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1. Introduction
Since the publication of Eilenberg’s textbook [Eil76], a large body of fi-

nite semigroup theory is in fact the theory of pseudovarieties of semigroups.
Besides its own mathematical interest, it draws motivation from the con-
nections with computer science through Eilenberg’s correspondence between
pseudovarieties of semigroups and varieties of regular languages. As pseu-
dovarieties are classes of finite semigroups, only in very special cases do they
contain most general members on a given finite set of generators, that is
relatively free semigroups, namely semigroups on n generators in the pseu-
dovariety such that every other member of the pseudovariety on n generators
is their homomorphic image. To obtain relatively free structures, one needs to
step away from finiteness into the more general framework of profinite semi-
groups, and indeed such a tool has been shown to lead to useful insights and
has found many applications [Alm95, Alm05b, AV02, Pin09, Wei02, RS09].

As topological semigroups, relatively free profinite semigroups S over a
finite alphabet A are generated by A, which means that elements of S are ar-
bitrarily well approximated by words in the letters of A. Thus, the elements
of S may be considered a sort of generalization of words on the alphabet A,
which are sometimes called pseudowords. Of course, S may satisfy nontrivial
identities, which means that different words may represent the same element
of S, although in the most interesting examples of pseudovarieties, this is
not the case. Now, words on the alphabet A may be naturally viewed as
A-labeled finite linear orders, a perspective that underlies many fruitful con-
nections with finite model theory [Tho97]. For some pseudovarieties, such as
R, of all finite R-trivial semigroups, and DA, of all finite semigroups in which
the idempotents are the only regular elements, representations of the cor-
responding finitely generated relatively free profinite semigroups by labeled
linear orders have been obtained and significantly applied [AW97, Mou11].
The purpose of this paper is to investigate such a linear nature of pseu-
dowords for pseudovarieties with suitable properties. Our main motivation is
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to understand pseudowords over the pseudovariety A, of all finite aperiodic
semigroups.

The key properties of the pseudovariety A that play a role in this paper are
of a combinatorial nature: the corresponding variety of languages is closed
under concatenation and the cancelability of first and last letters. The first
of these properties entails a very useful feature of the corresponding finitely
generated relatively free profinite semigroups, namely equidivisibility, which
means that different factorizations of the same pseudoword have a common
refinement. This condition already forces a linear quasi-order on the factor-
izations of a given pseudoword, and this is the starting point for the whole
paper. The cancelability condition leads to special types of factorizations,
which we call step points, to which a letter is naturally associated. The
corresponding linear order has interesting order and topological properties,
such as being compact for the interval topology. The step points are the
isolated points and there are only countably many of them. All other points
are called stationary and, in contrast, there may be uncountably many of
them. Perhaps somewhat surprisingly, there is no correlation between the
number of stationary points and how low pseudowords fall in the J-order.

Our main result is that the linear order of factorizations with alphabet-
labeled step points provides a faithful representation of pseudowords over A.
We also obtain a characterization of the partially labeled linear orders that
appear in this way, albeit in terms of properties involving finite aperiodic
semigroups. A natural goal for future work consists in looking for a character-
ization of the image of the representation which is independent of such semi-
groups, as has been done in the case of the pseudovarieties R and DA [AW97,
Mou11].

While this paper was being written, Gool and Steinberg developed a differ-
ent approach on the pseudowords over A, applying Stone duality and model
theory to view them as elementary equivalence classes of labeled linear or-
ders [GS16]. They worked specially with the unique countably saturated
models within each elementary equivalence class. In our paper, the models
that appear in the image of the representation are not saturated in general.

We also mention the articles [HK14] and [KW16], where labeled linear
orders were assigned only to a special class of pseudowords, the ω-terms, and
were used to solve the word problem for ω-terms in several pseudovarieties,
either for the first time, or with new proofs, as in the case of A, treated in
[HK14].
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The paper is organized as follows. After a section of preliminaries, Sec-
tion 3 introduces the key notion of equidivisible semigroup in the context
of relatively free profinite semigroups, with an emphasis on pseudovarieties
closed under concatenation. Several results of the paper apply to all such
pseudovarieties, but at a certain point our hypothesis restricts to A. In the
next four sections, we develop more on the tools and the language necessary
for the main results. In Section 8, we give our faithful representation of pseu-
dowords over A as labeled linear orders. The following three sections relate
to the proof of this representation (the first two of them having independent
interest). This is followed by a study of the effect of the multiplication in
the image of the representation, and by a characterization of the image. The
paper closes with Section 14 where, among other things, it is shown that the
ordered set of the real numbers can be embedded in the ordered set of the
stationary points of a pseudoword over a finitely cancelable pseudovariety
containing LSl. This is done via a connection with symbolic dynamics.

2. Preliminaries
We assume some familiarity with pseudovarieties of semigroups and rel-

atively free profinite semigroups [Alm05b, Alm95, RS09]. For the reader’s
convenience, some notation and terminology is presented here. The following
is a list of some of the pseudovarieties we will be working with:

• I: all trivial semigroups;
• S: all finite semigroups;
• A: all finite aperiodic semigroups;
• N: all finite nilpotent semigroups;
• D: all finite semigroups in which the idempotents are right zeros;
• LSl: all finite local semilattices.

In the whole paper, A denotes a finite alphabet. Let V be a pseudovariety of
semigroups. The free pro-V semigroup generated by A is denoted ΩAV. Its
elements are pseudowords over V. When V 6= I, as the associated generating
mapping A → ΩAV is injective, one considers A to be contained in ΩAV. If
ϕ : A→ S is a generating mapping of a pro-V semigroup, then we denote by
ϕV the unique continuous homomorphism ΩAV→ S extending ϕ.

If V contains N, then the subsemigroup of ΩAV generated by A is isomorphic
to A+ and its elements are the isolated points of ΩAV, in view of which A+

is considered to be contained in ΩAV, and the elements of A+ and ΩAV \A+

are respectively called the finite and infinite pseudowords over V.
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By a topological semigroup, we mean a semigroup endowed with a topology
that makes the semigroup multiplication continuous. Unlike some authors,
we require that a compact space be Hausdorff. By a compact semigroup, we
mean a compact topological semigroup. See [CHK83].

We denote by SI the monoid obtained from the semigroup S by adjoining
to S an element denoted by 1 which acts as the identity. Every semigroup
homomorphism ϕ : S → T is extended to a semigroup homomorphism SI →
T I , also denoted ϕ, such that ϕ(1) = 1. If S is a topological semigroup,
then SI is viewed as a topological monoid whose topology is the sum of the
topological spaces S and {1}, whence 1 is an isolated point of SI .

We use the standard notation for Green’s relations and its quasi-orders on
a semigroup S. Hence, s ≤R t, s ≤L t and s ≤J t respectively mean s ∈ tSI ,
s ∈ SIt and s ∈ SItSI , R, L, J are the associated equivalence relations,
D = R ∨ L, and H = R ∩ L.

A semigroup S has unambiguous ≤L-order if, for every x, y, z ∈ S, x ≤L y
and x ≤L z implies y ≤L z or z ≤L y. One also has the dual notion of
unambiguous ≤R-order. An unambiguous semigroup is a semigroup with
unambiguous ≤R-order and unambiguous ≤L-order. The next proposition is
an important tool to show one of our main results.

Proposition 2.1. Let A be a finite alphabet. Let u, v ∈ ΩAA. Then u = v if
and only if ϕA(u) = ϕA(v), for every mapping ϕ from A onto an unambiguous
finite aperiodic semigroup.

Proof : The “only if” direction of the statement is immediate. To establish
the “if” direction, it suffices to show that it is the inverse limit of A-generated
unambiguous finite aperiodic semigroups.

It is well known that every A-generated finite aperiodic semigroup is a ho-
momorphic image of an unambiguous A-generated finite aperiodic semigroup,
namely its Birget-Rhodes expansion (also called iterated Rhodes expansion),
cut down to the set of generators A [Bir84, Gri95]. Since pairs of distinct
points of ΩAA may be separated by continuous homomorphisms into finite
aperiodic semigroups, the result follows.

3. Equidivisibility and pseudovarieties closed under con-
catenation

A language L ⊆ A+ is said to be V-recognizable if there is a homomorphism
ϕ : A+ → S into a semigroup S from V such that L = ϕ−1ϕ(L). We say that
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a pseudovariety V of semigroups is closed under concatenation if, for every
finite alphabet A, whenever L and K are V-recognizable languages of A+,
the set LK is also a V-recognizable language of A+.

Theorem 3.1. The following conditions are equivalent for a pseudovariety V
of semigroups.

(1) V is closed under concatenation;
(2) A©m V = V;
(3) V contains N and the multiplication in ΩAV is an open mapping for

every finite alphabet A.

The equivalence 1⇔3 in Theorem 3.1 is from [AC09, Lemma 2.3]. The
difficult part of the theorem is the equivalence 1⇔2, which is a particular case
of a more general result established by Chaubard, Pin and Straubing [CPS06].
The latter, in turn, extends an earlier result of Straubing [Str79], establishing
that a nontrivial pseudovariety V of monoids satisfies A©m V = V if and only if,
for every finite alphabet A, whenever L and K are V-recognizable languages
of A∗, the set LK is also a V-recognizable language of A∗. In the case of
semigroups, the absence in Theorem 3.1 of reference to the pseudovariety
I of trivial semigroups is not surprising if we take into account that A+ is
I-recognizable but not A+A+, where we view these languages as languages of
A+.

Schützenberger [Sch65] proved that a language over a finite alphabet is A-
recognizable if and only if it is star-free, in the sense that it can be obtained
from finite languages by using only finite Boolean operations and concate-
nation. In particular, it follows that A is closed under concatenation. As
important classes of examples of pseudovarieties closed under concatenation
that include A, one has the complexity pseudovarieties Cn (cf. [RS09, Def-
inition 4.3.10]) and every pseudovariety H formed by the finite semigroups
whose subgroups belong to the pseudovariety of groups H.

Combined with Theorem 3.1, the next lemma, which will be quite useful
in the sequel, provides yet another characterization of the pseudovarieties
closed under concatenation. A weaker version of the direct implication was
proved in [AC09, Lemma 2.5].

Lemma 3.2. Let S be a topological semigroup whose topology is defined by
a metric. The following conditions are equivalent:

(1) The multiplication in S is an open mapping;
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(2) For every u, v ∈ S, if (wn)n is a sequence of elements of S converging
to uv, then there are sequences (un)n and (vn)n of elements of SI such
that wn = unvn, lim un = u, and lim vn = v.

Proof : Consider a metric d inducing the topology of S. We denote by B(t, ε)
the open ball in S with center t and radius ε.

1⇒2: Let k be a positive integer. Since the multiplication is an open
mapping, the set B

(
u, 1

k

)
B
(
v, 1

k

)
is an open neighbourhood of uv. Hence

there is pk such that wn ∈ B
(
u, 1

k

)
B
(
v, 1

k

)
if n ≥ pk. Let nk be the strictly

increasing sequence recursively defined by n1 = p1 and nk = max{nk−1+1, pk}
whenever k > 1. Then there are sequences (un)n and (vn)n satisfying the
following conditions: if nk ≤ n < nk+1 then un ∈ B

(
u, 1

k

)
, vn ∈ B

(
v, 1

k

)
, and

wn = unvn; and if n < n1 then un = 1 and vn = wn. The pair of sequences
(un)n and (vn)n satisfies condition 2.

2⇒1: We want to prove that B(s, ε)B(t, ε) is open, for every s, t ∈ S and
ε > 0. Let (wn)n be a sequence of elements of S converging to an element
of B(s, ε)B(t, ε). Let u ∈ B(s, ε) and v ∈ B(t, ε) be such that limwn = uv.
Take sequences (un)n and (vn)n as in the statement of condition 2. There is
N such that d(un, u) < ε− d(u, s) for all n ≥ N . Then d(un, s) ≤ d(un, u) +
d(u, s) < ε for all n ≥ N . Similarly, d(vn, t) < ε for all sufficiently large n.
Therefore, since wn = unvn, we have wn ∈ B(s, ε)B(t, ε) for all sufficiently
large n, which proves that B(s, ε)B(t, ε) is open.

A semigroup S is said to be equidivisible [MS69, Lal79] if, for every equality
of the form xy = uv, with x, y, u, v ∈ S, there exists t ∈ SI such that, either
xt = u and y = tv, or x = ut and ty = v. Clearly, free semigroups and
groups are equidivisible. Moreover, all completely simple semigroups are
equidivisible. Actually, a semigroup S is completely simple if and only if,
for every x, y, u, v ∈ S such that xy = uv, there are t, s ∈ S such that
xt = u, y = tv, x = us and sy = v [MS69]. Note that every equidivisible
semigroup is unambiguous. The converse is not true: for instance, free bands
are unambiguous, which follows easily from the solution of the word problem
for free bands (see, for instance [Alm95, Section 5.4]) but not equidivisible
for more than one free generator since, if a, b are two distinct free generators
in a free band then, for x = a, y = b, u = v = ab, we have xy = uv, yet
y >L v and x >R u. More generally, it is shown in [RS02, Section 15] that, if
V is a pseudovariety of semigroups such that V = RB©m V, where RB denotes
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the pseudovariety of finite rectangular bands, then ΩAV is unambiguous, for
every finite alphabet A.

Let us say that a pseudovariety of semigroups V is equidivisible if ΩAV is
equidivisible, for every finite alphabet A. The following result was established
by the first two authors [AC16], where ©m denotes the Mal’cev product, LI the
pseudovariety of all finite locally trivial semigroups, and CS the pseudovariety
of all finite completely simple semigroups.

Theorem 3.3. A pseudovariety of semigroups V is equidivisible if and only
if V = LI©m V or V ⊆ CS.

In particular, every pseudovariety closed under concatenation is equidivisi-
ble. Many of our results below are formulated not in terms of pseudovarieties
but more abstractly for free profinite semigroups with suitable properties,
which are satisfied for free profinite semigroups over pseudovarieties that are
closed under concatenation or, sometimes, more generally, equidivisible.

4. The quasi-order of 2-factorizations
By a quasi-order on a set we mean a reflexive transitive relation. In case

the relation is additionally anti-symmetric, the quasi-order is called a partial
order. A quasi-ordering (X,≤), in the sense of a set X with a quasi-order ≤,
is said to be total, or linear if x ≤ y or y ≤ x, for every x, y ∈ X.

4.1. Definition and properties. Let S be a semigroup. A 2-factorization
of s ∈ S is a pair (u, v) of elements of SI such that s = uv. We denote the
set of 2-factorizations of s by F(s). We introduce in F(s) a relation ≤ defined
by (u, v) ≤ (u′, v′) if there exists t ∈ SI such that ut = u′ and v = tv′, in
which case we say that t is a transition from (u, v) to (u′, v′). The relation ≤
is a quasi-order. Concerning transitivity, we have more precisely that if t is a
transition from (u, v) to (u′, v′) and t′ is a transition from (u′, v′) to (u′′, v′′),
then tt′ is a transition from (u, v) to (u′′, v′′).

Given a quasi-order ≤ on a set P , we denote by ∼ the equivalence relation
on P induced by ≤ and we write p < q if p ≤ q but not p ∼ q. Denote
by ≺ the relation on P such that p ≺ q if and only if q is a successor of p
(equivalently, p is a predecessor of q), that is, p ≺ q if and only if p < q and
p ≤ r ≤ q ⇒ (r ∼ p ∨ r ∼ q).

For every element s of a semigroup S, the quotient set F(s)/∼ is denoted
L(s). We denote the quotient mapping F(s)→ L(s) by χ. The partial order
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on L(s) induced by the quasi-order ≤ on F(s) is also denoted by ≤. For
p, q ∈ L(s), we also write p ≺ q if p is a predecessor of q. Sometimes we will
also consider the unions F(S) = ⋃

s∈S F(s) and L(S) = ⋃
s∈S L(s).

The following result is immediate.

Lemma 4.1. A semigroup S is equidivisible if and only if L(s) is linearly
ordered for every s ∈ S.

The previous lemma is the departing point motivating this paper. For a
good supporting reference on the theory of linear orderings, see [Ros82].

We proceed to extract from topological assumptions on S some conse-
quences on the quasi-order of 2-factorizations. In what follows, F(s) is viewed
as a topological subspace of SI × SI .

Lemma 4.2. If S is a compact semigroup, then, for every s ∈ S, the quasi-
order ≤ on F(s) is a closed subset of F(s)× F(s).

Proof : Suppose (pi, qi)i∈I is a convergent net of elements of F(s)× F(s) with
limit (p, q) and such that pi ≤ qi for every i ∈ I. Then, for each i ∈ I,
there is ti ∈ SI making a transition from pi to qi. Since SI is compact, the
net (ti)i∈I has a subnet converging to some t ∈ SI . Then, by continuity of
multiplication on SI , one deduces that indeed p ≤ q, with t being a transition
from p to q.

We shall denote the open intervals of a quasi-ordered set P by

]←, p[ = {r ∈ P : r < p}, ]p,→[ = {r ∈ P : p < r}, ]p, q[ = ]p,→[∩]←, q[,
for every p, q ∈ P . Considering the relation ≤, we also have the intervals of
the form ]←, p] = {r ∈ P : r ≤ p}, [p,→[ = {r ∈ P : p ≤ r}, and so on.
Recall that the order topology of a linearly ordered set P is the topology with
subbase the sets of the form ]←, p[ and ]p,→[. In particular, we consider the
order topology on L(s).

Proposition 4.3. Let S be a compact equidivisible semigroup. For every
s ∈ S, the mapping χ : F(s)→ L(s) is continuous.

Proof : It is sufficient to show that the sets of both forms χ−1(]←, q[) and
χ−1(]q,→[) are open. By duality, we are actually reduced to show that
χ−1(]q,→[) is open. Since L(s) is linearly ordered by Lemma 4.1, the com-
plement of this last set is χ−1(]←, q]), which we therefore want to show to
be closed. Consider a net (ri)i∈I of elements of χ−1(]←, q]), converging to



10 J. ALMEIDA, A. COSTA, J. C. COSTA AND M. ZEITOUN

some r ∈ F(s). Let q̂ ∈ χ−1(q). Then ri ≤ q̂ for every i ∈ I. It follows from
Lemma 4.2 that r ≤ q̂, that is, r ∈ χ−1(]←, q]), showing that χ−1(]←, q]) is
closed.

