
≥ 1− exp

[
−C̄(p− p0)ε

−2

8p

]
(30)

for some positive constant C̄ independent of nb and n. The resulting bound is
O
(
nbnε

−2
)
. If nb is substantially smaller than n, then this bound represents

an improvement over those obtained in Sections 4 and 6, reflecting the fact
that a small number of bounds on the variables brings the problem closer to
an unconstrained one.

Improving the complexity when there are only linear equalities. In this set-
ting, our subspace generation technique is essentially the same as the one for
unconstrained optimization [16]. We can see that (25) renders an improve-
ment from the bound O((n − m)2ε−2) of Section 6 to O((n − m)ε−2) (also
with overwhelming probability), which is coherent with the bound for the
unconstrained case obtained in [16].

8. Numerical results
This section illustrates the practical impact of our probabilistic strategies.

We implemented Algorithm 2.1 in MATLAB with the following choices of
polling directions. The first choice corresponds to randomly selecting a sub-
set of the positive generators of the approximate tangent cone (dspfd-1, see
Section 6). In the second one we first try to identify a subspace of the cone,
ignore the corresponding positive generators, and then randomly generate
directions in that subspace (dspfd-2, see Section 7). As a term of compari-
son, we also tested a version based on the complete set of positive generators,
but randomly ordering them at each iteration (dspfd-0) — such a variant
can be analyzed in the classic deterministic way despite the random order.
The three variants require the computation of a set of positive generators for
the approximate tangent cone, a process we describe in Appendix A. For
variant dspfd-2, subspaces are detected by identifying opposite vectors in
the set of positive generators: this forms our set V s

k (following the notation
of Section 7, and we obtain V c

k by orthogonalizing the remaining positive
generators with respect to those in V s

k . Such a technique always identifies



DIRECT SEARCH BASED ON PROBABILISTIC FEASIBLE DESCENT 23

the largest subspace when there are either only bounds or only linear con-
straints, and benefits in the general case from the construction described in
Proposition A.1. To determine the approximate active linear inequalities or
bounds in (5), we used min{10−3, αk} instead of αk — as we pointed out in
Section 3, our analysis can be trivially extended to this setting. The forcing
function was ρ(α) = 10−4α2.

In our experiments, we also used the built-in MATLAB patternsearch

function [27] for comparison. This algorithm is a direct-search-type method
that accepts a point as the new iterate if it satisfies a simple decrease condi-
tion, i.e., provided the function value is reduced. The options of this function
can be set so that it uses a so-called Generating Set Search strategy inspired
from [18]: columns of D⊕ are used for bound-constrained problems, while
for linearly constrained problems the algorithm attempts to compute posi-
tive generators of an approximate tangent cone based on the technique of
Proposition A.1 (with no provision for degeneracy).

For all methods including the MATLAB one, we set α0 = 1, γ = 2, and θ =
0.5. We adopted the patternsearch default settings by allowing infeasible
points to be evaluated as long as the constraint violation does not exceed
10−3 (times the norm of the corresponding row of Aiq). All methods rely
upon the built-in MATLAB null function to compute the orthogonal basis
W when needed. We ran all algorithms on a benchmark of problems from
the CUTEst collection [15], stopping whenever a budget of 2000n function
evaluations was consumed or the step size fell below 10−6α0 (for our methods
based on random directions, ten runs were performed and the mean of the
results was used). For each problem, this provided a best obtained value
fbest. Given a tolerance ε ∈ (0, 1), we then looked at the number of function
evaluations needed by each method to reach an iterate xk such that

f(xk)− fbest < ε (f(x0)− fbest) , (31)

where the run was considered as a failure if the method stopped before (31)
was satisfied. Performance profiles [10, 28] were built to compare the algo-
rithms, using the number of function evaluations as a performance indicator
(normalized for each problem in order to remove the dependence on the di-
mension).

8.1. Bound-constrained problems. We first present results on 63 prob-
lems from the CUTEst collection that only enforce bound constraints on the
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(b) ε = 10−6.

