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1. Introduction

Let C be a semi-abelian [20], or, more generally, a homological [1] category,
and let X be a full replete subcategory of C, with the reflection F : C → X.
Consider the following conditions on F :

(a) F preserves all finite limits, in which case it is called a localization;
(b) F preserves kernels of regular epimorphisms, or, equivalently, short exact

sequences, in which case it is called a protolocalization [3];
(c) F preserves kernels of split epimorphisms, or, equivalently, split short

exact sequences, in which case it is called a protoadditive reflection [7]
(see also [9]);

(d) F preserves finite products.

When C is abelian, (a) is equivalent to (b) and (c) is equivalent to (d), which
is surely the reason why conditions (b) and (c) were only introduced recently.
We know many properties related to them and many examples of functors
satisfying them, and yet, this is only the very beginning of a new theory, as
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the readers will surely conclude from the new remarks the present paper is
devoted to. These remarks are:

1. Several simple technical remarks collected in Section 2.
2. There is no non-trivial protoadditive reflection of the category of groups

(and therefore the same is true for protolocalizations) (Theorem 3.1); there
are, however, several known examples of protoadditive reflections and pro-
tolocalizations of the category of internal groups in a category (Remark
3.2).

3. Being a regular-epi-reflective protolocalization of a variety of groups with
multiple operators turned out to be closely related to several other con-
ditions considered in several areas of algebra. In particular every protolo-
calization of such a variety is

semisimple = attainable = admissible = semi-left-exact = fibered

(see Theorems 4.6 and 4.8, and Remark 4.9 for details).
4. There are no non-trivial localizations neither of the category of rings nor

of the category of commutative rings that are reflections to subvarieties
(Remark 4.10.(2)).

5. The reflection of the variety of commutative von Neumann regular rings to
the variety of Boolean rings is not a localization (Remark 4.10.(2)). This
negatively answers a question asked in [3].

Acknowledgement. The authors are very grateful to Francesca Cagliari
for many discussions and interesting new observations of possible reflections
of the category of topological groups, including pointing out the existence of
the localization mentioned as Remark 3.2(b) in this paper.

2. Protolocalizations and protoadditive reflections

Throughout this section C is a homological category, that is, a pointed,
protomodular and regular category, and X is a reflective (full and replete)
subcategory of C, with reflection

X //⊥ C
Foo

(2.a)

and unit η = (ηC : C → F (C))C∈C. As observed in [3], X is also a homo-
logical category provided that it is regular. The following two notions were
introduced in [3] and [7], respectively.
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Definition 2.1. (1) The reflection (2.a) is said to be a protolocalization
if X is regular and F preserves short exact sequences, that is, in the
diagram

0 // K
k //

ηK
��

A
f

//

ηA
��

B

ηB
��

// 0

0 // F (K)
F (k)

// F (A)
F (f)

// F (B) // 0

(2.b)

if the top line is a short exact sequence in C, so that f = coker(k) and
k = ker(f), then the bottom line is a short exact sequence in X. We
will also say that F : C → X is a protolocalization of C.

(2) The reflection (2.a) is said to be protoadditive if F preserves split short
exact sequences, that is, in the diagram

0 // K
k //

ηK
��

A
f

//

ηA
��

B
s

oo

ηB
��

// 0

0 // F (K)
F (k)

// F (A)
F (f)

// F (B)
F (s)

oo // 0

(2.c)

with f · s = 1B, if the top line is a short exact sequence in C, then
the bottom line is a short exact sequence in X. We will also say that
F : C → X is a protoadditive reflection of C.

Remarks 2.2. (1) As shown in [3], given a reflection (2.a), X is regular
if, and only if, F preserves pullbacks of the form

C //

��

X

f
��

B
b

// Y

where f ∈ X, and b is the image in C of a morphism in X. In particular,
when X is regular-epi-reflective, that is, if ηC is a regular epimorphism
for every object C of C, then F preserves these pullbacks, and so X is
regular.