Corollary 4.4. Let S be a compact equidivisible semigroup. Then, for every
s ∈ S, the order topology of L(s) is compact. Moreover, if the space S
is metrizable, then the space L(s) is also metrizable and the set of isolated
points of L(s) is countable.

Proof : Since S is compact, F(s) is compact, being the preimage in SI × SI
under multiplication of the closed set {s}, it is a closed subset of a com-
pact space, whence compact. Since L(s) is clearly Hausdorff, it follows from
Proposition 4.3 that L(s) is compact.

Suppose that S is metrizable. Then F(s) is metrizable, being a subspace of
a product of two metrizable spaces. Since the continuous image of a compact
metric space in a Hausdorff space is metrizable ([Wil70, Corollary 23.2]),
it also follows from Proposition 4.3 that L(s) is metrizable. As a compact
metrizable space, L(s) has a dense countable subset. Since isolated points
belong to every dense subset, they form a countable set.

Recall that a linearly ordered set L is said to be complete if every subset
of L which is bounded above has a least upper bound (i.e., a supremum) or,
equivalently, if every subset of L which is bounded below has a greatest lower
bound (i.e., an infimum) [Ros82, Section 2.4].

Proposition 4.5. Suppose S is a compact equidivisible semigroup. Then the
linearly ordered set L(s) is complete.

Proof : Let X be a subset of L(s). Consider the subset Y of L(s) of lower
bounds of X and assume that it is nonempty. As S is equidivisible, we know
by Lemma 4.1 that the quasi-order ≤ on the set χ−1(U) is linear, whence in
particular this set is directed. Therefore, we may consider, in the product
space SI × SI , the net (p)p∈χ−1(U). By compactness, this net has a subnet
(pi)i∈I converging to some element q of F(s). We claim that χ(q) = maxU .
If r ∈ χ−1(X), then we have p ≤ r for all p ∈ χ−1(U), and so q ≤ r, by
Lemma 4.2, showing that q ∈ χ−1(U). On the other hand, if p ∈ χ−1(U),
then, by the definition of subnet, there exists i0 ∈ I such that p ≤ pi for all
i ≥ i0. Hence we have p ≤ q, again by Lemma 4.2. This proves the claim
that χ(q) = maxU , and so χ(q) is the infimum of X.
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4.2. The category of transitions. A directed graph with vertex set V
and edge set E, which are assumed to be disjoint, is given by mappings
α, ω : E → V assigning to each edge s its source α(s) and its target ω(s).
A semigroupoid is a directed graph, with a nonempty set of edges, endowed
with a partial associative binary operation on the set of its edges such that
if s and t are edges, then st is defined if and only if ω(s) = α(t), in which
case α(st) = α(s) and ω(st) = ω(t).

Semigroupoids can be viewed as generalizations of semigroups, which in
turn can be viewed as one-vertex semigroupoids. In particular, Green’s rela-
tions generalize straightforwardly to Green’s relations between the edges in
semigroupoids. For instance, in a semigroupoid S, s ≤J t means that the
edge t is a factor of the edge s and s J t means that s ≤J t and t ≤J s. A sub-
semigroupoid of the semigroupoid S is a subgraph T of S, with a nonempty
set of edges, such that s, t ∈ T implies st ∈ T whenever ω(s) = α(t). Also,
an ideal of a semigroupoid S is a subsemigroupoid I of S such that for every
t ∈ I and every s ∈ S, ω(s) = α(t) implies st ∈ I, and ω(t) = α(s) implies
ts ∈ I.

A category is a semigroupoid such that, for each vertex v, there is a loop
1v at v satisfying 1vs = s and t1v = t for every edge s starting in v and
every edge t ending in v. This coincides with the notion of small category
from Category Theory, except that we compose in the opposite direction. In
doing so, we are following a common convention in Semigroup Theory, see
for example [Til87].

If the sets of edges and vertices of a semigroupoid are both endowed with
compact topologies, for which the semigroupoid operation and the mappings
α and ω are continuous, then the semigroupoid is said to be compact.

Let S be an arbitrary semigroup. To each s ∈ S, we associate a cate-
gory T(s), the category of transitions for s, as follows:

(1) the set of vertices of T(s) is F(s);
(2) we have an edge (u, v, t, x, y) from (u, v) to (x, y), which we may denote

(u, v) t−→ (x, y), if t is a transition from (u, v) to (x, y) (thus implying
(u, v) ≤ (x, y)); we say that t is the label of the edge;

(3) multiplication of consecutive edges is done by multiplying their labels,

that is, the product of (u1, v1) t1−→ (u2, v2) an (u2, v2) t2−→ (u3, v3) is

(u1, v1) t1t2−−→ (u3, v3).
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Note that the sets of vertices of the strongly connected components of the
category T(s) are precisely the ∼-classes of F(s).

The category of transitions for S, denoted T(S), is the coproduct cate-
gory

⋃
s∈S T(s). We denote by Λ the faithful functor T(S) → SI mapping

each edge (u, v, t, x, y) to t. We say that Λ is the labeling functor associated
to T(S). We remark that if S is a compact semigroup, then T(S) is a com-
pact category, with the vertex and edge sets respectively endowed with the
subspace topology of (SI)2 and of (SI)5. Note that Λ is continuous.

Suppose that in L(s) we have p ≤ q. An element t ∈ SI will be called a
transition from p to q if t is a transition from an element of p to an element

of q, in which case we use the notation p
t−→ q.

For future reference, it is convenient to register the following remark, con-
cerning the relationship between T(u) and T(uv).

Remark 4.6. Let u, v be elements of a semigroup S. If (α, β) t−→ (γ, δ) is an

edge of T(u), then (α, βv) t−→ (γ, δv) is an edge of T(uv).
This remark is applied in the proof of the following lemma, which in turn

will later be used in the proof of Theorem 10.1.

Lemma 4.7. Let S be an equidivisible semigroup. Consider two edges σ and
τ of T(S) with the same target and such that α(σ) < α(τ). Then the label of
σ is a suffix of the label of τ .

Proof : Let σ be the edge (α, β) t−→ (ε, ϕ) and τ be the edge (γ, δ) z−→ (ε, ϕ),
with (α, β) < (γ, δ). The following equalities hold: ε = αt = γz, β = tϕ,
and δ = zϕ. From the equality αt = γz and by equidivisibility, we deduce
that if z is not a suffix of t, then there exists s ∈ S such that γs = α and
st = z, that is, we have an edge (γ, z) s−→ (α, t) in T(ε). By Remark 4.6,
there is an edge (γ, δ) s−→ (α, β) in T(S), which contradicts the hypothesis
that (α, β) < (γ, δ). Hence z is a suffix of t.

5. The minimum ideal semigroupoid and the J-class as-
sociated to a ∼-class

In a strongly connected compact semigroupoid C, there is an underlying
minimum ideal semigroupoid K(C) which may be defined as follows. Con-
sider any vertex v of C and the local semigroup Cv of C at v, that is, the
semigroup formed by the loops at v. Then Cv is a compact semigroup, and
therefore it has a minimum ideal Kv. Let K(C) be the subsemigroupoid
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of C with the same set of vertices of C and whose edges are those edges as C
which admit some (and therefore every) element of Kv as a factor. The next
lemma is folklore.

Lemma 5.1. If C is a strongly connected compact semigroupoid, then K(C)
is a closed ideal of C whose definition does not depend on the choice of v.
Moreover, the edges in K(C) are J-equivalent, more precisely they are J-below
every edge of C.

Let (u, v) ∈ F(S). An element z ∈ SI stabilizes (u, v) if z labels a loop of
T(S) at (u, v). Note that the set M(u,v) of stabilizers of (u, v) is a monoid
and that M(u,v) is the isomorphic image, under the labeling functor Λ, of the
local monoid of T(S) at (u, v).

Assume S is a compact semigroup. For p ∈ L(S), let Tp be the strongly
connected component of T(S) whose vertices are the elements of p. We
denote by Kp the minimum ideal semigroupoid K(Tp). Since Λ: T(S)→ SI

is a (continuous) functor, where SI is viewed as the set of edges of single
vertex semigroupoid, in view of Lemma 5.1 the set of labels of edges in Kp is
contained in a single J-class of SI , which we denote Jp. For every (u, v) ∈ p,
the minimum ideal of M(u,v), which we denote I(u,v), is the image under Λ of
the minimum ideal of the local monoid of T(S) at (u, v), whence I(u,v) ⊆ Jp.
Note that Jp is regular, since I(u,v) is itself regular. The set Jp can also be
characterized as the set of J-minimum transitions from p to itself, as seen in
the next lemma.

Lemma 5.2. Let S be a compact semigroup, and let p ∈ L(S). Then t is a
transition from p to p if and only if t is a factor of the elements of Jp.

Proof : Let (u, v) t−→ (x, y) be a transition between elements of p. Since

(u, v) ∼ (x, y), there is a transition (x, y) s−→ (u, v). The loop (u, v) ts−→ (u, v)
is a factor of every element ε in the minimum ideal of the local monoid at
(u, v). Therefore, ts is a factor of Λ(ε) ∈ Jp.

Conversely, suppose that t is factor of the elements of Jp. Then there is a
loop (u, v) z−→ (u, v) in Kp such that z = xty for some x, y ∈ SI . In T(S) we

have the following path: (u, v) x−→ (ux, tyv) t−→ (uxt, yv) y−→ (u, v). Therefore,

(ux, tyv) t−→ (uxt, yv) is an edge of Tp.

We next give some results that further highlight the role of idempotent
stabilizers of 2-factorizations of elements of S, specially those idempotents in
a J-class of the form Jp.
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Recall that a semigroup is stable if J ∩ ≤L = L and J ∩ ≤R = R. In
particular, any compact semigroup is stable, see for instance [RS09].

Lemma 5.3. Let S be a stable unambiguous semigroup. Let e, f be idempo-
tents stabilizing an element (u, v) of F(S). If e J f then e = f .

Proof : The hypothesis gives ue = u = uf and ev = v = fv. Since S is
unambiguous, from ue = uf we get e ≤L f or f ≤L e. By stability, as e J f ,
it follows that e L f . Dually, from ev = fv we get e R f . Hence e = f .

Corollary 5.4. Let S be a compact unambiguous semigroup, p ∈ L(S) and

(u, v), (x, y) ∈ p. The edge (u, v) t−→ (x, y) of T(S) belongs to Kp if and only
if t ∈ Jp.

Proof : The “only if” part holds by definition of Jp. Conversely, suppose that

t ∈ Jp. Denote by ε the edge (u, v) t−→ (x, y). As Jp is regular, there is
an idempotent e ∈ Jp such that t = et. Since t is a prefix of v, we have
v = ev, thus we may consider the edges (u, v) e−→ (ue, v), (ue, v) e−→ (ue, v)
and (ue, v) t−→ (x, y), respectively denoted by α, β and γ. Observe that
ε = αβγ, and so it suffices to show that the loop β belongs to Kp. The ideal
Kp contains the minimum ideal of the local monoid of T(S) at (ue, v). The

latter contains an idempotent, of the form (ue, v) f−→ (ue, v) for some f ∈ Jp.
But f = e by Lemma 5.3 and therefore ε ∈ Kp.

Note that in the next lemma one does not assume that S is unambiguous.

Lemma 5.5. Let S be a compact semigroup, and let (u, v) ∈ F(S). Let e be
an idempotent stabilizing (u, v). If f is an idempotent J-equivalent to e, then
f stabilizes an element of the ∼-class p of (u, v). Moreover, if e labels a loop
of Kp, then f also labels a loop of Kp.

Proof : If f J e, then there are in the J-class of e some elements s, t such that
sts = s, tst = t, st = e, ts = f . We have the four edges in T(S) which
are depicted in Figure 1. In particular, f stabilizes a vertex ∼-equivalent to
(u, v).

Denote by ε, σ, φ, τ the edges in Figure 1 labeled by e, s, f , t, respectively.
Since s = es, t = te, f = ts, we have σ = εσ, τ = τε and φ = τσ. Therefore,
if ε belongs to the ideal Kp, then all edges in Figure 1 belong to Kp, and so
f labels a loop of Kp.
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(u, v) (us, tv)

s

t

e f

Figure 1. Edges in T(S).

Corollary 5.6. Let S be a compact semigroup, and let p ∈ L(S). Every
idempotent of Jp labels a loop of Kp.

For e ∈ Jp, denote by pe the nonempty set of elements of p stabilized by e.

Proposition 5.7. Let S be a compact unambiguous semigroup. Let p ∈ L(S).
Then Jp is the set of labels of edges of Kp. Moreover, if s ∈ Jp and e and
f are idempotents such that e R s L f , then s labels an edge from pe to pf .
Moreover, there is a bijection pe → pf , given by µs(u, v) = (us, tv), where t
is the unique t ∈ Jp such that st = e and ts = f .

Proof : Let s be an element of Jp and let e and f be idempotents such that
e R s L f . Then there exists (a unique) t ∈ Jp such that st = e and ts = f ,
for which we have e L t R f . Let (u, v) ∈ pe. Note that such a pair (u, v)
exists by Corollary 5.6. Therefore, we are in the same situation as in the proof
of Lemma 5.5, with the four edges depicted in Figure 1 belonging to Kp by
Corollary 5.4. If there is another edge (u, v) s−→ (x, y) in Kp with (x, y) ∈ pf ,
then x = us and v = sy, thus y = fy = tsy = tv. Hence, there is for each
vertex in pe exactly one edge labeled s into a vertex of pf . This defines the
function µs : pe → pf such that µs(u, v) = (us, tv). Finally, note that µs and
µt are mutually inverse.

We finish this section with a couple of observations concerning aperiodic
semigroups, starting with the next lemma.

Lemma 5.8. Let S be a compact aperiodic semigroup. Let p ∈ L(S). If
(u, v), (x, y) are elements of p stabilized by the same idempotent e of Jp, then
(u, v) = (x, y).

Proof : Since (u, v) ∼ (x, y), there are t, z ∈ SI such that there are edges

(u, v) t−→ (x, y) and (x, y) z−→ (u, v) in the category T(S). Then we also have
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edges as in the following picture:

(u, v) (x, y)

ete

eze

e e

By Lemma 5.2 and stability of S, we conclude that ete and eze are H-
equivalent to e, thus, by aperiodicity, we get ete = eze = e. By the definition
of the category T(S), we deduce that u = ue = x and v = ey = y.

In the following result, we have a case in which the idempotents of Jp
parameterize the elements of p.

Proposition 5.9. Let S be a compact and unambiguous aperiodic semigroup.
Let p ∈ L(S). Then there is a bijection between the ∼-class p and the set of
idempotents in Jp, sending each (u, v) to the unique idempotent e ∈ Jp that
stabilizes (u, v).

Proof : Let (u, v) ∈ p. There are in Jp idempotents that stabilize (u, v), as Jp
contains the minimum ideal of the monoid of stabilizers of (u, v). If e, f are
idempotents of Jp stabilizing (u, v), then e = f by Lemma 5.3. Hence, we
can consider the function ε : p→ Jp sending (u, v) to the unique idempotent
of Jp stabilizing (u, v). The function ε is injective by Lemma 5.8, and it is
surjective by Corollary 5.6.

6. Finitely cancelable semigroups
Consider a compact semigroup S generated by a closed set A. Recall that,

in the context of topological semigroups, that means that every element of S
is arbitrarily close to products of elements of A. Note that, since A is closed,
we have S = SIA = ASI . Indeed, every element of S is the limit of a net of
the form (wiai)i∈I , where the ai ∈ A and the wi are perhaps empty products
of elements of A. By compactness, we may assume that the nets (wi)i∈I and
(ai)i∈I converge in SI , say to w and a, respectively. Since A is closed, we
conclude that a ∈ A, which shows that S ⊆ SIA.

Say that S is right finitely cancelable with respect to A when, for every
a, b ∈ A and u, v ∈ SI , the equality ua = vb implies a = b and u = v. This
implies A ∩ SA = A ∩ AS = ∅.

Say that S is right finitely cancelable if it is finitely cancelable with respect
to some closed generating subset A. It turns out that the set A is uniquely
determined by S, as shown next.
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Lemma 6.1. Let S be a compact semigroup generated by closed subsets A
and B such that A∩SA = B∩SB = ∅. Then we have A = B. In particular,
if S is right finitely cancelable with respect to A and to B, then A = B.

Proof : Let a ∈ A. Since S = SIB = SIA, we have a = sb for some s ∈ SI
and b ∈ B, and b = tc for some t ∈ SI and c ∈ A. We obtain the factorization
a = stc. Since A ∩ SA = ∅, we must have s = t = 1, and so a = b ∈ B,
showing that A ⊆ B. By symmetry, we have B ⊆ A.

Say that a pseudovariety of semigroups is right finitely cancelable if ΩAV is
right finitely cancelable with respect to A, for every finite alphabet A.

Proposition 6.2. A pseudovariety of semigroups V is right finitely cancelable
if and only if V = D ∗ V.

Proof : It is observed in [AK15] that V is right finitely cancelable if and only
if, for every finite alphabet A, and for every V-recognizable language L of A+

and a ∈ A, the language La is also V-recognizable. In [PW02] one finds a
proof that this is equivalent to V = D ∗ V.

The above definitions have obvious duals which are obtained by replacing
right by left. Note that a semigroup pseudovariety V is right finitely can-
celable if and only the pseudovariety Vop of semigroups of V with reversed
multiplications is left finitely cancelable. We say that a compact semigroup
is finitely cancelable (with respect to A) if it is simultaneously right and left
finitely cancelable (with respect to A). Similarly, a pseudovariety of semi-
groups is finitely cancelable if it is simultaneously right and left finitely can-
celable.

Example 6.3. If V is a semigroup pseudovariety containing some nontrivial
monoid and such that V = V ∗ D, then V is finitely cancelable (cf. [Alm95,
Exercise 10.2.10] and [Cos07, Prop. 1.60]).

The following proposition is [AC16, Proposition 6.3].

Proposition 6.4. If V is an equidivisible pseudovariety of semigroups not
contained in CS, then V is finitely cancelable.

The next lemma is the first of a series of results in which the hypothesis
of a semigroup being finitely cancelable enables us to get further insight into
the quasi-order of 2-factorizations.
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Lemma 6.5. Suppose S is a compact semigroup, finitely cancelable with re-
spect to A. Let u, v ∈ SI and a ∈ A. If the ∼-class of at least one of (ua, v)
and (u, av) is not a singleton, then (u, av) ∼ (ua, v).