Figure 1. Performance of three variants of Algorithm 2.1 versus
MATLAB patternsearch on bound-constrained problems.
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Figure 2. Performance of three variants of Algorithm 2.1 versus
MATLAB patternsearch on larger bound-constrained prob-
lems.

variables, with dimensions varying between 2 and 20. Figure 1 presents
the results obtained while comparing our three variants with the built-in
patternsearch function. One observes that the dspfd-2 variant has the
highest percentage of problems on which it is the most efficient (i.e., the
highest curve leaving the y-axis). In terms of robustness (large value of the
ratio of function calls), the dspfd methods outperform patternsearch, with
dspfd-0 and dspfd-2 emerging as the best variants.

To further study the impact of the random generation, we selected 31
problems and increased their dimensions so that all problems had at least
10 variables, with fifteen of them having between 20 and 52 variables. Fig-
ure 2 presents the corresponding profiles. One sees that the performance of
dspfd-0 and of the MATLAB function has significantly deteriorated, as they
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Figure 3. Performance of three variants of Algorithm 2.1 versus
MATLAB patternsearch on problems subject to general linear
constraints.

both take a high number of directions per iteration. On the contrary, dspfd-
1 and dspfd-2, having a lower iteration cost thanks to randomness, present
better profiles, and clearly outperform patternsearch. These results concur
with those of Section 7, as they show the superiority of dspfd-2 when the
size of the problem is significantly higher than the number of nearby bounds.

8.2. Linearly constrained problems. Our second experiment considers a
benchmark of 106 CUTEst problems for which at least one linear constraint
(other than a bound) is present. The dimensions vary from 2 to 96, while the
number of linear inequalities (when present) lies between 1 and 2000 (with
only 14 problems with more than 100 of those constraints).

Figure 3 presents the results of our approaches and of the MATLAB func-
tion on those problems. Variant dspfd-2 significantly outperforms the other
variant, in both efficiency and robustness. The other dspfd variants seem
more expensive in that they rely on a possibly larger set of tangent cone
generators; yet, they manage to compete with patternsearch in terms of
robustness.

We further present the results for two sub-classes of these problems. Fig-
ure 4 restricts the profiles to the 48 CUTEst problems for which at least one
linear inequality constraint was enforced on the variables. The MATLAB
routine performs quite well on these problems; still, dspfd-2 is competitive
and more robust. Figure 5 focuses on the 61 problems for which at least
one equality constraint is present (and note that 3 problems have both linear
equalities and inequalities). In this context, the dspfd-2 profile highlights
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Figure 4. Performance of three variants of Algorithm 2.1 versus
MATLAB patternsearch on problems with at least one linear
inequality constraint.
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Figure 5. Performance of three variants of Algorithm 2.1 versus
MATLAB patternsearch on problems with at least one linear
equality constraint.

the potential benefit of randomly generating in subspaces. Although not plot-
ted here, this conclusion is even more visible for the 13 problems with only
linear equality constraints where dspfd-2 is by far the best method, which
does not come as a surprise given what was reported for the unconstrained
case [16].

We have also run variant dspfd-0 with γ2 = 1 (i.e., no step-size increase
at successful iterations), and although this has led to an improvement of
efficiency for bound-constrained problems, the relative position of the profiles
did not seem much affected in the general linearly constrained setting. We
recall that dspfd-0 configures a case of deterministic direct search from the
viewpoint of the choice of the polling directions, and that it is known that
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insisting on always increasing the step size upon a success is not the best
approach at least in the unconstrained case.

9. Conclusions
We have shown how to prove global convergence with probability one for

direct-search methods applied to linearly constrained optimization when the
polling directions are randomly generated. We have also derived a worst-case
analysis for the number of iterations and function evaluations. Such worst-
case complexity bounds are established with overwhelming probability and
are of the order of ε−2, where ε > 0 is the threshold of criticality. It was
instrumental for such probabilistic analyzes to extend the concept of proba-
bilistic descent from unconstrained to linearly constrained optimization. We
have also refined such bounds in terms of the problem dimension and num-
ber of constraints for two specific subclasses of problems, where it is easier to
exhibit an improvement over deterministic direct search. The numerical be-
havior of our probabilistic strategies was found coherent with those findings,
outperforming the one of classical deterministic direct searches.