(2) Every protolocalization of a homological category is homological. In-
deed, if C is pointed, or C is protomodular, then so is any reflective
subcategory of C. Only regularity does not follow for free.
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Proposition 2.3. (1) For a regular-epi-reflection (2.a) and a short exact se-
quence

0 // K
k // A

f
// B // 0 (2.d)

in C, the following conditions are equivalent, for diagram (2.b):
(i) the bottom line is a short exact sequence in X;
(ii) the bottom line is a short exact sequence in C.

(2) For a reflection (2.a) and a split short exact sequence

0 // K
k // A

f
// B

s
oo // 0 (2.e)

in C, the following conditions are equivalent, for diagram (2.c):
(i) the bottom line is a short exact sequence in X;
(ii) the bottom line is a short exact sequence in C.

We recall that a subcategory X is said to have the 2-out-of-3 property if, for
any short exact sequence (2.d) in C, if any two of the three objects K,A,B
belong to X, then the third one also belongs to X. And X is said to be
extension closed if, for any short exact sequence (2.d), with K and B in X

also A belongs to X. Analogously, one can define the split 2-out-of-3-property
and split extension closed subcategory.

Proposition 2.4. (1) If X is a regular-epi-reflective protolocalization of C,
then X has the 2-out-of-3 property. In particular, X is extension closed.

(2) If X is a protoadditive reflection, so in particular when it is a protolocal-
ization, then X has the split 2-out-of-3 property. Consequently, X is split
extension closed.

Proof : (1): Given a short exact sequence (2.d), if f : A → B belongs to X,
then its kernel also belongs to X. If K and A belong to X, then we apply F
to the sequence (2.d) and conclude, by Proposition 2.3, that B ∈ X. If K
and B belong to X, then we apply F again and use the Short Five Lemma.
(2) can be shown analogously.

Remark 2.5. The hypothesis that the reflections are regular epimorphisms
in statement (1) of Proposition 2.3 is essential. Indeed, we take C to be the
category of pairs (A,R), where A is an abelian group and R is a subgroup
of A × A, and f : (A,R) → (B, S) is a morphism in C if f : A → B
is a homomorphism with (f × f)(R) ⊆ S. This category is additive and
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homological, since it is a closed under subobjects full reflective subcategory of
the abelian category of internal graphs of the category of abelian groups. Let
X be the subcategory of C with objects all (A,R) in which R is a transitive
relation on A. The reflection F : C → X has F (A,R) = (A,Rtr), where
Rtr is the smallest transitive relation on A which is a subgroup of A × A
containing R. This is a monoreflection of course. Take A = Z4 (where Z is
the additive group of integers, although we could take any non-trivial abelian
group instead of it) and R = {((m, 0, n, 0), (0, m, 0, n)) ∈ A× A |m, n ∈ Z}.
Take B = Z3, define f : A → B by f(m, n, p, q) = (m, n + p, q), and take
S = (f × f)(R); f : (A,R) → (B, S) is a regular epimorphism in C, and,
together with its kernel, it gives a short exact sequence in C:

0 // (Ker(f), {((0, 0, 0, 0), (0, 0, 0, 0))}) // (A,R)
f

// (B, S) // 0.

(2.f)
Both (A,R) and the kernel of f : (A,R) → (B, S) belong to X, but (B, S)
does not, since S is not transitive. Therefore the image of (2.f) under F is
a short exact sequence in X – since F preserves cokernels – but it is not a
short exact sequence in C.

Proposition 2.6. [9, Proposition 2.5] If F is a regular-epi-reflection then it
is protoadditive if, and only if, for any split short exact sequence (2.e), F (k)
is a monomorphism.

Remark 2.7. The corresponding result for protolocalizations is false, as the
example of Remark 2.11 shows.