Proof : By duality, it suffices to consider the case where the ∼-class of p =
(ua, v) is not a singleton. Let q be in p/∼ with p 6= q. As p ≤ q, we may
consider a transition x from p to q. Then we have q = (uax, y) for some
y ∈ SI such that v = xy. Since q ≤ p, there is t such that ua = uaxt and
y = txy. Because p 6= q, we must have t 6= 1, whence we may take b ∈ A
and z ∈ SI such that t = zb. Because S is finitely cancelable with respect
to A, from ua = uaxt = uaxzb we get a = b and u = (ua)(xz). On the
other hand, we have (xz)(av) = x(za)v = xtxy = xy = v, which shows that
(ua, v) ∼ (u, av).

We now turn our attention to profinite semigroups.

Proposition 6.6. Suppose S is a profinite semigroup generated by a closed
subset A. Let p, q ∈ F(s) with p < q. Then, there are x, y ∈ SI and a ∈ A
such that

p ≤ (x, ay) < (xa, y) ≤ q.

Proof : Let p = (u, v) and q = (u′, v′). Since (u, v) < (u′, v′), there exists
t ∈ S such that u′ = ut and v = tv′, and the system utX = u

Xtv′ = v′
(6.1)

has no solution X ∈ S. By a standard compactness argument which can
be found in the proof of [Alm95, Theorem 5.6.1], there is some continuous
onto homomorphism ϕ0 : S → R, with R finite, which may be naturally
extended to an onto continuous homomorphism ϕ : SI → RI , and such that
the following system (6.2) has no solution X ∈ R: ϕ(u)ϕ(t)X = ϕ(u)

Xϕ(t)ϕ(v′) = ϕ(v′). (6.2)

Let (tn)n be a net of elements of the (discrete) subsemigroup of S generated
by A such that (tn)n converges to t and such that ϕ(tn) = ϕ(t) for all n. Write
tn = an,0an,1 · · · an,kn, with the an,i ∈ A. Then the following inequalities hold



THE LINEAR NATURE OF PSEUDOWORDS 19

for i = 0, . . . , kn:
(ϕ(uan,0 · · · an,i−1), ϕ(an,i · · · an,knv′))

≤ (ϕ(uan,0 · · · an,i), ϕ(an,i+1 · · · an,knv′)). (6.3)

Since ≤ is a transitive relation and the non-existence of a solution to (6.2)
guarantees that the following strict inequality holds

(ϕ(u), ϕ(an,0 · · · an,knv′)) < (ϕ(uan,0 · · · an,kn), ϕ(v′)),
we deduce that there is i = in such that the inequality (6.3) is also strict. As
A is closed and S is compact, by taking subnets we may assume that the net
(an,in)n converges to some a ∈ A, that ϕ(an,in) = ϕ(a) for every n, and that
each of the nets t′n = an,0 · · · an,in−1 and t′′n = an,in+1 · · · an,kn converges to some
t′, t′′ ∈ SI , respectively (in particular, this yields t = t′at′′). Then the strict
inequality in (6.3), with i = in, yields (ϕ(ut′), ϕ(at′′v′)) < (ϕ(ut′a), ϕ(t′′v′)),
which implies that

p = (u, t′at′′v′) ≤ (ut′, at′′v′) < (ut′a, t′′v′) ≤ (ut′at′′, v′) = q.

Thus, it suffices to choose x = ut′ and y = t′′v′ to obtain the inequalities of
the statement of the proposition.

We close this subsection with a result regarding the existence of a successor
in the quasi-ordered set of 2-factorizations.

Proposition 6.7. Suppose S is a profinite semigroup, finitely cancelable with
respect to A. Let p, q ∈ F(s) and suppose that p < q.

(1) Consider the unique u, v, a such that u, v ∈ SI, a ∈ A and p = (u, av).
If p ≺ q, then we have

p = (u, av) ≺ (ua, v) = q.

Moreover, the ∼-classes of p and q are singletons.
(2) Conversely, if p = (u, av) and q = (ua, v), where u, v ∈ SI and a ∈ A,

then we have p ≺ q.

Proof : 1 Notice that u, v, a really exist and are unique. Indeed, take p =
(u,w), with u,w ∈ SI . One has w 6= 1, because p < q, and so w = av for
some a ∈ A and v ∈ SI , which are unique because S is finitely cancelable
with respect to A. By Proposition 6.6, there are u′, v′ ∈ SI and a′ ∈ A such
that p ≤ (u′, a′v′) < (u′a′, v′) ≤ q. Since p ≺ q, we must have p ∼ (u′, a′v′) <
(u′a′, v′) ∼ q. It then follows from Lemma 6.5 that the ∼-classes of (u′, a′v′)
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and (u′a′, v′) are singletons, thus p = (u′, a′v′) and q = (u′a′, v′). By the
uniqueness of u, v and a, we then have q = (ua, v)

2 Assume there exists r = (x, y) with p < r < q. There are z, t such that
x = ut, av = ty, ua = xz and y = zv. If t = 1, then r = p, while if z = 1,
then r = q, hence both t and z are different from 1. Since av = ty, from the
fact that S is finitely cancelable with respect to A, it follows that there is t′

such that t = at′ and v = t′y. Similarly, there is z′ such that z = z′a and
u = xz′. Therefore, u = xz′ = utz′ = ua · t′z′ and v = t′y = t′zv = t′z′ · av.
This shows that p ∼ q, in contradiction with p < q. Hence p ≺ q.

7. Step points and stationary points
In this section, we continue gathering important properties of the linear

orders induced by pseudowords. We identify two types of elements in such
orders, that we call step points and stationary points. Let us start by intro-
ducing these notions.

Let P be a partially ordered set. We call step points the points of P
that admit either a successor or a predecessor, or are the minimum or the
maximum of P , if they exist. All other points are said to be stationary. The
set of step points of L will be denoted by step(L), and the set of stationary
points of L will be denoted by stat(L).

For an element s of a semigroup S, we also say that p ∈ F(s) is a step
point (respectively, a stationary point) if χ(p) is a step point (respectively,
a stationary point) of L(s). In this section we further develop the results
obtained in Section 6, using the notions of step point and stationary point.
If S is profinite and finitely cancelable, then the ∼-class p of a step point
(u, v) of F(S) is a singleton (cf. Proposition 6.71), for which reason, in that
case, we feel free to make the abuse of notation p = (u, v).

As a preparation for the following example, recall that in a compact semi-
group S, if s ∈ S, then sω denotes the unique idempotent in the closed
subsemigroup of S generated by s. Later on, we shall also make use of the
notation sω+1 for sωs, and sω−1 for the inverse of sω+1 in the maximal sub-
group containing sω+1.

Example 7.1. Consider the pseudoword aω of the free pro-aperiodic semi-
group Ω{a}A. Then F(aω) has only one stationary point, namely (aω, aω).
The set F(aω) is linearly ordered, whence isomorphic to L(aω), with order
type ω + 1 + ω∗. More precisely, its elements are ordered as follows:

(1, aω) < (a, aω) < (a2, aω) < · · · < (aω, aω) < · · · < (aω, a2) < (aω, a) < (aω, 1).
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Example 7.1 should be compared with the following one.

Example 7.2. Consider the pseudoword aω of the free profinite semigroup
ΩAS. Like in Example 7.1, L(aω) has order type ω + 1 + ω∗, and its sole
stationary point is p = (aω, aω)/∼:

(1, aω) < (a, aω−1) < (a2, aω−2) < · · · < p < · · · < (aω−2, a2) < (aω−1, a) < (aω, 1).

But (aω, aω)/∼ has infinitely many elements, namely, the pairs of the form
(g, gω−1), where g is an element in the maximal subgroup containing aω.

Examples 7.1 and 7.2 fit in the following definition.

Definition 7.3 (Clustered sets). We say that the linearly ordered set P is
clustered if the following conditions hold:

(C.1) P has a minimum minP and a maximum maxP ;
(C.2) for every q ∈ P , if q = minP or q has a predecessor, then q has a

successor or q = maxP ;
(C.3) for every q ∈ P , if q = maxP or q has a successor, then q has a

predecessor or q = minP ;
(C.4) for every p, q ∈ P , if ]p, q[ is nonempty, then there is a step point in

the interval ]p, q[.

Property (C.4) translates into saying that the set of step points of P is
dense with respect to the order topology of P .

Theorem 7.4. Let S be a profinite semigroup which is finitely cancelable,
and let s ∈ S. Then L(s) is clustered.

Proof : Property (C.1) in Definition 7.3 holds trivially, with minL(s) = (1, s)
and maxL(s) = (s, 1).

Let us show (C.2). Take s ∈ S and p, q ∈ F(s) with p ≺ q. We have to
show that either q has a successor, or q = maxP . Let A be the generating
set with respect to which S is finitely cancelable. By Proposition 6.7, there
are u, v ∈ SI and a ∈ A with p = (u, av) and q = (ua, v). If v = 1, then
q = maxP , so that we may assume v 6= 1. Let v = bw with b ∈ A, and let
r = (uab, w). Clearly, we have q ≤ r. We claim that q ≺ r. Indeed, if q = r,
then ua = uab and bw = w. Therefore, a = b, u = ua, and av = aaw =
aw = v, showing that p = q, in contradiction with the hypothesis. Hence,
we must have q < r, since otherwise we would obtain q ∼ r and q 6= r, which
entails p ∼ q by Lemma 6.5. Finally, by Proposition 6.72 applied to q and r,
we get q ≺ r. This establishes (C.2), and (C.3) holds dually.
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Finally, let us prove (C.4). If p is a step point, then ]p, q[ 6= ∅ implies that
the successor of p belongs to ]p, q[. Hence, it suffices to consider the case
where p is stationary. Let p̂ ∈ χ−1(p) and q̂ ∈ χ−1(q). By Proposition 6.6,
there are u, v ∈ SI and a ∈ A such that p̂ ≤ (u, av) < (ua, v) ≤ q̂ in F(s).
By Proposition 6.72, we have (u, av) ≺ (ua, v). Therefore, (u, av) and (ua, v)
are step points. In particular, we have (u, av) ∈ ]p, q[ ∩ step(L(s)).

In the next result, we characterize the stationary points as the vertices with
a nontrivial local monoid in the category of transitions.

Proposition 7.5. Let S be a profinite semigroup which is finitely cancelable.
Let (u, v) ∈ F(S). Then (u, v) is a stationary point if and only if it is
stabilized by some element of S.

Proof : Suppose that (u, v) is stationary. Let A be the set with respect to
which S is finitely cancelable. Since v 6= 1, we may take a factorization
v = aw with a ∈ A and w ∈ SI . Clearly, (u, aw) ≤ (ua, w) holds, and so

(u, aw) ∼ (ua, w) by Proposition 6.72. Hence, there is an edge (ua, w) t−→
(u, aw), for some t ∈ SI . This implies that at ∈ S stabilizes (u, v).

Conversely, suppose there is z ∈ S stabilizing (u, v). There is some fac-
torization of the form z = at, for some a ∈ A and t ∈ SI . The following
equalities and inequalities

(u, v) = (u, atv) ≤ (ua, tv) ≤ (uat, v) = (u, v)
show that (u, v) = (u, atv) ∼ (ua, tv). It follows from Proposition 6.71 that
(u, v) has no successor, since otherwise this successor would be (ua, tv), in
contradiction with (ua, tv) ≤ (u, v). Since it is not the maximum of F(s)
(because v = zv 6= 1), it must be a stationary point.

Proposition 7.5 is applied in the proof of the next result.

Proposition 7.6. Let S be an equidivisible profinite semigroup S which is
finitely cancelable. Then, in T(S), any two coterminal edges between ele-
ments of distinct strongly connected components are equal. In other words, if

(α, β) t−→ (γ, δ) and (α, β) s−→ (γ, δ) are edges of T(S) such that (α, β) < (γ, δ),
then t = s.

Proof : The hypothesis translates into the following equalities: γ = αt = αs
and β = tδ = sδ. We first assume that at least one of the points (α, β) and
(γ, δ) is a step point. By symmetry, we may as well assume that (α, β) is a
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step point. From the equality αt = αs, by equidivisibility and without loss
of generality, we may assume that there is some z ∈ SI such that αz = α and
t = zs. Then, we have zβ = zsδ = tδ = β. This shows that (α, β) z−→ (α, β)
is a loop of T(w). Since (α, β) is assumed to be a step point, applying
Proposition 7.5 we obtain z = 1, thus t = s.

It remains to consider the case where both (α, β) and (γ, δ) are stationary.
By Theorem 7.4, there is a step point (x, y) ∈ F(w) such that (α, β) <
(x, y) < (γ, δ). By the preceding paragraph, there are unique edges in T(w)
from (α, β) to (x, y) and from (x, y) to (γ, δ). Let r1 and r2 be the respective
labels. To prove the proposition, it suffices to show that τ = r1r2 whenever
(α, β) τ−→ (γ, δ) is an edge of T(w).

Note that (x, r2) and (α, τ) are elements of F(γ). Since β = τδ and y = r2δ,
if (x, r2) ≤ (α, τ) (in F(γ)), then (x, y) ≤ (α, β) (in F(w)) by Remark 4.6,
which gives a contradiction. Hence, by equidivisibility, there is in T(γ) an
edge (α, τ) r0−→ (x, r2). In particular τ = r0r2. Remark 4.6 guarantees the
existence of the edge (α, β) r0−→ (x, y). But we defined, in the previous para-
graph, the edge (α, β) r1−→ (x, y) as the unique edge from (α, β) to (x, y).
Therefore r0 = r1, and so we have the equality τ = r1r2, which we have seen
to be sufficient to conclude the proof.

Corollary 7.7. Let S be an equidivisible profinite semigroup S which is
finitely cancelable. Let p1, p2 ∈ L(w). If p1 < p2 then the set of transitions
from p1 to p2 is contained in a J-class of S.

Proof : Let x1, x
′
1 ∈ p1 and x2, x

′
2 ∈ p2, and consider edges x1

t−→ x2 and

x′1
t′−→ x′2. Then we have edges xi

si−→ x′i and x′i
ri−→ xi, and also x1

s1t
′r2−−−→ x2

and x′1
r1ts2−−→ x′2. By Proposition 7.6, we must have t = s1t

′r2 and t′ = r1ts2,
whence t J t′.

Remark 7.8. We remark that there is a large class of pseudovarieties whose
corresponding finitely generated relatively free profinite semigroups satisfy
the hypotheses of Proposition 7.6. Let V be a pseudovariety of semigroups
such that V = LI©m V. Then every semigroup of the form ΩAV, with A a
finite alphabet, satisfies all conditions in Proposition 7.6: they are profinite,
equidivisible, and finitely cancelable (cf. Theorem 3.3 and Proposition 6.4,
where the latter may be applied because V = LI©m V implies V ⊇ LI and thus
V 6⊆ CS).
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Proposition 7.6 is used in the proof of the following lemma, establishing a
sufficient condition for equality between stationary points.

Lemma 7.9. Let S be an equidivisible profinite semigroup which is finitely
cancelable. Let p and q be stationary points of L(S). If there is a transition

p
t−→ q such that t lies J-above both Jp and Jq then p = q.

Proof : We have p ≤ q, so, arguing by contradiction, suppose that p < q.

Consider an edge (u, v) t−→ (x, y) of T(S) with (u, v) ∈ p and (x, y) ∈ q.
Let e ∈ Jp and f ∈ Jq be idempotents respectively stabilizing (u, v) and

(x, y). Then we have a transition (u, v) etf−→ (x, y). By Proposition 7.6, it
follows that etf = t, whence, since S is stable, and by the hypothesis that
t lies J-above both e and f , we have e R t L f . Therefore, there exists
s ∈ Jp = Jq such that ts = e and st = f . Now, the assumption that we

have a transition (u, v) t−→ (x, y) means that the equalities ut = x and v = ty
hold. Combining with the equalities ue = u and fy = y, we deduce that
xs = uts = ue = u and sv = sty = fy = y. Hence (x, y) ≤ (u, v), which
contradicts the assumption p < q. To avoid the contradiction, we must have
p = q.

The following is an example obtained by application of Lemma 7.9.

Example 7.10. Let V be a pseudovariety containing LSl, and let A be a finite
alphabet. It is shown in [Alm05a] (see also [AC09]), using Zorn’s Lemma and
a standard compactness argument, that ΩAV contains regular elements that
are J-maximal among the elements of ΩAV \ A+. We next verify that if V
is closed under concatenation and u is a J-maximal regular element of ΩAV,
then the order type of L(u) is ω + 1 + ω∗. Indeed, let p, q be two stationary
points of L(u) such that p ≤ q, and let e ∈ Jp, f ∈ Jq. From the maximality
assumption on u, we deduce that e J u J f . Hence p = q by Lemma 7.9,
showing that L(u) has only one stationary point.

Restricting our attention to the case of profinite semigroups that are free
relatively to pseudovarieties closed under concatenation, we obtain stronger
results about step and stationary points. The next lemma is a provisional
result with this flavor, which is improved later on, namely in Proposition 7.13.

Lemma 7.11. Let A be a finite alphabet, and let V be a pseudovariety closed
under concatenation. Let w ∈ ΩAV. If (u, v) is a stationary point of F(w),
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then there exists a strictly increasing sequence (un, vn)n of points of F(w)
such that lim un = u and lim vn = v.

Proof : Since A is finite, ΩAV is metrizable, and so L(w) is metrizable by
Corollary 4.4. Let p = (u, v)/∼. By Theorem 7.4, there is a strictly increasing
sequence (xn, yn)n of step points converging in L(w) to p. As S is compact,
taking subsequences we may assume that (xn, yn)n converges in F(w) to some
(x, y) ∈ F(w). By Proposition 4.3, we know that (x, y) ∈ p. Then there are

edges (x, y) s−→ (u, v) and (u, v) t−→ (x, y) in T(w). Note that lim xn = x = xst.
Hence, by Theorem 3.1 and Lemma 3.2, for every n there is a factorization
xn = x′nsntn with lim x′n = x, lim sn = s, and lim tn = t. Then, we have
lim(x′nsn, tnyn) = (u, v) in F(w), thus lim(x′nsn, tnyn)/∼ = p in L(w) by
Proposition 4.3. And since (x′nsn, tnyn) ≤ (xn, yn) < (x, y), we conclude that
the sequence ((x′nsn, tnyn)/∼)n has p as a supremum but not as a maximum,
enabling us to extract from the sequence (x′nsn, tnyn)n a strictly increasing
subsequence. Since this subsequence also converges to (u, v) in F(w), this
completes the proof.