A natural extension of the presented work is the treatment of general, non-
linear constraints. One possibility is to apply the augmented Lagrangian
method, where a sequence of subproblems containing all the possible original
linear constraints is solved by direct search, as it was done in [23] for the
deterministic case. Although it is unclear at the moment whether the exten-
sion of the probabilistic analysis would be straightforward, it represents an
interesting perspective of the present work. Another avenue focuses on the
linearization of the constraints, see [26], and adapting the random genera-
tion techniques of the polling directions to this setting would also represent
a continuation of our research.

A.Deterministic computation of positive cone genera-
tors

Provided a certain linear independence condition is satisfied, the posi-
tive generators of the approximate tangent cone can be computed as follows
(see [20, Proposition 5.2]).

Proposition A.1. Let x ∈ F , α > 0, and assume that the set of generators
of N(x, α) has the form [We −We Wi ]. Let B be a basis for the null space
of W>

e , and suppose that W>
i B = Q> has full row rank. If R is a right
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inverse for Q> and N is a matrix whose columns form a basis for the null
space of Q>, then the set

Y = [ −BR BN −BN ] (32)

positively generates T (x, α).

Note that the number of vectors in Y is then nR + 2(nB−nR) = 2nB−nR,
where nB is the rank of B and nR is that of Q (equal to number of columns
of R). Since nB < ñ, we have that |Y | ≤ 2ñ.

In the case where W>
i B is not full row rank, one could consider all subsets

of columns of Wi of largest size that yield full row rank matrices, obtain
the corresponding positive generators by Proposition A.1, and then take the
union of all these sets [30]. Due to the combinatorial nature of this technique,
we adopted a different approach, following the lines of [18, 20] where an algo-
rithm originating from computational geometry called the double description
method [13] was applied. We implemented this algorithm to compute a set
of extreme rays (or positive generators) for a polyhedral cone of the form
{d̃ ∈ Rñ : Bd̃ = 0, Cd̃ ≥ 0}, where we assume that rank(B) < ñ, and applied
it to the approximate tangent cone. Finally, we point out that in the exper-
iments our three variants detected degeneracy (and thus invoked the double
description method) on only less than an average of 2% of the iterations.

B.Proof of Proposition 7.1
Proof : To simplify the notation, we omit the index k in the proof. By our
convention about cmT (V,−G̃) when PT [G̃] = 0, we only need to consider the
situation where PT [G̃] is nonzero.

Define the event

E =

{
‖P [G̃]‖
‖PT [G̃]‖

≥ 1√
2

}
and let Ē denote its complementary event. We observe that{

cmT ([U s U c],−G̃) ≥ κ
}
⊃
{

cmS(U s,−G̃) ≥
√

2κ
}
∩ E , (33){

cmT ([U s U c],−G̃) ≥ κ
}
⊃
{

cmT c(U
c,−G̃) ≥

√
2κ
}
∩ Ē (34)
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for each κ. Indeed, when E happens, we have

cmT ([U s U c],−G̃) ≥ cmT (U s,−G̃)

=
‖PS[G̃]‖
‖PT [G̃]‖

cmS(U s,−G̃) ≥ 1√
2

cmS(U s,−G̃),

and (33) is consequently true; when Ē happens, then by the orthogonal de-
composition

‖PT [G̃]‖2 = ‖PS[G̃]‖2 + ‖PT c[G̃]‖2,

we know that ‖PT c[G̃]‖/‖PT [G̃]‖ ≥ 1/
√

2, and hence

cmT ([U s U c],−G̃) ≥ cmT c(U
c,−G̃)

=
‖PT c[G̃]‖
‖PT [G̃]‖

cmT c(U
c,−G̃) ≥ 1√

2
cmT c(U

c,−G̃),

which gives us (34). Since the events on the right-hand sides of (33) and (34)
are mutually exclusive, the two inclusions lead us to

Pr
(

cmT ([U s U c],−G̃) ≥ κ
∣∣ σ) ≥ Pr

({
cmS(U s,−G̃) ≥

√
2κ
}
∩ E

∣∣ σ)+

Pr
({

cmT c(U
c,−G̃) ≥

√
2κ
}
∩ Ē

∣∣ σ) .
Then it suffices to show the existence of κ ∈ (0, 1) and p ∈ (p0, 1) that fulfill
simultaneously