Theorem 2.8. If C is a regular category, any reflection (2.a) factors as a
regular-epi-reflection F ′ : C → Y followed by a monoreflection F ′′ : Y → X,
as in the diagram:

X //⊥

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻

C

F ′

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

Foo

Y

CC✟✟✟✟✟✟✟✟✟✟✟✟✟✟

F ′′

[[✻✻✻✻✻✻✻✻✻✻✻✻✻✻

⊥⊥

(2.g)

where Y = {Y ∈ C | there is a monomorphism Y → X with X ∈ X}. More-
over, as any monoreflection is an epi-reflection, F ′′ is a bireflection, that is,
its unit is pointwise both an epimorphism and a monomorphism.
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Proof : Let η, η′ and η′′ be the units of the adjunctions for the reflections F ,
F ′ and F ′′, respectively. For each object C of C, in the commutative diagram

C
ηC //

η′
C ""❉

❉❉
❉❉

❉❉
❉❉

F (C)

F ′(C)
η′′
F ′(C)

::✉✉✉✉✉✉✉✉✉

(2.h)

we have:

– η′C : C → F ′(C) is a universal arrow giving the reflection of C into Y;
– η′′F ′(C) : F

′(C) → F (C) is a universal arrow giving the reflection of F ′(C)

into X.

Remark 2.9. Observe that this result follows from a more general one that
holds whenever there is a proper factorization system (E,M) in C. Under
those assumptions the statement of the theorem would then give a canonical
factorization of the reflection F : C → X as an E-reflection followed by an
M-reflection.

Proposition 2.10. In diagram (2.g) F is a protoadditive reflection if, and
only if, F ′ and F ′′ are protoadditive.

Proof : If F ′ and F ′′ are protoadditive, then F = F ′ · F ′′ is clearly protoad-
ditive.
Now assume that F is protoadditive, and consider the diagram

0 // K
k //

η′
K

��

A

η′
A

��

f
// B

s
oo //

η′
B

��

0

0 // F ′(K)
F ′(k)

//

η′′
F ′(K)

��

F ′(A)

η′′
F ′(A)

��

F ′(f)
// F ′(B)

F ′(s)
oo //

η′′
F ′(B)

��

0

0 // F (K)
F (k)

// F (A)
F (f)

// F (B)
F (s)

oo // 0

(2.i)

where the top row is an exact sequence, η′ = (η′C)C∈C and η′′ = (η′′Y )Y ∈Y are
the units of the adjunctions, so that ηC = η′′F ′(C) · η

′
C for every object C of C

(as in (2.h)). By assumption F (k) is a monomorphism, as well as η′′F ′(K), and

so F ′(k) has to be a monomorphism. With Proposition 2.6 we conclude that
F ′ is protoadditive. To show that F ′′ is also protoadditive, consider diagram
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(2.i) with K,A,B in Y. In this case the two top rows are isomorphic and the
conclusion follows.

Remark 2.11. The former statement is not valid when we replace protoad-
ditive reflection with protolocalization. Consider the reflection

VectQ //⊥ Ab
Q⊗−

oo

whereQ is the field of rational numbers, VectQ is the category of vector spaces
over Q, Ab is the category of abelian groups, and ⊗ is the tensor product.
This reflection is a localization because Q, being a flat module over the ring
Z of integers, makes Q⊗− an exact functor (between abelian categories).
Our factorization of this reflection is

VectQ //⊥ Abtf
F ′′

oo
//⊥ Ab

F ′

oo

where Abtf is the category of torsion free abelian groups. But the reflector F ′

is not a protolocalization. Indeed, the F ′-image of the short exact sequence

0 // Z
−×n // Z // Z/nZ // 0,

where n in any natural number strictly larger than 1, is

0 // Z
−×n // Z // 0 // 0,

which is not a short exact sequence in the category of torsion free abelian
groups.

3. In Grp protolocalizations and protoadditive reflections

trivialize

Theorem 3.1. There are no non-trivial protoadditive reflections of the cat-
egory Grp of groups. That is, if F : Grp → X is a protoadditive reflection,
then either X = Grp or X consists of trivial groups.

Proof : Let X be a protoadditive subcategory of Grp, with reflection F : Grp →
X and unit η as in the previous section. Let X ∈ X and let B be any group.