Lemma 7.12. Let A be a finite alphabet, and let V be a pseudovariety closed
under concatenation. Let w ∈ ΩAV and let K be a nonempty clopen subset
of F(w). Then K has a minimum and a maximum, and both of them are
step points.

Proof : As K is closed, whence compact, we know from Proposition 4.3 that
its projection under χ is also compact, whence closed. Let p = inf χ(K)
and q = supχ(K). Since χ(K) is closed, we have p = minχ(K) and q =
maxχ(K). Hence, there exist p̂ ∈ K ∩χ−1(p) and q̂ ∈ K ∩χ−1(q). Although
these points are perhaps not unique, all choices are ∼-equivalent. Moreover,
for every other point r ∈ K, from χ(r) ∈ [p, q] we deduce that p̂ ≤ r ≤ q̂.

It remains to show that p̂ and q̂ are step points. Suppose on the contrary
that p̂ is a stationary point. By Lemma 7.11, there is a strictly increasing
sequence (p̂n)n in F(w) converging to p̂. Since K is open, it must contain
points of the form p̂n. As p̂n < p̂, this contradicts the fact that p̂ is a minimum
of K. Hence, p̂ is a step point and, similarly, so is q̂.

Lemma 7.11 was used to prove Lemma 7.12. We next use Lemma 7.12 to
show that the sequence in Lemma 7.11 may be formed only by step points.

Proposition 7.13. Let A be a finite alphabet, and let V be a pseudovariety
closed under concatenation. Let w ∈ ΩAV. If (u, v) is a stationary point of
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F(w), then there exists a strictly increasing sequence (un, vn)n of step points
of F(w) such that lim un = u and lim vn = v.

Proof : Since F(w) is a zero-dimensional space and the set of step points
of F(w) is linearly ordered by ≤, it suffices to show that, for every clopen
subsetK ⊆ F(w) containing p = (u, v)/∼ and every interval [q, p], with q < p,
there is some step point in the intersection K ∩ [q, p]. Because step(L(w))
is topologically dense in L(w) (cf. Theorem 7.4), we are reduced to the case
where q is a step point. Let r be a step point such that r > p, for instance
r = (w, 1). The closed intervals in L(w) whose extremities are step points
are clopen, hence, by Proposition 4.3, the interval [q, r] in F(w) is clopen.
Therefore, the subset L = K ∩ [q, r] is also clopen. Note that L is nonempty,
as p ∈ L. Lemma 7.12 guarantees that L has a minimum s which is a step
point. It then follows from p ∈ L that s ∈ K ∩ [q, p], thereby completing the
proof of the lemma.

8. Cluster words
In this section, we use the knowledge obtained about the labeled linear

orders induced by pseudowords over A to obtain a representation theorem:
every pseudoword over A may be represented by a (partially) labeled linear
order having specific properties, which we introduce now.

By a partially labeled ordered set, we mean a pair (P, f) such that P is an
ordered set and f is a function (the labeling) with domain contained in P .
An isomorphism between partially labeled ordered sets (P, f) and (Q, g) is
an isomorphism ϕ : P → Q of ordered sets such that Dom g = ϕ(Dom f) and
f(p) = g ◦ ϕ(p) for every p ∈ Dom f .

Consider a profinite equidivisible semigroup S which is finitely cancelable
with respect to A. We may then consider the mappings i and t from SI

to A ] {1} such that i(1) = t(1) = 1 and, for s ∈ S, the images i(s) and
t(s) are respectively the unique prefix and the unique suffix of s in A. For
s ∈ S, denote by Lc(s) the partially labeled linearly ordered set (L(s), `)
defined by the mapping ` : step(L) → A ] {1} such that `(u, v) = i(v), for
(u, v) ∈ step(L(s)). Note that `(p) = 1 if and only if p = (s, 1). Recall from
Theorem 7.4 that L(s) is clustered. By a cluster word over A we mean a
partially labeled linearly ordered set (L, `) such that L is clustered and ` is
a function step(L)→ A ] {1}.
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Example 8.1. For the pseudoword w = (aωb)ω of Ω{a,b}A, the cluster word
Lc(w) is described in Diagram (8.1),

aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b · · ·
︸ ︷︷ ︸

ω

• · · · aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b

︸ ︷︷ ︸
ω∗

(8.1)

where each of the small bullets • represent a stationary point q such that
aω ∈ Jq and the bigger bullet • represents the unique stationary point r
such that (aωbaω)ω ∈ Jr. Note that, in particular, the order type of L(w) is
(ω + 1 + ω∗)ω + 1 + (ω + 1 + ω∗)ω∗.

We next introduce, in Definition 8.2, a notion of algebraic recognition of
cluster words inspired by the definition of automata recognizing words in-
dexed by linear orders, introduced in [BC07]. A notorious similarity resides
in the role played by cofinal sets, whose definition we next recall. In a lin-
early ordered set L, a subset X of L is left cofinal at p if X ∩ ]q, p[ 6= ∅ for
every q < p, right cofinal at p if X ∩ ]p, q[ 6= ∅ for every q > p, and cofinal if
it is right or left cofinal at p.

Definition 8.2. Let ϕ : A → S be a generating mapping of a semigroup S,
and let s ∈ S. We say that the cluster word (L, `) over A is recognized by
the pair (ϕ, s) if there is a mapping g : step(L)→ F(s) satisfying:

(R.1) g(minL) = (1, s);
(R.2) g(maxL) = (s, 1);
(R.3) if p1 ≺ p2 in L, then g(p1)

ϕ(`(p1))−−−−→ g(p2) is an edge of T(s);
(R.4) if p is a stationary point of L then, for every q ∈ F(s), the set g−1(q)

is left cofinal at p if and only if it is right cofinal at p.

If such conditions are satisfied, then we say that (L, `) is g-recognized by the
pair (ϕ, s). We also say that (L, `) is recognized by the pair (ϕ, s) if it is
g-recognized, for some g. Finally, when (L, `) is g-recognized by (ϕ, s), we
define Fg to be the function from stat(L) to the power set P(F(s)) such that

Fg(p) = {q ∈ F(s) : g−1(q) is left cofinal at p}
= {q ∈ F(s) : g−1(q) is right cofinal at p},

for every stationary point p of L (cf. (R.4)).
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Remark 8.3. If f : (L′, `′)→ (L, `) is an isomorphism of cluster words over A
and if (L, `) is g-recognized by (ϕ, s), then (L′, `′) is (g ◦ f)-recognized by
(ϕ, s). Hence, the property of (L, `) being recognized by (ϕ, s) is invariant
under isomorphism of cluster words.

The next lemma, concerning the function Fg, will be applied in Section 11.

Lemma 8.4. Consider a cluster word (L, `) over A, recognized by the pair
(ϕ, s), where ϕ : A → S is a generating mapping of a finite semigroup S
and s ∈ S. Suppose that the order topology of L is metrizable. Let p be a
stationary point of L. Then the following properties hold:

(1) if P is a subset of F(s) such that F−1
g (P ) is cofinal at p, then P ⊆

Fg(p);
(2) there is an open interval I containing p such that Fg(q) ⊆ Fg(p) for

every stationary point q in I.

Proof : 1 Without loss of generality, suppose that F−1
g (P ) is left cofinal at p.

Then, taking into account that L is metrizable, there is a strictly increasing
sequence (pn)n of stationary points of L converging to p such that Fg(pn) = P
for all n. Consider a metric d on L inducing the order topology of L. For
each k ≥ 1, let ]qk, p[ be an open interval of L such that d(qk, p) < 1

k Then,
there is nk such that pnk ∈ ]qk, p[. Let (s1, s2) ∈ P . By the definition of
Fg, we know that g−1(s1, s2) is left cofinal at pnk. Therefore, there is in the
interval ]qk, pnk[ a step point belonging to g−1(s1, s2). Since ]qk, pnk[ ⊆ ]qk, p[,
this proves that g−1(s1, s2) is left cofinal at p, thus (s1, s2) ∈ Fg(p). We have
therefore proved that the inclusion P ⊆ Fg(p) holds.

2 Let P be the set of subsets P of F(s) such that F−1
g (P ) is not cofinal

at p. For each P ∈ P, there is an open interval Ip containing p such that
F−1
g (P ) ∩ Ip = ∅. Because S is a finite semigroup, the set P is finite, and

so I = ⋂
P∈P Ip is an open interval of L containing p. Let q be a stationary

point in I. Let R = Fg(q). Suppose R ∈ P. Then q ∈ IR. But we also
have q ∈ F−1

g (R), which leads to F−1
g (R) ∩ IR 6= ∅, a contradiction with the

definition of IR. This shows that R /∈ P. We then deduce from part 1 of the
lemma that R ⊆ Fg(p).

The main results in this section are about cluster words defined by elements
of ΩAA, but in the next proposition we embrace without additional effort all
pseudovarieties closed under concatenation.
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Proposition 8.5. Consider a pseudovariety V closed under concatenation.
Given w ∈ ΩAV, and a generating mapping ϕ : A → S of a semigroup S
of V, let s = ϕV(w). Consider the mapping gw,ϕ : step(L(w)) → F(s) such
that gw,ϕ(u, v) = (ϕV(u), ϕV(v)) for every step point (u, v) of L(w). Then the
cluster word Lc(w) is gw,ϕ-recognized by (ϕ, s).

Proof : The conditions (R.1)-(R.2) in Definition 8.2 for gw,ϕ-recognition by
(ϕ, s) are clearly satisfied, and (R.3) follows directly from Proposition 6.71.

Let us verify condition (R.4). Let (x, y) ∈ F(s) be such that g−1
w,ϕ(x, y) is

left cofinal at p. Then, there is a strictly increasing sequence (un, vn)n≥1
of step points belonging to g−1

w,ϕ(x, y) converging in F(w) to an element
(u, v) of p. Since (ϕV(un), ϕV(vn)) = (x, y) for every n ≥ 1, we also have
(ϕV(u), ϕV(v)) = (x, y), by continuity of ϕV. By the dual of Proposition 7.13,
there is a strictly decreasing sequence (u′n, v′n)n≥1 of step points converging to
(u, v) in F(w). In particular, by continuity of ϕV, for all sufficiently large n,
we have (ϕV(u′n), ϕV(v′n)) = (x, y), and so g−1

w,ϕ(x, y) is right cofinal at p. Du-

ally, if g−1
w,ϕ(x, y) is right cofinal at p then g−1

w,ϕ(x, y) is left cofinal at p. This
establishes condition (R.4).

In the case of unambiguous aperiodic semigroups, we have a converse for
Proposition 8.5, as stated in the next theorem.

Theorem 8.6. Let w ∈ ΩAA, and consider a generating mapping ϕ : A→ S
of a finite aperiodic unambiguous semigroup S. Then ϕA(w) = s if and only
if Lc(w) is recognized by (ϕ, s).

We defer the proof of Theorem 8.6 to Section 11 (but note that the direct
implication in Theorem 8.6 is an immediate application of Proposition 8.5).
Meanwhile, we use it to prove the following main result.

Theorem 8.7. Let u, v ∈ ΩAA. Then u = v if and only if the cluster words
Lc(u) and Lc(v) are isomorphic.

Proof : The isomorphism of cluster words is clearly necessary to have u = v.
Conversely, suppose Lc(u) and Lc(v) are isomorphic. Let ϕ : A → S be a
generating mapping of a finite unambiguous aperiodic semigroup S. Take s =
ϕA(u). Then Lc(u) is recognized by (ϕ, s), according to the direct implication
in Theorem 8.6. But then Lc(v) is also recognized by (ϕ, s) (cf. Remark 8.3).
Hence, we have s = ϕA(v) by the converse implication in Theorem 8.6. By
Proposition 2.1, this establishes u = v.



30 J. ALMEIDA, A. COSTA, J. C. COSTA AND M. ZEITOUN

9. Stabilizers
Given a semigroup S and s ∈ S, we say that an element x of SI stabilizes s

on the right if sx = s; the set rstab(s) of all such x constitutes a submonoid
of SI and is called the right stabilizer of s. One defines dually the elements
that stabilize s on the left, which form a submonoid lstab(s) of SI , called the
left stabilizer of s.

An application of the following result will be required in the sequel.

Theorem 9.1. Let S be an equidivisible profinite semigroup which is finitely
cancelable. Let u ∈ S. Let g be an element of the monoid rstab(u) or of the
monoid lstab(u). If g is regular within that monoid, then g = g2.

In Theorem 9.1, the hypothesis that S is finitely cancelable is not super-
fluous: if G is a group, then the semigroup G0 obtained from G by adjoining
a zero is equidivisible, and G0 is the left and right stabilizer of zero.

We should mention that we do not know of any other examples of equidi-
visible profinite semigroups that are finitely cancelable other than free pro-V
semigroups, where V is a pseudovariety with suitable closure properties. For
such semigroups, Theorem 9.1 follows from more general results in [RS02,
Theorem 13.1]. Nevertheless, since our results apply to all equidivisible profi-
nite semigroups that are finitely cancelable, we present a proof of Theorem 9.1
which may be of independent interest.

As a first step we have the following simple statement.

Lemma 9.2. Let x and y be D-equivalent elements of a stable semigroup S.
If yx = x then y = y2.

Proof : Since yx = x and y are in the same D-class and S is stable, we must
have y R x. Therefore, y = xu for some u ∈ SI , so y2 = yxu = xu = y.

We proceed with an auxiliary lemma.

Lemma 9.3. Let S be an equidivisible profinite semigroup which is finitely
cancelable. Let g, w ∈ S be such that gw = w. If (x, y) ∈ F(w) is a step point
satisfying (gω, w) ≤ (x, y), then gx = x.

Proof : Note that (gω, w) ≤ (x, y) implies x ≤R g
ω, thus x = gωx, a fact that

we shall use along the proof.
By equidivisibility, (x, y) and (gx, y) are comparable in F(w). Suppose first

that (gx, y) ≤ (x, y). Then there is t ∈ SI such that gxt = x and ty = y.
It suffices to show that t = 1. The equality gxt = x entails x = gnxtn for
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every n ≥ 1, thus x = gωxtω = xtω. And since ty = y, we conclude that
tω stabilizes (x, y) in T(S). Because (x, y) is a step point, Proposition 7.5
implies that t = 1.

Suppose next that (x, y) ≤ (gx, y). Then (gω−1x, y) ≤ (gωx, y) = (x, y)
(cf. Remark 4.6) and, by the preceding case, we deduce that gω−1x = x.
With a left multiplication by g on both sides of the latter equality, we obtain
x = gωx = gx, as desired.

Proof of Theorem 9.1: It suffices to consider the case where g is an element
of lstab(u), as the other case is dual.

We first establish the theorem when g is a group element, that is, g = gω+1.
Let R be the set of elements (α, β) of F(u) such that α R g. Note that

R is nonempty, indeed (g, u) ∈ R. The set R is closed, whence compact,
and so by continuity of χ, the image χ(R) is also compact, whence closed.
Therefore, by completeness of L(u) (cf. Proposition 4.5), the closed set χ(R)
has a maximum p = (x, y)/∼. Let us observe that, since two ∼-equivalent
elements must have R-equivalent first components, the inclusion χ−1(p) ⊆ R
holds. Moreover, since g = gω+1, we have (gω, u) ∈ R, thus (gω, u) ≤ (x, y)
by definition of p.

Suppose first that p is a step point. Then gx = x by Lemma 9.3. As x R g,
we conclude that g = g2 by Lemma 9.2.

If p is stationary, then, by Theorem 7.4, there is a net (xi, yi)i∈I of step
points converging in L(u) to p and such that p < (xi, yi) for all i ∈ I. By
compactness, taking a subnet, we may assume that (xi, yi)i∈I converges in
F(u) to some element (x′, y′) of p. As (gω, u) < (xi, yi), we deduce from
Lemma 9.3 that gxi = xi for every i ∈ I. Taking limits, it follows that
gx′ = x′. Since (x′, y′) ∈ p, we have x R x′, whence g R x′, and we again
deduce that g = g2 by Lemma 9.2.

We have thus concluded the proof for the case where g is a group element
of S. Let us now suppose that g is regular within lstab(u). Then there is h ∈
lstab(u) such that g = ghg and h = hgh. Since hu = gu, by equidivisibility
we know that h and g are R-comparable in S. We actually have h R g in S,
by stability of S. Let z ∈ SI be such that h = gz. Then g = g2zg, and
therefore g R g2. This shows that g is a group element of S, and so, as we
are in the case already proved, we get g = g2.

A semigroupoid S is trivial if, for any two vertices p, q ∈ S, there is at
most one edge p→ q.



32 J. ALMEIDA, A. COSTA, J. C. COSTA AND M. ZEITOUN

Corollary 9.4. Let S be an equidivisible profinite semigroup which is finitely
cancelable. For every p ∈ L(S), the ideal Kp is a trivial category.

Proof : Let (u, v) s−→ (x, y) and (u, v) t−→ (x, y) be edges of Kp. The proof
amounts to showing that s = t. There is an edge (x, y) z−→ (u, v) in Kp. In
particular, sz and (sz)2 label loops in Kp at vertex (u, v). Hence, sz and (sz)2

belong to Jp, and so sz is a group element of S stabilizing u on the right.
We then deduce from Theorem 9.1 that sz is an idempotent of Jp, denoted
by e, which stabilizes (u, v). Similarly, tz is an idempotent of Jp stabilizing
(u, v). It follows from Lemma 5.3 that sz = tz = e. Symmetrically, we have
zs = zt = f , with f an idempotent of Jp. As s, t, z belong to Jp, this shows
that s = t.

For a compact semigroup S and p ∈ L(S), let Up be the union of the
maximal subgroups of Jp. The next proposition, whose proof relies on The-
orem 9.1, should be compared with Proposition 5.9. We show that Up pa-
rameterizes in a natural way the class p, without assuming aperiodicity, but
assuming equidivisibility and finite cancelability.

Proposition 9.5. Let S be an equidivisible profinite semigroup which is
finitely cancelable. Let p ∈ L(S) be a stationary point. Then we have a
bijection νp : Up → p, defined as follows:

(1) for each idempotent e ∈ Jp, fix an element (ue, ve) of p stabilized by e;
(2) to each g in the maximal subgroup He of S containing e, associate the

element νp(g) = (ueg, gω−1ve) of p.