Pr
({

cmS(U s,−G̃) ≥
√

2κ
}
∩ E

∣∣ σ) ≥ p1E , (35)

Pr
({

cmT c(U
c,−G̃) ≥

√
2κ
}
∩ Ē

∣∣ σ) ≥ p1Ē , (36)

because 1E + 1Ē = 1. If Pr(E) = 0, then (35) holds trivially regardless of
κ or p. Similar things can be said about Ē and (36). Therefore, we assume
that both E and Ē are of positive probabilities. Then, noticing that E ∈ σ
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(E only depends on the past iterations), we have

Pr
({

cmS(U s,−G̃) ≥
√

2κ
}
∩ E

∣∣ σ)
= Pr

(
cmS(U s,−G̃) ≥

√
2κ
∣∣ σ ∩ E)Pr(E|σ),

= Pr
(

cmS(U s,−G̃) ≥
√

2κ
∣∣ σ ∩ E)1E ,

Pr
({

cmT c(U
c,−G̃) ≥

√
2κ
}
∩ Ē

∣∣ σ)
= Pr

(
cmT c(U

c,−G̃) ≥
√

2κ
∣∣ σ ∩ Ē)Pr(Ē |σ)

= Pr
(

cmT c(U
c,−G̃) ≥

√
2κ
∣∣ σ ∩ Ē)1Ē ,

where σ∩E is the trace σ-algebra [31] of E in σ, namely σ∩E = {A ∩ E : A ∈ σ},
and σ ∩ Ē is that of Ē . Hence it remains to prove that

Pr
(

cmS(U s,−G̃) ≥
√

2κ
∣∣ σ ∩ E) ≥ p, (37)

Pr
(

cmT c(U
c,−G̃) ≥

√
2κ
∣∣ σ ∩ Ē) ≥ p. (38)

Let us examine cmS(U s,−G̃) whenever E happens (which necessarily means
that S is nonzero). Since E depends only on the past iterations, while U s is
essentially a set of rs (recall (28)) i.i.d. directions from the uniform distri-
bution on the unit sphere in Rs with s = dim(S) ≤ ñ, one can employ the
theory of [16, Appendix B] to justify the existence of ps > p0 and τ > 0 that
are independent of ñ or s (solely depending on θ and γ) and satisfy

Pr

(
cmS(U s,−G̃) ≥ τ√

ñ

∣∣∣ σ ∩ E) ≥ ps. (39)

Now consider cmT c(U
c,−G̃) under the occurrence of Ē (in that case, T c is

nonzero and V c is nonempty). Let D∗ be a direction in V c that achieves

D∗>(−G̃)

‖D∗‖‖PT c[G̃]‖
= cmT c(V

c,−G̃).
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Then by the fact that U c is a uniform random subset of V c and |U c| =
dpc|V c|e, we have

Pr
(

cmT c(U
c,−G̃) = cmT c(V

c,−G̃)
∣∣ σ ∩ Ē)

≥ Pr
(
D∗ ∈ U c

∣∣ σ ∩ Ē) =
|U c|
|V c|

≥ pc. (40)

Let

κc = λ
({
C = T̄ ∩ S̄⊥ : T̄ ∈ T and S̄ is a subspace of T̄

})
,

where λ(·) is defined as in (8) and T denotes all possible occurrences for the
approximate tangent cone. Then κc > 0 and cmT c(V

c,−G̃) ≥ κc. Hence (40)
implies

Pr
(

cmT c(U
c,−G̃) ≥ κc

∣∣ σ ∩ Ē) ≥ pc. (41)

Finally, set

κ =
1√
2

min

{
τ√
ñ
, κc

}
, p = min {ps, pc} .

Then κ ∈ (0, 1), p ∈ (p0, 1), and they fulfill (37) and (38) according to (39)
and (41). Moreover, κ depends on the geometry of T , and consequently
depends on m, n, and miq, while p depends solely on θ, γ, and pc. The proof
is then completed.
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