Form the kernel B♭X
k // B +X of the split epimorphism B +X

[1,0]
// B ,
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and consider the diagram

0

��

0

��

0

��

0 // Ker(ηB♭X) //

ker(ηB♭X)
��

Ker(ηB+X) //

ker(ηB+X)
��

Ker(ηB) //

ker(ηB)
��

0

0 // B♭X
k //

ηB♭X

��

B +X
[1,0]

//

ηB+X

��

B //

ηB
��

0

0 // F (B♭X)
F (k)

//

��

F (B +X)
F ([1,0])

//

��

F (B) //

��

0

0 0 0

Let a ∈ Ker(ηB). Then, for any x ∈ X, the element (x, a, x−1, a−1) of B +X
is both in Ker(ηB+X) and B♭X. Since F (k) is a monomorphism, we conclude
that ηB♭X(x, a, x

−1, a−1) = 1.
Now, since B♭X is the coproduct of B copies of X, with coproduct injec-

tions ιb : X → B♭X given by ιb(x) = (b, x, b−1) for every b ∈ B and x ∈ X,
and F preserves coproducts, F (ιb) : X → F (B♭X) are product injections in
X. Hence, for a ∈ Ker(ηB) as above,

1 = ηB♭X(x, a, x
−1, a−1) = ηB♭X(x)ηB♭X(a, x

−1, a−1)

= ηB♭X(ι1(x))ηB♭X(ιa(x
−1)) = F (ι1)(x)F (ιa)(x

−1),

and then we can conclude that the coproduct injections F (ι1) and F (ιa) are
equal. Since X is pointed, this implies a = 1, and so ηB is a monomorphism
for every group B. Since every monoreflection is an epi-reflection, F is a
bireflection, which means that F is an isomorphism since the category of
groups is balanced.

Remark 3.2. Let A be a category with finite limits and Grp(A) the category
of internal groups in A. In spite of Theorem 3.1, there are many non-trivial
protolocalizations and protoadditive reflections of the form Grp(A) → X, with
homological Grp(A), including the following ones:

(a) All localizations A → X, where A is additive homological, since A can be
identified with Grp(A) whenever A is additive.
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(b) The forgetful functor F from the category Grp(Top) of topological groups
to Grp, if Grp is identified with the category of indiscrete topological
groups; since F has both left and right adjoints, it is a localization.

(c) As shown in [9], the reflection Grp(Top) → Grp(Haus), considered in [2],
where Grp(Haus) is the category of Hausdorff topological groups, is a
protoadditive reflection. However, it is obviously not a protolocalization:
for, just apply it to, say, 0 → Q → R → R/Q → 0, where Q and R are
the additive groups of rational and real numbers, respectively.

(d) The reflection Grp(Haus) → Grp(TotDis), where Grp(TotDis) is the cat-
egory of totally disconnected topological groups, is another protoaddi-
tive reflection that is not a protolocalization; this time 0 → Z → R →
R/Z → 0 provides the desired counter-example. The protoadditivity can
be shown in the same way as it is done for compact semi-abelian algebras
in [9] using its Theorem 2.6.

(e) The reflection π0 : Grp(Cat) → Grp, where Cat is the category of (small)
categories and π0 sends internal groups in Cat to the groups of isomor-
phism classes of their objects (and Grp is identified with the category of
internal groups in the category of discrete categories), is protoadditive
but not a protolocalization. Moreover, replacing Grp(Cat) with its iso-
morphic category Cat(Grp), one can then prove protoadditivity for the
more general reflection π0 : Cat(C) → C, where C is any semi-abelian
category in the sense of [20]. This is done in [7], and, as shown in [3], this
reflection is a protolocalization when C is also arithmetical in the sense
of [26]. Let us also recall that Grp(Cat) = Grp(Grpd), where Grpd is the
category of groupoids, can be identified (up to equivalence of categories)
with the category XMod of crossed modules, and then π0 will become
the familiar cokernel functor to Grp. The same can be done with any
semi-abelian C using internal crossed modules in the sense of [19].