Proof : We first verify that the function νp is well defined. Corollary 5.6
guarantees that every idempotent e ∈ Jp stabilizes some (ue, ve) ∈ p. If

g ∈ He, then (ueg, gω−1ve)
gω−1
−−→ (ue, ve) and (ue, ve)

g−→ (ueg, gω−1ve) are
edges of T(S), whence (ueg, gω−1ve) ∼ (ue, ve). It follows that νp is indeed
well defined.

We next show that νp is injective. If g ∈ Up then gω is an idempotent of Jp
stabilizing νp(g) = (ugωg, gω−1vgω). Hence, by Lemma 5.3, if νp(g) = νp(h),
then gω = hω, thus g, h belong to the same maximal subgroup and ugωg =
ugωh. The latter is equivalent to ugω = ugωhg

ω−1, and so, by Theorem 9.1,
we have hgω−1 = gω. This means that g = h, thereby showing that νp is
injective.

It remains to show that νp is surjective. Let (u, v) be an arbitrary element
of p and let e be an idempotent in Jp stabilizing (u, v). Since p is the set
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of vertices of a strongly connected component of T(S), there is some edge

(ue, ve) t−→ (u, v), and whence also an edge (ue, ve) ete−→ (u, v). By Lemma 5.2,
it follows that ete ∈ He. Hence, we must have νp(ete) = (u, v).

Note that, under the conditions of Proposition 9.5, the set pe of elements
of p stabilized by e is precisely νp(He).

10. A characterization of the J-class associated to a ∼-
class

Let S be an equidivisible compact semigroup, w ∈ S and p ∈ L(w). We
define a subset Lp of SI , depending only on p, as follows. Take an arbitrary
strictly increasing sequence p1 < p2 < · · · converging to p in L(w) — if such a
sequence does not exist, for instance, if p has a predecessor, then take Lp = ∅.
For each m ≥ 1 and n > m, let tm,n be a transition from pm to pn. For fixed
m ≥ 1, let tm be an accumulation point of the sequence (tm,n)n>m. If t is
an accumulation point of the sequence (tm)m then t ∈ Lp, and every element
of Lp is obtained by this process, the sequence p1 < p2 < · · · being allowed
to change. Dually, taking strictly decreasing sequences converging to p, we
define a subset Rp of S associated with p.

Theorem 10.1. Let S be an equidivisible compact semigroup. For every
p ∈ L(S), the sets Lp and Rp are contained in Jp.

Proof : Let w ∈ S be such that p ∈ L(w), and suppose that (pn)n is a strictly
increasing sequence of elements of L(w) converging to p. For each m ≥ 1 and
n > m, let tm,n be a transition from pm to pn, and let tm be an accumulation
point of the sequence (tm,n)n. Finally, let t be an accumulation point of the
sequence (tm)m. The proof that Lp is contained in Jp is concluded once we
show that t ∈ Jp.

We first claim that, for every fixed m ≥ 1, tm is a transition from pm
to p. For each n > m, choose (un, vn) ∈ pm and (xn, yn) ∈ pn such that
untm,n = xn and vn = tm,nyn. By compactness, the sequence (tm,n, un, vn, yn)n
has some subnet (tm,nk, unk, vnk, ynk)nk such that tm = limk tm,nk and the nets
(unk)k, (vnk)k, and (ynk)k converge, respectively to some u, v, and y. Since
(unk, tm,nkynk) = (unk, vnk) ∈ pm and (unktm,nk, ynk) = (xnk, ynk) ∈ pnk, it
follows from Proposition 4.3 that (u, v) = (u, tmy) ∈ pm and (utm, y) ∈ p,
which proves the claim.

Since (pm)m converges to p and t is an accumulation point of the sequence
(tm)m, it follows again from Proposition 4.3 that t is a transition from p to p.
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Choose z ∈ Jp such that there is a loop (utm, y) z−→ (utm, y). Since (u, v) <
(utm, y) and (u, v) tm−→ (utm, y) is an edge of T(S), Lemma 4.7 yields that z
is a suffix of tm. This holds for every m ≥ 1, whence z is a suffix of t. As we
have already shown that t is a transition from p to p, we deduce that t ∈ Jp
by Lemma 5.2. Hence we have Lp ⊆ Jp and dually Rp ⊆ Jp.

Corollary 10.2. Let S be an equidivisible profinite semigroup which is finitely
cancelable. Let w ∈ S. Suppose that (un, vn)n is a strictly increasing sequence
in F(w) converging to a stationary point (u, v). For each pair m < n, let
tm,n ∈ S be a transition (um, vm)→ (un, vn). Then, for each m, the sequence
(tm,n)n converges to the unique transition from (um, vm) to (u, v). Moreover,
the sequence (tm)m converges to the label of the only loop at the vertex (u, v)
in the trivial category Kp, where p = (u, v)/∼.

Proof : Every accumulation point of the sequence (tm,n)n labels an edge from
(um, vm) to (u, v). But there is only one such edge, by Proposition 7.6. Since
we are dealing with a compact space, this implies that (tm,n)n converges to
some element tm. To conclude the proof, it suffices to show that every accu-
mulation point t of the sequence (tm)m labels the same loop at vertex (u, v).
By the definition of Lp, we have t ∈ Lp, whence t ∈ Jp by Theorem 10.1.

Moreover, in T(w) the sequence of edges (um, vm) tm−→ (u, v) admits the loop

(u, v) t−→ (u, v) as an accumulation point. Since t ∈ Jp, this loop belongs to Kp

by Corollary 5.4. By Corollary 9.4, there is only one loop of Kp at (u, v).
Therefore, every accumulation point of (tm)m is the label of that loop.

In some cases, Theorem 10.1 can be strengthened, as seen next.

Theorem 10.3. Let A be a finite alphabet, and let V be a pseudovariety
closed under concatenation. Then Lp = Jp = Rp for every stationary point
p ∈ L(ΩAV).

Proof : According to Theorem 10.1, it remains to prove that Jp is contained
in Lp and in Rp. By symmetry, it suffices to prove that Jp ⊆ Lp.

Let τ be an element of Jp. Then by Proposition 5.7 there are elements
(u, v) and (u′, v′) of p such that (u, v) τ−→ (u′, v′) is an edge of Kp. According
to Proposition 7.13, there are strictly increasing sequences (qn)n and (q′n)n of
step points of F(w) converging to (u, v) and (u′, v′), respectively. We may
define recursively a strictly ascending sequence of step points pn as follows:

• p1 = q1;
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• if n > 1 is even, then pn is the smallest term of the sequence (q′n)n
belonging to ]pn−1, p[;
• if n > 1 is odd, then pn is the smallest term of the sequence (qn)n

belonging to ]pn−1, p[;
For each m ≥ 1 and each n ≥ m let tm,n be the unique transition from p2m−1
to p2n. Let tm be an accumulation point of the sequence (tm,n)n≥m. Since
(p2n)n converges to (u′, v′), the pseudoword tm labels an edge from p2m−1 to
(u′, v′). Let t be an accumulation point of the sequence (tm)m. Since (p2m−1)m
converges to (u, v), the pseudoword t labels an edge from (u, v) to (u′, v′).
By the definition of Lp, we have t ∈ Lp. Therefore t ∈ Jp by Theorem 10.1.
By Corollary 9.4, the category Kp is trivial, whence t = τ , thus proving that
τ ∈ Lp.

11. Proof of Theorem 8.6
Throughout this section, when not explicitly stated, we consider w to be

an element of ΩAA, where A is a finite alphabet, and ϕ : A → S to be a
generating mapping of a finite aperiodic semigroup S. We also take s =
ϕA(w).

Consider a mapping g : step(L(w)) → F(s). From hereon, we assume that
Lc(w) is g-recognized by the pair (ϕ, s). In particular, all properties of Defi-
nition 8.2 are fulfilled when (L, `) = Lc(w).

Definition 11.1 (g-projection). Let x and y be two step points of L(w) such
that x ≤ y. By Propositions 7.6 (in case x < y) and 7.5 (in case x = y),
there is a unique edge in T(w) from x to y. Let t be its label, which is 1 if

x = y. If g(x) ϕA(t)−−−→ g(y) is an edge of T(s), then we say that the edge x
t−→ y

is g-projected (to g(x) ϕA(t)−−−→ g(y)).

The unique edge from x to y will sometimes be denoted simply by x −→ y,
without reference to the label.

Remark 11.2. Let x, y and z be step points such that x ≤ y ≤ z. If x −→ y
and y −→ z are g-projected, then x −→ z is g-projected.

Given two step points x and y, write x ≺≺ y if x ≤ y and the interval [x, y]
is finite.

Remark 11.3. If x ≺≺ y, then x −→ y is g-projected.
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Let ≈ be the equivalence relation on step(L(w)) generated by ≺≺, that is,
x ≈ y if and only x ≺≺ y or y ≺≺ x. The ≈-class of x is denoted [x]≈.
Note that w ∈ A+ if and only if (1, w) ≈ (w, 1). Let Ow be a subset of
step(L(w)) such that each ≈-class contains exactly one element of Ow, with
the additional restriction that if w /∈ A+ then we have

Ow ∩ [(1, w)]≈ = {(1, w)} and Ow ∩ [(w, 1)]≈ = {(w, 1)}.

Definition 11.4 (Bridges). A bridge in L(w), with respect to the mapping g,
is a nonempty open interval I of L(w) such that, for every pair of step points
x, y of I, with x < y, the edge x→ y is g-projected. A special bridge in L(w)
is a bridge of the form [X, Y [, with X, Y ∈ Ow such that X < Y .

Notice that every nonempty interval contained in a bridge is also a bridge,
and that special bridges are clopen intervals.

Lemma 11.5. Let F be a nonempty family of special bridges of L(w). If
⋃
F

is a closed interval, then
⋃
F is a special bridge.

Before proving Lemma 11.5, we remark that the hypothesis that the union⋃
F is closed cannot be removed. Indeed, consider a case where we have a

strictly increasing sequence (qn)n of stationary points converging to a sta-
tionary point q (cf. Example 8.1). Between qn and qn+1 pick an element pn
of Ow. Then the union of the special bridges [ minL(w), pn[ is [ minL(w), q[,
which is not a special bridge.

Proof of Lemma 11.5: Since
⋃
F is a compact set having an open cover by the

elements of F, we have
⋃
F = ⋃

F′ for some finite subfamily F′ of F. Then,
for some n ≥ 1, we may assume that there are elements X1 < X2 < · · · < Xn

and Y1 < Y2 < · · · < Yn of Ow such that

F′ = {[Xk, Yk[ : 1 ≤ k ≤ n}.

Consider the set

Z = {Xi : 1 ≤ k ≤ n} ∪ {Yi : 1 ≤ k ≤ n}.

and let Z1 < Z2 < · · · < Zm be the elements of Z. Notice that m ≥ 2. For
each k ∈ {1, . . . ,m−1}, denote by Ik the interval [Zk, Zk+1[. In case Zk = Xj

for some j, we have Zk+1 ≤ Yj, and so Ik is a special bridge contained in the
special bridge [Xj, Yj[. If Zk = Yj for some j, then, since Zk < Zm, we
must have Zk ∈

⋃
F, whence Zk ∈ [Xi, Yi[ for some i. As Zk < Yi, we have
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Zk+1 ≤ Yi, and so Ik is a special bridge contained in the special bridge [Xi, Yi[.
Hence, the set

F′′ = {Ik : 1 ≤ k ≤ m− 1}
is a family of special bridges.

Let Uk = ⋃k
j=1 Ij. Note that Uk = [Z1, Zk+1[. We prove by induction on

k ∈ {1, . . . ,m − 1} that Uk is a special bridge. The initial step is trivial.
Suppose that Uk is a special bridge, for some k ∈ {1, . . . ,m − 2}. To prove
that Uk+1 is a special bridge, consider two step points x, y in Uk+1 with x < y.
We have to show that the edge x −→ y is g-projected. Using induction,
it suffices to consider the case where x ∈ Uk and y ∈ Ik+1. Let Z ′k+1 be
the predecessor of the step point Zk+1 in L(w). Since Uk = [Z1, Zk+1[ and
Ik+1 = [Zk+1, Zk+2[, the edges x −→ Z ′k+1 and Zk+1 −→ y are g-projected, and
the same is true obviously for the edge Z ′k+1 −→ Zk+1; hence, by Remark 11.2,
x −→ y is g-projected. This proves that Uk+1 is a special bridge, concluding
the induction.

The result now follows because Um−1 = ⋃
F′′ = ⋃

F′ = ⋃
F.

In the proof of the next lemma and in the sequel, we use the notation
λ(x) = inf[x]≈ and ρ(x) = sup[x]≈, for a step point x. Note that λ(x) is
stationary unless (1, w) ≺≺ x, and ρ(x) is stationary unless x ≺≺ (w, 1).
Also, when r ∈ step(L(w)), the unique element of Ow∩ [r]≈ is denoted Ow(r).
Lemma 11.6. Let X, Y ∈ Ow be such that X < Y . Suppose that for every
stationary point p in [X, Y [ there is a special bridge containing p. Then
[X, Y [ is a special bridge.

Proof : Let P = [X, Y [ ∩ stat(L(w)). By hypothesis, for each p ∈ P there
is a special bridge Ip containing p. Note that Ip ∩ [X, Y [ is also a special
bridge containing p. Therefore, we may as well assume that Ip ⊆ [X, Y [. Let
U = ⋃

p∈P Ip. Then U ⊆ [X, Y [.
We claim that U = [X, Y [. As we trivially have P ⊆ U , we are reduced to

showing that, for every z ∈ [X, Y [ ∩ step(L(w)), we have z ∈ U .
If ρ(X) < z < λ(Y ) holds, then the stationary points ρ(z) and λ(z) belong

to [X, Y [. Either z ∈ ]λ(z),Ow(z)[ or z ∈ [Ow(z), ρ(z)[. As ]λ(z),Ow(z)[ ⊆
Iλ(z) and [Ow(z), ρ(z)[ ⊆ Iρ(z), it follows that z ∈ U .

Suppose that ρ(X) ≥ z. Then z ∈ [X, ρ(X)[, thus z ∈ Iρ(X). Similarly, if
λ(Y ) ≤ z then z ∈ Iλ(Y ). In both cases z ∈ U .

We proved that U = [X, Y [. By Lemma 11.5, the interval [X, Y [ is a special
bridge.
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Let p1 and p2 be two elements of L(w) such that p1 ≤ p2. If p1 < p2, then,
as written in Corollary 7.7, the set of transitions from p1 to p2 is contained in
a J-class Jp1,p2. In case p1 = p2, let Jp1,p2 = Jp1. By a J-minimum transition
from p1 to p2, we mean a transition from p1 to p2 belonging to Jp1,p2; this
terminology is useful to unify both cases p1 < p2 and p1 = p2 in some of our
arguments.

Lemma 11.7. Let p1, p2 ∈ L(w), with p1 ≤ p2. For every (x1, y1) ∈ p1 and
(x2, y2) ∈ p2, the intersection I of Jp1,p2 with the set of labels of edges from
(x1, y1) to (x2, y2) is a singleton. If t is the unique element of I, and if ei
is the unique idempotent of Jpi that stabilizes (xi, yi) (cf. Lemma 5.3), then
t = e1te2.

Proof : If p1 < p2, then the lemma follows straightforwardly from Propo-
sition 7.6. If p1 = p2 = p, then Jp1,p2 = Jp. Since edges in Tp labeled
by elements of Jp are edges of Kp by Corollary 5.4, and since Kp is triv-
ial by Corollary 9.4, we have also in this case that there is only one edge
from (x1, y1) to (x2, y2) with label in Jp1,p2. Let ei and t be as in the state-
ment of the lemma. Because ei stabilizes (xi, yi), we may consider the edge

(x1, y1) e1te2−−→ (x1, y2), and so t J e1te2. By the already proved uniqueness, we
must have t = e1te2.

Definition 11.8 (J-bridge). A pair of elements (p1, p2) of stat(L(w)) is a
J-bridge with respect to g, if

(1) p1 ≤ p2;
(2) Fg(p1) ∩ Fg(p2) 6= ∅;
(3) the elements of ϕA(Jp1) are J-equivalent to the elements of ϕA(Jp2);
(4) if τ is a J-minimum transition from an element of p1 to an element of

p2, then ϕA(τ) is J-equivalent to the elements of ϕA(Jp1).

Note that (p, p) is a J-bridge, whenever p is a stationary point.
In the proof of the following proposition, the hypothesis that S is an un-

ambiguous aperiodic semigroup is essential.

Proposition 11.9. Suppose that S is unambiguous and let (p1, p2) be a J-
bridge with respect to g. Suppose there are step points z1 and z2 such that
[z1, p1[ and ]p2, z2] are bridges with respect to g. Let (s1, s2) ∈ Fg(p1)∩Fg(p2).
Then there are step points x1 ∈ [z1, p1[ and x2 ∈ ]p2, z2] such that x1 −→ x2 is
g-projected to an idempotent loop of T(s) of the form (s1, s2) −→ (s1, s2).
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Proof : Let I1 = [z1, p1[ and I2 = ]p2, z2]. By the definition of Fg(pi), there
are strictly monotone sequences (ri,m)m≥1 (increasing if i = 1, decreasing if
i = 2) of step points in Ii ∩ g−1(s1, s2), converging in F(w) to elements ri of
pi (i = 1, 2). Denote by ei the unique idempotent of Jpi that stabilizes ri.

For each n ≥ m, let t1,m,n be the label of the unique edge from r1,m to
r1,n, and let t2,m,n be the label of the unique edge from r2,n to r2,m. By
Corollary 10.2 and its dual, for each i ∈ {1, 2} the sequence (ti,m,n)n converges
to an element ti,m, and in turn the sequence (ti,m)m converges to ei. Therefore,
by continuity of ϕA, for each i ∈ {1, 2} we may take mi ≥ 1 and ni ≥ mi for
which we have

ϕA(ei) = ϕA(ti,mi
) = ϕA(ti,mi,ni). (11.1)

Our hypothesis yields that the edge r1,m1

t1,m1,n1−−−−→ r1,n1 is g-projected to

the edge (s1, s2)
ϕA(e1)−−−→ (s1, s2). In particular, (s1, s2) is stabilized by ϕA(e1).

Similarly, (s1, s2) is stabilized by ϕA(e2). Therefore, ϕA(e1) = ϕA(e2), by
Lemma 5.3, since the finite semigroup S is unambiguous.

By Lemma 11.7, the unique minimum J-transition τ from r1 to r2 is such
that τ = e1τe2. By the definition of J-bridge, we have ϕA(e1) J ϕA(τ). On
the other hand, τ ≤R e1 and τ ≤L e2. Hence ϕA(e1) H ϕA(τ) because
ϕA(e1) = ϕA(e2) and S is stable. Therefore,

ϕA(e1) = ϕA(τ) = ϕA(e2), (11.2)

since S is aperiodic.
The unique edge (cf. Proposition 7.6) from r1,m1 to r2,m2, with label ζ, is

factorized by the edges r1,m1

t1,m1−−→ r1, r1
τ−→ r2 and r2

t2,m2−−→ r2,m2. Therefore
ζ = t1,m1τt2,m2. From (11.2) and (11.1) we get ϕA(ζ) = ϕA(e1). Therefore,

r1,m1 −→ r2,m2 is g-projected to the idempotent loop (s1, s2)
ϕA(ζ)−−−→ (s1, s2).

Since ri,mi
is a step point in Ii, this concludes the proof.

We next show a pair of lemmas where the function g does not appear, but
which will be used later in this section in the proof of Theorem 8.6.

Lemma 11.10. Consider a pseudovariety V closed under concatenation. Let
w be an element of ΩAV. Consider a generating mapping ϕ : A → S of a
semigroup in V. For every stationary point p of L(w), there is a clopen
interval I containing p such that, if t is a transition between elements q, r of
I with q ≤ r, then ϕV(t) is a factor of the elements of ϕV(Jp).
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Proof : Let (u, v) ∈ p. By Proposition 7.13 and its dual, there is in F(w) an
increasing sequence (pn)n of step points converging to (u, v) and a decreasing
sequence (p′n)n of step points converging to (u, v). Denote by τn the unique
edge from pn to (u, v), and by τ ′n the unique edge from (u, v) to p′n (uniqueness
of these edges is from Proposition 7.6). Let ε be a loop in Tp at vertex (u, v).
Then τnετ

′
n converges to a loop ε̃ of T(w) at vertex (u, v). Since ε is a factor

of ε̃, we must have Λ(ε̃) ∈ Jp (thus we have ε̃ = ε by Corollary 9.4, although
we shall not use that fact). Therefore, since ϕA and the labeling mapping Λ
are continuous, there is N such that ϕV(Λ(τnετ ′n)) ∈ ϕV(Jp) for all n ≥ N .
Consider the clopen interval I = [pN , p′N ]. Let q and r be elements of I such
that q ≤ r, and let t be a transition from q to r. Then t is a factor of a
transition from pN to p′N . But Λ(τNετ ′N) is the unique transition from pN to
p′N , by Proposition 7.6. Hence, ϕV(t) is a factor of the elements of ϕV(Jp).
Lemma 11.11. Let (qn)n be a sequence of stationary points of L(w) con-
verging to q. For each n, let un be an element of Jqn. Suppose that (un)n
converges to u. Then u is J-above Jq.

Proof : The sequence of edges (qn un−→ qn)n of T(w) converges to q
u−→ q. Since u

labels a transition from q to itself, u is J-above Jq.

In Lemma 11.11 it is not true in general that u ∈ Jq. In Example 8.1, the
stationary point r such that (aωbaω)ω belongs to Jr is the limit of a sequence
(qn)n of stationary points such that aω ∈ Jqn, but aω /∈ Jr.

Definition 11.12 (Mapping Γ). Let JS be the set of regular J-classes of S,
and denote by Υ the mapping stat(L(w))→ JS sending a stationary point p
to the J-class containing ϕA(Jp). Denote by Γ the mapping Υ×Fg : stat(L(w))→
JS × Im(Fg) sending p to (Υ(p), Fg(p)).

In the next lemma, we continue to assume that Lc(w) is g-recognized
by (ϕ, s).
Lemma 11.13. Suppose that the semigroup S is unambiguous. Let X, Y
be elements of Ow such that X < Y . Suppose that the restriction of Γ to
stat(L(w)) ∩ [X, Y [ is constant. Then [X, Y [ is a special bridge.

Proof : Let p ∈ stat(L(w))∩ [X, Y [. By Lemma 11.6, it suffices to prove that
there is a special bridge containing p. Let I be a clopen interval containing
p satisfying the properties described in Lemma 11.10, and let [x0, y0] be the
clopen interval I ∩ [X, Y [, which is indeed nonempty as it contains p. Note
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that x0 and y0 are step points. Let X ′ = Ow(x0) and Y ′ = Ow(y0). By the
definition of Ow, x0 ≥ X implies X ′ ≥ X, and y0 ≤ Y implies Y ′ ≤ Y ,
thus [X ′, Y ′[ ⊆ [X, Y [. Therefore, we have p ∈ [X ′, Y ′[ and [ρ(X ′), λ(Y ′)] ⊆
I ∩ [X, Y [.

Let x, y be step points in [X ′, Y ′[ such that x < y. We want to show that
x −→ y is g-projected. If x ≺≺ y, then we apply Remark 11.3, so we suppose
that is not the case, which implies ρ(x) ≤ λ(y). Note that [ρ(x), λ(y)] ⊆
[ρ(X ′), λ(Y ′)]. If t is a J-minimum transition from ρ(x) to λ(y) then t ≤J Jρ(x)
and t ≤J Jλ(y) by Lemma 11.7, thus ϕA(t) ≤J Υ(ρ(x)) and ϕA(t) ≤J Υ(λ(y)).
Hence ϕA(t) ≤J Υ(p), because the restriction of Υ to stat(L(w)) ∩ [X, Y [ is
constant. By the choice of I (cf. Lemma 11.10), this implies ϕA(t) ∈ Υ(p).
Therefore, since the restriction of Γ to stat(L(w))∩[X, Y [ is constant, we have
shown that the pair (ρ(x), λ(y)) is a J-bridge. By Remark 11.3, [x, ρ(x)[ and
]λ(y), y] are bridges, whence it follows from Proposition 11.9 that there are
step points x′ ∈ [x, ρ(x)[ and y′ ∈ ]λ(y), y] such that x′ −→ y′ is g-projected.
Therefore x −→ y is g-projected by Remarks 11.3 and 11.2. This concludes
the proof that [X ′, Y ′[ is a special bridge containing p.

Proposition 11.14. Suppose that the finite aperiodic semigroup S is unam-
biguous. Then every stationary point p of L(w) is contained in some special
bridge.

Proof : Endow JS × Im(Fg) with the following partial order:

(J1, P1) ≤ (J2, P2) ⇐⇒ (J2 <J J1 or (J1 = J2 and P1 ⊆ P2)).
For each p ∈ stat(L(w)), let

G(p) = {Γ(q) : q ∈ stat(L(w)) and Γ(q) < Γ(p)}.
We shall prove by induction on the cardinal of G(p) that p is contained in
some special bridge.

We start with some preliminary remarks. Let I = [α, β] be a clopen interval
containing p satisfying the properties described in Lemmas 11.10 and 8.42.
Let X = Ow(α) and Y = Ow(β). Then the following holds:

stat(L(w)) ∩ I = stat(L(w)) ∩ [X, Y [.
Let q ∈ stat(L(w)) ∩ [X, Y [. Then we have Υ(p) ≤J Υ(q) by the choice of I
(cf. Lemma 11.10). It also follows from the choice of I (cf. Lemma 8.42) that
Fg(q) ⊆ Fg(p). Hence we have

Γ(q) ≤ Γ(p) for all q ∈ stat(L(w)) ∩ [X, Y [. (11.3)
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Initial step. Suppose that G(p) = ∅. It follows from (11.3) that Γ(q) = Γ(p)
for every q ∈ stat(L(w)) ∩ [X, Y [. Therefore, [X, Y [ is a special bridge, by
Lemma 11.13.

Inductive step. Suppose that for every stationary point q such that |G(q)| <
|G(p)|, there is a special bridge containing q. Consider the sets

M = {q ∈ stat(L(w)) ∩ [X, Y [ : Γ(q) < Γ(p)},
N = {q ∈ stat(L(w)) ∩ [X, Y [ : Γ(q) = Γ(p)}.

Note that M ∪ N = stat(L(w)) ∩ [X, Y [, by (11.3). Note also that, by the
induction hypothesis, every element of M is contained in some special bridge,
as Γ(q) < Γ(p) implies G(q) ( G(p) with Γ(q) ∈ G(p) \G(q). Our goal is to
apply Lemma 11.6 to the interval [X, Y [. So, it remains to show that every
element of N is contained in some special bridge. For that purpose, we prove
the following lemma.

Lemma 11.15. The set N is closed.

Proof : Consider a sequence (qn)n of elements of N converging to q. Since
[X, Y [ and stat(L(w)) are closed (the latter in view of Proposition 7.5), we
only need to prove that Γ(q) = Γ(p).

By Lemma 8.42, we have Fg(qn) ⊆ Fg(q) for sufficiently large n. By the
definition of N , we have Fg(qn) = Fg(p) for all n, whence Fg(p) ⊆ Fg(q).
On the other hand, since q ∈ [X, Y [ and thus q ∈ I, by the choice of I
(cf. Lemma 8.42) we have Fg(q) ⊆ Fg(p). This concludes the proof of the
equality Fg(q) = Fg(p).

By Lemma 11.11, we have Υ(q) ≤J Υ(qn) for some sufficiently large n. By
the definition ofN , we have Υ(p) = Υ(qn) for all n, whence Υ(q) ≤J Υ(p). On
the other hand, since q ∈ [X, Y [ we have Υ(p) ≤J Υ(q) by (11.3). Therefore
we have Γ(p) = Γ(q).

Let us proceed with the proof of Proposition 11.14. Suppose that q ∈ N .
Let I ′ be a clopen interval containing q, and contained in [X, Y [, satisfying
the properties described in Lemmas 11.10 and 8.42. In a similar way as we
have built X, Y from I, we may build from I ′ elements X ′, Y ′ ∈ Ow such that
q ∈ [X ′, Y ′[ and stat(L(w)) ∩ [X ′, Y ′[ ⊆ I ′.

Let x and y be two step points of [X ′, Y ′[ such that x < y. We want to
prove that the edge x −→ y is g-projected. By Remark 11.3, we may as well
assume that x and y are not ≈-equivalent.
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Suppose N ∩ [x, y] = ∅. Then every element of the nonempty intersection
stat(L(w))∩[x, y[ belongs to M and is therefore contained in a special bridge,
as observed earlier. Hence [Ow(x),Ow(y)[ is a special bridge by Lemma 11.6.
It follows that the edge x −→ y is g-projected (cf. Remarks 11.3 and 11.2).

Suppose that N ∩ [x, y] 6= ∅. Then N ∩ [x, y] has a minimum rx and a
maximum ry, because N ∩ [x, y] is closed by Lemma 11.15.

Let t be a J-minimum transition from rx to ry. Then we have t ≤J Jrx by
Lemma 11.7, thus ϕA(t) ≤J Υ(rx). On the other hand, rx, ry ∈ I ′, and so,
by the choice of I ′ (cf. Lemma 11.10), we know that ϕA(t) ≥J Υ(q). Since
by the definition of N , the equalities Υ(rx) = Υ(ry) = Υ(q) hold, we obtain
ϕA(t) ∈ Υ(q). Also by the definition of N , we conclude that Fg(rx) = Fg(ry).
This shows that (rx, ry) is a J-bridge.

We claim that [x, rx[ is a bridge. Let x1 and x2 be step points such that
x < x1 ≤ x2 < rx. We want to show that x1 −→ x2 is g-projected, for
which we may as well assume that x1 and x2 are not ≈-equivalent. Recall
that M ∪ N = stat(L(w)) ∩ [X, Y [ by (11.3), and so, by the definition of
rx, the set stat(L(w)) ∩ [Ow(x1),Ow(x2)[ is contained in M . But we already
observed that every element of M is contained in some special bridge. Hence,
[Ow(x1),Ow(x2)[ is a special bridge by Lemma 11.6. and so x1 −→ x2 is g-
projected ((cf. Remarks 11.3 and 11.2)), thus proving the claim. Similarly,
]ry, y] is a bridge.

By Proposition 11.9, there are step points x0 and y0 satisfying x < x0 < rx
and ry < y0 < y such that x0 −→ y0 is g-projected. Again by the definition
of rx and by (11.3), every element of stat(L(w))∩ [Ow(x),Ow(x0)[ belongs to
M , and so [Ow(x),Ow(x0)[ is a special bridge by Lemma 11.6. Hence, the
edge x −→ x0 is g-projected. Similarly, y0 −→ y is g-projected. It follows that
x −→ y is g-projected by Remark 11.2.

We showed in all cases that x −→ y is g-projected. Hence, [X ′, Y ′[ is a
special bridge containing q.

We have established that every element of stat(L(w))∩ [X, Y [ is contained
in some special bridge. From Lemma 11.6, we then deduce that [X, Y [ is a
special bridge containing p. This concludes the inductive step in our proof,
thereby showing that the proposition holds.

Theorem 11.16. Let w be an element of ΩAV. Let ϕ : A→ S be a generating
mapping of a finite aperiodic unambiguous semigroup S. Suppose that Lc(w)
is g-recognized by (ϕ, s). Then L(w) is a bridge.
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Proof : Clearly, if w ∈ A+ then L(w) is a bridge by Remark 11.3. Suppose
that w ∈ ΩAA\A+. By Proposition 11.14, for each stationary point p of L(w),
there is a special bridge [Xp, Yp[ containing it. The union of the nonempty
family ([Xp, Yp[)p∈stat(L(w)) is L(w) \ {(w, 1)}, therefore L(w) is a bridge, in
view of Lemma 11.5.

Conclusion of the proof of Theorem 8.6: The direct implication in Theorem
8.6 follows directly from Proposition 8.5.

Conversely, suppose that L(w) is g-recognized by (ϕ, s), for some g. Then

(1, w) w−→ (w, 1) is g-projected to g(1, w) ϕA(w)−−−→ g(w, 1) by Theorem 11.16.
But g(1, w) = (1, s) and g(w, 1) = (s, 1). It follows that s = ϕA(w).

12. The effect of multiplication on the quasi-order
In this section, under suitable conditions, we relate F(uv) on one hand,

with F(u) and F(v) on the other hand.
The quasi-orders considered in this section are all total, as they stem from

the quasi-order of 2-factorizations of equidivisible semigroups. We want to
compare different intervals of quasi-ordered sets of 2-factorizations. This
leads us to introduce the following definitions. Let (P,≤) and (Q,≤) be two
quasi-ordered sets, and let ϕ be a function from P to Q. Recall that ϕ is
monotone if p ≤ q implies ϕ(p) ≤ ϕ(q), for every p, q ∈ P . Suppose moreover
that the quasi-order on P is total. Then we say that ϕ is a quasi-isomorphism
if ϕ is a surjective monotone mapping such that, for all p, q ∈ P , we have
p < q ⇒ ϕ(p) < ϕ(q). Because the quasi-order on P is total, we have
ϕ(p) < ϕ(q) ⇒ p < q and ϕ(p) ∼ ϕ(q) ⇒ p ∼ q, for all p, q ∈ P . Therefore,
ϕ induces the isomorphism of linearly ordered sets ϕ̃ : P/∼ → Q/∼ sending
p/∼ to ϕ(p)/∼. In particular, the quasi-order on Q is also total.

Let Iu be an interval of L(u) and Iv an interval of L(v), for some u, v in a
compact semigroup S. A mapping θ : Iu → Iv is said to be J-preserving if
Jp = Jθ(p) for every p ∈ Iu.

Proposition 12.1. Consider an equidivisible profinite semigroup S which is
finitely cancelable, and take w ∈ S. Let (u, v) ∈ F(w). For p = (u, v)/∼, let e
be the unique idempotent of Jp stabilizing (u, v). Then the following mappings
are quasi-isomorphisms of intervals of the respective totally quasi-ordered sets
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F(w), F(u), and F(v):

λ(u,v) : [(1, u), (u, e)]→ [(1, w), (u, v)],
(x, y) 7→ (x, yv)

ρ(u,v) : [(e, v), (v, 1)]→ [(u, v), (w, 1)].
(x, y) 7→ (ux, y)

Moreover, the induced isomorphisms λ̃(u,v) and ρ̃(u,v) are J-preserving.

Before proceeding with the proof of Proposition 12.1, let us recall that the
uniqueness of e mentioned in its statement is guaranteed by Lemma 5.3. The
next technical lemma will be used in the proof of Proposition 12.1.

Lemma 12.2. Let S be an equidivisible compact semigroup, and let x, y, z ∈
S. If xy = xyz, then there exists some idempotent e ∈ SI such that yzω = ey
and xe = x. Dually, if yz = xyz, then there exists some idempotent e ∈ SI
such that xωy = ye and ez = z.

Proof : We deal only with the case xy = xyz, as the other case is dual. Since
S is equidivisible, the pairs (x, y) and (x, yz) are comparable elements of the
quasi-ordered set F(xy). If (x, yz) ≤ (x, y), then there exists t ∈ SI such
that x = xt and yz = ty, and so yzk = tky for every k ≥ 1, whence yzω = tωy
and we choose e = tω. Otherwise, (x, y) < (x, yz), and so there exists u ∈ S
such that x = xu and y = uyz, whence x = xuω and y = uωyzω; since
yzω = y = uωy, we may choose e = uω.

Proof of Proposition 12.1: By symmetry, it suffices to consider the mapping
λ = λ(u,v). By Remark 4.6, and since ev = v, the mapping λ indeed takes its
values in the interval [(1, w), (u, v)] and it is monotone.

Let (x, z) ∈ F(w) be such that (x, z) ≤ (u, v). Then there is t ∈ SI such

that xt = u and z = tv. And, since u = ue, we deduce that (x, te) t−→ (u, e)
is and edge of T(u), whence (x, te) belongs to the interval [(1, u), (u, e)]. As
λ(x, te) = (x, tev) = (x, z), we conclude that λ is surjective.