(f) Let K be a (unital) commutative ring and G a group. The group alge-
bra K[G] has a natural Hopf K-algebra structure whose comultiplication
∆ : K[G] → K[G] ⊗K K[G] is defined by ∆(g) = g ⊗ g, for all g in G.
Accordingly, for any Hopf K-algebra H, an element h in H is said to
be a group-like element if ∆(h) = h ⊗ h for the comultiplication ∆ of
H. Identifying the category of cocommutative Hopf K-algebras with the
category Grp(CCoAlgK) of internal groups in the category of cocommuta-
tive K-coalgebras (see [27] for instance), and identifying the category of
Hopf K-algebras of the form K[G] (for all groups G) with the category of
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groups, yields now the group-like element functor Grp(CCoAlgK) → Grp.
As shown in [14] (see also [15]), when K is a field of characteristic zero,
Grp(CCoAlgK) is semi-abelian and this functor is a localization.

4. Admissibility and attainability

Let C be a category with pullbacks, X a full replete subcategory of C, and
F : C → X the reflection. Following [17], we shall call an object A in C

F -admissible if the right adjoint of the induced functor

FA : (C ↓ A) // (X ↓ F (A))

is fully faithful, or, equivalently, for every morphism f : X → F (A) in X, the
canonical morphism

F (A×F (A) X) // F (X) = X (4.a)

is an isomorphism. The canonical morphism A → F (A) involved in the
pullback above will be denoted by ηA, and, when C is pointed, the kernel of
ηA will be denoted by κA : K(A) → A. The following theorem generalizes
Theorem 3.1 of [18]:

Theorem 4.1. If C is normal in the sense of Z. Janelidze [22] and F :
C → X is a normal-epi-reflection (=regular-epi-reflection), then the following
conditions on an object A in C are equivalent:

(i) A is F -admissible;
(ii) F (K(A)) = 0;
(iii) K(K(A)) ∼= K(A) canonically.

Moreover, if these conditions hold, and A admits a short exact sequence
0 // X // A // Y // 0 in C with X and Y in X, then A is in X.

Proof : (i) ⇒ (ii): Putting X = 0 in (4.a) we obtain F (K(A)) = F (A×F (A)

0) = 0 by (i).
(ii) ⇔ (iii) is trivial.
(ii) ⇒ (i): For a morphism f : X → F (A) in X, we need to prove that (ii)

implies that the canonical morphism (4.a) is an isomorphism. For that we
observe that since ηA is a normal epimorphism, so is the pullback projection
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p : A×F (A)X → X, and, since these two morphisms have isomorphic kernels,
this gives a cokernel diagram

K(A) // A×F (A) X
p

// X. (4.b)

Since F is a left adjoint, it preserves cokernel diagrams, and so (ii) implies
that F (p) is an isomorphism, as desired.
To prove the last assertion of the theorem, we observe:

(1) Since F is an epi-reflection, X is closed under normal subobjects in C.

(2) The existence of a short exact sequence 0 // X // A // Y // 0 implies
that κA : K(A) → A factors through X → A.

(3) (1) and (2) together imply that K(A) is in X.
(4) (3) and (ii) together imply K(A) = 0.
(5) Since F is a normal-epi-reflection, (4) implies that A is in X.

Remark 4.2. (1) As observed in [4] any reflection F : C → X to a full
subcategory has all A in C admissible if and only if it is semi-left-
exact in the sense of [5]. On the other hand, for any functor F :
C → X, having a fully faithful right adjoint for FA : (C ↓ A) → (X ↓
F (A)) for every A in C is equivalent to be (essentially) a fibration (cf.
Proposition 36 of [3]).

(2) As easily follows from Proposition 19 of [3], the Galois theory of F (see
e.g. [17, 18]) becomes trivial when F is a protolocalization – in the
sense that its Galois groupoids become effective equivalence relations
and it reduces to descent theory. This is not the case, however, for
protoadditive reflections, for which it is often possible to provide an
explicit and simple description of the (non-trivial) Galois groups in
terms of Hopf formulae [9].