To prove that λ is a quasi-isomorphism, it remains to show that if (x1, y1),
(x2, y2) are elements of [(1, u), (u, e)], then

(x1, y1) < (x2, y2) =⇒ (x1, y1v) < (x2, y2v). (12.1)

Reasoning by reductio ad absurdum, suppose that the implication fails, that
is, that (x1, y1) < (x2, y2) and (x2, y2v) ≤ (x1, y1v). We may then consider
s, t ∈ SI such that x1t = x2, y1 = ty2, x2s = x1, and y2v = sy1v. The latter
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equality can be written as y2v = st · y2v, and applying the second case of
Lemma 12.2 to it, we conclude that there exists an idempotent f ∈ SI such
that (st)ωy2 = y2f and fv = v. The calculations

x2 · (st)ω−1s = x1(ts)ω = x1 and (st)ω−1s · y1 = (st)ωy2 = y2f

show that x2 · y2f = x1y1 = u and

(x2, y2f) ≤ (x1, y1) (12.2)

in [(1, u), (u, e)]. Since (x1, y1) < (x2, y2), we reach a contradiction provided
we prove that y2f = y2.

Recall that v = fv, and note that u = x2y2f implies u = uf . Hence, as

(u, v) e−→ (u, v) belongs to the ideal Kp, we conclude that (u, v) efe−−→ (u, v) also
belongs to Kp. From Corollary 9.4, we get efe = e. On the other hand, since
(x2, y2f) ≤ (u, e) (cf. (12.2)) and (x2, y2) ≤ (u, e), we have y2fe = y2f and
y2e = y2. Hence, y2f = y2fe = y2efe = y2e = y2, and so we reach the desired
contradiction. The contradiction was originated by the assumption that the
implication (12.1) fails in the interval [(1, u), (u, e)]. Hence, the implication
holds, which concludes the proof that λ is a quasi-isomorphism.

It remains to show that, for (x, y) ∈ [(1, u), (u, e)], we have Jq = Jλ̃(q), where

q = (x, y)/∼. Let ε ∈ SI be an idempotent. Observe that if ε stabilizes (x, y)
then it also stabilizes (x, yv), which shows that Jq lies J-above Jλ̃(q).

Conversely, suppose that ε stabilizes (x, yv). As εyv = yv, it follows from
Lemma 12.2 that there is some idempotent f ∈ SI with εy = yf and fv = v.

We claim that (x, yf) ≤ (u, e). Suppose on the contrary that

(u, e) < (x, yf). (12.3)

Then e ≤L yf , and so in particular we have e = ef . Similarly, from

(x, y) ≤ (u, e) (12.4)

we get y = ye. Therefore, yf = yef = ye = y, yielding a contradiction
between (12.3) and (12.4). This shows the claim that (x, yf) ≤ (u, e).

We are now assured that (x, yf) belongs to the domain of λ. From v = fv,
we get λ(x, y) = (x, yv) = λ(x, yf). We have already proved that λ is a
quasi-isomorphism, and so we conclude that (x, y) ∼ (x, yf). On the other
hand, ε clearly stabilizes (x, yf) = (x, εy). Hence, Jλ̃(q) lies J-above Jq, which
proves that the two J-classes coincide.
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Remark 12.3. Notice that in Proposition 12.1, in the special case where
(u, v) is a step point, we have e = 1 and so the domains of λ(u,v) and ρ(u,v)
are, respectively, F(u) and F(v).

Remark 12.4. Suppose that in Proposition 12.1 we have e 6= 1. Let q
be the stationary point (e, e)/∼ of L(e). Since e stabilizes (e, e) and Jq
is J-above e, we have e ∈ Jq. Therefore, applying Proposition 12.1, we
may consider the quasi-isomorphisms λ(e,v) : [(1, e), (e, e)]→ [(1, v), (e, v)] and
ρ(u,e) : [(e, e), (e, 1)]→ [(u, e), (u, 1)].

The diagram in Figure 2 may facilitate the understanding of the applica-
tions of Proposition 12.1 in the case in which (u, v) is a stationary point. The

w
(u, v)

u
(u, e)

e
(e, e)

v
(e, v)

6λ(u,v)

6ρ(u,e)

?
λ(e,v)

6

ρ(u,v)

Figure 2. Quasi-isomorphisms associated with a stationary
point (u, v)

arrows indicate quasi-isomorphisms between various intervals of the quasi-
ordered sets F(w), F(u), F(v), and F(e). Those quasi-isomorphisms induce
isomorphisms between the corresponding intervals of the linearly ordered sets
L(w), L(u), L(v), and L(e). The picture is perhaps clearer if interpreted in
this context, in which case, the points (u, v), (u, e), (e, v), and (e, e) should
be replaced by their respective ∼-classes.

Let S be an equidivisible profinite semigroup S which is finitely cancelable,
and let w ∈ S. We endow every ordered subset Q of L(w) with the following
labeling l: for a step point p = (u, v) of L(w) belonging to Q, let l(p) = i(v)
(and so if Q = L(w) then the labeling on step points is the one defining
the cluster word Lc(w)); for a stationary point p of L(w) belonging to Q,
let l(p) = Jp. The resulting labeled ordered set is denoted Ql. In the next
result, Pl + Ql denotes the labeled ordered set with underlying ordered set
P +Q and labeling whose restriction to P and Q is respectively the labeling
of Pl and Ql. The symbol ∼= stands for isomorphism of labeled ordered sets.
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Proposition 12.5. Let S be an equidivisible profinite semigroup S which is
finitely cancelable. Take w ∈ S. Let u, v ∈ S be such that w = uv. If e is the
unique idempotent of J(u,v)/∼ stabilizing (u, v), then

L(w)l ∼= [(1, u)/∼, (u, e)/∼[l + [(e, v)/∼, (v, 1)/∼]l.

In particular, if (u, v) is a step point, then L(w)l ∼= (L(u)\{(u, 1)})l +L(v)l.

Proof : Consider the quasi-isomorphism λ(u,v) and respective isomorphism

λ̃(u,v) as in Proposition 12.1. Then, the pair (x, y) ∈ F(u) is a step point
of the interval [(1, u), (u, e)[ if and only if its image λ(u,v)(x, y) = (x, yv) is a

step point of [(1, w), (u, v)[, and i(y) = i(yv). This fact, together with λ̃(u,v)
being J-preserving, enables us to conclude that

[(1, u)/∼, (u, e)/∼[l ∼= [(1, w)/∼, (u, v)/∼[l.

Similarly, we obtain

[(e, v)/∼, (v, 1)/∼]l ∼= [(u, v)/∼, (w, 1)/∼]l.

Since we clearly have

L(w)l = [(1, w)/∼, (u, v)/∼)[l + [(u, v)/∼, (w, 1)/∼]l,

this concludes the proof.

13. The image of the representation w 7→ Lc(w) in the
aperiodic case

Consider a cluster word (L, `) over A. Let ϕ : A → S be a generating
mapping of a semigroup S. Let s ∈ S and g : step(L) → F(s) be such that
(L, `) is g-recognized by (ϕ, s). We say that g is a (ϕ, s)-recognizer of (L, `).

Lemma 13.1. Let ϕ : A → S be a generating mapping of a finite semi-
group S, and let π : S → T be an onto homomorphism of semigroups. Suppose
that (L, `) is recognized by (ϕ, s). Then (L, `) is recognized by (π ◦ ϕ, π(s)).

Proof : Let g : step(L) → F(s) be a (ϕ, s)-recognizer of (L, `). For each p ∈
step(L), let g(p) = (up, vp). Consider the mapping h : step(L) → F(π(s))
defined by h(p) = (π(up), π(vp)). We claim that (L, `) is h-recognized by
(π ◦ ϕ, π(s)). The conditions (R.1)-(R.3) in Definition 8.2 for h-recognition
by (π ◦ϕ, π(s)) are clearly satisfied. It remains to show that condition (R.4)
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holds. Let p be a stationary point of (L, `). Take an element q of F(π(s))
such that h−1(q) is left cofinal at p. Consider the set

X = {(u, v) ∈ F(s) : (π(u), π(v)) = q}.

Then we have h−1(q) = g−1(X) = ⋃
x∈X g

−1(x). Since h−1(q) is left cofinal at
p and X is finite, there is at least one element x0 of X such that g−1(x0) is
left cofinal at p. But then g−1(x0) is also right cofinal at p, because (L, `) is
g-recognized by (ϕ, s). Therefore, h−1(q) is right cofinal at p. Symmetrically,
if h−1(q) is right cofinal at p, then it is left cofinal at p. This concludes our
proof.

For a cluster word (L, `) over A, if p and q are step points of L such that
p ≤ q, then ([p, q], `) is the cluster word obtained from (L, `) by restricting `
to [p, q[, and letting `(q) = 1.

We wish to study cluster words (L, `) satisfying the following conditions:

(W.1) For every finite aperiodic unambiguous A-generated semigroup S, and
every generating mapping ϕ : A → S, there is a unique s ∈ S such
that (L, `) is recognized by (ϕ, s).

(W.2) If p and q are step points of L such that p < q, then ([p, q], `) satis-
fies (W.1).

(W.3) Consider an arbitrary finite aperiodic unambiguous A-generated semi-
group S and a generating mapping ϕ : A→ S. Let s be such that (L, `)
if recognized by (ϕ, s). Take a (ϕ, s)-recognizer g. Suppose p and q
are step points such that p < q. If t ∈ S is such that (ϕ, t) recognizes

([p, q], `), then g(p) t−→ g(q) is an edge of T(s).

Remark 13.2. In the setting of condition (W.3), there is only one such
(ϕ, s)-recognizer, assuming that (W.1) and (W.2) also hold. Indeed, if g is a
(ϕ, s)-recognizer, and p is a step point of L, and if s1 and s2 are (the unique)
elements of S such that ([minL, p], `) and ([p,maxL], `) are respectively rec-
ognized by (ϕ, s1) and (ϕ, s2), then g(minL) s1−→ g(p) and g(p) s2−→ g(maxL)
are edges of T(s), and so g(p) = (s1, s2).

Finally we consider a fourth condition, assuming (W.1)-(W.3) hold:

(W.4) For every step point p of L, there is a finite aperiodic unambiguous
semigroup S and a generating mapping ϕ : A → S such that, for the
unique (ϕ, s)-recognizer g of (L, `), there are no elements of S that
stabilize g(p) in T(S).
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A cluster word satisfying conditions (W.1)-(W.4) is called a worthy cluster
word.

Theorem 13.3. A cluster word (L, `) over A is isomorphic to a cluster word
of the form Lc(w), w ∈ ΩAA, if and only if it is a worthy cluster word.

Proof : Let w ∈ ΩAA. By Theorem 11.16, the cluster word Lc(w) satisfies
condition (W.1).

Take two step points p and q of Lc(w) such that p < q. Let t ∈ ΩAA be
the unique transition from p to q. Applying twice Proposition 12.1, we con-
clude that ([p, q], `) is isomorphic with Lc(t). Therefore, by Theorem 11.16,
([p, q], `) satisfies condition (W.1).

By the previous paragraph and by Theorem 11.16, the cluster word Lc(w)
satisfies condition (W.3).

Suppose condition (W.4) does not hold for Lc(w). Then, there is a step
point p such that, for every finite aperiodic unambiguous A-generated semi-
group S and every generating mapping ϕ : A → S, the vertex g(p) of T(s)
is stabilized by some element of S. Let p = (u, v). We then have g(p) =
(ϕA(u), ϕA(v)) (cf. Theorem 11.16). By a standard compactness argument,
this implies that (u, v) is stabilized by some element of ΩAA. In view of
Proposition 7.5, this is impossible since p is a step point.

Conversely, suppose that (L, `) is a worthy cluster word over A. Let (πi)i∈I
be an inverse system of continuous homomorphisms πi : ΩAA → Si onto fi-
nite aperiodic unambiguous A-generated semigroups, with connecting homo-
morphisms πj,i : Sj → Si, such that ΩAA = lim←−i∈I Si. According to condi-

tion (W.1), for each i ∈ I, we may consider the unique element si of Si such
that (L, `) is recognized by (πi, si). Applying Lemma 13.1, we then conclude
that πj,i(sj) = si, whenever i, j ∈ I are such that i ≤ j. Hence, we may
consider the unique element wL of ΩAA such that

πi(wL) = si, (13.1)

for every i ∈ I.
Consider the mapping λ : step(L)→ step(L(wL)) defined by

λ(p) = (w[minL,p], w[p,maxL]).
Note that condition (W.2) ensures that w[minL,p] and w[p,maxL] are well defined.
We claim that λ is an isomorphism between the cluster words (L, `) and
Lc(wL). In the process of proving this we show that (w[minL,p], w[p,maxL]) is
indeed a step point of F(wL) (and thus of L(wL)).
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We begin by observing that formula (13.1) generalizes to every generating
mapping ϕ : A → S of a finite aperiodic unambiguous A-generated semi-
group. Indeed, take s ∈ S such that (L, `) is recognized by (ϕ, s). There is
some i ∈ I for which there is an onto homomorphism ρ : Si → S satisfying
ϕA = ρ ◦ πi. By Lemma 13.1, we know that ρ(si) = s. Therefore, we have

ϕA(wL) = s. (13.2)

For such a pair (ϕ, s), let gϕ : step(L)→ F(s) be the unique (ϕ, s)-recognizer
of (L, `). If p is a step point of L, then applying formula (13.2) to [minL, p]
and to [p,maxL], and taking into account Remark 13.2, we conclude that

gϕ(p) = (ϕA(w[minL,p]), ϕA(w[p,maxL])). (13.3)

In particular, we have

ϕA(w[minL,p]w[p,maxL]) = s = ϕA(wL).
Because ϕ was arbitrarily chosen among generating mappings of finite aperi-
odic unambiguous A-generated semigroups, this shows that the pair λ(p) =
(w[minL,p], w[p,maxL]) indeed belongs to F(wL).

Consider step points q and r of L such that q ≺ r. Let a = `(q). Take
a generating mapping ϕ : A → S of a finite aperiodic unambiguous semi-
group S. By the definition of (ϕ, s)-recognizer, we can consider in T(s) the

edge gϕ(q) ϕ(a)−−→ gϕ(r). In view of formula (13.3), applied to q and r, we then
have

ϕA(w[minL,q]a) = ϕA(w[minL,r]) and ϕA(w[q,maxL]) = ϕA(aw[r,maxL]).
Since ϕ was arbitrarily chosen among generating mappings of finite aperiodic
unambiguous A-generated semigroups, we conclude that

w[minL,q]a = w[minL,r] and w[q,maxL] = aw[r,maxL],

that is, λ(q) a−→ λ(r) is an edge of T(wL). By Proposition 6.7, we either have
λ(q) ∼ λ(r) or λ(q) ≺ λ(r).

If λ(q) ∼ λ(r), then there is z ∈ a(ΩAA)I such that λ(q) z−→ λ(q) is an
edge of T(wL). Therefore, in view of formula (13.3), we conclude that ϕ(z)
labels a loop of T(s) rooted at gϕ(q). This contradicts the assumption that
condition (W.4) holds.

We then conclude that, for step points q, r of L, we have

q ≺ r =⇒ λ(q) ≺ λ(r). (13.4)
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We also showed that `(λ(q)) = `(q), thus establishing that the mapping
λ : step(L)→ step(L(wL)) has a well-defined codomain and that it preserves
labels.

Notice that formula (13.3) can now be seen as follows: for the (ϕ, s)-
recognizer gwL,ϕ : step(L(w)) → F(s) of Lc(wL), as in Proposition 8.5, we
have

gϕ(p) = gwL,ϕ(λ(p)), (13.5)

for every step point p of L.
Let q and r be step points such that q < r. Suppose that λ(q) ≥ λ(r).

Then, for the pair (ϕ, s) considered so far, and in view of (13.5), we may

consider in T(s) an edge gϕ(r) t−→ gϕ(q) labeled by some t ∈ SI . On the other
hand, according to condition (W.3), there is in T(s) an edge gϕ(q) z−→ gϕ(r)
labeled by some z ∈ S. It follows that there is a loop in T(s) at gϕ(q) labeled
by zt ∈ S. This contradicts (W.4). Hence, we have λ(q) < λ(r).

It remains to show that λ is onto. Let (u, v) be a step point of L(wL).
Consider the set

X = {q ∈ step(L) : λ(q) ≤ (u, v)}.
Notice that X is nonempty: indeed, one clearly has minL ∈ X.

We claim that p = supX is a step point. Suppose not. Let ϕ : A → S
be the generating mapping of a finite aperiodic unambiguous A-generated
semigroup. Since =gϕ is finite and {q ∈ step(L) : q > p} is right cofinal at p,
there is (s1, s2) ∈ =gϕ such that

R = {q ∈ step(L) : q > p and gϕ(q) = (s1, s2)}
is right cofinal at p. In particular, g−1

ϕ (s1, s2) is right cofinal at p. Taking

into account condition (R.4) in Definition 8.2, we know that g−1
ϕ (s1, s2) is

also left cofinal at p. Therefore, there is a step point q such that q < p and
gϕ(q) = (s1, s2). Since p = supX, there is a step point q′ such that q < q′ < p
and λ(q′) ≤ (u, v). We have already shown that λ is injective and respects
the order, so we actually have λ(q) < (u, v). Let r be an element of the
nonempty set R. Since r > p, we have (u, v) < λ(r). Let t1 and t2 be (the
unique) transitions from λ(q) to (u, v) and from (u, v) to λ(r), respectively.
Then, in T(s), we have the following edges

gwL,ϕ(λ(q)) ϕA(t1)−−−→ gwL,ϕ(u, v) ϕA(t2)−−−→ gwL,ϕ(λ(r)). (13.6)

But we have gwL,ϕ(λ(q)) = gϕ(q) = (s1, s2) = gϕ(r) = gwL,ϕ(λ(r)). Hence,
we can multiply the second edge in (13.6) with the first edge, obtaining a
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loop at gwL,ϕ(u, v) = (ϕA(u), ϕA(v)) labeled by ϕA(t2t1) ∈ S, leading to a
contradiction, since Lc(wL) satisfies (W.4). This establishes the claim that p
is a step point, thus p ∈ X.

Suppose that λ(p) < (u, v). Let p′ be the step point such that p ≺ p′.
Then, applying (13.4), we get λ(p) ≺ λ(p′). Since λ(p) < (u, v), we obtain
λ(p′) ≤ (u, v), and so p′ ∈ X. But then p′ ≤ supX = p, a contradiction with
p < p′. As p ∈ X, to avoid the contradiction, we must have λ(p) = (u, v).
This concludes the proof that λ is onto.

It would also be interesting to characterize the worthy clustered linear
orders that arise as the images Lc(w) of ω-words w. We leave this as an open
problem.

14. On the cardinality of the set of stationary points
Let V be an equidivisible pseudovariety of semigroups not contained in CS.

Then V is finitely cancelable (cf. Proposition 6.4), and so, by Theorem 7.4,
for a finite alphabet A and for w ∈ ΩAV, the set step(L(w)) of step points
is the set of isolated points of L(w), with respect to the order topology.
Therefore, step(L(w)) is at most countable by Corollary 4.4. The aim of this
section is to show that when A has at least two elements, there are elements
w in ΩAV for which the set stat(L(w)) of stationary points has cardinal
2ℵ0. This will be done using some tools originated from symbolic dynamics,
following an approach that has been successfully used in recent years to
elucidate structural aspects of relatively free profinite semigroups [Alm05a,
AV06, AC09, CS11, AC13].

14.1. Subshifts. Consider a finite alphabet A, and endow AZ with the
product topology, where A is endowed with the discrete topology. The shift
map of AZ is the homeomorphism σ : AZ → AZ, defined by σ((xi)i∈Z) =
(xi+1)i∈Z. A symbolic dynamical system of AZ, also called subshift of AZ, is
a nonempty closed subset X of AZ such that σ(X) = X. The books [LM95,
Kit98] are good references on symbolic dynamical systems.

We say that a subset L of a semigroup S is

• factorial if it is closed under taking factors;
• prolongable if, for every s ∈ L, there are t, u ∈ S such that ts, su ∈ L;
• irreducible if, for all s, t ∈ L, there is u ∈ S such that sut ∈ L.
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If X is a subshift of AZ, then L(X) denotes the language of the words of
A+ of the form xkxk+1 . . . xk+n, where k ∈ Z, n ≥ 0 and (xi)i∈Z ∈ X. The set
L(X) is a factorial and prolongable language of A+, and in fact all nonempty
factorial and prolongable languages of A+ are of this form; moreover, Y ⊆ X

if and only if L(Y) ⊆ L(X), whenever X and Y are subshifts of AZ [LM95,
Proposition 1.3.4]. Finally, X is said to be irreducible if L(X) is an irreducible
subset of A+.

If X is a subshift of AZ then the sequence ( 1
n log2 |L(X) ∩ An|)n converges

to its infimum, which is called the entropy of X and denoted h(X) [LM95].
Note that X ⊆ Y implies h(X) ≤ h(Y), whenever X and Y are subshifts.

Remark 14.1. If X is a subshift of AZ then h(X) ≤ log2 |A| = h(AZ).
Moreover, from the fact that ( 1

n log2 |L(X) ∩ An|)n converges to its infimum

one easily deduces that the subshift X of AZ satisfies h(X) = log2 |A| if and
only if X = AZ (this a special case of [LM95, Corollary 4.4.9]).

14.2. A special J-class. Consider a subshift X of AZ, and suppose that
V is a pseudovariety containing LSl. Let MV(X) be the set of pseudowords
w ∈ ΩAV such that all finite factors of w belong to L(X). The set MV(X)
is a factorial subset of ΩAV. Because, as it is well known, the languages of
the form A∗uA∗, with u ∈ A+, are LSl-recognizable, the hypothesis that V
contains LSl ensures that MV(X) is a closed subset of ΩAV (cf. [Cos07]).

Lemma 14.2. Let X be an irreducible subshift of AZ. Consider a pseudova-
riety V containing LSl. For every u, v ∈MV(X) there is w ∈ ΩAV, depending
only on the finite suffixes of u and on the finite prefixes of v, such that
uwv ∈MV(X).

Proof : If V is a pseudovariety containing D and its dual, then every infinite
element of ΩAV has a unique prefix (suffix) in A+ with length n, for every
n ≥ 1. Let sn be the suffix of length n of u and let pn be the prefix of length
n of v. Since X is irreducible, for each n ∈ N, there is wn ∈ L(X) such that
snwnpn ∈ L(X). Let w be an accumulation point of (wn)n. Then w has the
desired property.

Proposition 14.3 ([CS11, Proposition 3.6]). Let S be a compact semigroup
and let X ⊆ S. Then X is a closed, factorial, irreducible subset of S if and
only if X consists of all factors of some regular element of S.
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By Lemma 14.2 and Proposition 14.3, if X is an irreducible subshift, then
there is a unique regular J-class JV(X) such that the elements of MV(X) are
the factors of elements of JV(X).

Remark 14.4. It also follows from Proposition 14.3 that JV(X) ≤J JV(Y) if
and only if MV(Y) ⊆ MV(X). Since we clearly have MV(Y) ⊆ MV(X) if and
only if L(Y) ⊆ L(X), we conclude that

Y ⊆ X ⇐⇒ JV(X) ≤J JV(Y). (14.1)

Remark 14.5. If X = AZ then MV(X) = ΩAV, and so JV(X) is the minimum
ideal of ΩAV.

14.3. Uncountable <R-chains and uncountable sets of stationary
points. We use the standard notation dαe for the least integer greater than
or equal to the real number α.

Theorem 14.6. There is a family (Sβ)β∈]1,+∞[ of symbolic dynamical sys-
tems, parameterized by the set of real numbers greater than one, such that:

(1) Sβ is an irreducible subshift of {0, . . . , dβe − 1}Z;
(2) h(Sβ) = log2 β;
(3) for every α, β ∈ ]1,+∞[, we have α < β if and only if Sα ( Sβ.

A concrete family of symbolic dynamical systems satisfying the conditions
of Theorem 14.6 is the family of β-shifts. A comprehensive exposition about
this family can be found in [Lot02, Chapter 7] and [Fro00]. That these
subshifts are irreducible follows from them being coded [BM86] — a subshift
X of AZ is coded if there is a prefix code Y contained in A+ such that
L(X) is the set of factors of elements of Y +. The entropy of β-shifts was
computed in [Rén57, Par60]. The fact that this class fits into Property 3 of
Theorem 14.6 appears at the beginning of [IT74, Section 4] (actually, only
the implication α ≤ β ⇒ Sα ⊆ Sβ is explicit there, but from Property 2 one
gets Sα ( Sβ ⇒ α < β).

As usual, the notation <J stands for the irreflexive relation originated by
≤J, and similarly for <R and <L. From Theorem 14.6 and equivalence (14.1)
in Remark 14.4 one immediately deduces the existence of a <J-chain in ΩAV
formed by 2ℵ0 regular elements, whenever V contains LSl and A has at least
two letters. The next theorem gives a refinement of this, as it shows in
particular the existence in ΩAV of a <R-chain formed by 2ℵ0 regular elements.
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We remark that in [Cos01] an example is given of a <R-chain of 2ℵ0 non-
regular elements in ΩALSl, when |A| > 1.

Theorem 14.7. Let V be a finitely cancelable pseudovariety of semigroups
containing LSl and let (Sβ)β∈]1,+∞[ be a family of subshifts as in Theorem 14.6.
Fix an integer n > 1 and let A be the alphabet {0, . . . , n − 1}. There is a
family (w(β))β∈]1,n] of pseudowords of ΩAV satisfying the following conditions:

(1) w(β) ∈ JV(Sβ) ⊆ ΩAV, for every β ∈ ]1, n];
(2) α < β ⇔ w(β) <R w

(α), for every α, β ∈ ]1, n];
(3) w(n) is an element of the minimum ideal of ΩAV;
(4) there is a subnet of (w(β))β∈]1,n[ converging to w(n), where ]1, n[ is en-

dowed with the usual order;
(5) for each β ∈ ]1, n], there are v(β), f (β) such that (w(β), v(β)) is a

stationary point of F(w(n)), and, for qβ = (w(β), v(β))/∼, the pseu-
doword f (β) is an idempotent in Jqβ stabilizing (w(β), v(β)) and satisfy-

ing f (β) L w(β);
(6) we have α < β ⇒ qα < qβ, and if moreover ΩAV is equidivisible, then

the equivalence α < β ⇔ qα < qβ holds, for every α, β ∈ ]1, n].

The proof of Theorem 14.7 will be done in several steps. But first we high-
light the following corollary, which is our main motivation for the theorem.

Corollary 14.8. Let V be a finitely cancelable pseudovariety of semigroups
containing LSl and let A be a finite alphabet with at least two elements. Then
there are pseudowords w in the minimum ideal of ΩAV such that stat(L(w))
has 2ℵ0 elements.

Note also that Theorem 14.7 gives an example of a pseudoword in the
minimum ideal of ΩAV whose set of stationary points contains a subset with
the same order type as the set of real numbers. In contrast, the following
example exhibits a pseudoword also in the minimum ideal of ΩAV with only
one stationary point.

Example 14.9. Let u1, u2, u3, . . . be an enumeration of the elements of A+,
and let V be a pseudovariety containing LSl such that ΩAV is equidivisi-
ble. For each k ≥ 1, consider in ΩAV an accumulation point vk of the se-
quence (ukuk+1 · · ·un−1un)n≥k and an accumulation point wk of the sequence
(unun−1 · · ·uk+1uk)n≥k. As every element of A+ is a factor of vk and wk, we
know that vk and wk belong to the minimum ideal KA of ΩAV. Therefore, if
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p and q are respectively the first and last stationary point of L(v1w1), then
Jp = Jq = KA by Theorem 10.1, and so p = q by Lemma 7.9.

14.4. About the proof of Theorem 14.7. Let S be a compact semigroup
and I an ordered set. Suppose that F = (Fi)i∈I is a nonempty family of
compact subsets of S. Denote by RF the set of partial functions f from I to⋃
F such that f(i) ∈ Fi for all i ∈ Dom f , and such that i ≤ j ⇒ f(i) ≤R f(j)

whenever i, j ∈ Dom f . We endow RF with the partial order ≤ defined by

f ≤ g ⇐⇒ (f = g ∨Dom f ( Dom g).

Lemma 14.10. The ordered set RF has a maximal element.

Proof : Let C be a chain of elements of RF . We want to show that C has an
upper bound in RF . For each f ∈ RF , let f ′ be an element of

∏
i∈I Fi whose

restriction to Dom f equals f . Since
∏
i∈I Fi is compact, the net (f ′)f∈C has

a subnet converging to some ϕ ∈ ∏
i∈I Fi. For achieving our goal, we may

as well assume that (f ′)f∈C converges. Let us fix an element f0 of C, and
take i, j ∈ Dom f0 such that i ≤ j. For all f ∈ C such that f0 ≤ f , one
has f(i) ≤R f(j). As the net (f ′)f∈C∧f0≤f converges to ϕ and ≤R is a closed
relation, we deduce that ϕ(i) ≤R ϕ(j). Moreover, since Fi is closed, we also
have ϕ(k) ∈ Fk for all k ∈ Dom f0. As f0 was chosen arbitrarily from C,
we conclude that the restriction of ϕ to

⋃
f∈C Dom f belongs to RF and is an

upper bound for C. Hence, by Zorn’s Lemma, RF has a maximal element.

Proposition 14.11. For the relation ⊇, let C be a nonempty chain of ir-
reducible subshifts of AZ. Consider a pseudovariety of semigroups V that
contains LSl. Let J be the family of J-classes (JV(X))X∈C. Then there is an
element of RJ with domain C.

Proof : By Lemma 14.10, we know there is in RJ a maximal element f . We
claim that Dom f = C. Suppose this is false. Let Z ∈ C \Dom f . Supposing
that I = {X ∈ Dom f : X ⊆ Z} is nonempty, let u be an accumulation point
of the net (f(X))X∈(I,⊆); in case I = ∅, we let u be any element of JV(Z).
Since X ⊆ Z implies MV(X) ⊆ MV(Z), we have f(X) ∈ MV(Z) for all X ∈ I.
And since MV(Z) is closed, we conclude that u ∈ MV(Z). Moreover, fixed
X ∈ I, then, as f ∈ RJ , we have f(Y) ≤R f(X) for all Y ∈ I such that
X ⊆ Y, whence

X ∈ I =⇒ u ≤R f(X). (14.2)
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Let v ∈ JV(Z). By the irreducibility of MV(Z), there is w ∈ ΩAV such that
uwv ∈ MV(Z). Since uwv is a factor of v and v is a J-minimum element
of MV(Z), we have uwv ∈ JV(Z). As f ∈ RJ , every two elements in the
image of f are R-comparable, and so the elements in the image of f have all
the same set P of finite prefixes. By Lemma 14.2, for each X ∈ Dom f such
that Z ⊆ X, there is a pseudoword w′, depending only on uwv and P , such
that uwvw′f(X) ∈ MV(X). More precisely, we have uwvw′f(X) ∈ JV(X), as
f(X) ∈ JV(X). The partial function

f ′ : X ∈ Dom f ∪ {Z} 7→


f(X) if X ( Z,

uwv if X = Z,

uwvw′f(X) if Z ( X,

belongs to RJ (cf. implication (14.2)) and Dom f ( Dom f ′. This contra-
dicts the fact that f is a maximal element of RJ . The absurdity comes from
the hypothesis C \Dom f 6= ∅.

We recall the concept of entropy of a pseudoword, first introduced in [AV06],
and applied there in the study of relatively free profinite semigroups. Some
further applications were given in [CS11]. Let V be a pseudovariety contain-
ing LSl and A an alphabet with at least two letters. For w ∈ ΩAV, let qw(n)
denote the number of factors of length n of w. If w is an infinite pseudoword
then the sequence 1

n log2 qw(n) converges to its infimum, which is denoted
by h(w) and called the entropy of w.∗ This definition extends to finite words,
by letting h(w) = 0 when w is finite. If X is a subshift, then h(X) = h(w) for
every pseudoword w whose set of finite factors is equal to L(X). For instance,
if X is irreducible then h(X) = h(w) when w ∈ JV(X).

Note that h(w) ∈ [0, log2 |A|], for all w ∈ ΩAV. Moreover, we have the
following fact from [AV06].

Proposition 14.12. Let w ∈ ΩAV. Then h(w) = log2 |A| if and only if w
belongs to the minimum ideal of ΩAV.

In particular, the entropy of pseudowords of ΩAV is not continuous, since
every finite word has entropy zero and the set of finite words is dense. How-
ever, it is upper semi-continuous, as proved next.

∗This is the definition used in [CS11]. In [AV06] the entropy of w is defined as 1
n log|A| qw(n),

which equals h(w) log|A| 2 for h(w) as defined here.
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Lemma 14.13. Let V be a pseudovariety containing LSl. If (wn)n is a se-
quence of elements of ΩAV converging to w then lim suph(wn) ≤ h(w).

Proof : Since lim suph(wn) is the greatest accumulation point of the sequence
(h(wn))n, the proof is reduced to the case where (h(wn))n converges.

Since limwn = w and V contains LSl, for each k there is pk such that for all
n ≥ pk the pseudowords wn and w have the same factors of length k. Let (nk)k
be the sequence recursively defined by n1 = p1 and nk+1 = max{nk, pk+1}.
Given ε > 0, consider the set K = {k : h(wnk) ≥ h(w)+ε}. For every k ∈ K,
one has

1
k

log2 qw(k) = 1
k

log2 qwnk (k) ≥ h(wnk) ≥ h(w) + ε. (14.3)

As lim 1
k log2 qw(k) = h(w), if K is infinite then (14.3) leads to the contradic-

tion h(w) ≥ h(w) + ε. Hence K is finite, and so lim h(wnk) ≤ h(w) + ε. Since
ε is arbitrary and (h(wn))n converges, we conclude that lim h(wn) ≤ h(w).

We now have all the tools to achieve the proof of Theorem 14.7.

Proof of Theorem 14.7: Let C be the chain (Sβ)]1,n[, ordered by ⊇. Applying
Proposition 14.11 to the family of J-classes (JV(X))X∈C, we conclude that
there is a function f : C→ ΩAV such that f(Sβ) ∈ JV(Sβ) and

Sβ ⊇ Sα =⇒ f(Sβ) ≤R f(Sα), ∀α, β ∈ ]1, n[.
On the other hand, if f(Sβ) ≤R f(Sα), then Sβ ⊇ Sα by equivalence (14.1) in
Remark 14.4. Therefore, we actually have

Sβ ) Sα ⇐⇒ f(Sβ) <R f(Sα), ∀α, β ∈ ]1, n[. (14.4)

For each β ∈ ]1, n[, let w(β) = f(Sβ). By the given characterization of
(Sβ)β∈]1,+∞[ (cf. Theorem 14.6), we know that Sβ ) Sα if and only if α < β,
whence (14.4) translates to

α < β ⇐⇒ w(β) <R w
(α), ∀α, β ∈ ]1, n[. (14.5)

Let (αk)k be an increasing sequence of elements of the open interval ]1, n[ such
that limαk = n. Thus, we have lim h(w(αk)) = lim log2 αk = log2 n. Hence, if
w(n) is an accumulation point of the sequence (w(αk))k, then h(w(n)) = log2 n
by Lemma 14.13 and Remark 14.1. By Proposition 14.12, the pseudoword
w(n) then belongs to the minimum ideal of ΩAV. Since ≤R is a closed relation,
we have w(n) ≤R w

(β) for all β ∈ ]1, n[. Then, taking into account (14.5), we
conclude that the net (w(β))β∈]1,n] satisfies conditions 1-4 in Theorem 14.7.
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As w(n) ≤R w(β), there is u(β) with w(n) = w(β)u(β). Since w(β) is regular,
there is an idempotent f (β) in the L-class of w(β). Take v(β) = f (β)u(β). Then
(w(β), v(β)) is an element of F(w(n)) stabilized by f (β). By Proposition 7.5,
this implies that qβ = (w(β), v(β))/∼ is a stationary point. The elements of
Jqβ are factors of w(β), and so by the minimality of Jqβ we have f (β) ∈ Jqβ .
Hence, condition 5 in Theorem 14.7 holds.

Let α, β ∈ ]1, n]. Since qα ≤ qβ ⇒ w(β) ≤R w(α), we deduce from (14.5)
that qα ≤ qβ ⇒ α ≤ β. Thus, if α < β then we cannot have qβ ≤ qα,
and so assuming ΩAV is equidivisible, we get qα < qβ, thereby establishing
condition 6 in Theorem 14.7.
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