Theorem 4.3. Suppose F : C → X is as in Theorem 4.1. If C is normal and
X is extension closed in C, then the equivalent conditions (i)–(iii) of Theorem
4.1 on A hold whenever K(K(A)) is (canonically) a normal subobject of A
(that is, whenever the composite of K(K(A)) → K(A) → A is a normal
monomorphism).
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Proof : Take any A in C and consider the commutative diagram

0

��

K(K(A))

$$■
■■

■■
■■

■■
■■

■

��

0 // K(A) //

��

A
ηA //

��

A
K(A)

// 0

K(A)
K(K(A))

��

// A
K(K(A))

// A
K(A)

0

(4.c)

whose middle row is a short exact sequence, and the quotients in the lower
row are the obvious ones. The double quotient isomorphism theorem for
normal categories (see Lemma 1.3 in [8]) implies that the lower row is also

exact. Since K(A)
K(K(A))

∼= F (K(A)) and A
K(A)

= F (A), the extension closedness

of X implies that A
K(K(A))

is in X. By the universal property of ηA : A → F (A)

this implies that K(K(A)) ∼= K(A) canonically.

From this theorem and the last assertion of Theorem 4.1, we obtain the
following result (see also the Corollary in [21]):

Corollary 4.4. Suppose F : C → X is as in Theorem 4.1 and C is normal.
Then the following conditions are equivalent:

(i) every object A of C satisfies the equivalent conditions of Theorem 4.1,
or, equivalently, F : C → X is semi-left-exact;

(ii) X is extension closed in C and, for every A in C, K(K(A)) is a normal
subobject of A.

The assumptions of Theorems 4.1 and 4.3 and of Corollary 4.4 hold when-
ever C is a semi-abelian category and X is a Birkhoff subcategory of C. In
particular, they hold when C is a variety of Ω-groups (=groups with multiple
operators in the sense of P. J. Higgins [16]), and X a subvariety of C. In
addition to that we have the following theorem, which in fact follows from
previously known results, including Theorem 3.1 of [18]:
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Theorem 4.5. If C is a variety of Ω-groups and X a subvariety of C deter-
mined by a set Φ of identities, then the equivalent conditions of Theorem 4.1
on an object A in C are also equivalent to each of the following conditions:

(iii) Φ is attainable on A in the sense T. Tamura [28];
(iv) A is X-attainable in the sense of A. Mal’tsev [23].

Proof : (iii) ⇔ (iv) is well-known in the more general context of arbitrary
varieties (in fact Tamura introduces all definitions for semigroups, but then
mentions that they can be copied for arbitrary varieties of algebras). The fact
that (iii) is equivalent to condition (ii) of Theorem 4.1 immediately follows
from Tamura’s definitions.

Following Tamura, Mal’tsev, and many other authors of the next genera-
tion, one would call X attainable if all objects of C are X-attainable. Actually
we have

semisimple ⇔ attainable ⇔ admissible ⇔ semi-left-exact ⇔ fibered
(4.d)

in the sense of:

Theorem 4.6. If C is a variety of Ω-groups and X a subvariety of C, then
the following conditions are equivalent:

(i) X is a semisimple class in C in the sense of Kurosh-Amitsur radical
theory;

(ii) X is an attainable subvariety of C;
(iii) every object A in C is F -admissible;
(iv) the reflection F : C → X is semi-left-exact;
(v) the reflection F : C → X is (essentially) a fibration.

Proof : (i) ⇔ (ii) is ‘folklore’, but since we could not find it explicitly men-
tioned in the literature, let us explain:
According to (4.2) of Theorem 4 in [24] of R. Mlitz, (i) means that the

following conditions hold:

(i1) X is closed in C under subdirect products;
(i2) if X is in X and Y = Ker(f) 6= 0 for some morphism f with domain

X, then Y has a non-zero quotient in X;
(i3) every A in C satisfies condition (iii) of Theorem 4.1.

Since conditions (i1) and (i2) trivially follow from the fact that X is a subva-
riety of C, this proves (i) ⇔ (ii). For (ii) ⇔ (iii) and (ii) ⇔ (iv) see Remark
4.2.
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Remark 4.7. (1) The algebraic versions of our arguments used in the
proofs of the last assertion of Theorem 4.1 and of Theorem 4.3 are
known in more general contexts of universal algebra and radical theory.
The known context for attainability implying extension closedness is
especially general, and the result goes back to the above-mentioned
paper [23]. On the other hand, our proof of Theorem 4.3 restricted
to Ω-groups is nothing but a simplified version of arguments used in
[24]. It would be interesting to remove the assumption on normality
of the monomorphism K(K(A)) → A in that theorem. It indeed can
be removed when C is the variety of (associative) rings as shown by
R. Wiegandt [30] and in some other cases (see Section 3.20 of B. J.
Gardner and R. Wiegandt [12] and references at the end of it). But
it cannot be removed even in some closely related categories (see e.g.
B. J. Gardner [10] and S. Veldsman [29]). In the case of groups this is
trivial since there are no extension closed (proper) subvarieties of the
variety of groups, as observed in [23] referring to results of B. H., H.,
and P. M. Neumann [25].

(2) In the case of rings, we obtain an interesting conclusion: The (quite
non-trivial!) complete description of extension closed varieties of rings,
due to B. J. Gardner and P. N. Stewart [11], also repeated in the book
[12], can also be considered as the complete description of semi-left-
exact reflections from the variety of rings to its subvarieties.

Applying a part of Theorem 42 of [3], we obtain

Theorem 4.8. If C is a variety of Ω-groups and X a subvariety of C, then
the following conditions are equivalent:

(i) X is a semisimple class in C in the sense of Kurosh-Amitsur radical
theory whose corresponding radical class is hereditary;

(ii) the reflection F : C → X is a regular-epi-reflective protolocalization.

Remark 4.9. For a reflection F : C → X of a variety C of Ω-groups to a
subvariety X of it, in addition to the equivalences (4.d), we have now:

protolocalization ⇔ semisimple with hered. radical ⇒ semisimple ⇒ extension closed,

(4.e)
with known counter-examples to the converse of the last implication (which
we have according to Remark 4.7). For a counter-example of the previous
implication consider the Burnside variety B6 of groups of exponent 6, i.e.
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satisfying the identity x6 = 1 and its subvariety B3 determined by the identity
x3 = 1. B3 is a torsion-free subvariety of B6, whose radical is not hereditary
(this follows from the results in [13], see in particular its Example 5.1).

Remark 4.10. (1) We do not know any example of a protolocalization
in the cases where C is either the category of rings or the category
of commutative rings (according to the results of [11], these cases are
obviously of interest). However, there are many examples of protoad-
ditive reflections in these categories: for instance, such is the reflector
from the category of commutative rings to its torsion-free subcat-
egory of reduced rings (i.e. those rings satisfying the implications
xn = 0 ⇒ x = 0, for any n ≥ 1).

(2) Let us also point out that there are no non-trivial localizations neither
of the category of rings nor of the category of commutative rings that
are reflections to subvarieties. For, let F : C → X be the canonical
reflection to a subvariety with C being the category of commutative
rings. If A is the free commutative ring on a set S, then it is a subring
of the polynomial ring Z[S] and therefore it is also a subring of the
rational function field Q(S). Consider F (Q(S)). If Q(S) belongs
to X for every S, then X being a subvariety of C contains all free
commutative rings, and therefore contains all commutative rings. If
Q(S) does not belong to X, then F (Q(S)) = 0 since F (Q(S)) must be
a quotient ring of the field Q(S). But, for a non-empty S, this means
that F carries the monomorphismA → Q(S) to a non-monomorphism
F (A) → 0 (since F (A) is nothing but the free algebra in X on S). The
same arguments can be used for non-commutative rings since every
free ring can be embedded into a skew field (=division ring), as shown
by P. M. Cohn [6].

(3) A further simplified version of the same argument negatively answers
an open question of [3], namely the question whether the reflection of
the variety of commutative von Neumann regular rings to the variety
of Boolean rings is a localisation. For, consider the embedding F2 →
F4 of the two-elements field to the four-elements field. Since F2 is
Boolean and F4 is not, we have F (F2) = F2 and F (F4) = 0; hence F
carries a monomorphism F2 → F4 to a non-monomorphism.
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